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The Richardson extrapolation process is generalized to cover a large class of 
sequences. Error bounds for the approximations are obtained and some convergence 
theorems for two different limiting processes are given. The results are illustrated by 
an oscillatory infinite integral. . 

1. Introduction 

THE PURPOSE of this paper is to generalize the well-known extrapolation process due 
to Richardson and to analyse, in some detail, the convergence properties of this 
generalization. In view of this analysis we shall also give some simple criteria for the 
efficient implementation of this "generalized Richardson extrapolation process" 
(GREP). An illustrative numerical example will also be appended. 

Definition 1.1. We shall say that a function A(y), defined for °< y ~ b, for some 
b > 0, where y can be a discrete or continuous variable, belongs to the set F(m), for 
some integer m > 0, if there exist functions ¢ k(y), Ih(y), 0 ~ k ~ m -1, and a constant 
A, such that 

m-l 

A = A(y) + L ¢k(y)flk(y), (Ll ) 
k=O 

where A = lim A(y) whenever this limit exists, in which case lim ¢k(y) = 0, 
y~O+ y~O+ 

o~ k ~ m-l, and flk(n, as functions of the continuous variable~, are continuous for 
o~ ~ ~ b, and for some constants rk > 0, as ~ ..... 0+, have Poincare-type asymptotic 
expansions of the form 

oc 

flk(~)""" L flk.i~irk, k = 0, 1, ..., m-1. (1.2) 
i=O 

If, in addition, the functions Bk(t) == flk(i 1
/rk ), as functions of the continuous variable t, 

brkare infinitely differentiable for 0 ~ t ~ , we shall say that A(y) belongs to the set 
F(m)

'X, • 

Remark. If lim A(y) does not exist, then in the nomenclature of Shanks (1955), A is 
y~O+ 
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said to be the anti-limit of A(y). In this case, for at least one k, lim ¢k(Y) does not 
k~O+ 

exist as is obvious from (Ll) and (1.2). 
The problem is to find (or approximate) A whether it is the limit or the anti-limit of 

A(y) asy-+O+, 

. Definition 1.2 (GREP). Let A(y) E p(m), for some integer m > 0, with the same notation 
as in Definition 1.1. Denote the vector (no, 111' . , " I1 m - 1 ) by 11. Then A~m,j), the 
approximation to A, and the parameters Pk, i, 0 ~ i ~ 11k, 0 ~ k ~ m 1, are defined 
as the solution of the set of linear equations 

m 1 nk 

A~m,j) = A(ya + L ¢k(YI) L Pk,iy!'k, j ~ I ~j+N, (1.3 ) 
k=O i=O 

where 
m-l 

N= L (l1k+ 1) and b;;::YO>Yl>Y2>"',
k=O 

such that YI > 0 for all I ;;:: 0 and lim YI 0, provided of course that the matrix of the 
I~oo 

coefficients of equations (1.3) is non-singular. 

Remark, The origin of this definition is in the work of Levin & Sidi (1975), which deals 
with the approximation of some infinite integrals and series. A brief outline of the 
important results of this work will be given in the next section. 

We note that, in general, equations (1.3) have to be solved numerically on a 
computer by using a linear equation solver. (Only in. a few cases can A:;",J) be 
computed in a simple manner and these are the T-transformations of Levin (1973) 
and ordinary Romberg integration.) In particular, we write equations (1.3) in the 
form: 

Qc = d, (1.4) 

where Q is the matrix of the linear system (1.3) whose first column is the (N + 1)­
dimensional vector (1, 1, . , ., l)T (T denotes transpose), c is the (N + 1 )-dimensional 
vector of unknowns whose first element is A~m,j), and d is the vector (A(Yj), A(Yj+ 1)' 
.. " A(Yj+NW, Let the first row ofQ-l, the inverse ofQ, be the vector (,0, 11" .. , IN)' 
Thcn c = Q- 1d implies 

N 

A(m,j) - '" A( )
. n - L, II Yj+l, (1.5) 

I 0 

and from Q-lQ I it follows that 

N 

11 = 1. (1.6) 

In view of (1.6) and (1.5), A~m,j) seems to be some kind of an average of the A(yJ But 
the weights 11 of this average depend on the ¢k(Yi) in a very complicated manner. In 
some cascs (see Lcvin, 1973; Levin, 1975; Levin & Sidi, 1975) the ¢k(Y) depend on 
A(y), hence the GREP can, in general, be viewed as a "non-linear summability 
method" (see Section 4). 

In the next section we shall give examples of functions belonging to p(m) and we 
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shall also summarize the basic points of the work of Levin & Sidi (1975) for later use. 
In Section 3 we shall derive some useful bounds on A - A~m,j) for two different limiting 
processes and give some convergence theorems which are based in part on Sidi (1977, 
Chapter 5). In Section 4 we shall comment on the two limiting processes of Section 3 
in the light of the Silverman-Toeplitz theorem on summability. In Section 5 we shall 
illustrate the results of Sections 3 and 4 with a numerical example of the use of the 
results of Levin & Sidi (1975) on infinite integrals. 

2. Examples of Functions in F(m) 

Functions belonging to F(m) come up in a natural way in numerical integration 
through the Euler-MacLaurin sum formula and generalizations of it. In what follows 
we assume that the function g(x) is infinitely differentiable on [0, IJ and define the 
"generalized trapezoidal rule" approximations to 

1 

1 = r G(x) dx, 
~o 

where G(x) = w(x)g(x) dx by the formula: 

T(h) = h i G (3j-~+~), IIXI < 1, nh = 1. 
j=l 2n 

The following generalizations of the Euler-Maclaurin sum formula are due to Navot 
(1961,1962) 

(a) If w(x) = x/l, -1 < f3 < 0, then for (X = Ofor example '(midpoint rule) 

Xl ex; 

1", T(h)+h2 L akh2k+hl +/l L bkhk. 
k=O k=O 

(b) If w(x) x/llog x, -1 < f3 < 0, then again for IX = ° 
w w OC) 

I", T(h)+h2 L akh2k+h1+/l L bkhk+h1+/llog h L ckhk. 
k=O k=O k=O 

Similar results for the case f3 > °for ordinary trapezoidal and Simpson rules have 
been given by Fox (1967). Fox has also used GREP (oflow order) for approximating 
the singular integrals in (a) and (b) but has not gone as far as developing the method 
as generally as in Definition 1.2. 

The results of Navot (1961,1962) have been extended by Lyness & Ninham (1967) 
as follows: 

(c) Ifw(x)= x/l(1-x)", -1<f3<Oand -1 <b<O,then 

00 00 

1", T(h)+hlH L akhk+h1+/l L bkhk. 
k=O k=O 

(d) w(x) = x/l(1-x)610gx, -1 < f3 < °and -1 < b < 0, then 

00 00 00 

1- T(h)+h1+0 L akhk +h1 +P L bk hk+h1 +tJ logh L ckhk. 
k=O k=O k=O 
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Generalization of these results to multiple integrals on hypercubes and 
hyperspheres have been given by Lyness & McHugh (1970) and lately by Lyness 
(1976). 

Recently, two other important examples connected with infinite integrals and series 
have been given by Levin & Sidi (1975). For future reference their results are 
summarized below: 

Definition 2.1. We shall say that a function .x(x), defined for x> a ;;::. 0, belongs to the 
set A(Y) if it is infinitely differentiable for all x > a and if, as x -+ 00, it has a Poincare­
type asymptotic expansion of the form 

.x(x) "" x Y L 
m 

.xixi, (2.1 ) 
;=0 

and all its derivatives, as x -+ 00, have Poincare-type asymptotic expansions which 
are obtained by differentiating the right-hand side of (2.1) term by term. 

From this definition it follows that A(Y):::> A(y-l):::> A(y-2):::> •••• 

Remark. It also follows that if .x(x) is in A(O), then it is infinitely differentiable for all 
x > a including x = 00 (but not necessarily analytic at x = 00). 

THEOREM 2.1. Let f(x) be defined for x> a ~ 0, and satisfy a homogeneous linear 
differential equation of order m of the form 

OC) 

f(x) = L Pk(X)jlk)(X), (2.2) 
k=l 

where Pk E A{ik) but Pk ¢. A(ik-ll, such that ik are integers satisfying ik ~ k, 1 ~ k ~ m. 
Let also 

lim p~-l)(x)f(k-i)(x) = 0, i ~ k ~ m, 1 ~ i ~ m. (2.3) 

If for any integer I = - 1, 1, 2, 3, ..., 

L
m 

1(/-i) ... (l-k+1)Pk¥d, (2.4) 
k=l 

where 
Pk = Jim X-kpk(X), 1 ~ k ~ m, (2.5) 

;x-+ OC) 

then 

LX) f(t) dt LX f(t) dt + :t~ jlk)(X)XPkOk(X), (2.6) 

where Ok E A(O) and Pk are integers satisfying 

Pk~max(ik+l,ik+2-1, ...,im -m+k+l), O~k~m-l. (2.7) 

It also follows that lim jlk)(X)XPk = 0, 0 ~ k ~ m-l. 
X"" 00 

THEOREM 2.2. Let the elements of the sequence {j,.}.:"= 1 satisfy a homogeneous linear 
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difference equation of order m of the form 

f,. L 
m 

Pk(r)11 kf,., (2.8) 
k=1 

where 11 is the forward difference operator operating on the index r, and Pk(X), as 
functions of the continuous variable x, are in A(ikJ but not in A(ik 1), such that ik are 
integers satisfying i k ~ k, 1 ~ k ~ m. Let also 

lim [l1i I Pk(r)][l1 k -1,.] = 0, i ~ k ~ m, 1 ~ i ~ m. (2.9) 
r~ 00 

Iffor every integer I = 1,1,2,3, ... (2.4) holds together with (2.5) then 

00 R-l m-l 

L: f,. L f,. + L: (l1kfR)Wkl/tk(R), (2.10) 
r=l r=l k=O 

where l/tk E A(O) and Pk are integers satisfying (2.7). It also follows that 
lim (l1kfR)Wk = 0, 0 ~ k ~ m-l. 

R .... 00 

The proofs of both theorems are by construction and can be found in Levin & Sidi 
(1975), see also Sidi (1978) for the case m = 1 of Theorem 2.2. Using these theorems 
the D- and d-approximations are defined as in Definition 1.2. 

Definition 2.2. Let f(t) be as in Theorem 2.1 with the same notation. The 
approximation D~m.J) to 

where n denotes the vector (no, n1' ..., nm-d, and the constants lIk ,;, 0 ~ i ~ nb 
o~ k ~ m - 1, are defined as the solution of the linear equations 

D~m,J) = LXI f(t) dt +:t~ f(l'j(xl)xf k Jo lIk,'/x;, j ~ I ~ j +N, (2.11) 

",-1 

where N = L (nk +1) and a < Xo < Xl < ..., such that lim Xl = 00, provided the 
k=O . /.... 00 

matrix of equations (2.11) is non-singular. (If the Pk are not known exactly, then they 
can be replaced in (2.11) by O'k = min (k+ 1, sd, where 

Sk = max {sis integer, lim xSj<k)(X) o}. 
x"" 00 

Then Pk ~ O'k ~ k+ 1 and lim j<k)(X)X<1 k = 0, 0 ~ k ~ m-l.) The finite integrals 
x .... 00 

f: f(t) dt 

can be computed very accurately by using a low order Gaussian rule. 

Definition 2.3. Let the sequence {f,.};.x;.1 be as in Theorem 2.2 with the same notation. 
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ro 

The approximation d~m.j) to 2: fr, where n denotes the vector (no, n l , ..., nm _· d, and 
r= I 

the constants lfik,;' 0 ~ i ~ nk> 0 ~ i ~ m 1, are defined as the solution of the linear 
equations 

RI-I m-I 

d~m,j) 2: fr + 2: (tlJR,)RFk (2.12) 
r= I k=O 

m~'1 

where N = 2: (nk + 1) and 1 ~ Ro < RI < ..., provided the matrix of equations 
k=O 

(2.12) is non-singular. (If the Pk are not known exactly, then they can be replaced in 
(2.12) by (Jk = min (k+ 1, Sk), where 

Sk = max {sis integer, lim R'(!J,k!R) = O}.
R-ro 

Then Pk ~ (Jk ~ k+ 1 and lim (i'lHR)R"k = 0, 0 ~ k ~ m-l). 
R-oo 

It is obvious that the processes described by the approximations D~m.j) and d~m.j) are 
exactly the GREP defined in Definition 1.2, provided one lets 

Y = l/x, A(y) == IX J(t) dt and <Pk(Y) == Pk)(X)XPk 

in Definition 2.2 and 

R-I 

Y = I/R, A(y) 2: fr and <Pk(Y) == (ll.kJR)RPk 
r= I 

in Definition 2.3. 
It is worth noting that the D- and d-approximations have proved to be extremely 

efficient for accelerating the convergence of infinite integrals and series of different 
kinds which could not be handled by the well-known methods of Euler (see 
Bromwich, 1942, p. 62; Shanks, 1955), the G-transformations of Gray, Atchison & 
McWilliams (1971). For numerical examples of varying degree of complexity, see 
Levin & Sidi (1975). The d-approximations for the case m = 1, are originally due to 
Levin (1973) and some aspects of their convergence theory have been analysed in Sidi 
(1978, 1979). Also the case m 1 ofthe D-approximations for Fourier integrals is due 
to Levin (1975). 

3. Error Bounds and Convergence Theorems 

In this section we shall analyse the convergence properties of A~m.)) for two kinds of 
limiting processes: 

(a) Process 1: n fixed, j --> CIJ. 
(b) Process2:jfixed,n-->CIJ,i.e.nk -->CIJ,k O, ...,m 1. 

We shall be using the notation of Definitions 1.1 and 1.2, and for convenience we shall 
denote 11 m-1. 

If the equations in (1.3) are solved using Cramer's rule, then for A~m.j) we obtain 

http:Process2:jfixed,n-->CIJ,i.e.nk
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A~m'})=detM/detK where M and K are (N+l)x(N+l) matrices. The (l+I)th 
column of M is the (N + 1 )-dimensional vector 

(A(Yj+/), ¢O(Yj+l)V~O<Yj+l)' ¢l (Yj+l)V;I(Yj+l), ..., ¢1i(Yj+/)V~JYj+lW, 
1= 0,1, .. "N, (3.1) 

where T denotes transpose and v:(y) are the (s + 1)-dimensional row vectors given by 

v:{y) = (1, yr., y2rk, ..., ysrk ), k = 0, ... , /1. (3.2) 

For example, for m = 2 (/1 = 1), no = 1, n1 = 2, the matrix M takes the form 

A(y) A(Yj+ d . , . A(Yj+ 5) 

¢O(Yj) · ~ . . . . . . ,. ¢O(Yj+ 5) 

¢O{Yj)Y)O · . . . . . . . ¢o(Yj+ 5)yj~ 5 
M= 

~ 


~
¢1 (Yj) · . ,. . . . . . ¢1 (Yj+ 5) 

¢l(Y)Y? · .. ,. ...... ¢1(Yj+5)yj~5 

¢1 (Yj)yJ'l · ........ ¢1 (Yj+ 5)YJ~15 

The matrix K is obtained from M by replacing the first row of M by the (N + 1)­
dimensional vector (1, 1" , ., 1). 

If we now denote the cofactor of A(Yj+l) in the first row of M by (j/ and expand 
det M and det K with respect to their first rows, we can write 

N 

(3.3) 

From (3.3) and (1.5) it is clear that 

I N 

Yl (jl L (ji> I=O,I, ...,N, (3.4) 
/ i=O 

and (1.6) is again seen to be trivially satisfied. 


LEMMA 3.1. The error in the'approximation A;,m,j) satisfies the equality 


N Ii 

A _A~m.jl = L Yl L ¢k(Yj+/)fJk(Yj+/)' (3.5) 
1=0 k=O 

Proof The result follows by substituting (Ll) in (1.5) and using (1.6). 

Corollary. With the help of (3.4), (3,5) can be re-expressed in the form 

detM l (3.6)
detK' 
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where M 1 is the matrix obtained from M by replacing the first row of M by the row 
vector 

(3.7)Ct 4>k(Y)Pk(Yj), . . " kt 4>k(Yj+N)fJk(Yi+ N)} 

For future reference we shall number the 2nd, ... , (N + 1)th rows of the matrix.M 1 

(and/or K) with two indices as follows: we shall give the 2nd row the indices (0, 0), 
the 3rd row, the indices (0, 1), . , " the (no+ 2)th row the indices (0, no)' In the same 
manner we shall give the next (n 1 +1) rows the indices (1, 0), (1, 1), ... , (1, n d, etc. 
Then the last (nil +1) rows will have the indices (Ji, 0), ..., (Ji, nil)' Thus the row 
(4)k(Yj)y~rk, ..., 4>k(Yj+N)Y}'h) has the indices (k, i). 

Starting with (3.6) we shall now analyse the convergence properties of the two 
limiting processes defined in the beginning of this section. 

(a) Process 1. 


THEOREM 3.1. The approximation A~m.i) satisfies 


N 11 

A-A~m.j) L 1'1 L 4>k(Yj+I)W~.(Yj+l)' (3.8) 
1=0 k=O 

where 
s 

w;(y) = Pk(Y) - L Pk,;yirk , k = 0, ... , Ji, (3.9) 
;=0 

with Pk.; as defined in (1.2). 

Proof Let us subtract from the first row of M 1 the sum of the products of the rows 
(k, i) by Pk,;' i = 0, 1, ..., nk , k = 0, 1, ..., Ji, and leave the 2nd, ... , (N + l)th rows 
unchanged. Let us denote the new matrix by M'. The first row of M ', by (3.7) and 
(3.9), is 

(3.10) 

and furthermore det M' = detM 1, hence A - A~m.J) = det M'/det K. If we now use the 
fact that the cofactors of the first row of M' are still the ;;1 and expand det M' and 
det K with respect to their first rows, (3.8) follows. 

Remark. The assumption that Pk(Y) have Poincare-type asymptotic expansions 
implies that 

W~(y)=O(y(s+l)rk) asy-+O+. 

This together with (3.8) implies that 

N 11 

A-A~m.j) L'I L 4>k(Yj+I)O(Y)~tl)rk) asj -+ 00, (3.11) 
1=0 k=O 
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which shows that A~m,j) is indeed the generalization of the Richardson extrapolation 
process. 

The following result can now be easily obtained from (3.8). 

Corollary 1. The approximation A~m,j) satisfies the inequality 

IA-A~m·j)1 :::; (f. 1ft!) f max l<Pk(Y,)1 max Iw! (Yi)l. (3.12) 
1=0 k=Oj,,;;i";;j+N j";;i";;j+N' 

Corollary 2. As j -l> 00, hence as Yj -l> 0+ , A~m,j) satisfies the inequality 

kIA A~m,j)l:::; (Jo Ifll) Jo e\l)O(y)nk +l)r ), (3.13) 

where e\l) = max l<Pk(Yi)l, and if lim A(y) = A, then 
j,,;;i";;j+N )1-+0+ 

IA - A~m·j)1 :::; (f. Ifd) o(yj) as j -l> 00, (3.14) 
1=0 

where 
(3.15) 

Proof (3.13) follows from (3.12) easily if we recall that· 

w:(y) = Pk,s+ly(s+1)rk +0(y<s+2 lrk ) as y -l> 0+, 

since (1.2) is a Poincare-type asymptotic expansion, and also that Yj > Yj+ 1 > .... 
From Definition 1.1, if lim A(y) = A, then lim <Pk(Y) = 0, in which case e\l) = 0(1) 

)1-+0+ y-+O+ 

asj -l> 00. Using this together with (3.15), (3.14) now follows. 
As an immediate consequence of Corollary 2, we obtain the following: 

Corollary 3. If lim A(y) = A and 
y-+O+ 

, sup (f. Ifll) :::; L < 00, (3.16) 
j 1=0 

then IA - A~m·j)l-l> 0 as j -l> 00 and the rate of convergence is given by 

IA - A~m·j)1 = o(yj), (3.17) 
at least. 

Remark. If <Pk(Y) = O(y'·) as Y -l> 0+ for some constants r. and if (3.16) holds, then 
(3.17) holds with ex = min {r.}, where r. = rk+ (nk + 1)rk' 0:::; k :::; ji, as can be 

O";;k,,;;,,, 

seen from (3.13). This means that if nk are sufficiently large such that r k > 0 for all k, 
then asj -l> 00 A-A~m,j) -l> 0 provided (3.16) is satisfied, whether lim A(y) exists or 

)1-+0+ 

not. (For an example of this situation see Sidi, 1978.) 
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(b) Process 2. 


THEOREM 3.2. The approximation A~m,j) satisfies 


N 
A -A(m. j )- ~ n - L Yl 

1=0 

fJ. 

'" A" ( ) k(y )L 'l'k Yj+l un, j+l, 
k=O 

(3.18) 

where 

such that 
(3.19) 

s 

n:(y} = La:,ilrk (3.20) 
i=O 

is the best polynomial approximation ofdegree s to th(y) in powers ofyr., 0 ~ k ~ /1, on 
the interval [0, Yj]' 

Proof Let us subtract from the first row of M1 the sum of the products of the rows 
(k, i) by a~" i' i 0, 1, ... , nk, k 0, 1, ... , /1, and leave 2nd, ..., (N +1 )th rows 
unchanged. Let us denote the new matrix by M". The first row of Mil, by (3.19) and 
(3.20), is 

(3.21) 

and furthermore, det M" = det MI' (3.18) is now obtained by expanding det M" and 
det K with respect to their first rows.' 

The following results can easily be derived from (3.18). 

Corollary 1. The approximation A~m.j) satisfies the inequality 

N ) uIA - A~m,j)1 ~ 
( 
L IYll L max l<Pk(Yi)1 max lu~ (Y;)I· (3.22) 

1=0 k=Oj';;i';;j+N j';;i';;oo' 

Corollary 2. If A(y) E F~) (see Definition 1.1), then as nk ...... 00, 0 ~ k ~ /1, 

IA - A~m'JII ~ (f. IY11) ±11IPo(n; Ak), any )'k > 0, (3.23) 
1=0 k=O 

where l1V) = max l<Pk(yJI, °~ k ~ /1, and if lim A(y) = A, then 
j';;i';;j+N y~O+ 

(3.24) 

where 
v min (no, nb ... , nfJ.)' 

Proo}: The proof of (3.23) follows from (3.22) and the fact that max lu:(y)1 = o(s-A) 
o:r;;;Y~Yj 

as s ...... 00, for any A> 0, which is a standard result of approximation theory. The 
proof of (3.24) follows from (3.23) and the fact that lim <Pk(Y) 0, hence 

y-O+ 

<Pk(y) = 0(1) for 0 ~ y ~ yj' 0 ~ k ~ /1. 
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Corollary 3. If A(y) E FV;;) and lim A(y) = A, and 
y-+O+ 

(3.25) 

then, as nk -l< 00, 0;;;; k ;;;; Jl, 

IA-A~m,j)1 o(v-A.), for any A > O. 	 (3.26) 

Remark. IfA(y) E F?::l, <Pk(Y) O(y'·) as y -l< 0+, nk = O(v) as n -l< 00,0;;;; k;;;; Jl and if 
lim A(y) does not exist, i.e. lim l<pk(y)1 00, for at least one k, then (3.24) still 

y-+O+ 	 y-+O+ 

holds provided Yi are chosen such that Yi = OW) for some p < O. If, furthermore, 
(3.25) is satisfied, then (3.26) holds too. 

There are two immediate practical conclusions that one can draw from Theorems 
3.1 and 3.2 and their corollaries. 

N 

1. 	 The smaller L 11'11 the smaller the error bounds are expected to be in (3.12) and 
1=0 


N 


(3.22). Now L l1'll;?;: 1, therefore one should adjust the Yi in (1.3) such that 
1=0 

N 

L 	11'11 will be small and as close to 1 as possible. The implications of this from 
1=0 

the numerical point of view will be taken up in Section 6. 
2. 	 As can be seen from the corollaries to Theorems 3.1 and 3.2, the fact that 

u;(y) -l< 0 as s -l< 00 much faster than w;(y) -l< 0 as y -l< 0 +, suggests that 
Process 2 would have much better convergence properties than Process 1. 

Both of these conclusions seem to be correct as a large number of numerical 
examples of various kinds have shown. One such example will be given in Section 5. 
For a theoretical verification of the last conclusion for Levin's transformation see Sidi 
(1978, 1979). 

Finally, we note that it is difficult to check rigorously under what circumstances 
conditions (3.16) and (3.25) hold. (As a matter of fact, in general, no simple 
expression for the rl is available.) However, in some special cases the behaviour of 

N 

L 11'11 can be analysed quite simply (see Sidi, 1979). We shall say more on this point 
1=0 

in the next section. 
Before we close this section, we shall give another closed expression for the error 

A A~,m,j). 

THEOREM 3.3. Let the functions Pk(~) in Definition 1.2 be such that i1k(~) == Pk(~)~rk 
are of the form 

i1k(~) = .2"[wk(t); ~-rk] = LX) exp (- tg rk ) Wk(t) dt, k = 0, 1, ..., Jl. (3.27) 

(i.e. they are Laplace transforms), where the functions Wl(t) are infinitely differentiable 
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on [0, 00). Then the error satisfies 

N It 

A-A~m,j) I YI I ¢k(Yj+l)yj~.'l~[w~nk+l\t);Yj-:r]. (3.28) 
1=0 k=O 

Proof From Laplace transform theory we have 

Pk(~) = p~~:) = ~nkrk~[w\:,k+ l)(t); ~-rkJ +Jo w~)(O)~irk, k 0,1, ..., /1.(3.29) 

Now, subtracting from the first row of the matrix M 1 the sum of the products of the 
rows (k, i) by w~)(O), i = 0, 1, ... , nk, k = 0, 1, ... , /1, and repeating the arguments 
which lead to (3.8) and (3.18) and using (3.29) the result follows. 

Remark. Using Watson's lemma in (3.27), it is easy to identify the w~)(O) as Pk i, 

i=0,1, ... ,k 0,1, ...,/1. 

We note that Theorem 3.3 is the generalization of Theorem 4.1 in Sidi (1978). The 
latter has enabled the author to prove convergence theorems on Process 2 for the 
d~l.j) approximations (or Levin's T-transformations), which are more powerful than 
Theorem 3.2. Applications of Theorem 3.3 in connection with the D-transformation 
for Fourier & Hankel transforms will be taken up in a future paper. 

4. GREP as a Summability Method 

Definition 4.1. The infinite matrix 

... (4.1 )

"'J 
is said to be regular iffor every convergent sequence {Zk}:"=O of numbers, the sequence 
{Cn}:'=O, where 

00 

(n = I AnkZk' 
k=O 

converges and to the same limit. 

THEOREM 4.1 (Silverman-Toeplitz). The infinite matrix A in (3.1) is regular if and 
only if 

(1 ) lim Ank = 0 for all k, 

n'" 00 


J) 

(2) lim I 1Ank 

n .... CQ k=O 


00 

(3 ) sup I IAnkl ~ L < 00 for some L > O. 
n k=O 

The proof of this theorem can be found in Powell & Shah (1972, pp. 23-27). 
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It turns out that for Process 1 and Process 2 we can define infinite matrices Band C 
of the form (4.1). For simplicity we take no = n1 = ." = nil = v and denote A~m,j) by 
A~m,j) and the corresponding YI by Y~~)I' Now N = m(v+ 1). 

For Process 1 we define the matrix B as follows: 

1
0 0 ~ k <j ifj # 0 

bj,k - Y~~)k-j j ~ k ~j+N (4.2) 

o k>j+N. 

As can be seen from (4.2) the matrix B is a band matrix since N is fixed and 

A~m.J) = L
00 

bj,kA(Yk), j = 0, 1,2, , , , , 
k=O 

For Process 2 the matrix C is defined as follows: 

1
0 O~l<j ifj#O 

(j) . . 
Cv,l- Yv,l-j }~I~}+N (4.3) 

o l>j+N, 

From (4.3) it follows that C is a "stair case" type matrix in that each row has m 
nonzero elements more than the previous row, since j is fixed, and N increases by m 
when v increases by 1. Also, for this case 

co 

A (m,j) - '" A ( )v - L.t cv• l Yl, v=0,1,2,."" 
1=0 

Now the three conditions of Theorem 4,1 are sufficient for the matrix A to be 
regular. They become necessary if we require that the sequence {(n}:'=O converge to 
the limit of {Zdk=O for any {Zk}k'=O' In our case the matrices Band C are applied only 
to very special sequences, This then raises the question whether the matrices Band C 
have to satisfy the conditions of Theorem 4,1 and under what circumstances they do. 
Now it can easily be verified that the second condition of Theorem 4.1 is 
automatically satisfied by both Band C since 

co N ro N 

L bj,k = L YI 1 and L cv, I = L Y, = 1. 
k=O 1=0 1=0 1=0 

The first condition is automatically satisfied by matrix B since bj,k = 0 for j large 
enough and k fixed. Numerous computations for convergent infinite integrals and 
series, by using the D- and d-transformations of Levin & Sidi (1975) have shown that 
this condition is satisfied for Process 2 too, although no proof of this is available yet. 
The same computations have shown that the third condition of Theorem 4.1, which is 
just (3.16) for Process 1 and (3.25) for Process 2, is satisfied when the functions cPk(Y) 
are all oscillatory as Y -+ 0+ and it is not satisfied when some of the cPk(Y) are 
monotonic as Y -+ 0+ and cPk(Yz) vary slowly as I increases. No proof of this 
observation is available yet either. For some simple cases with m = 1, like the 
ordinary Romberg integration (see Bauer, Rutishauser & Stiefel, 1963), and the t- and 
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u-transformations of Levin (1973) (see also Sidi, 1978) as applied to oscillatory 
sequences, all three conditions of Theorem 4.1 can be shown to hold. 

Finally, we note that the numerical experience gained by the use of the D- and d­
transformations and some theoretical results in Sidi (1978, 1979) suggest that whether 
the third condition of Theorem 4.1 is satisfied or not, convergence takes place in both 
Process 1 and Process 2, in some cases. The numerical rate of convergence, however, 

depends very strongly on the size of L
N 

11'/1 and/or on the rate at which 1'1 -+ 0 as 
1=0 

nk -+ 00, k 0, ..., fl, for fixed 1. 
Actually, the following have been observed to be satisfied simultaneously: 

(1) A~m.j) -+ A quickly (both Process 1 and Process 2). 
(2) 1'/ -+ 0 quickly as nk -+ 00, k = 0, ... , fl, I fixed (Process 2). 

N 

(3) L 11'/1 is small, and if it increases its increase is slow (Process 1 and Process 2). 
/=0 

The numerical example in the next section will clarify these points further. 

5. A Numerical Example 

We shall now apply the D-transformation of Levin & Sidi to the integral 

I."" lo(t) dt 1, 
~o 

where lo(t) is the Bessel function of the first kind of order zero. Now f(t) lo(t) 
satisfies all the conditions of Theorem 2.1 with m 2, io = -1, i l = 0 as can be seen 
from Bessel's equation of order zero,! = - (l/t)!, - 1". Therefore, a relation of the 
form (2.6) exists with Po::::; -1, PI::::; O. See Longman (1959), as x-+ 00, 

I
2 2 2~(() (11 .31 .3

2.5) '( 1212.3 )
Jo(t)dt-lo(x) -- + 5 ... +[lo(x)] 1- +-x - ....4 

.IX X X 

Hence Po 1, PI = 0 exactly. C!O and (TI, by their definition, turn out to be equal 
to O. Computing the finite integrals 

numerically (and accurately) and solving equations (2.11) we' obtain the 
approximation D~2.j) to 

LX) lo{t)dt = 1. 

We consider, as in Section 4, the approximations with no nl = v and use the 
notation therein. For further details the reader is referred to Levin & Sidi (1975). 
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TABLE 1 

v=2 v=4 

j 
N 

L lyS~)ll 
J~O 

11-D~2·j)1 
N 

L IY~)ll 
1=0 

II-D!?·JJI 

1 
3 
5 
7 
9 

2-662 
2-006 
1·714 
1·547 
1·443 

9 x 10- 5 

1 x 10- 5 

2 x 10- 6 

4 x 10- 7 

1 x 10- 7 

4-048 
2-668 
2'147 
1·876 
1·723 

1 x 10- 7 

3 x 10- 8 

4 x 10- 9 

7 x 10- 10 

2xlO- lo 

(a) Process 1 

IV 

In Table 1 we exhibit some of the results obtained for D~2.j) and L IY~,~),I with 
1=0 

v = 2, 4, using Xl = 3(1 +1 )/2, I = 0, 1, .. _ . 

(b) Process 2 

IV 

In Tables 2a, 2b and 2c we exhibit some of the results obtained for 'I't%, L IY~~ll and 
1=0 

D~2. 0) using X, 1+ 1, Xl 3(1 +1)/2, Xl = 2(i +1), respectively, 1= 0, 1, 2, .... 
Table 3 exhibits part of the matrix C for Process 2 (see previous section) obtained 

by using XI = 3(1 + 0/2, l = 0, 1,2, .... 
Let us now compare Process 1 and Process 2 with the help of Tables 1 and 2b, 

which have been computed by taking XI = 3(1 +1 )/2, l = 0, 1, ..., hence by using the 
same sequence of finite integrals 

J:1JO(t) dt. 

As is seen the rate of convergence for Process 2 is much greater than that of Process 1. 
Also if we compare two approximants, one from each table, whose computations are 
done by using about the same number of finite integrals, like D\[·9) in Table 1 (16 
finite integrals) and DIf· 0) (17 finite integrals), we see that Process 2 is superior to 
Process 1 in this kind of comparison too. This second kind of comparison becomes 
especially meaningful for the d-transformation for infinite series, since it implies that 
given a finite number of terms of the series, Process 2 gives much better accuracy than 
Process 1. This observation is in agreement with one of the two conclusions of 
Section 3. 

6. Remarks on Computational Aspects 

It turns out that the matrix Q of equations (1.3), as the nk become larger, becomes 
very ill-conditioned. This causes the computed values of the lJk. i to be very inaccurate. 
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,,(0)v IV,O 

1 2,5 X 10- 1 

3 -4-1 X 10- 4 

5 7-2 X 10- 7 

7 6-2 X 10- 7 

9 -1-0 X 10- 12 

,1(0)v 1\l,O 

1 1-5xlO- 2 

3 2·9 X 10- 5 

5 2·0 X 10- 8 

7 7-4 x 10- 12 

9 1·6 X 10- 15 

TABLE 2a 

XI 1+ 1, I = 0, 1, 2, __ _ 

N 

" L... 1,,(0)1IV,I 
1=0 

3·16 X 101 

1·09 X 101 

4-11 X 102 
6-93 X 105 

4'30 X 103 

TABLE 2b 

XI 3(1+1)/2, 1=0,1,2, ... 
N 

L I')'~?II 
1=0 

1 
1·06 
1·52 
2·21 
3·22 

TABLE 2c 

Xl 2(l+1), l=0,1,2, ... 

v ,,(0) 
IV.O 

1 2'3xlO- 2 1 
3 1·6x 10 5 1 
5 -5·6 X 10- 9 1-00000001 
7 -3,6 X 10- 12 1-005 
9 1.4x 10- 16 1 

2 X 10-2 
2 X 10-4 

2 X 10- 6 

3 X 10- 7 

1xlO- 8 

4 X 10- 4 

2 X 10- 6 

5 X 10- 9 

2xlO- 11 

2 X 10- 13 

3 X 10- 4 

2xlO- 7 

4 X 10- 10 

2xlO" 12 

6x 10- 14 

However, the accuracy of the computed value of A~m.j) seems to be unaffected by the 
ill-conditioning of Q. What does seem to have an effect on the accuracy of the 

N 

computed value of A~m.j) is the size of L 11'11, the same quantity that affects the error 
1=0 

A - A~m.j) in the true approximation. If we let A~m,j) be the computed value of A~m,j), 

then IA-A~m·j)1 and IA~m·j)_A~m,j)1 increase (decrease) simultaneously as L
N 

11'11 
1=0 

N 

increases (decreases). The effect of L Iytl on IA~m·j)_A~m,J)1 can be explained to some 
1=0 
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TABLE 3 

v ,,(0) 
lv.O 

,,(0) 
r v.l 

,,(0)
rV,2 

,,{OJ 
r v, 3 

,,(OJ 
I v,4 

i l'5xlO- 2 4·3 X 10- 2 3'2xlO- 1 8-2 X 10- 2 5-4 X 10- 1 

3 2,9 X 10- 5 4·4 X 10-4 l-lxlO- 2 7·5 X 10- 3 1·6 X 10- 1 

5 2-0 X 10- 8 1·0 X 10-6 l'2xlO- 4 1·4x 10- 5 7·8 X 10- 3 

7 7·4 X 10- 12 l'2xlO- IO 5·9 X 10- 7 -3,3 X 10- 6 1-6xlO-4 

9 1.6x 10- 15 3·2x 10 12 1·8 X 10- 9 -4·4 X 10- 8 1-9 X 10- 6 

extent as follows: suppose that the A(ys) have been computed with an error of s., 
s 0, 1, 2, , , , , Then 

N 

A~m.j) 2: YI[A(Yj+/)+Sj+I] 
1=0 

which together with (1.5) implies 

IA~m,j) - A~m·J)1 ~ (I 11'/1) max ISsl· 
1=0 j~s~j+N 

Hence if A(ys) are of the same order of magnitude and have r correct significant 
decimal digits, then eJA(ys) ~ lO- r + 1, and if A~m,j) is of the same order of magnitude 

N 

as the A(ys) and 2: 11'11 '" lOq for some integer q ~ 0 then 
1=0 

IA~m·j)_A~m·j)I/A~m.j) ~ 10- r +1+\ 

i.e. A~m,j) has'" r- q correct significant decimal digits. Now if A~m,Jl agrees with A in 
the first q' significant decimal digits and q' ~ r- q, then A~m.j) can be taken as A~m,j). 

If r is large enough, that is the A(ys) have been computed sufficiently accurately, 
N 

then even if 2: 11'11 may be large, A~m.j) will be sufficiently accurate to be taken 
1=0 

From what has been said above we can conclude that if the vector 
I' = (1'0,1'1> ..., YN)T is known, then we can simultaneously (1) compute A~m,j), and (2) 

N 

through 2: 11'11 obtain an estimate of the correct number of significant figures in A~m.j), 
/=0

the computed value of A~m,j). 
The vector I' can be found by solving the set of linear equations 

QTy el' 

where e1 (1,0,0, ..., Of. Therefore, the amount of computing to be done for 
determining A~m,j) and I' is the same as that for A~m.J) and the 11k, j. 

7. Further Results on GREP 

So far we have been concerned with A~m.j) and have given bounds on IA - A~m,j)l. It 



344 A. SIDI 

turns out that the lh, i are approximations to the 13k, i and tend to them in the limit for 
both Process 1 and Process 2. 

We start by solving equation (1.3) for Pp,q for °~ p ~ J1. and °~ q ~ np' Using 
Cramer's rule again the result is - Pp,q det M/det K, where K is as described in 
Section 3 and M is the matrix obtained from K by replacing the (p, q)th row of K by 
the row vector (A(Yj), ..., A(Yj+N»)' Let us denote the cofactor ofA(Yj+ 1) in the (p, q)th 
row ofM by ;}j> 1= 0, 1, ..., N. Then expanding det M and det K with respect to their 
(p, q)th rows we obtain 

N 

L: ;}IA(Yi+ I) 
Pp,q = ~~:I.~=..O:~__~______ (7.1) 

from which we immediately identify 

YI ;}1/detK, 1= 0, 1, .. .,N, (7.2) 

where (Yo, )il" .., YN) is the row of Q-l which corresponds to PP,'l in the vector c in 
(1.4), i.e. 

N 

~''l L: y1A(Yi+I)' (7.23,) 
1=0 . 

LEMMA 7.1. Ifp, q satisfies 

Pp,q lfp,q = Itol{Jo <Pk(Yj+l)fJk(Yi+/)- PV,q<PP(Yi+1)YJ't]. (7.3) 

Proof Substituting (Ll) in (7.1) we obtain 

(7.4) 

N 

Now L: Dl = °since it is just det K, where K is the matrix obtained from K by 
1=0 

replacing its (p, q)th row by the vector (1,1, ... , 1), thus giving two identical rows in 
K, namely the first at the (p, q)th. (7.3) then follows by adding Pp,q to both sides of 
(7.4) and using (7.2). 

Corollary. 
pp,q-lfp,q detMtfdetK, (7.5) 

where M 1 is obtained from M by replacing its (p, q)th row by the vector 
(ao, al" .., aN), where 

a! L:
/l 

<Pk(Yj+/)pk(Yi+l)- Pp,q<Pp(Yj+I)yj't1> 1= 0,1, ... , N. (7.6) 
k=O 
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(a) Process 1 

THEOREM 7.1. Pp, q satisfies the equality 

N I" 

fJp,q Pp,q L Yl L <Pk(Yj+l)W~,(yj+!)' (7.7) 
1=0 k=O 

where w:(y) are as defined in (3.9). 

Proof. Let us subtract from the (p, q)th row of MI the products of the rows (k, i) by 
fJk. i, 0 ~ i ~ nk , 0 ~ k ~ jl, (k, i) =1= (p, q), and leave the rest of the rows unchanged, 
and call the new matrix M'. The (p, q)th row ofM' is now given by (3.10). Expanding 
detM' with respect to the (p, q)th row and using (7.2), (7.7) follows. 

(b) Process 2 

THEOREM 7.2. PM satisfies the equality 

fJp,q PP•q = I YI [f <Pk(yj+l)U~,(yj+l)+<PP(yj+l)yj'flU~;q(yj+l)J' (7.8) 
1=0 k=O 

k",p 

where u:(y) are as defined in (3.19) and (3.20), and u~,q(y) is the best polynomial 
approximation to w~(y)/y(q+ l)rp in powers of yrp, of degr~e n p -q-1, in the interval 
[0, Yj]. 

Proof. Similar to those of Theorem 7.1 and Theorem 3.2. 
Starting with (7.7) and (7.8) we can give upper bounds for IfJp,q-Pp.ql and prove 

convergence theorems under some special circumstances as we did for IA - A~m·j)1 
in Section 3. 

We now give another result that corresponds to Theorem 3.3. 

THEOREM 7.3. Let A(y) be as in Theorem 3.3. Then 

N fJ. 

-",;;" A. )y"kr'!l'[w("k+ 1 )(t)'y-r,]fJ P.q-Pp,qri - L., fl L., 'I'll;(y j+l j+1 II; , j+l . (7.9) 
1=0 k=O 

Proof Like that of Theorem 7.1 and Theorem 3.3. 
Special cases of Theorems 7.1, 7.2, and 7.3 for the case of the T-transformations of 

Levin have been used by the present author (see Sidi, 1978, 1979), to prove 
convergence of PM to fJp,q for both Process 1and Process 2. 

Note. Numerous computations with Process 2 have shown that Pp,q -+ fJp,q as 
nk -+ 00, 0 ~ k ~ jl, this convergence being very quick for q = 0, less quick for q = 1, 
etc. What happens is that as q increases the Yl become very large in absolute value and 
do not have a fixed sign. This, through (7 .2a), introduces very severe round-off error 
propagation in the computation of Pp,q' 

http:IfJp,q-Pp.ql
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