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ABSTRACT

The Padé table to the Laplace transform is considered, the
equivalence of the approximate Laplace transform inversion by the use
of Padé approximants and some weak exponential function approximations
to the inverse transform, ‘is shown, and a characterization theorem is
proved. A generalization to cover the case of multi-point Padé approxi-
mants and ordinary rationa] ihterpolation to the Laplace transform is
also suggested. Prony's method of solving some non-linear equations

is generalized:




1. INTRODUCTION

*
Let f(t) be a real valued integrable function on any finite

subinterval of the semi-infinite interval 0 <t <%, f(p), the Laplace

transform of f(t), is defined by the integral

(1.1) f(p) =J e PLe(t)di
0

whenever, this integral converges.

One way of obtaining approximations to the inverse f(t) of f(p)
is by approximating f(p) by a sequence of rational functions ?n(p),
n=1,2,... , and then inverting the ?n(p) exactly to obtain the
sequence fn(t), n=1,2,... . The hope is that if the sequence
{?n(p)} converges to f(p) quickly, then so will the sequence {fn(t)}
converge to f(t) quickly. There are severij ways of obtaining rational
approximations to a given function, one of them being by expanding this
function in a Taylor series and forming the Padé table associated with
this Taylor series. For a detailed discussion of this subject and
references to various applications, the reader is referred to Longman
(1973).

In Section 2 of this work we review briefly some'algebraic proper-
ties of the Padé approximants. In Section 3 we show that the approximate
sLaplace transform inversion by the use of the Padé approximants is equi-

valent to the approximation of the inverse transform by a linear combi-

ot
In the sequel of this work, by 'an integral' and 'an integrable
function'" we shall mean an improper Riemann integral and an improperly
Riemann integrable function, respectively.




" nation .of exponential functions in some weak sense and also give a
characterization theorem for the approximation to the inverse trans-
form. In Section 4 we extend the results of Section.3 to cover the
case of multi-point Padé approximants and ord]nary rational inter-
polation to Laplace transform. In Sectfon 5 we deal with the problem
of Interbolation by- a sum of exponential functions .and generalize
Prony's method o% solution and Weiss and Mc Donough's result concerning

this problem,

2, SOME. ALGEBRAIC ASPECTS OF THE PADE APPROXIMANTS

Let the function h(z) have a formal power ‘series expansion of

the'-form
o0 .
(2.1) h(z) = = ¢,z' .
i=0 '

The (m,n) entry in the ‘Padé table of (2.1), if it exists, Is defined

as the rational function

|

a.z
Pm(z) i=0“l

(2.2)  h . (2) = o , by=1,

*

n .
D) ijJ
j=0

such that the Maclaurin series expansion of ﬁm;n(z) in (2.2) agrees
with the formal power series in (2.1) up to and including the term

m+n
z ; l.e.,

(2.3)  h(z) - h n(z) - 0(2m+n+1),




It is possible to express (2.3) also in the form

. n . ©o .
(2.8)  Taz' - (Zb2)(Ze2) = 0™
i j=0 4 i=0"!

from which, by setting the coefficients of the powers zi. i=0,1,...,
m+n, on the left hand side, equal to zero, we obtain the two sets

of linear equations

( min(i,n)
2.5a) c,_.b.=a,, i=0,1,...,m
o 3T
min(i,n)
(2.5b) z Ci-jbj =0, i =mkl,...,m#n,
Jj=0 ' .

which, together with the condition by =1, completely determine

’

hm n(z). As is clear from equations (2,5), if the c;, are real, then

the a, b, and hm n(z) (for real . z) are all real. For the subject

of the Padé table as defined above, see Baker (1975. Chapters 1 and 2).

For the purpose of the approximate inversion of the laplace trans-

form, the Padé approximants h (z), where N 1is a non-negative

N+n-1,n

integer, i.e., those hey n(z) for which m # n-1, are of interest;

’

therefore, we shall concentrate on these approximations.

Let us assume that in h (z), all the common factors in the

N+n-1,n

numerator l(z) and ip the denominator Qn(z), 1f there are any,

PN+n—
have been cancelled out and that 'the numerator is of degree les$ than
or equal to N+n'-1, and the denominator is of degree exactly n'

(0f S0 feers Mgy () Shy (2 = (20 (2).

simim i e 5 - L. it




Dividing th& numerator P

N+n
can express hN;nr1,n(z) as
S
(2.6) hN+n-1,n(Z) =
where
) Pn'-1(z)
(2.7 Nhn(z) = —E;TTET~ ,

such that Ry_,(z) and Pt

,_1(z) by- the denominator Qn,(z). we

Ry-1(2z) + Nhn(z) ,

](z) are polynomials of degree at most

N-1 and n'-1 respectively, which are uniquely defined. Needless

to say Nhn,(z) = th(g).

Lemma 2.1 The Maclaurin series

expansion of the rational function

Nhn(z) agrees with the formal power series expansion in (2.1) through

the terms z', i=N, N+1,:.., N+2n-1,
-
Proof. Let Nhn(z) have the Maclaurin series expansion X d;z
=0
. N-1 ;
and let RN_1(z) = 2 ez . Using these in (2.6) and substituting
i=0
(2.6) in (2.3) we obtain:
(2.8a) c; = e * di , i =0,1,...,N=1
(2.8b) c; = diz s i = N,N+1,...,N+2n-1.

which is the desired result.

From this the following can

Corollary.

The Maclaurin series expansion of the

’

easily be obtained.

N-th derivative of

Nhn(z),vagrees with the formal 'N-th derivative of the series in (2.1),




obtained by differentiating (2.1) term by term N times, up to and

including the term 22n~1.

We note that the rational function Nh&kz) is determined by the

2n equations given in (2.8b).

Since we assume that the denominator Qnr(z) of Nhn(z) is

, be all the zeros of

exactly of degree n', -we let Z132Zps w052

Q_,(z), of multipI}cities HysHgseeeslos respectiveﬂy, such that

3

Man

uj =n'. Then it is possible to express Nhn(z) in partial
=1
fractions as

s uj A, K
(2.9) Nh (z) = T & ——doX
n e 1 Lo k

j=1 k=1 (z-z))

From (2.9), the Maclaurin seties expansion of Nhn(z) is

s Y5 A, oo . (
h(z) = Tz kxRt
= = j

(2.10) )
N'n =1 ok=1 (szK !

’

which, upon using the fact that (}k) = (_-l)| (k+;-1), becomes

(2.11y Nhn(z) = ;

If we now use the result of Lemmad 2.7; i.e., equations (2.8b),

we obtain the following result:

‘ Lemma 2.2 The parameters Aj K and zj of the partial fraction

h (z) satisfy the 2n non-linear equations

decomposition of Nn




s Hj
; - N+k+| -
* oo i
Consider now the power series expansion E(z) = T Elz ,
i=0
Ci = CNep? I =0,1,... , and let hm,n be its Pade approximants.

As can be seen by equations. (2.5b), the coefficients of the denominator

of hn-],n(z) and those. of hN+n 1,

Assuming that the Padé table of h(z) and hence that of h(z) are

(z) satisfy the same equations.

normat (see Baker (1975), Chapter 2), we know that the hN+n-1,n(z)

and h (z) are irreducible and have denominators of degree exactly

n-1,n
n and furthermore these denominators are ldentical. Belng identical,

‘the denominators of hN+n-1,n(z) and h -1, n(z) have the same zeros
which we now assume are simple. Then h (2) = j/(z Zj) and
- Jal
(z) = 2 A /(z- "z ). Using these expansions, for Nhn(i) equations

=1
(2.12) become .

n A,
(2.13) ey = f -—d. i=0,1,.,20-1,
and recalling that En_I,n(Z)EEOEn(z),for En-l,n(z) equations (2.12) beccme

n
(2.14) c, = I --4|-, { =0,1,...,2n=%.
= Z.
J

Remembering that Ei = Cpei? i =0,1,..., and comparing equations

(2.13) and (2.14) we see that

(2.15) A = Aczy o J=T,2,...,n




Thus, we have shown that if h(z) has a normal Padé table, then
the partial fraction expansion of Nhn(z) can be obtained very easily

o

from that of En-l n(z), provided -Eﬁ_ (z) has simple poles. This
1 .

1,n
way we also avoid the problem of the divisioh of PN+n-1(Z) by Qn(z).

3. APPROXIMATE LAPLACE TRANSFORM INVERSION BY THE USE. OF THE PADE
TABLE.
Lét f(t) be as described in Section 1 ahd let f(p) be its
Laplace transform as defined in (1.1). One property of f(p) is
that it is an analytic fungtion of p whenever Rep > vy, for some xy .
Then f(p) is analytic at p=w for w real and w > y, and hence

can be expanded in a Taylor series as

81

(3.1)  F(z) =F(p) = T

o

Another. important property of the Laplace transform f(p) is that‘

it goes to zero as Re p=» o; and this implies that not every analytic

function is a Laplace transform. This property, therefore, puts a

réstriction on the functions that can be used as approximations to

?(p) for the purpose of inversion. For example, among the Pade

approximations Fm,n(z) to F(z) for equivalently f(p)), Snly those

with m < n can be used for obtainirig approximations to the inverse !
transform f(t), whereas- the others can not. |In partic¢ular, among \

the F (z), only those with N=0, i.e. the Fn-1 n(z), can be

N+n-1,n

used for this purpose, and they have indeed béen used with success.
\

A question then is: Is it-possible, somehow, to make use of the




-

,

Ftn-1 n(z), for N > 0, -for the purpose of .obtaining approximations
9

to f(t)? Now we khnow the mathematical relationship between f(p)

and the’ Pade approximations to it. Another even more interesting

question then is: What is the mathematical relationship between . f(t)

and the approximation$ to it obtained by inverting the Padé approximations
Fn-l,n(Z)’ and what is the relationship betweet f(t) and the approx-

imations to it obtained by using the FN+n

answer to the first question is in the affirmative? The following

-1 n(z), for N > 0, if the

theorem answers both of the%e‘questions simultaneously,

Theorem 3.1. 'Define the sets Gn as follows:

g,
' a.t

-3 k-1 %j¢ 4
(3.2) G, = {g(t) = Z X2 B, t ‘e | o distinct, 2 oj=n'< n} .
: = je]

(1t s clear from (3.2) that G, =G, .G .)

3 LN B ]
Let now gn(t) be that function, if it .exists, belonging to G,

which approximates f(t) on [0,o) in the following weak senge:

(3.3) r tNe™E£(t) - gn(t)"],t‘dt =0, i=0,},...,2n-1.
O ¥

Then §n(p), the taplace transform of gnét) is simply NFn(p-w), further-

more gn(t} s a real Function of t.

.Proof. If the function gn(t) exists, it is then of the form
U,
s j A, _s a.t s .
(3.8 g ()= 2 = Ao KT T sa<n
j=1 k=1 : j=11




Substituting (3.4) in (3.3) and using the relatidns

(3.5a) j ¢ e Pte(t)de = (-1)% F&)(p),

o ,
(3.5b) Jf ¥ e P = o, ve-1, ]

“5 p
we obtain v

u.

A NHE(NED) S L (eiek=1) Bk

(3-6) ( 1) f (W) = jf] ki:] ‘(F,])! (w-a_)N+i+k
. j

These equations tan be rewritten as

&

(3.7) 1-_.(_N+i?(w) i} ;

J .
k ,N+i+k=-1
- (0¥ (

N e w)

i =0,1,...,2n-1.

A, K
N+it+k °*

i =0,1,...,2n-1.

Recalling from (3.1) that ?(2)(w)/2! is the coefficient of the

power z* in the Maclaurin series expansion of F(z), and using

Lemma 2.2, we obtain the result

s l‘lj A, K
(3.8) ANFn(z) = 3 I —_A_._E
j=1 k=1 (z-aj4w)

By using the definition p = ztw we can express (3.8) as

u,
s J A, K

(3.9) NFn(p-W) = X Z ——4-’—-,;
j=1 k=1 ‘(p-aj) -




ﬁvﬁ
.

ETY
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Now, since the right‘hand side of equation (3.,9) (s nothing but
§n(p), we have an(p) = ﬁFn(p—w). Since f(p) is real for real p, the
Padé approximants Fm’ﬂ(z) and hence ~NFn(z) and equivalently an(p)
are real for real p, therefore gn(t) is a real function of t too.

THis conpletes the proof.

Theorem 3.1 tells us then that F (z), can be used for

N+n-1,n
approximating the inverse transform f(t) provided, NFn(z), i.e., that

part of F (z) which goes to zero as p-w, is used as an

N+n-1,n
approximation to f(p).
o . . N ‘Wt . . ¥ j
Now, by defining ¢(t) = t e with N fixed, and wi(t)= t,
i=0,1,..., equatiohs (3.3) can be written as

(o)
(3.3)! J v(t) [F(t) - g (t) 1@ (t)dt =0, i =0,1,...,2n-1,

0
which looKks very much like a Galerkin-type approximation. procedure.
Therefore, by analogy with Galerkin approximation methods, we would
expect the sequence gn(t), n=1,2,... , ignoring those gn(t)

which do not exist, -to converge to f(t). Another justification for

this expectation is the following: The sequences of Padé approximants

along the diagonals usually converge very. quickly, at least~ﬁumgrically.

Now the gn(t) are obtained from the NFn(p-w) which in turn are

obtained from ‘the Padé approximants FN+hJI n_(z), and .these, for N

fixed, form a diagonal of the Padé tahle.

For future reference, we state the following theorem:

Theorem 3.2. Let ur(x), r=0;1,2,... , be a set of polynomials

which are orthogonal on an interval [a,b], finite, semi=infinite,
#
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or infinite, with weight function q(x), whose integral over any

subinterval of [a,b] is positive. If A(x) is any real cont i nuous
b Id
function on (a,b) and J q(x)A(x)dx exists as an improper Riemann
b a
integral and if J q(i)A(x)ur(x)dx =0, r=0,l,...,k-1, then
a

A(x) either changes sign at least k times in the interval (a,b)

or is’identically zero.

The proof of this theorem for A(x) continuous on [a,b] can
be found in Cheney (1966, p.110) and carries over to the case in

which A(x) is as described above without any modification.

We now prove a charaéterization theorem for the approximations gn(t).

Theorem 3.3. Let f(t) be as described in Section | 'and be con-
tinuous on (0, and let f(p), its Laplace transform, be analytic

for Rep >y. Let w>7y and let F(z) be defined as in (3.1).

Let én(P) = NFn(p-w), if it exists, and assume an(p) has no
poles for Re p =w. Then D(t) = f(t) - gn(t), where gn(t) is the
inverse of §n(p%, changes its sign at least 2n times in the interval

(0,) if f € G. If fE€G, then D(t) = 0.

Proof. From Theorem 3.1, gn(t) is real and satisfies the eauations
(>4
N -wt i s i
(3.10) J t e D(t)tdt =0, | =0,1,...,2n-1.
0

Choosing v such that B = w+v > 0, we can write equations (3.10) in

the form
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(o]
(3.11) J N e BES () et = 0, 1 =0,1,...,2n-1,
0

v

where D(t) = e' D(t). By taking dppropriate linear combihations,

equations (3.11) can be expressed as

(3.12) j N e-BtB(t)LgN)(Bt)dt =0, i=0,1,...,20~1,
0

where Lsa)(x) are the Laguerre polynomials which are orthogonal

X

- _,\
on [0,0) with weight function x"e *.. it is easy to see that the

LEN)(Bt) are orthogonal on [0,) with'weight function (N8Bt

Now, using Theorem 3.2, we conclude that D(t) and hence D(t) change
sign at least 2n times on (0,o) or that they are identically zero.

But D(t) =0 only when f(t) = gn(tj, and this proves the theorem.

4, GENERALIZATION TO MULT|-POINT'PADE APPROXIMANTS AND RATIONAL
INTERPOLAT | ON

Fs

The result of Theorem 3.1 can be carried further as follows:

-

Theorem 4.1; Let f(t) be-as in Section 3 and let gn(t) be that
function, if Wit exists, belonging to Gn’ which approximates f(t)

on [0,o) in the weak sense

A}

~O,l,...,nk,

l J -wkt[F(t) - g ()] tidt =0
(4.1) e 2 Sh ok=1,2,...,2,

0

2
where the w, are distinct and Rew, >y , and Z (n_+1) = 2n.
k K ok




_]3_

&

Then an(p),~the Laplace transform of gn(t), is the 2-point Padé
approximation to f(p), whose numerator is of degree at most n<1 and
whose denominator is of degree at most n, and whosé Taylor series
expansions about the points p = W, agree with the Taylor series
expansions of -?(p) about the ‘'same points up to and including the
terms (p‘wk)nk, k=1,2,...,8. (For the subject of multj-point
Padé approximants see Baker (1975, Chapter 8).). Furthermore, if the

W, are real, then gn(f) is a real function of t.

Proof.  The proof of the first part follows from the fact that
equations (4.1), together with the help of equaiion (3.5a), can be

-

written as

(4.2) ?(”(wk) = §(i)(wk)3 P = o,i,...,;{k, k=1,2,...,%,

¥
and the fact that §nip) is a rational function with numerator of degree *
at most n-1 and denominafor’ of degree at most n. The proof of the

second part follows from the fact that '§n(p3 is real for real p, when

the w, are real. This can be seen easily by.observing that Eqs.(4.2) when

expressed in terms- of the coefficients of the numerator and denominator
of an(pk, form a linear system of real equations. This, then completes

the proof. <

Setting M =0 in Theorem 4.1, we can how show that the rational

‘interpolation problem to f(p) too is simply related with an exponential

funcétion approximation to f(t) in some weak sense.




-
.
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Corollary. Let gn(t) be that function, if it exists, belonging to

G, which approximates f(t) on [0,o), in the weak sense

(o]
-w, t

(5.3) * [ e K IF() £ g (6)Tde =0, k= 1,2,000,2n
0.
\ -
where the w,  are distinct and Re w; > y. Then gn(p), the
Laplace transform of gn(t), is the rational function with numerator
of degree at most n-1 and denominator of degreé at most n, which

interpolates f(p) at the points P= W, k=1,2,...,2n. As before,

if the W, are real, then @h(t) is a real function of t.

When the w, are chosen to be real .and equidistant, we can also
prove a characterization: theorem for- gn(t)’ in the case when §ﬁ(p)

Interpolates f(p) at the points p= W

Theorem 4.2.. Let f(t) and f(p) be as in Theorem 3.3 and let §n(p)

be that rational function, if it exists, with numerator of degree at

most n-1 and denominator of degree at most n, wﬁich %nterpolates

f(p) at the 2n distinct real poirits p=w(;+ ks, k =0,1,...,2n~1,
where R § > 0, and assume that §n(p) has no poles for Re p >2w°.
Then, D(t) = f(t) - gnﬂt),'changes sign at least 2n times in ‘the

interval, {Q,»). if f&6G. If f€G, then p(t) = 0.

I3

—

Proof, From the corollary to Theorem 4.1, gh(t) satisflies the

<

equations
> -w_t

(1) J e © p(t) et dr =0, k=0,1,...,20-1,
0

which can also be written as ,
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oo

(4.5) J et B(t) e KT g =0, Kk =0,1,...,2n-1
0

(8-w )t

where D(t) = e D(t). Now taking appropriate linear com-

binations, equations (4.5) can be written as

. ]
- - KON S

4.6) [ OB P ar = 0, k= 031,20

0

* .

where Pk(x) are the shifted Legendre polynomialswhich are orthogo-
nal on the intervai [0,1] with weight functiom unity. Making the
change of variable x = e %t and defthning E(x) = D(t), we can
express equations (4.6), in the. new variable x, as

1

[

(1) | B Pplxddx = 0, k= 0,1,m.,2001.

0
Using now Theorem 3.2, we conclude that E(x) ?ither changes sign
at least 2n times on (0,1) or E(x) = 0. Going back to the variable
t, we see that D(t) and hence D(t) either change sign. at least 2n
times on (0,) or are identically zero. But. D(t) =0 only when

f(t) = gn(t) and this proVes the theorem
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=

5.  PRONY's METHOD AND THE PADE TABLE

Suppose the function c(x) 1is to be approximated by a sum of

expopential functions ,

ojx
a.e s

(5.1) u(x) = Y

H ™Mo

J

where the aj and °j are to be determined by the interpolation

equations c, = c(i) = u(i), i =0,1,...,2n-1, which, on defining

j=1,...,n, become

(5.2) c; .y 1 =0,1,...,2n-1,

]

I M3
[
X

The non-linear equations have been solved by Prony (1795) and the

relation of Prony's method of solution with the (n-1,n) Padé
LA = <] .
approximant to the power series expansion V{(z) = Z ciszl Jhas been
i=0

shown by Weiss and McDonough (1963). It turns.-out that the cj are

the inverses of the zeros of the denominator of the (n-1;n) Padé
3
approximant to V(z), whenever this approximant exists.

Now u(x). as given in (5.1) exists if the Cj are distinct.

But whenever some of the ;j are equal, there is-no such G(x).

-

This implies that the function u(x) in (5.1) must be modified. The
fol lowing theorem shows how this modification 'is to be made and also

generalizes the method of -Prony and the result of Weiss and McDonough.

Theorem 5.1 Let c(x) be a given function and denote c; = c(i),

i =0,1,2,... . Suppose furthermore that the Padé approximant

-

,}; . B " . — R |




w

.-]7..

(=]

VN+n_1*n(Z) to V(z) = ifo ciz' exists. Then there exists a

function u{x) in G ‘which intérpolates c(x) at the points

x = N,N+1,...,N¥2n-1, and this u(x) is re)ated to NVn(z).

-

Proof. If u(x) .exists, it is of the form
: uj 7 ogek oktx-1 k+x
(5.3)  wl) =2 = (17 00 A o,
j=1 k=1 ‘ A
s
such that ;j are distinct and Z u, =n'<n. (It can be shown
j=1

that any function in Gn can also be written as in (5.3)“) Using

now the conditions

(5.4) c, = c(i) = u(i), i = N,N+1,.::,N+2n-1,

we obtain the equations ~

u

' s J e
(5-5) cN+i = .E ) (_1)k (N""I(::'II(?]) A
' j=1 k=1

N+i+k

j,k‘;j 5 l=0‘,'|,...,2n"1.

Upon setting 2 = l»/cj and comparﬂng”equations,jS.S) with equations

(2.12), and using Lemma 2.2, we see that the Aj K and z; are the
’ 3
parameters of the partial fraction decomposition of NVn(z) provided

an(z) exists, But NVn(z) exists, if V {z) exists, and

N+n-1,n
this proves the theorem. -
As can be seen from the proof of Theorem~§.l, the interpolant

u{x) to ¢(x) can easily be found by determining the parameters in

thé partial fraction decomposition of NVn(z‘).

~

\
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