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ABSTRACT 

The Pad' table to the (~place transform is cbnsi~ered, the 

equivalence of the approxJmate Laplace transform inversion by the use 

of Pade appr9xim~nts an~ some- weak exponential function approximations 

to the inverse transform, 'is shown, pnd a characterization theorem is 

proved. A gener~liza~ion to covpr the case of multi-point Pad' approxi­

man~s and ordinary rational ihterpolation t9 the Laplace transform is 

also suggested. Prony's m~thod of solvinQ some non-linear equations 

is generalized; 
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1. I NTRODUCT ION 

Let f(t) be a real valued integrable* function on any finite 

-
subinterval of the semi-infinite interval 0 ~ t <00 f(p), the L~place 

transform of f(t), is defined by the integral 

f 
oo 

(1. 1) f(p) =­

o
 

whenever, this integral converges. 

One way of obtaining approximations to the inverse f(t) of f(p) 

is by approximating f(p) by a sequence of rational functions fn(p), 

n= 1,2, ••. and then inverting the f (p) exactly to obtain the 
n 

sequence f (t), n=1~2, ... The hope is that if the sequencen 

(fn(p)} converges to f(p) quickly, th~n so wi 11 the sequenc;.e {fn(t)} 

converge to f(t) quic;.kly. There are several ways of obtaining rational 
" 

approximations to a given function, one of them being by expanding this 

function in a Taylor series and forming the Pad~ table associated with 

this Tayl.or series. For' a detailed discussion of this subject and 

references to various applications, the reader is referred to Longman 

(1973) . 

In Section 2 of this work we review' briefly some'algebraic proper­

ties of the Pad~ approximants. In Section 3 Vie sho¥" that the 'ppproximate 

.Laplace transform inversion by the ~se of the Pad~ approximants Is equi­

valent to the approximation of the inverse transform by a linear combi­

..	 
~~ 

111 the seql,lel of thi's work, .by "an integral" and I~n integrable 
function lJ we shall mean an improper Riemann integral and'an improperly 
Riemann integrable function, respectively. 
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'f - 2 ­

. natJoll'.of exponentia.l functions in some weaR sense and also 9ive a 

",	 characteriz~tion theorem for the approximation to the Inverse trans­

form. In Sect ion it we 'extend the resufts of Sect Ion. 3 to cover the 

ca~e of multi-point Pade approxlmants and ordinary rational lhter­

polatlon to Laplace transform. In Section 5 we deal with the problem 

of Interpolation b~ a sum of exponential func~i9ns 4nd generalize 

Prony1s method of solution anq Weiss and Mc D6nougn1s result concerning 

this problem. 

2 SOME.ALGEB~AIC ASPECTS O~ THE PAD~ APPROXIMA~T~ 

Let ~he function h(z) have a formal pOWer 'series expansion of 

the'·form 

00 

(2.t)	 h(z) = E clz t
 

i=O
 

The '(m,n) entry In the'Pade table of (2.1),"if Itexlsts, Is defined 

as the rational function 

m • 
P ( ) 

E	 
a ,.z 

I 'l' 

.m z i=O I
(2.2)	 h . ('z) = Q '(z) = ~n......;.o...',-. b =, ,m,n	 o 

n -E	 bJ zJ 
j=O 

such that	 the Maclaurin series, expansi~n of ti (z) in (2~2) agrees 
m~n 

with 'the formal power series in '(2.1) lip to and)ncludlng the term' 

m+n z I.e., 

h (z) - h	 (z):= o(,zm+n+l ) .. 
.'	 m,n 
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- 3 ­

Itis poss Ib1e. to exp~ess (2.3') a1so in the form 

min . 00 I 
(2.4)	 E a z - ( E b.zJ )(. E ~.IZ ) ~
 

i=O I j=O J 1=0
 

Ifrom ~hlch, ~y setting the coefficients of the powers 2 , 1::,0 ,"1 , • • • , 

m+n, on fhe left hand side, equal to zero, we ob~ain the ·two sets 

of linear equations 

mln(i ,n) 
(2 .. 5a) E c.. b • ... a. , 

j-O 1-J J I 

mln(l,n) 
(2. 5b) E .b. - 0 , = (11+,1, ••. ,m+n,c i. 0 -J.' JJ-

which, together with. the cqndition b '" 1, ~ompletely determine o 

h (z). As Is clear from equations (2:5), If ~he a r~ rea 1·, thenc im,n 

the a I! bI and h (z) (for real,z) are a 11 rea 1'., For the subjettm,n 

of the Pad~ table a~ defined above, see Baker (1975, Chapters I and 2). 

For the purpose of the approximate inversion of the laplace trans­

form, the Pade approximants hN+ - 1 n(z), where N Is a non-negativen. , 
integer, I.e., those hm,n(z) for whlch m> n-1, are of interest; 

therefore, we shall concentrate on t~ese approximations. 

Let us assume that in hN+n-1,n(z), all the common factors in the 

numerator PN+n-1(z) an~ il;l the denominator Qn(Z)~ ·If there are any, 
'. 

have been cance 11 ed out and that, 'the numerator is of degree -I ess	 than 

lor equal to 'N+n'-l, and the denominator is of degree exactly n 

" (n l ~ h); I·e.; hN+n- 1,n(z) =hN+nl-1,nl(z) = PN+nI_1(z)/Q~~(z). 

~ ._"_..:...."--'- .....:_'O';...iiIii.;........;;;~.:..=· ~......	 __...4
........	 1Il!l!!!!!!!!!!!!'!!!I
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- 4 ­

D'ividing the numerator PN+n l -1(z) by" the delloml nator Q I (z), we 
n 

can express hN~n~l,n(z) as 

where 

(2.7) 

such that RN_1(z) and Pn -1(z) are polynomials of degree at most 
' 

N-l and n l -1 respectively, which are uniquely defined. Needless 

Lemma 2. 1 The Maclaurin series expa~sio~ of the rational function 

Nhn(z) agrees with th~ formal power series expansion in (2.1) through 

Ithe terms z, i "" N, N+1 ,1 •• , N+2n-1. 

00 

Proof. L.et Nhn (z) ha,ve the ~Glaurin series expansion l; d.z1 
1=0 I 

. N-1 i 
and let RN_1(z) "" .l; e.z • Us ing thes'e in (2..6) and substituting 

1=0 I 

(.2.6) in (2.3) we obtain; 

(2.8a) c. = e. + d. = 0, 1 , ... , N-1 
I I I 

~.... 

(2.8b) = do< = N, N+1, .•. , N+2n -1 •c 1 I 

which is the desired result. 

From th i,s the foIl owi n9 can eCls I IY t>e obta Ine.d.;· 

Corollary. The Ma~laurin series expansibn·of the N-th derivative of 

Nhn(z), agrees with the formal 'N-th dedvatlve of the Series in (2.1), 
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- 5 ­

obtaihed by differentiating (2. l~ term by term N times, up to and 

• 1 d' h 2n-1Inc u Ing t e term z . 

We note tha~ the ration~t function ,Nhn(z) i,s determined by the 

2n equations given in (2.8b). 

Since we a~sum~ that the denominator Q I·(ZJ
r:t 

exa~tly of degree n l
, ·we let zl,z2~'~' ,zs' be all the zeros of 

Qnl (z), of multiplicities ~1'~2""'~s' respectivelY, such that 

s 
~ ~. = n t • Then it is possible to e~press Nhn(Z) In partial 

j=l' J 
fract ions "Is 

~.'s J A. k 
~ l; . J '0(2.9) Nhn(z) = k

J=l k=l (z-z" )
J 

From (2.9), the Maclaurin seties expans'lon of Nhn(z) is 

]J.s J A.J , k 00 

(2. 10) = ~ ~ ~ 

j=l k=l ("z.) k 
1=0-. J 

which, upon usl~g the fact that 

J.I. 
00 s J 

(2.1 n h (z) =' ~ [~ ~
 
N n 1=0 l 1= I, k= 1
 

If we now use the result of Lemma 2.1; i.e., equa~ions (2.8b), 

we obtain ~he following result: 

Lemma 2.2 Tne pa~ameters A. k and z. of the partial fraction
J , J 

decomposition of Nhn(z) ~atisfy the 2n non-linear equations 

Is 

l z· . 
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s A. k 
(2. 12) = L J ' 

I • 0',1" ••• ,2n-'.c N+ i N+R+I z.j=J 
J 

00 

- - IConsider now the power series expansion h(z)" 1; clz 
'-0 

c i = 1=0,1, ... and let h be Its Pade approxlmants. c N+1' m,n 

As can be seen by equations, (2.5b), the co~fficl~nts of the denominator 

of hn_"n(z) and those.of hN+ - ,n(z) satisfy the same equations.n 1

Assuming that the Pade table of h(z) and hence that of h(z) are 

normal (see Baker (1975), Chapter. 2), we ~now that the hN+n.,.n{z) 

and hn_1 ,n(z) are irreducible and have denominators of degree exactly 

n and furthermore these denominators are identical. Being identical, 

'the denom-Inators of hN+ - 1,n(z) and h - ,n(z) have the same zerosn n 1
n 

which we now assume are simple. Then Nhn(z) = .1;,A i'(Z-ZJ) and 
'. J= J 

n 
h 1 (z) = ~ A./(z-z.). Using the?e expansl~ns, for Nhn(~) equations 
n- , n j= 1 J J 

(2.12) become 

n A.
 
'(2. 13) - --L.. 'I = 0, r, .'.. ,2n -1 ,
~N+I = ~ N+I ' 

3=1 z. 
J 

and recalling that h 1 (2) == ii (z), fat" h - 1 ,n (z) equations (2.12) beCOMe n- ,n 0 n n 

n A. 
(2. 14) c. = 1; -4 = 0,1, ... ,2n-L


I 
J=l z. I

"
J 

Remembering th~t c,i = cN+ I ' == .0, 1, .• ~, and comparln,g equations 

(2.13) and (2.14) we see that 

- N(2. 15) A. == A.z. ',_ j = r,2, ... ,n • 
J J J 

'. 

...
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- 7 ­

Thus, we have shown ,that ,if h(z) has a normal Pade table, then 

t~e partial fractjon 
~ 

expansion of Nhn(z) can be obtained very easily 
" 

from	 that of ii t (z), provided .Ii 1 (z) has simple poles. This 
n- ,n n'- ,n 

way we also av~id the pr9blemof the division of PN+ - 1(z) by ~(z). n 

'.	 '" 3.	 APPROXIMATE LAPLACE TRANSFORM INVERSION BY THE USE. OF THE PADE 
TABLE. 

Let f(~) be as described in Sectjon 1 and let f(p) be its 

Laplace transform as defined in (1.1). One property of f(p) is 

that it is an analytic fun~tion of p whenever Re.p > y, for some ~. 

Then f(p) is ~nalytic at p:::w for w real and w > Y, and hence 

can be expanded in a Taylor series as 

(3. 1) i z , Z ::: p-w " 

Anothe~ important property pf the Laplace trarsform f(p) is that 

it goes to iero as Re ~ 00, and this implies that not every analytic 

function is a Laplace transform. T~is prQperty, therefore, puts a 

restriction on thefunction~ that can be used as approxill)ations to 

f'(p) for the purpose of in'(ersion. For example, among tl)e Pade 

approximations F (z) to F(z) .(or equivalently f(p)r, only those m,n 

with m < n can be used' for obtaining ~pproximations to the inverse 

transform f(t), whereas- the others can not., In particular, among 

tHe F 1 (z), on'ly those wi th N= 0, i.e. the F 1 (z), can beN+n- "n . J n- ,n 

used for this purpOSe, and they have indeed Deen used with success. 
\ 

A question then is: Is it·possjble, somehow, .to make use of the 
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- 8 ­

+ - 1 n(z), for N > 6, ·for the purpose of ,obtaining approximationsFN n ,
 
to f(t)7 Now we know the mathematical relationship between f(p)
 

and the'Pad~ approximations to it~ Another even more interesting
 

question then Js.: What is th'e mathematical relationship between '. f(t)
 

and the approximatio~~ to It o~talned by inverting the Pade approximations
 

F (z) and what fs ~he relationship betwee~ f(t) and the approx­n-1,n .. ,
 

Imations to it obtained by using the FN+ 1 (z), for N > 0, tf the
 
n- ,n 

answer to the first question Is, in the affJrmattve7 The following 

theorem answers both of these4uestions simultaneously. 

Theor~m 3. 1. 'Defi ne the sets G as follows: 
n 

o.r rJ k 1 a. t 
(3.2) G = ~9.( t)' = 1,; 1,; B. kt - e J' a. di st inct, 1,; o. = nlEt; n}

n J , J Jj=l k=l j=l 

Let now .gn h ) be tn.at' function, if iJ"exists, be'longing to G ,n

whJch approximates f(t) on [O,~) In the following weak sen~e: 

g (t) oJ. tidt = 0, 'i ='·0,1, ••• ,2n-1­
n 

Then 9 (P), the ~aplace transform of gn~t) is simpiy NFn(P-w), further­n

more 9 (t) Is a real function of t. n

,Proof. If the function 9 (t) exists, It Is then of the form n

;; \!j A. k a.t s
J , k-t1,; 1,; t e J , 1,; \.1. Ii; n l E;;; n.gn Ct) = (k-.l) !j=l k=l j=l J 

l 
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- 9 -' 

". 

Substituting (3.4) jn (3.3) and using the relations 

00,

(3.5a) 1t 1 e-ptf(t)dt = (_1)1 ¥ll)ip), 

o 

(3.5b) \1>-1, 

~ (3.6) 
A. kJ,

( ) N+i+k' w-a. 

we obtain-

J 

= 0, 1'," • " ,2n-1 • 

These equations tan be rewritten as 

f CN+i ) (w) 
(N+i ) ! 

= 0 ,.J , • . • ,2n -1 • 

Recall'ing from (3.1) that f(l) (w)/R,! 'is' the" coeffi,ctent of the 

power z1 in the Maclaurin serLes ~xpansion of F(z), and using. 

Lemma Z.2, 'we o~tain the result 

I.J.
S j A.J , k 

= ~ ~(3.8) 
kj= 1 k= 1 (z-a .+w)

J 

By ,using the defi.nition p = z+.w 'lie can express (3.8) as, 

1..1.
S J A~ k 
~ ~(3.9) NFn(P-w) = J , . 

k=l '(p_a.)k,.j""l 
J 
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Now, since the right hand side of equat,ion (3,.9) l"s no~l)lng but 

9 (p), we have 9 (P) = ~Fn(p-w). Since ¥(p) Is re~l for real p, then n

Pade approximants Fm,n(Z) and hence 'NFn(z) and equivalently 

are real for real p, therefore gn(t) is a real function of t too. 

THJs completes the proof. 

Theorem 3. I tells us then ~hat 1 (z). can be used forFN+ n-,n ­

approximating th~ inverse transform f(,t) prqvid~d, NFn'(z), i.e., that 

part of FN+n .. "n (z) wh'tch goes to zero as p-+oo, is used as an 

approximation tp f(p). 

Now, by defining N fixed, and 'q). (t) = fi ,
,I 

i = 0, I, ... , equat ions (3.~) c'an be wri't:ten as 

00 

J ,p(t) [f(t) -,gn(t)]~i(t)dt=O" = 0, I , ••• , 2n -1 , 

o 

which looks v'ery much I,ike a Galerkin-type appro~imati,on. procedure. 

Therefore, b~ analogy with Galerkin app'roxi'mation methods, we would 

expect the sequence gn.(t), n'= I,Z,d. , ignorJng those gn(t) 

which do not exist, ·to conver.ge to f(t). Another. justification for. 
this expectation is the following: The sequences of Pade ap~roximants 

\ 

~Ion~ the diagonals usualfy converge ver~ qui~kly, at leas~.num~rically. 

Now the gn(t) are obtained from th~ NFn(P-w) which in ~urn are 

obtained from 'the Pacle approximants FN+, '.1 ,n-(z), and .t~ese" for"' N 
n~ 

fixed, form a diagonal of the Pade ta~le~ 

For future reference, we state the following theorem: 

lheorem 3.2. Let u (x), r =! 0; 1,2, ... , be a set of polynomials
r 

whic,h are orthogonal on an inte:rval [a"bJ, finite, semi-infi'nite, ,. 
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or infinite, with weight function q(x), whose integril over any 

sub i nterva 1 of [a.,b] i s po~ i t ive. If A(x) is, any r~a 1 cont Inuous' 

b 

function on (a, b) and f q(x)A(x)dx exists as an improper Riemann 

a 
~ 

rnteg ra I and if f q (x) A(x) u ('X)dx = 0, r = 0, I" ••• ,k-l , then r 
a 

A(x} either changes sign at least k times In the interval (a,b) 

or is' identically zero. 

The proof of this theorem for A(x) continuous on [a,b] can 

be found in Cheney ,(1966, p.lIO) and carries over ~o ~he case ih 

which A(x) is ~s described above without any modfffcatJon. 

We now prove a characterization theorem for the approximations gn(t). 

Theorem 3.3. Let f(t) be as described in Sectio~ 1 ~nd be con­

tinuous on (0,00) and let f(p), its Laplace transform, be analytic 

for Re p > y. Let w > y and let F(z) be defined as in (].1). 

Let 9 (p) = NFn(p-w), if it exi sts, and assume 9 (P) ha's no n n

poles for ~~ p ~w. Then D(t) = f(t) - gn(t), where gn(t) is the 

inverse of gn(p~, cha~ges its sign at least 2n times irr the interval 

(0 ,oo)i f f E: G . If f € G , then D(t) == o. n n 

,. 
Proof.	 From Theorem 3. I , gn (t) is rea 1 and .sat "sf i es the equati ons 

co 

(3.10)	 f t N e-wtO(t)tidt = 0, = 0, 1, . : • ,2n -1 . 
.~. 

Q 

Choosing v such that 8 == w+ v > "0, we can, write equations (3.10) in 

the form 

k	 ......looo ...... _ 
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00 

(3. 11) J t N e-StO(t)tiut = 0, r = 0,1, ••. ,2n-1, 

o
 

-' vt

where D(,t) = e D( t). By ta~ing appropriate linear combinations, 

equations (3.11) can be expressed as 

(3.12) J 
00 

t N e-StD(t)~fN)(at)dt = 0, = 0 t 1 , ••• ,2n -1 , 

o 

where L~a)(x) are the Laguerre polynomials which are orthogonal
I , 

on [0,(0) with weight function xae-x.. it 'is easy to see that the 

N ~J~tL~N) (at) are orthogon~l an }O,oo) wfih'weight function t e • 
I 

Now, usj.ng Theorem 3.2, *e conclude that O(t) and,hence D(t) change. 

sign at least 2n times on (0,00) or that they are (dentically zero. 

But D(t) =0 only when f(t) = g (t), and this' proves the theorem. n 

" 

4.	 GENERALIZ~TION TO MULTI-POINT'PADE 
~ 

APPROXIMANTS AND RATIONAL 
INTERPOLATION 

The result of Theor:e[ll 3.1 can be carried further as follows; 

Theorem 4.1: Let f(t) -be' as in Section 3 and let 9 '(t) be that n

function, if it exists, belonging to Gn , which ~pproxima~es f(t) 

on [0,00) in the weak sense 

, 
00 

-wkt . i =.0, 1, .•. ,n k) 
(~. 1) e [.f(t) - 9 (t)] tldt = 0,J n	 k = 1,2, ... ,R., 

o 
R, 

where the are distinct and Re w , an.d ~ (nk+l) = 2n.wk	 k > y 
k=\ 
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Then 9 (P), -the Lapla.ce transform of. gn(t), i~ the R.-point Pade n

approximation to f(p), whose numerator is of degr~e at most n~l and 

whose denominator is of degree at ~st n, and ~hose Taylor series 

expansions about the po)nts p ~ w agree with the Taylor seriesk 

expansions"of 'f(p) about the same points up to and includi!,g the 
nkterms (p"'w ) t k =.1,2, ••• ,R.. (For the subject of multi-pointk

Pade approximants see 'Baker (1975, Chapte( 8).). Furthermore, If the 

is a real function of t. , ~ 

Proof. The proof of the fir?t part follows from the fa~t t~at 

equations (4.1), together with the help of equation (3.5a), can be 

wrl tten as 

(4.2) ~O"'''''!1k' k=1,2, ... ,R., 
i 

.and •the fact that 9 '(P) is a rational fUl1c t ion ,wHh numerator of qegree . n

at most n-1 and denominator' of degree at most n. The proof of the 
'" 

second part follows from th~ fact that -9 (p') is r~al for real p, when 
;,.~ 

n

the wk are 'real. This ~an be s~en easily by~observlng that Eqs.(4.2) when 

expressed ip term~of the coefficients of the numerator and denominator 

of 9 (P):, form a linear system of real equations. 'rhis, then completes n


the proof. ~
 

Setting n 
k 

=. 0 i,n Theorem 4. 1, we can now show tha,t the rat Iona 1 

'interpolation problem to f(p) too is simply related ~ith an exponential 

function appro~imation to f(t) in some weak sense. 
t' 

\ • S2 
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Corol1a~y. Let gn(t) be that function, It it exJsts, b~longlng to 

G , which approximates f(t) on [O,~), In the weak sense n 

J 
~ 

-w t 
(4.3) \ e k [f(t) ;:. 

o 
",'". 

where 
\ 

the wk are distinct and Re wk > y" T!;len 9 (P), the n .. 
laplace transform of gn(t), Is"the ratlona'l functlQn with numerator 

of degree at most n-1 and denominator of degre~ at most n, which 

Interpola~es f(p) at the points p= wk ' 1<.= 1.,2, ••• ,2n'_ As Defore, 

If the w are r:ea r, then '9. (t) I s a .rea 1 funct Ion of t.k n 

When the w are chosen to be rea 1., ,and equidistant, we can also
k 

prove a characterizatioo; theorem tor- gn(t), tn the ease w~en 9ri(P) 

lnte~polates f(p) at the points p.-wk• 

Theorem .4.2 •. Let f(t)' and ,f(p') be as in Theorem 3.3 and l~t 9 (P)'n 

be thaX ratlonal function, if it existS, with numerator bf d,gree at 

most n-1 and denominator of degree at most. n, which 'Interpolates 

f(p) at the 2n distinct real po'lrits p:awo+k15, k = 0.,1, ••.•2n-1, 

wnere W ~ y, 15 > 0, and assume that' 9 (p) has no poles for Re p >,w ' 
o n o 

Then, OCt) = f(t) - g (tL 'changes sign' at least::' 2n tt'mes in 'the 
n,
 

In te rva 1. (O.,~) ,-I f f II G. Iff € G , then, 0 (t) == O.
 
·n n 

Proof, From the corollary to Theorem' 4.1, g~·(t) satisfies the 

equat lo'ns 

OO -w t 
k15t dt(4..4) ,e

I 0 
O(t) e- = ,0, k = 0,1, ••• ,2n-1,J 

o 
which can qlso be written as 

\. , , \, , 

\' t"... ,'"' 
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co 

(4.5)	 Ie-at O(t) e~kot dt = 0, k = 0,1, .•• ,2n-1
 

o
 
(a-w )t	 .owhere O(:t) = e oCt). Now taking approprfate linear cOpl­

binations, equations (4.5) can be written as 

I 
00 

-at - * -ct'(4,.6) e D(t) Pk(e )dt = 0, k = 0; 1:~ ... ,2n-1 
o 

where P:(x) are the shifted' Legendre polynomia)swhich are orthoge>­

nal on the interval [0,)] with weight functiorr unlty. Making the 

atchange of variable x = e- an~ defrhing E(x) =o(t), we can. 

express equations (4.6), in the. new variable x, as 

1 

(4. ])	 k =. 0, I , .". • , 2n - 1. J 
o 

Using now Theorem 3.2, we conclude tha~ E(x) either changes ~Ign 
I 

at least 2n times o~ (0,1) or E(x) =O. Going back to the variable 

t, we see that O(t) and .hence OCt) either chaQge sign.at least ?n 

times on (O,~) or are identically zero. But, D(t) =0 only when 

f(t) =gn(t) aQd this proves the theorem 

~~--------""""""._----'--""'''''' !!!!!!!!!!!!!!I~''''!!!!!!!I!i!I!I
 

"
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5. PRONY's MtTHOD AND THE PADE TABLE 

Suppose the function c(x) is to be approximated by a sum of 

exponential functions 

n <1. X 

(5. n u(x) = ~ a.e J
J • 

j=l 

where the a and cr. are to be deter.mined by the interpolationJ J 

equat ions c. = c (i) = u( i,) , i = 0,1, .... ,?n-l, which, on defining
I 

cr. ...e J tj: , j = 1, ... ,n, become 

n 
(5.2) C. = ~ a·t.,

i = 0 t 1, ••• ,2n-, . 
J JI 

j=l ., 

The non-1 in~ar equations have been solved by'prony (1795.) .and the 

relation of Prony1s metho~ of solu~ion with >he (n-1,n) Pade 
00 • 

approximant to the power ser ies expans ion V'(z)". ~ ciz I' >has been 
'. i=O 

shown by Weiss and McDonough (1963). It turns· out that the l;. are 
J 

the inverses of the zeros of the denominator of the (n-1 tn) Pade 

approximan,t to V(z), whenever thJs approximant exists. 

Now u(x). as given in ("5.1) exists if tne t. are distinct. 
J 

But whenever some of" the t are equal, there is-no such u(x).j 

This impl ies that the function u(x) in (5.1) l1Just be modified. The 

fol !'owing theorem shows how this modification 'is to be made and also 

generalizes the method of,Prony and the ~esult oT Weiss and McDonough. 

TheoremS.1 Let c(x) be a given function and denote c._I = c(i),
e , 

= 0,1,2, ... Suppose furthermore that the Pade apprpximant i 

• 

t •• ­
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00 
i 

VN+ - 1 n(z) to V(z) co ~ ciz exi s'ts. Then there exists a 
~ 

n 
i=O 

Junction u(x) in G 'w~ich lnt~rpo1ates c(x) at the pointsn 

x = N,N+1, ... ,N+2n-1, and this u(x) j'S reJated to NVn(z), 

Proof. If u(x) .exi sts, it 'i s of the form 

J.l. s J 
(5.3) u(x) .'~ ~ (_1)k (k+x-.l) A. k k+x 

1'-1 J /;J",'
j=1 k= 1. " , 

s 
such that /;. are distinct and ~ lJ. = nl~n. (It can be shown 

J j=1 J 

that any function in G can also be written as in (5.3)~) Using
n 

now the conditions 

(5.4) c t = c(i) = u(i), = N, N+ 1 , . : • , N+2n -1 , 

we ob~ain the equations 

s IIJ 
== ~ ~ (_1)k (N+i T k'?l) A. It ,r N.+ i +k ,C~+'I k 1 ... i=O/1, ... ,2n-1.

J'71 k==l - J, J 

. .. 
Upon setting ~. = ~/Z;. and compar i,ng equat ions.!5. 5) wJ th equat i ens 

J J \ 

are the(2.12), and using Lemma 2.2, we s~e that the AJ,k 
\ 

providedparameters of the partial' fra'ction decomposition of 

:: IL 
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