
Application of Extrapolation Methods to
Numerical Solution of Fredholm Integral

Equations Related to Boundary Value Problems

Avram Sidi

Computer Science Department, Technion - Israel Institute of Technology,
Haifa 32000, Israel

asidi@cs.technion.ac.il

Abstract. Fredholm integral equations arise naturally in the context
of ordinary and partial differential equations: Two-point boundary value
problems can be reformulated as Fredholm integral equations, whose ker-
nels are continuous but have finite jump discontinuities in their deriva-
tives. Two-dimensional elliptic boundary problems can be reformulated
as Fredholm integral equations with kernels that have singularities, some
having logarithmic singularities. In this note, we describe quadrature
methods whose accuracies can be improved at will. These are obtained
by improving the underlying numerical quadrature formulas in a clever
fashion. In the case of two-point boundary value problems, they are ob-
tained by correcting the trapezoidal rule appropriately to the accuracy
required. In the case of boundary integral equations, they are obtained
by first correcting the basic trapezoidal rule and then extrapolating it to
required accuracy.

1 Introduction

In this note, we describe two quadrature methods for the numerical solution
of Fredholm integral equations that have been proposed recently. Despite the
singular nature of the integral equations involved, these methods turn out to
be very efficient in the sense that their accuracies can be improved at will, the
increase in their computational costs being minor.

The relevant integral equations are those that arise in the context of ordi-
nary and partial differential equations with boundary conditions. We give two
examples of such problems now.

1. Let the two-point boundary value problem

y′′ = f(x, y), 0 < x < 1; a0y(0) + b0y
′(0) = c0, a1y(1) + b1y

′(1) = c1,

be given. Here f(x, y) is a linear or nonlinear function in y. Subtracting
k2y, with k > 0 chosen appropriately (even “optimally”), from both sides of
the differential equations, and using Green’s functions, this problem can be
reformulated in the form

y(x) = r(x) +
∫ 1

0

g(x, t)
[
k2y(t)− f(t, y(t))

]
dt,



with appropriate r(x) and g(x, t). Here the Green’s functions are continuous
for x = t but their partial derivatives have finite jump discontinuities across
x = t; they are smooth everywhere else on [0, 1] × [0, 1]. An important ad-
vantage of approximating y(x) via the integral equation formulation is that,
in case of singularly perturbed problems, boundary layers, if present, can be
resolved with great precision. Recall that this is a difficult task when the
differential equation is attacked with difference methods.
For example, with y′(0) = 0 and y(1) = 1 as boundary conditions, r(x) and
g(x, t) are given by

r(x) =
cosh kx

sinh kx
, g(x, t) =

1
k cosh k

{
cosh kx sinh k(1− t), 0 ≤ x ≤ t

sinh k(1− x) cosh kt, t ≤ x ≤ 1
.

This approach was initiated by Keller [2], who used it to prove constructive
existence and uniqueness theorems for solutions of the nonlinear problems
above and also for designing a quadrature method based on the trapezoidal
rule for computing numerical solutions. It was refined and developed further
by Pennline [3], [4], [5].

2. Let u(x, y) be the solution of the two-dimensional Laplace’s equation with
Dirichlet boundary condition

∆u(P ) = 0, P ∈ Ω; u(P ) = f(P ) P ∈ ∂Ω,

where ∆ is the two-dimensional Laplacian, ∆ = ∂2/∂x2 + ∂2/∂y2, Ω is a
finite simply connected open domain in the x-y plane, and ∂Ω is its boundary.
u(x, y) can be obtained from the integral

u(P ) =
∫

∂Ω

ρ(Q) log |P −Q| dlQ, P ∈ Ω,

where dlQ is the line element on ∂Ω, and ρ(Q) is the solution of the Fredholm
integral equation of the first kind

∫

∂Ω

ρ(Q) log |P −Q| dlQ = f(P ), P ∈ ∂Ω.

This is the so-called boundary integral equation formulation of the interior
Dirichlet problem. A nice feature of this formulation is that its dimension is
one less than that of the original differential equation formulation.
Now, the kernel g(P, Q) = log |P −Q| of the new formulation is smooth for
all Q ∈ ∂Ω, except when Q = P , where it has a logarithmic singularity. This
is easily seen after parameterizing the closed curve ∂Ω appropriately. Also,
in terms of the parameter used to represent ∂Ω, g(P, Q) is periodic in P and
Q, and the solution ρ(P ) and the right-hand side f(P ) are periodic in P .
In addition, if ∂Ω is smooth, then ρ(P ), P ∈ ∂Ω, is also a smooth function.
These facts can be used to advantage when treating the integral equation
numerically.



2 Treatment of Kernels with Jump Discontinuities

We begin with integral equations of the form

y(x) = r(x) +
∫ 1

0

g(x, t)F (t, y(t)) dt, 0 ≤ x ≤ 1, (1)

where (i) r(x) is continuous on [0, 1], (ii) g(x, t) is continuous over the set [0, 1]×
[0, 1], its partial derivatives gk(x, t) ≡ ∂k

∂tk g(x, t), k = 1, 2, . . . , are smooth for
0 ≤ t ≤ x and for x ≤ t ≤ 1, with finite jump discontinuities across t = x,
namely, gk(x, x+) − gk(x, x−) = δk(x) ∈ C[0, 1], k = 1, 2, . . . , and (iii) F (x, y)
is linear or nonlinear in y and smooth on some set ∆ = [0, 1] × [R1, R2], where
[R1, R2] is a finite, semi-infinite, or infinite interval.

The numerical treatment of this integral equation has been considered re-
cently by Sidi and Pennline [9], and we follow this treatment here.

If a solution to (1) exists, then it can be shown that it is smooth over [0, 1].
We assume that a unique solution y(x) exists and that R1 ≤ y(x) ≤ R2 when
0 ≤ x ≤ 1. A sufficient condition for this to be true is

[
max

x∈[0,1]

∫ 1

0

|g(x, t)| dt

][
max

(x,w)∈∆

∥∥∥∥
∂

∂w
F (x,w)

∥∥∥∥
]

< 1.

Choose a positive integer N and set h = 1/N and xi = ih, i = 0, 1, . . . , N.
Next, for x = xi, i ∈ {0, 1, . . . , N}, we approximate the integral

I(x) =
∫ 1

0

φ(t) dt, φ(t) = g(x, t)F (t, y(t)),

via the standard trapezoidal rule

T (h) = h

N∑

j=0

′′φ(xj),
N∑

j=0

′′αj =
1
2
α0 +

N−1∑

i=1

αj +
1
2
αN .

Now, by the fact that F (t, y) is smooth in [0, 1]×[R1, R2] and by the assumed
properties of g(x, t), φ(t) is smooth for t ∈ [0, x] and t ∈ [x, 1], continuous for
t ∈ [0, 1] with finite jump discontinuities across t = x in all its derivatives.
Consequently, for x = xi ∈ (0, 1), i.e., for i ∈ {1, 2, . . . , N − 1}, T (h) has the
following Euler–Maclaurin expansion:

I(x) = T (h)−
p−1∑
s=1

B2s

(2s)!
[
φ(2s−1)(1)− φ(2s−1)(0)

]
h2s

+
p−1∑
s=1

B2s

(2s)!
[
φ(2s−1)(x+)− φ(2s−1)(x−)

]
h2s + E(h), (2)

where E(h) = O(h2p) as h → 0, and uniformly in i. For x = x0 = 0 and x = xN =
1, the summation involving the terms containing

[
φ(2s−1)(x+)−φ(2s−1)(x−)

]
is

absent from (2).



Obviously, I(x)− T (h) = O(h2) as h → 0, and thus the accuracy of T (h) is
simply too low. The formula

Tp(h) = T (h)−
p−1∑
s=1

B2s

(2s)!
[
φ(2s−1)(1)− φ(2s−1)(0)

]
h2s

+
p−1∑
s=1

B2s

(2s)!
[
φ(2s−1)(x+)− φ(2s−1)(x−)

]
h2s, (3)

on the other hand, satisfies I(x) − Tp(h) = O(h2p) as h → 0. Since Tp(h) in-
volves derivatives of the unknown function y(x), we cannot make direct use
of it, unfortunately. However, we can approximate Tp(h) via another formula
T̂p(h), involving only the values of y(x) and no derivatives of it, for which
I(x)− T̂p(h) = O(h2p) as h → 0 as well.

We show how this is done only for p = 2, and refer the the reader to [9] for
all other values of p. We have, for x = xi, i ∈ {1, 2, . . . , N − 1},

T2(h) = T (h)− B2

2
{[

φ′(1)− φ′(0)
]− [

φ′(x+)− φ′(x−)
]}

h2.

We first break up φ′(t) in the form

φ′(t) = g1(x, t)F (t, y(t)) + g(x, t)
d

dt
F (t, y(t)).

Then we approximate φ′(0) and φ′(1) by using one-sided numerical differentia-
tion formulas for d

dtF (t, y(t)) at t = 0 and t = 1. These are

Q′(0) =
1
2h

[− 3Q(0) + 4Q(h)−Q(2h)
]
+

1
3
Q′′′(ξ)h2, 0 < ξ < 2h,

Q′(1) =
1
2h

[
3Q(1)− 4Q(1− h) + Q(1− 2h)

]
+

1
3
Q′′′(ξ)h2, 1− 2h < ξ < 1.

Next, by continuity of g(x, t) across t = x, we have

φ′(x+)− φ′(x−) =
[
g1(x, x+)− [g1(x, x−)

]
F (x, y(x)) = δ1(x)F (x, y(x)).

T̂2(h) is obtained by combining these in T2(h), and we obviously have I(x) −
T̂2(h) = O(h4) as h → 0. We finally use T̂2(h) to define our quadrature method
for the integral equation (1).

The resulting quadrature method is defined via the following N+1 equations:

yi = r(xi) + h

N∑

j=0

′′g(xi, xj)Fj

− h

24
[
g(xi, 1)(3FN − 4FN−1 + FN−2)− g(xi, 0)(−3F0 + 4F1 − F2)

]

− h2

12
[
g1(xi, 1)FN − g1(xi, 0)F0

]
+

h2

12
δ1(xi)Fi, i = 1, 2, ..., N − 1,



y0 = r(x0) + h

N∑

j=0

′′g(x0, xj)Fj

− h

24
[
g(0, 1)(3FN − 4FN−1 + FN−2)− g(0, 0)(−3F0 + 4F1 − F2)

]

− h2

12
[
g1(0, 1)FN − g1(0, 0+)F0

]

yN = r(xN ) + h
N∑

j=0

′′g(xN , xj)Fj

− h

24
[
g(1, 1)(3FN − 4FN−1 + FN−2)− g(1, 0)(−3F0 + 4F1 − F2)

]

− h2

12
[
g1(1, 1−)FN − g1(1, 0)F0

]
.

Here Fi ≡ F (xi, yi) and yi is the approximation to y(xi).
Using precisely the same procedure, we can derive a quadrature method for

(1) that is based on the quadrature formula T̂p(h). Again, this method involves
the numerical solution of N + 1 equations in the unknowns yj . As shown in [9],
under appropriate conditions, this system has a unique solution for the yj when
N is sufficiently large, and that y(xj) − yj = O(h2p) as h → 0 (equivalently,
N →∞), this error being uniform in j.

The quadrature method based on T̂2(h) is illustrated with two examples
involving nonlinear two-point boundary value problems in [9].

3 Treatment of Kernels with Logarithmic Singularity

We now turn to the numerical solution of Fredholm integral equations of the
form

ωf(t) +
∫ b

a

K(t, x)f(x) dx = g(t), a ≤ t ≤ b; ω = 0, 1. (4)

(Such equations are of the first or the second kind depending on whether ω = 0
or ω = 1, respectively.) The equations that are of interest to us here have the
following important features: (i) The kernel K(t, x) is periodic both in t and in x
with period T = b−a and is infinitely differentiable in (−∞,∞)\{t+kT}∞k=−∞.
It has a polar singularity and/or a branch singularity (of algebraic or logarithmic
or algebraic-logarithmic type) at x = t when t ∈ [a, b]. (ii) The input function
g(t) and the solution f(t) are both periodic with period T = b− a and infinitely
smooth on (−∞,∞).

In case K(t, x) has an integrable singularity across x = t, (4) is said to be
weakly singular. In case K(t, x) ∼ c/(x − t) as x → t for some constant c 6= 0,
and the integral

∫ b

a
K(t, x)f(x) dx is defined only in the Cauchy principal value

sense, it is said to be singular.



The numerical treatment of these integral equations has been considered re-
cently by Sidi and Israeli [8]. A comparison of the quadrature formulas proposed
there with others has been given in [6]. For an extensive summary of the sub-
ject, see Sidi [7, Section 25.3 and Appendix D]. Here we restrict our attention
to weakly singular integral equations with only logarithmic singularities across
x = t. For other types of singularities, the reader is referred to [8] and [7].

A logarithmically singular kernel can be expressed in the form

K(t, x) = H1(t, x) log |t− x|+ H2(t, x), (5)

where H1(t, x) and H2(t, x) are infinitely differentiable for all t, x ∈ [a, b] (in-
cluding t = x), but are not necessarily periodic. We assume that H1(t, t) 6≡ 0.
Note that, in our method below, we do not require H1(t, x) and H2(t, x) for all
x, but only for x = t; H1(t, t) and H2(t, t) can be obtained simply by expanding
K(t, x) about x = t.

Let n be a positive integer and set h = T/n and xi = a + ih, i = 1, . . . , n.
In addition, let t ∈ {x1, . . . , xn}. Let us now define the “corrected” trapezoidal
rule approximations I[h; t] to the integral I[t] =

∫ b

a
K(t, x)f(x) dx as in

I[h; t] =
n∑

i=1

wn(t, xi)f(xi), (6)

where

wn(t, x) = hK(t, x) for x 6= t, wn(t, t) = h

[
H2(t, t)+H1(t, t) log

(
h

2π

)]
. (7)

I[h; t] has the asymptotic (Euler–Maclaurin) expansion

I[h; t] ∼ I[t] +
∞∑

k=1

βk(t)h2k+1 as h → 0, (8)

where

βk(t) = −2
ζ ′(−2k)
(2k)!

∂2k

∂x2k
[H1(t, x)f(x)]

∣∣
x=t

, k = 1, 2, . . . . (9)

Here ζ(s) is the Riemann Zeta function. From these expansions, it follows that
I[h; t]− I[t] = O(h3) as h → 0.

The quadrature method based on the rule I[h; t] is now defined by the equa-
tions

ωf̃k + I[h;xk] = g(xk), k = 1, 2, . . . , n. (10)

More explicitly, these equations are

ωf̃k +
n∑

i=1

wn(xk, xi)f̃i = g(xk), k = 1, 2, . . . , n, (11)

where f̃i is the approximation to f(xi). In general, the accuracy of the f̃i is the
same as that of the underlying numerical quadrature formula, which is I[h; t] in



this case. We can increase the accuracy of the quadrature method by increasing
that of I[h; t], which we propose to achieve by using extrapolation. What makes
this possible is the periodicity of the integrand K(t, x)f(x) as a function of x.
We turn to this subject next.

We start by using only one extrapolation to eliminate the term β1(t)h3 from
the asymptotic expansion of I[h; t]. Let us choose h = T/n for some even integer
n and let xi = a + ih, i = 0, 1, . . . , n. Performing this single extrapolation, we
obtain the Romberg-type quadrature rule

J1[h; t] =
8
7
I[h; t]− 1

7
I[2h; t] (12)

as the new approximation to I[t]. We also have

J1[h; t] ∼ I[t] +
∞∑

k=2

23 − 22k+1

7
βk(t)h2k+1 as h → 0, (13)

hence J1[h; t]− I[t] = O(h5) as h → 0. The quadrature method for (4) based on
J1[h; t] is thus

ωf̃k + J1[h; xk] = g(xk), k = 1, 2, . . . , n. (14)

More explicitly,

ωf̃k +
n∑

i=1

[
8
7
wn(xk, xi)− 1

7
ε
(1)
k,iwn/2(xk, xi)

]
f̃i = g(xk), k = 1, 2, . . . , n, (15)

where

ε
(1)
k,i =

{
1 if k − i even,
0 if k − i odd.

(16)

By applying two extrapolations, we can remove the terms βk(t)h2k+1, k =
1, 2, from the asymptotic expansion of I[h; t]. This time we choose h = T/n for
an integer n that is divisible by 4, and let xi = a+ ih, i = 0, 1, . . . , n. Performing
the two extrapolations, we obtain the Romberg-type quadrature rule

J2[h; t] =
32
31

J1[h; t]− 1
31

J1[2h; t]

=
256
217

I[h; t]− 40
217

I[2h; t] +
1

217
I[4h; t] (17)

as the new approximation to I[t]. We also have

J2[h; t] ∼ I[t] +
∞∑

k=3

23 − 22k+1

7
· 25 − 22k+1

31
βk(t)h2k+1 as h → 0, (18)

hence J2[h; t]− I[t] = O(h7) as h → 0. The quadrature method for (4) based on
J2[h; t] is thus

ωf̃k + J2[h; xk] = g(xk), k = 1, 2, . . . , n. (19)



More explicitly,

ωf̃k +
n∑

i=1

[
256
217

wn(xk, xi)− 40
217

ε
(1)
k,iwn/2(xk, xi)

+
1

217
ε
(2)
k,iwn/4(xk, xi)

]
f̃i = g(xk), k = 1, 2, . . . , n, (20)

where ε
(1)
k,i are as before and

ε
(2)
k,i =

{
1 if k − i divisible by 4,
0 otherwise. (21)

For the development of Romberg-type formulas of all orders for all types of
weak singularities, we refer the reader to Sidi and Israeli [8].
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