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A B S T R A C T  

The best  ra t ional  f unc t i on  a p p r o x i m a t i o n  for Laplace t ransform inversion due  to  L o n g m a n  is 
mod i f i ed  by  the  i n t r o d u c t i o n  o f  an appropr ia te  " w i n d o w "  func t ion .  This  w i n d o w  f u n c t i o n  
enables one  to  a p p r o x i m a t e  the  inverse t r ans fo rm f( t)  by a linear c o m b i n a t i o n  gn (t) o f  n ex- 
ponent ia l  func t ions  accura te ly  in a given interval about  a given po in t  along the  t -axis .  It is p roved  
that  the  sequence  o f  a p p r o x i m a n t s  {gn( t )}n =1  converges to  f( t)  in the  mean .  The  m e t h o d  is 
i l lustrated by  some  numer ica l  examples .  

1. INTRODUCTION 

Recently Longman [1, 2] has developed a technique, 
based on the least-squares method, for the approxi- 
mate inversion of the Laplace transform ~(p) of a 
square-integrable function f(t), where T (p) is def'med 
a s  

~p) = L[f(t); p] =/ '0 e -p t  f(t) d t  (1) 
0 

and f(t) is square-integrable in the sense that 

F e-Wt[f(t)]2dt < 00 (2) 
O 

for some w ~ o. One looks for that rational approxima- 
tion 

n 

g-n (P) = r ~ l  Ar/(P + %) (3) 

to f (p) which will minimize the integral 

In(w) = fo" • -wt [f(t) - gn(t)]2dt (4) 
O 

with respect to the parameters A r and a r, r = 1 .. . . .  n, 
where gn(t) is the inverse transform of ~n(p); i.e., 

n 

gn(t) = r ~ l  Are-" r t  " (5) 

What makes this method an approximate Laplace 
transform inversion method is that the integral In(w ) 
in (4), apart from a constant term which is indepen- 

dent of A r and ar, r = 1 .....  n, is expressible in terms 
of ~p), without needing to know f(t). The existence 
of gn(t) and the mean convergence of the sequence 

{gn (t) }n=l  to f(t) in the sense that 

lira r a in  }n In(W ) = o (6) 
n-*.o {Ar ,  r r = l  

has been shown by the author [5]. 

Now let us consider some of the numerical aspects of 
this method. For w > o the weight function e -wt  
which appears in (4) is equal to I at t = o and tends 
to zero quickly as t becomes large. This means that 
gn(t) will approximate f(t) closely for small values oft.  
However, for large values of t gn(t) may deviate from 
f(t) by large amounts and this would not increase the 
value of the integral In(w ) by a substantial amount, 
since for large t, e -wt has a strong damping effect. If 
one wants to approximate f(t) also for values of t 
away from t = o using the least-squares technique 
described above, one has to modify the weight func- 
tion e -wt in such a way that the new weight function 
would be appreciable in a certain interval away from 
t = o and would tend to zero rapidly outside this 
interval, thus serving as a window. Naturally, the 
mathematical form of this window would be dictated 
by the requirement that In(w ) in (4), with e-Wt re- 
placed by the window function, be a simple function 
ofT(p), in the sense that one should be able to com- 
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pute In(w ) easily on a computer, since one would 
like to use this technique for the approximate numer- 
ical inversion of the Laplace transform. 
As for w = o, one can notice that equal weight is be- 
ing attached to the square of the error [f(t)-gn(t)]  
for all values of t up to infinity, and it is clear that 
one cannot expect to approximate f(t) accurately 
everywhere. 

2. THE CHOICE OF THE WINDOW FUNCTION 

Let o/(t) be a non-negative function on (o, =), and 
let us seek to minimize the integral 

I n [O/] = r O/(t)[f(t) - gn(t)]2dt,  (7) 
O 

where gn(t) is as given in (5). Now In [~  ] can be 
written as 

n 

In[O/] = ~ o / ( t )  [f(t)]2dt -2 rZ__IArL[O/(t) f(t) ;ar]  
O 

n n 

+ r~lsZ__lArAsL[o/(t) ; , , r  + as]. (8) 

This last expression would be useless for the purpose 
of  Laplace transform inversion unless the term 
L [O/(t) f(t); p] can be expressed as a simple function 
of ~'(p). This limits the choice of O/(t) drastically 
since the only functions known to the author that 
satisfy this demand are polynomials t N (N a positive 
integer) and e-Wt and linear combinations of their 
products. We recall that 

d N 
L[ tNf( t ) ;  p] = (-1) N f-(p), (9a) 

dp N 

where N is a positive integer, and 

L[e -wt  f(t); p] = f-(p + w). (9b) 

Now let us consider the "window" function de£med 
a s  

g'(t) = tNe -wt  , (10) 

where N is a positive integer, and w > o. t N is very small 
for t but increases quite rapidly for larger values 
of t; on the other hand, e -wt  is a monotonically de- 
creasing function of t, and tends to zero faster than 
any inverse power of t as t becomes large. This means 
that when t N is multiplied by e-Wt the graph of t N 
is bent towards the t-axis for large values of t, thus 
causing o/(t) to have a maximum. This maximum 
occurs at t m a  x = N/w. The inflection points of o/(t) 
are t-+ = (N-+ x/N)/w and the distance between them 

is A = t+ - t _  = 2x/-N/w. Now A is a fairly good 
estimate of  the width of O/(t), in the sense that, 
@(t+) ~ 1/2 ~( tmax) ,  This means that xI,(t), 
practically, is appreciable in an interval of length n 
which is symmetric with respect to tma x, and further- 

more this interval, as N becomes large, is away from 
t = o  since x/N ,ON. Figure 1 shows two such windows. 

One expects to have better accuracy near tma x by 
making the width of the window smaller and leaving 
tma x unchanged. This can be achieved by exploiting 
the fact that both tma x and tx depend on N and w. To 
illustrate this point suppose that one wants to ap- 
proximate f(t) in an interval about t : N. Suppose 

w = 1 initially. Then o/l(t) = tNe - t  has tma x = N and 

width n I : 2x/~. Now a narrower window can be 
obtained by choosing @2(t) = [@l(t)] 2 = t2Ne-2t. 

Obviously t m a  x stays the same, but zx 2 = n 1/x/2. 

This example indicates that by increasing N and w 
simultaneously, one can reduce the width considerably 
and leave tma x unchanged, thus increasing the accuracy 

1.0 

A 

0.5 
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Fig. 1. Graphs of the normalized window functions ~-l(t)  = ~ l ( t ) / ~ l ( t m a  x) (solid curve) and 
C~2(t ) = o/2(t)/~2(tmax) (dashed curve), where ~ l ( t )  = t4e  - t  and o/2(t) - tSe -2 t  
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of the approximation near tma x. This is illustrated in 
Figure 1. 

3. MINIMIZATION OF In[a/] 

Consider the window function a/(t) given in (10). 
Using (9a) and (9b) the integral In[a/] given in (8) 
can be written as 

n 

In[a/] ----- ~ t Ne-Wt [f(t)] 2dt - 2 r ~ 1Ar(-1)Nf(N)(or+W) 
O 

n n 

+r=Z1 s ~ l A r A s N l / ( % + a s + w ) N + l  (11) 

The first term is a constant independent of A r and 
o r , r = 1 . . . . .  n,  which, although not known, does 
not affect the minimization of In[a/] with respect to 
the parameters A r, o r , r =1 . . . . .  n. 

For a minimum (relative, not necessarily global) it is 
necessary (but not sufficient) that 

a l n / a A r = O  and din/dO r = o ,  r = l  . . . . .  n. 

If one sets a ln /aA r = o, one obtains 

f-(N) (,, r + w) = g-n (N) (% + w), r = 1 . . . . .  n, 

(12) 
and if one sets aln/a,~ r = o ,  one obtains 

--(N+ 1)(Or+W), r----1 . . . .  ,n, ~-(N+ 1) (o r + w) = gn 

(13) 

which for N = o reduce to the equations given in [1 ]. 
Equations (12) and (13) can be solved by a minimiza- 
tion procedure as described in [2]. 
It is also interesting to note that the integral in (7) 
with the window a/(t) as given in (10) can be written 
as a least-squares integral involving the difference 

if(N) (p) _g(N) (p)]. Using 

Fe-Wt[f(t)12dt = ~ l+'/~(w/2 + iy)12dy (14) 
O /.11" _ ~  

which is the Parseval equality for Laplace transforms 
[8], one can write 

In[a/] = f= t N e-Wt [f(t) - gn(t)] 2 dt 
O 

= 1 $2 o= IL[t N/2 {f(t)-gn(t) ) ;w/2 + iy] 12 dy. 
2¢r - 

(15) 
For even N, say N = 2k, (15) can be written as 

in[a/] = 1/_+® f(k)(w/2  + iy)-~-n (k) (w/2 + iy)l 2 dy. 
(16) 

From this last equation one can see that the method 
of [1] with N = o  is equivale_nt to minimizing the 
modulus of  the difference [f (p) -g-n(P)] in the least- 

squares sense along the Bromwich contour which ex- 
tends from w/2 - i-= to w/2 + i=o. As has been re- 
marked earlier, this method with N = o can give good 
approximations to f(t) for small t only. In order to 
obtain good accuracy for large t one should minimize 
i~-(k) (p) - g- "(n k) (p)l in the least-squares sense along 

the Bromwich contour described above. 

4. CONVERGENCE IN THE MEAN OF (gn(t) }~----1 
TO f(t) 

In this section we shall prove that the sequence 

(gn(t) } :=1  obtained by minimizing the integral 

In[a/] in (15) converges to f(t) in the mean; i .e . , that  

lim rain In[a/] = o. (17) 
n-~ o= {Ar, %}n=l 

The method of the proof is based on the method used 
in [5] in the proof of equation (6) of the present paper. 
Consider the transformation of variable x = e-Wt which 
maps the interval o < t < = to the finite interval 
o < x < 1. By defining F(x) -= f(t) and Gn(x ) = gn(t) 
one can write the integral in In[a/] in (15) as 

in[a/] = 1/wN+ 1 ;l (_logx)N[F(x)_Gn(x)12&. 
o (18) 

The weight function 09 (x) -- (-logx) N being a con- 
tinuous positive integrable function on (o, 1), there 

exists a complete set of polynomials (Qm(x) }:---o' 
where Qm(x) is a polynomial of degree m and 

? co(x) Qm(X) Qk (x) dx -- 6mk" 
O 

If one defines 

Cm _ /1  co(x) F(x) Qm (x) dx, 
O 

n - 1  

then the linear c°mbinati°n ~ oCmQm(X)m= minimizes 

In[a/] in the space of functions ( 1, x, x 2 . . . . .  x n - l } ;  

i.e., 
n-1 

/1 co(x)[F(x) -m~__ oCmQm(x)]2dx 
O = 

n-1 
11 co(x)[F(x)-m~o Bm xm]2&, (197 
o 

for any B m, m = o, 1 . . . .  , n -1. 

When written in terms of the variable t (19) becomes 
n - i  

tNe-Wt[f(t) _ ]g cmQm(e-Wt)]2dt 
O m = o  

n-1 
~ tNe -Wt [ f ( t ) -  E Bme-Wt[2dt, (20) 
O m ----~- o 

and the left-hand side of this last inequality tends to 
zero as n tends to infinity provided f(t) satisfies 
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[* tNe -wt [ f ( t ) ]2d t  < ** 
O 

which is equivalent to the condition 

11 co(x) [F(x)12dx < **, 
0 

which in turn is sufficient for the left-hand side of  
the inequality in (19) to tend to zero as n tends to in- 
finity [9]. Once this has been established, the asser- 
tion in equation (17) can now be proved in the same 
manner as in [5]. 

5. APPLICATIONS 

In this section the method that has been developed in 
the previous sections is applied to three Laplace trans- 
forms and the best approximations to their inverses 
are obtained. 

Example 1 

f(t) =Jo ( t ) ,  the Bessel function of the first kind of  
order zero. The Laplace transform of  this function is 

f-(p) = 1/(p 2 + 1) 1/2. 

One might think that the computation of high order 
derivatives of  f-(p) might become difficult as N gets 
large, but this is not so. Since in many problems f(p) 
is a function of  elementary functions and/or special 
functions which satisfy a linear differential equation 
of  some small order, the derivatives of f(p) can be 
computed recursively. For the example on hand one 
can start by writing 

(p2 + 1)1/2 ~-(p) = 1 

and differentiate this equation with respect to p as 
many times as is necessary. Then the recursion rela- 
tion can be written as follows : Set 

ao=O,  b o = l ,  f - ( p ) = 1 / ( p 2 +  1) 1/2 , 

~-,(p) = _pf-(p) / (p2 + 1), 

then compute ak, b k, ~-(k)(p) from 

a k = a k _  1 + bk_ 1, b k = b k _ l +  2, k = 1, 2 . . . .  

~-(k) (p) = _[ak~-(k-1 ) (p) + bkP~(k-2 ) (p ) ] / (p2  + 1), 

k =  1,2 . . . .  

Table 1 contains the parameters {Ar, %}r=1,  2 of 

the approximants g2(t) for w = 1, 2 and N =2(2 )8 .  

It is rather interesting to note that the parameters 

for the windows t2e - t  and t4e  -2 t  are close to each 

other. The reason for this is that for both of  these 

windows tma x = 2 and hence Jo(t)  is approximated 

in an interval about tma x. The same is true for the 

windows t4e - t  and t8e -2 t  for which tma x = 4. 

Now let us compare the accuracy of  the approxima- 

tions for the window @(t) = t4e - t  and ~( t )  = t8e  -2t. 

For both windows tma x = 4 and the widths of # ( t )  

and @ (t) are a = 4 and X = x/~ respectively. Let g2(t) 

and ~'2(t) be the best approximations to Jo(t) obtained 

by using the windows q/(t) and ~ (t) respectively. 

Figure 2 contains plots of  the errors Jo(t) -g2(t)  and 

Jo (t) - ~'2(t). As is seen from these plots, ~2(t) ap- 

Table 1 

Parameters {A r, a r } for several window functions of  the form given in (10) for the approximant g2 (t). For 

all Nand w A 2 =~ '1  and ~2 =~-1 so that g2( t  ) is real. 

N = 2  

N = 4  

N = 6  

w = l  w = 2  

A 1 = .38094145 + .32867462i 

a 1 = .23216051 + .96111519i 

A 1 = .47407236 + .23494260i 

~1 = .24025937 + .84660033i 

= .08011072 + 1.00330344i 

N = 8 A 1 = .16362304 + .17448487i A 1 = .20750643  + .25118995i 

~1 = .06249752 + 1.00184735i a I = .11837302 + 1.01453567i 
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A 1 = .27274776  + .31612531i 

a I = .18251946  + 1.00604486i 

A 1 =.18427276 + .20052531i 

a I 

A 1 = .22022628 + .27126302i 

a I = .12765322 + 1.01426364i 

A 1 = .39381427 + .31439020i 

a I = .23916952  + .93960917i 



proximates Jo( t)  better inside the window ~ ( t )  than 
g2(t) does. Outside the window, however, the mean 
error increases in absolute value. Figure 3 contains 

the graph of  the error Jo(t)  -g2(t) ,  where this time 
g2(t) is the best approximation to Jo(t)  obtained 
using the window ~ (t) = t 8 e - t .  The error for this 
case also has the same features as those plotted in 
fgure 2. The above-mentioned features have been 
observed to be present for all N and w for which best 
approximations have been computed. 

Before treating examples 2 and 3 it would be ap- 
propriate to explain the use of  different window 
functions and the interpretation of  the numerical 
results for functions f(t) which tend to zero exponen- 
tially as t tends to inf'mity. 

Suppose now that the best approximation gn(t) to 

fCt) is obtained by using the window tNe -wt .  If tma x 
is large enough, then f(t) may, depending on the width 
of the window, decrease by several orders of  magnitude 
inside the window as t becomes large. Since it is the 
square of  the absolute error If(t) -gn( t )  l which is 
minimized, for large t inside the window this error 
may be small, but  the approximant may be quite 
different from f( t) ;  i.e., the relative error may be very 
large. This problem does not arise in the case OfJo( t  ) 

since Jo  (t) is o f  the order of  t -1 /2  as t becomes 
large. 
Let gnl(t) and gn2(t) be the best approximations to 
f(t) inside the windows ~ l ( t )  = tNe -Wl  t and 
• 2(t) = t N e - w 2  t respectively, where w I > w 2. 

Now rn(t ) = e (Wl-W2)t /2gn2(t  ) is the best ap- 

proximation to h (t) = e (Wl-W2) t / 2 f(t) inside the 

window @l(t).  But h (t) tends to zero less rapidly 
than f(t). Therefore, one would expect rn(t ) to be a 
better ~pproximation to h(t) than gnl(t)  is to f(t), 
and consequently gn2(t) to be a better approximation 
to f(t) than gnl(t) .  That is, one could increase the 
accuracy of  the best approximation by decreasing w. 
This reasoning can now be used even more efficiently 

as follows [7]. 
Let f(t) tend to zero like e -b t  , b > o. Then one can 
write the integral 

In[Y] = I** tNe-Wt[ f ( t )  - gn(t)] 2dt (21) 
O 

~tS 

in[g, ] = / -  tNe - (W+ 2b)t[ f(t) -gn( t )  ]2a t  (22) 
o e -b t  

The expression [f(t) - g n ( t ) ] / e - b t  can be viewed as 
the relative error of  gn(t) at least for large t. Hence it 
is easy to see from (21) and (22) that the best ap- 
proximation gn(t) to f(t) obtained by using 

0.02 
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-O.OI 
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Fig. 2. Graphs of  the errors • (t) = J o  (t) -g2(t)  (solid 

curve) and ~" (t) =Jo( t )  -~2(t) (dashed curve), 

where g2(t) and ~'2(t) are the best approxima- 

tions to Jo(t) obtained by minimizing I2[~ ] 
using ~ ( t )  = t4e  - t  and ~ ( t )  = t 8 e  -2t re- 

spectively. 

the window tNe -wt  minimizes the '~relative" error 

inside the window t N e - ( w + 2 b )  t.  

Example 2 
f(t) = El~t ) = S~ e-X/xdx" The Laplace transform 

o f this function is f (p) = log (1 + p) / p. As t becomes 

large El( t  ) ~ e - t / t  asymtotically, hence for large t it 

seems to be more convenient to approximate tE l ( t  ) 
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Fig. 3. Graph of  the error e (t) = Jo(t) - g2(t), where 
g2(t) is the best approximation to Jo(t) ob- 
tained by minimizing I2[~ ] using 
xI,(t) = t 8 e  - t .  

by exponential functions rather than El( t  ). Table 2 
contains the parameters {A r, a r } for the approxima- 

tion g2 (t) to El( t  ) obtained using the window t l0e  - t  

and the appioximations h2(t ), h2(t), and'h2(t) to 
tE l ( t  ) obtained using the windows, t 10e -t, t l0e  -0"St, 

and t 10e-0"25t respectively. Table 3 contains the 
values of  El( t  ) and the relative errors for the ap- 

proximations g2(t), h2(t ) / t ,  h2(t)/t ,  and ~2(t) /t. 
The assertion that for large t, tE l ( t  ) is approximable 
by exponential'functions better than El( t  ) is con- 

firmed by the 3rd and 4th columns of  Table 3. 

As for the relative error, as has been mentioned be- 
fore, minimizing the square of  the absolute error in- 
side the window t 10e - t  is equivalent to minimizing 

the "relative" error inside the window t 10e-3 t  since 

El( t  ) ~ e - t / t  as t becomes large. For the window 

t l 0 e  -3t,  tma x = 10/3 and zx - 2x / -~  and g2(t) and 
3 

h2(t) / t  both approximate El( t  ) very well in this 
window as confirmed by Table 3. 
As has been stated previously, ff one reduces w in 

xI,(t) = tNe -wt  (keeping N fixed), then one obtains 
better accuracy in approximation. This is confirmed 
by the 5th and 6th columns of  Table 3 which con- 

tain the relative errors for h2(t)/t and ~2(t)/t res- 

pectively. 

Example 3 

1 exp[-p/x/Tg-opl ,  o >  o. This function f-(P) = T 
arises in problems of  pulse propagation in viscoelastic 
media. The exact inverse of  f(p) is not known analy- 
tically. The numerical inversion of  this transform has 
been achiaved by Longman [3, 4] by use of  the Pad~ 
table and the Levin transformations [6]. 
f(p) has a simple pole at p = o with residue 1 and a 
branch point at p =-1" /o  in the complex p-plane. 
Therefore, the inverse f(t) tends to 1 as t tends to in- 
fmity. If we subtract this, then f ( p ) -  1/p is the Laplace 
transform of  f(t) - 1 and has only one singularity, name 
ly, the branch point at p = -  1/o.  This implies that 
f(t) - 1 tends to zero like e-fr ° times a power of  t as t 
tends to infinity [10]. This piece of  information now 
tells us that if one f'mds the best approximation to 
f(t) -1 using the window tNe  -wt  , then one should 
look at those values of  t which fall inside the window 
t N e-  (w+ 2/o) t for maximum number of  significant 
figures. This point is demonstrated in Table 5. But let 
us first look at Table 4 which contains the parameters 
{At, ar } for g2(t), the best approximation to f ( t ) - I  
with o = 1, obtained using the window t l 0 e  -2t. 

Table 2 

The parameters {A r, ~r } for g2(t),best approximation to El(t), obtained using the window t 10e- t ,  and h2(t ), 

h2(t), and ~2(t), best approximations to tEl(t)~ obtained using the windows t 10e- t ,  t l 0 e  -0 'S t ,  and 

t 10 e-0"25 t respectively. 

A 1 

A 2 

a2 

g 2 (t) h 2 (t) h2(t) 

.35213648 

.76658326 

1.15016959 

2.00997984 

.80495379 

- .41391736 

.98546487 

1.67695103 

.82711670 

- .39789717 

.98912073 

1.58623601 

~2 (t) 

.83865406 

- .38741964 

.99075585 

1.54059142 
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Table 3 

Values of  E l ( t  ) and the relative errors for the approximations g2(t), h2(t)/t , h2(t)/t,  and ~2(t)/t, where g2(t), 

h2(t), h2(t), and ~2(t) are as described in Table 2. 

t 
, =  

2.0 

2.4 

2.8 

3.2 

3.6 

4.0 

4 . 4  

4.8 

5.2 

5.6 

6.0 

6.4 

6.8 

7.2 

7.6 

8.0 

8.4 

8.8 

9.2 

9.6 

10.0 

Relative errors for 

El ( t )  g2 (t) 

4.8901 x 10 -2 

2.8440 x 10 -2 

1.6855 x 10 -2 

1.0133 x 10 -2 

6 .1604x  10 -3  

3.7794 x 10 -3  

2.3360 x 10 -3  

1.4530 x 10 -3  

9.0862 x 10-4 

5.7084 x 10-4 

3.6008 x 10-4 

2.2795 x 10-4 

1.4476 x 10-4 

9.2188 x 10 -5 

5.8859 x 10 -5 

3.7666 x 10 -5 

2.4154 x 10 -5 

1.5519 x 10 -5 

9.9881 x 10 -6 

6.4388 x 10 -6 

4.1570 x 10 -6  

3.2 x 10 -3  

8.8 x 10 -5 

2.1 x 10 -3 

2.2 x 10 -3 

7.6 x 10 -4  

1.3 x 10 -3  

3.2 x 10 -3 

4.1 x 10 -3 

3.6 x 10 -3 

1.2 x 10 -3 

3.1 x 10 -3 

9.5 x 10 -3 

1.8 x 10 -2 

2.8 x 10 -2 

4.1 x 10 -2 

5.5 x 10 -2 

7.0 x 10 -2 

8.7 x 10 -2 

1.0 x 10 -1 

1.2 x 10 -1 

1.4 x 10 -1 

h2( t ) / t  

1.3 x 10 -3  

5.4 x 10-4 

1.3 x 10-4 

4.5 x 10-4 

4.4 x 10-4 

1.9 x 10-4 

1.5 x 10-4 

4.7 x 10-4 

6.8 x 10-4 

7.0 x 10-4 

4.9 x 10-4 

2.4 x 10 -5 

7.2 x 10 -4  

1.7 x 10 -3 

3.0 x 10 -3 

4.6 x 10 -3  

6.4 x 10 -3 

8.5 x 10 -3  

1.1 x 10 -2 

1.3 x 10 -2 

1.6 x 10 -2 

h'2(t)/t  

7.4 x 10-4 

1.1 x 10 -3 

6.1 x 10-4 

3.0 x 10 -5 

3.4 x 10-4 

4.6 x 10 -4 

3.8 x 10-4 

1.6 x 10-4 

1.1 x 10-4 

3.8 x 10-4 

5.6 x 10-4 

6.8 x 10-4 

6.3 x 10-4 

4.3 x 10-4 

6.3 x 10 -5 

4.9 x 10-4 

1.2 x 10 -3 

2.1 x 10 -3 

3.2 x 10 -3 

4.5 x 10 -3  

5.9 x 10 -3 

~2(t) / t 

3.3 x 10 -4 

1.1 x 10 -3 

9.4 x 10-4 

4.3 x 10-4 

5.2 x 10 -5 

3.5 x 10-4 

4.5 x I0 ~ 

3.8 x 10 -4 

2.0 x 10-4 

3.5 x 10 -5 

2.8 x 10-4 

4.8 x 10-4 

6.2 x 10-4 

6.6 x 10 -4 

5.8 x 10 -4 

3.8 x 10 --4 

3.8 x 10 -5 

4.4 x 10 -4 

1.1 x 10 -3 

1.8 x 10 -3 

2.7 x 10 -3 

Table 4 

The parameters (Ar, o r } for g2(t), the best approxima- 

tion to f(t) - 1 with o--- 1, obtained using the window 
t l 0 e - 2 t "  

A 1 = - .84978590 

A 2 = - .28910804 

a I = .93993479 

a 2 = 2.81569326 

Table 5 

Exact values of  the solution to the viscoelastic prob- 

lem with o =  1, and values of  the approximant g2(t) + 1, 

where g2(t) is as in Table 4. (The exact values have been 
taken from Longman [41). 

t Exact g2(t) + 1 

1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 

.65063 

.71491 

.766354 

.807917 

.841728 

.869367 

.892040 

.910691 

.926063 

.938753 

.949242 

.65064 

.71481 

.766284 

.807895 

.841734 

.869381 

.892053 

.910698 

.926065 

.938751 

.949238 
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6. CONCLUSION 

A Laplace transform inversion method developed by 
Longman and based on the least-squares method has 
been modified, and this modification allows one to 
approximate the inverse transform f(t) by a linear 
combination of  exponential functions for values of  t 
away from zero. A convergence proof has been given 
and the method is illustrated by three numerical ex- 
amples. In all these examples the inverse transform 
f(t) has been approximated by sums of two exponen- 
tial functions only and very good accuracy is obtained. 
This method has also been applied to functions of  the 

M -~k t 
form f(t) = k ~ l  ake where a k and ~k are con- 

stants and M is large. The best approximations g2(t) 

for such functions are very good both for small and 
large t. This suggest that the method might be useful 
in electrical network theory where one tries to ap- 
proximate a complicated circuit by a simpler one. 

ACKNOWLEDGEMENTS 

The author is grateful to Professor I. M. Longman for 
suggesting the problem and for continuous support 
and encouragement of  this work. Thanks are due to 
D. Levin for helpful discussions and comments. The 
computations for this paper were carried out on the 
CDC 6600 computer at the Computation Center of  
Tel-Aviv University. 

REFERENCES 

1. I.M. LONGMAN, "Best rational function approxima- 
tion for Laplace transform inversion", SIAM J. Math. 
Anal., 5(1974), pp. 574-580. 

2. I.M. LONGMAN, "Application of best rational func- 
tion approximation for Laplace transform inversion", 
Journal of Computational and Applied Mathematics, 1 
(1975), pp. 17-23. 

3. I. M. LONGMAN, "Numerical Laplace transform inver- 
sion of a function arising in viscoelasticity", J. Com- 
putational Phys., 1_0_0 (1972), pp. 224-231. 

4. 

5. 

6. 

I. M. LONGMAN, "On the generation of rational func- 
tion approximation for Laplace transform inversion with 
an application to viscoelasticity", SIAM J. Appl. Math., 
24 (1973), pp. 429-439. 

A. SIDI, "On the approximation of square integrable 
functions by exponential series", Journal of Compu- 
tational and Applied Mathematics, 1 (1975), pp. 229- 
239. 

D. LEVIN, "Development of nonlinear transformations 
for improving convergence of sequences", Internat. J. 
Comput. Math., B_33 (1973), pp. 371-388. 

7. D. LEVIN, private communication. 

8. 

9. 

H. S. CARSLAW and J. C. JAEGER, "Operational 
methods in applied mathematics", Dover, N.Y., 1963, 
p. 267. 

G. SZEG(~, "Orthogonal polynomi/ds", American Mathe. 
matlcal Society, N.Y., 1939, p. 10. 

10, M.J. SMITH, "Laplace transform theory", Van Nostrand, 
London, 1966, Chapter 10. 

Journal o f  Computational and Applied Mathematics, volume 2, no 3, 1976. 194 


