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ABSTRACT 

Recent ly  McCabe and Murphy  have considered the two-po in t  Pad6 approx iman t s  to a funct ion 
for which (formal) power  series expansions at the origin and  at inf ini ty are given. In this paper 
these approximat ions  are slightly modi f ied  and de te rminan t  representa t ions  for  them are given. 
The existence o f  various th ree - t e rm recursion relations for  the numera tors  and  denominators  o f  
these approximants  is shown.  Based on these, a new con t inued  fract ion representa t ion  for these 
approximants  is obta ined  and also an efficient  recursive m e t h o d  is proposed  for  the determina- 
t ion o f  the coeff icients  o f  all the approximants  that  ob ta in  f rom a given n u m b e r  o f  terms o f  the 

power  series. 

1. INTRODUCTION 

Recently McCabe and Murphy [4] have considered the 
problem of determination of continued fractions for 
functions f(z), which have formal power series expan- 
sions at z = 0 and z = o.. Their problem, with a slight 
modification, is described below. 
It is assumed that for small I z I 

a 0 f(z) = ~ -  + alz + a2 z2 + .... (1.1) 

while for large I z [ 

a 0 a_ 1 a_ 2 
f ( z ) = - ( ~ -  + z + T + " ' ' ) '  (1.2) 

Z 

and that a 0 ~ O. We seek to approximate f(z) by ra- 
tional functions of the form 

fi,j (z) p (z) a 0 + a lz  + ... + amzm . . . .  , m = 1 , 2  .... 
q(z) 1 +/31z + ... +/3mzm (1.3) 

The 2m + 1 coefficients a r and/3 s are determined by 
the requirement that the expansions of fi,j (z) for 
~mall [z[ and large lz[ agree with (1.1) and (1.2) up 

to and including the terms ai_l zl 1 and a jz -J 

respectively such that i + j = 2m. Symbolically, we 
write this as 

f(z) - fi,j (z) = 0 (z i, z -(j + 1)). (1.4) 

For future reference we shall express (1.4) in the fol- 
lowing explicit form : 

p (z)  - q (z)  f ( z )  = 0 (z  i) as Iz I -~ 0 (1 .5 )  

p(z) q(z) f (z )=O(z-G+l) ) i  as ]zl--,oo. (1.6) 
Z m Z 1TI 

note that by adding ~ 0  to f(z) in (1.1) and (1.2) We 

and also to fi,j(z) in (1.3) we obtain the problem 

treated by McCabe and Murphy, in which the rational 
a 0 approximations fi,j (z) - -~-- have numerators that are 

polynomials of degree m -  1 and not m. 
It is worth noting that the notation fi "(z) differs a ,J 
great deal from that commonly used with ordinary 
(one-point) Pad6 approximants for which fi,j (z) 
usually means a rational function whose numerator 
and denominator are polynomials of degree at most 
i and j respectively. 
Finally we have assumed that the series (1.1) and (1.2) 
are formal (convergent or asymptotic divergent) expan- 
sions of one and same function f(z). Actually (1.1) and 
(1.2) can be considered to be two arbitrary formal ex- 
pansions which are not necessarily related to the same 
function. But, as approximations, fi : (z) can have ,J 
significance only when they are related to the same 
function both at z = 0 and z = oo. For examples of 
this, see McCabe and Murphy [4]. 
We note also that the rational functions fi,j (z) may 
not always exist; it is possible to construct series for 
which this is so. In this work, however, we assume that 
all fi," (z) exist. 
McCa~e and Murphy have given a method, based on the 
q -  d algorithm, for the computation of the coefficients 
of the continued fractions derived from (1.1)-(1.4). 
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However, their algorithm necessitates the computation 
of  many quantities which bear no relevance to fi,j (z). 
Besides using their algorithm only part of  the approxi- 
mants that derive from a given number of  terms of  
(1.1) and (1.2) can be computed. 
The purpose o f  this paper is, 

1) to give determinant expressions for fi,j (z), similar 
to those for ordinary Pad~ approximants, 

2) to develop some three-term recursion relations 
which are very useful in the construction of  some 
continued fractions, namely, those of McCabe and 
Murphy and a new continued fraction which, upon 
contraction, gives one of  the continued fractions of  
McCabe and Murphy, and 

3) to give an efficient recursive algorithm for the com- 
putation of  the a's and 3's of  all the fi,j (z) that 
derive from a given number of  terms o t t h e  series 
(1.1) and (1.2). 

2. SOME PROPERTIES 

Assume that all the common factors of  the numerator 
p (z) and denominator q (z) of  the approximant 
fi,j (z) have been cancelled and that the reduced ra- 

tional function is p (z) / q (z), where p (z) and q (z) 
are polynomials of degree exactly n < m. The fact 
that } (z) and q (z) should be of  the same degree fol- 
lows from the fact that as Iz[--, oo 

fi , j  (z) = - a  0 /2  + 0 (z -1) and the assumption that 

a 0 ~ 0. Also ~ (0) ~ 0 since fi , j(z) = 0(1) as [z[-* 0. 

Hence we can set q (0) = 1. Therefore, we can define 

fi,j  (z) by (1.3) with degree of  p(z) and degree of  q(z) 

exactly equal to n ¢ m, such that p(z) and q(z) have 
no common factors apart from a multiplicative con- 
stant. 
We shall define the approximant fi,j (z) to be normal 
if n = m and the two-point Pad~ table to be normal if 
all fi,j (z) are normal. 

In the remainder of  this paper we shall assume that 
the two-point Pad6 table is normal. 

Theorem I 

If  fi, j(z) exists, it is unique. 

Proof 
If  i=  0, then j = 2m, hence f(z) - f i , j (z)  = 0 ( z - ( 2 m + l ! )  

only, i.e. f0,j  (z) is the (m/m) ordinary Pad6 approxi- 

mant derived from the series (1.2). From the unique- 
ness theorem for ordinary Pad~ approximants, see 
Baker(J1], p. 8), it follows that f0,j(z) is unique. 

I f i  > 0, assume that fi,j(z) = p ( z ) / q  (z) is not unique. 

Then there is at least one more two-point Pad~ ap- 

proximant, say fi , j(z)= ~-(z)/~-(z) different than fi,j(z). 

Suppose that fi,j(z) and fi , j(z) are irreducible and 

that p (z) and q(z) are of  degree exactly n < m, and 
p-(z) and q-(z) are of  degree exactly n-< m. 

It follows from (1.4) that 

fi,j(z ) _ ~i,j(z ) _ p (z) ~-(z) = 0(z i, z-( j  + 1)), 
q (z) ~(z) 

(2.1) 
which can be written as 

p (z) ~-(z) -~-(z) q (z) 
- 0 (z i ,  z -  (j + 1)). (2.2) 

q (z) g(~) 
Now the numerator of the left hand side of (2.2) is a 

n + f f  k 
polynomial of  degree n + ff < 2 m, say k=~0 CkZ , and 

the denominator is 0(1) as [z[--~ 0. Therefore, it follows 
from (2.2) that c k = 0, 0 ~ k ~ r, where r= m i n ( i - l , n +  n-) 

If we divide the numerator and denominator of  the left 

hand side of  (2.2) by z n + if, then the numerator be- 

n+n-  -k  
comes N c and the denominator k=0 n + n - k Z  

q (z) ~ (z) / z n + g is 0(1) as Izl -~ oo. Again, it follows 

from (2.2) that c k = 0, r g k < n + if, where 

r = max (0, n + i f -  j). Hence p (z) q-(z) - ~ (z) q (z) - 0 
from which we obtain 

P (~) _ F(~) 
q (z) ~(z) ' (2.3) 

thus proving the theorem. 

Theorem 2 

Let g(z) -- l / f (z) .  Then g(z) has two formal power 
series expansions at z = 0 and z = oo obtained by invert- 
ing (1.1) and (1.2) in the usual sense. If fi,j(z) exists, 

then so does gi,j(z) and 

1 (2.4) 
gi,j (z) = fi,j  (z) 

Proof 

If fi,j  (z) exists, then 

1 1 fi,j (z) - f(z) 
(2.5) 

f(z) fi,j(z) - f(z) f i , j(z)  

Now both as Izl--" 0 and Izl- ,  co the denominator 
of  (2.5) is 0 (1), hence by using (1.4) in the numerator 
of (2.5), we have 

i I _01zi, z-(j+l))., (2.6) 
f(z) f i , j  (z) 

By the uniqueness theorem (Theorem 1), (2.4) now 
follows. 

We note that a result like (2.4) cannot be obtained by 
using the definition of McCabe and Murphy. 
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3. DETERMINANT REPRESENTATIONS 

Theorem 

If fi,j  (z) 
t w o  ( m  + 

det P (z)  _ U(z), 
fi, j " (z) = det Q (z) 

where 

Q(z) = 

3 

exists, it can be expressed as the quotient of  

1) x (m + 1) determinants as 

(3.1) 

1 z z 2 ..... z m 

ai_ 1 ai_ 2 ai_ 3 . . . . .  ai_m_ 1 

ai_ 2 ai_ 3 ai--4 . . . . .  ai_m_ 2 

ai_ m ai_m_ 1 a i_m_ 2 . . . . .  a j 

(3.2) 
and P(z) is obtained from Q(z) by replacing the first 
row of  Q(z) by the vector 

(S ,zS ,z2S , , z m - l s  ,zmT ) (3.3) 
m-1 m-2  m - 3  "'" 0 0 

when i ~ j ,  i.e., i ~ m  a n d j g m ,  and 

(To, zT1, z2T2 . . . . .  zmTm ) (3.4) 

when i < j, i.e., i g m, j > m, where we have de- 
freed 

a0 akzk, Sk = T + a lz  + "'" + k = 0, 1, 2 .. . .  (3.5) 

and 
a 0 a_ 1 a_ k 

T k = - ( - 2  - +  z + ' ' ' +  T ) ' z  k = 0 , 1 , 2  . . . . .  (3.6) 

Proof 
We shall give the proof  for i ;~ j in detail and outline 
the proof  for i ~ j since ft is similar to that for i > j. 
First of  all, as can be seen from (3.2), det Q(z) is a 
polynomial of  degree m at most. Similarly, from 
(3.3) it can be seen that detP(z)  is also a polynomial 
of degree m at most. We now define the following 
transformations : 

1) R 1 is that transformation which multiplies the 
first row of  an (m + 1) x (m + 1) matrix by z -m.  

2) C+ is that transformation which multiplies the 

k-th column of an (m + 1) x (m + 1) matrix by 

z + ( k - l ) ,  k =  1,2 . . . . .  m + l .  

3) R,2 - is that transformation which multiplies the 

k-th row of  an ( m + l )  x ( m + l )  matrix by 
z + ( i - k + 1 ) ,  k = 2 , 3  . . . . .  m + l .  

Let us now apply to P (z) and Q (z) first C and next 
R+, and denote the new matrices by Pl(Z) and 

Ql(Z), respectively. Ql(Z) is of  the form 

Ql(Z) = 

1 1 . . . .  1 

ai_lzi 1 ai_2zi 2 . . . .  ai_m_lZi m 1 

ai_2zi 2 ai_3zi 3 . . . .  ai_m_2Zi m 2 

i -m i - m - 1  a jz  -j 
ai_mZ ai_m_lZ . . . .  _ 

(3.7) 

and Pl(Z) is obtained from Ql(Z) by replacing the first 

row of Ql(Z) by the vector 

(Sm- l '  Sm-2  . . . . .  S O , TO). (3.8) 

I f i  = m set P2(z) -=- Pl(Z), otherwise (i.e., i f i  > m), add 

the 2nd . . . . .  ( i - m  + 1) the rows to the first row OfPl(Z ) 

and call the new matrix P2(z). In both cases the first 
row of  P2(z) is 

(S i -1 '  S i -  2 . . . . .  S i - m '  S~-m -1) '  (3.9) 

where S i _ m _  1= S i _ m _  1 if  i > m and S* x - m - 1  = TO 
if i= m. 
Now we have 

det P2(z) (3.10) 
U (z) = detQl(Z)  • 

Subtracting U(z) as given in (3.10) from f(z) we obtain 

det P3 (z) 
f ( z ) - U ( z ) -  - - ,  (3.11) 

de tQ 1 (z) 

where P3(z) is the matrix obtained from P2(z) by re- 

placing the first row of  P2(z) by the vector 
:¢ 

( f -  Si_ 1 , f -  S i_  2 . . . . .  f -  S i _ m _ l ) .  (3.12) 

Applying now to P3(z) and Ql(Z) first R and next C+ 

we obtain the matrices P-(z) and Q(z) respectively, 

where P'(z) is obtained from Q(z) by replacing the 

first row of  Q(z) by the vector 

[ f -  S i - l 'Z  ( f -  S i -2) '  z2 ( f -  Si-3)  . . . . .  z m ( f -  S~-m -1)]" 

(3.13) 

As can be seen from (1.1) and (3.13), the elements of  
the first row of  P-(z) are power series which have z i as 
their common factor, hence detP(z)  = 0 (z i) as Izl -~ 0. 
Similarly det Q (z) = 0 (1) as Izl -~ 0. Therefore 

f ( z ) - U ( z ) - d e t P ( z )  _ 0 ( z  i) as I z [ ~ 0 .  (3.14) 
det Q (z) 

Let us now start with U(z) = det Pl(Z) / det Ql(Z) and, 

in Pl(Z), subtract from the first row the sum of  the 

lastj rows and call the new matrix P;(z) .  If  i= m, then 

the first row o f P 2 ( z  ) is the vector 
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(T 0, T 1 . . . . .  Tj), (3.15) 

and for i > m, the first row of P2(z) becomes 

(Si_m_ 1 . . . . .  SO, TO, T 1 . . . . .  T_j). (3.16) 

Subtracting now U(z) as given by 

det e~ (z) 
U ( z ) -  de tQl (Z)  ' (3.17) 

from f(z) we obtain 

det P3 (z) 
f(z) - U (z) - (3.18) 

det Q1 (z) ' 

where P~(z) is obtained from Ql(Z) by replacing the 

first row OfQl(Z ) by the vector ( f - A  0, f - A  1 . . . . .  f - A m ) '  D 
where (A0, A 1 . . . . .  Am) denotes either (3.157 or (3.16). r, s 

Applying to P~(z) and Ql(Z) the transformations 

R ,  C+ and R1, in this order, we obtain the matrices 

1 ~ (z) and Q(z) respectively, where l~(z) is obtained from 
Q(z) by replacing the first row of  Q(z) by the vector 

[ z - m ( f - A 0 ) , z - m + l ( f - A 1 )  . . . . .  z 0 ( f - A m  )] (3.19) 

and (~(z) is obtained from Q(z) by replacing the first 
row of Q(z) by the row vector 

(z-m, z -m + 1 . . . . .  z -1, 17. (3.20) 

Ascan beseen from (1.2), (3.15), (3.16), and (3.19), 

det P(z) = 0 (z- (J + 1 ) as I z I -* oo and from (3.20) 

det (~ (z) =0(1) as [z[ -~ o o .  Therefore, 

f ( z ) - U ( z ) =  detP(z)  = O ( z - ( j + l ) )  a s l z [ - o o .  

det (~(z) (3.21) 

This completes the proof for the case i > j. 

For the case i < j,  it can be shown by similar means, 
that 
f(z) - U (z) = det R (z) (3.22) 

det Q (z) 

where P,(z) is obtained from Q(z) by replacing the 
first row of  Q(z) by the vector 

[ f -  Si - 1 "  ""' zi -1 (f_ SO), zi(f_ TO), z i + l ( f_  T1) . . . . .  

zm ( f - T m - i ) ]  (3.23) 

i f j  > m, and 

[ f -  S i - l '  z ( f -  S i_27 . . . . .  z m - l ( f _  SO), zm(f_ TO)] 

(3.24) 
ffj  = m. It can also be shown that 

f(z) - U (z) - det R(z) , (3.25) 
det Q (z) 

where/~(z) is obtained from ~(z) by replacing the 
^ 

first row of Q(z) by the vector 

[z -m(f -Tm_i) ,z -m + l ( f - T m _ i +  1) . . . . .  zO(f-Tj)].  

(3.26) 

Using (3.22)-(3.26), it is now easy to see that (3.14) 
and (3.21) are satisfied also for the case i < j. 

4. ASYMPTOTIC ERROR ESTIMATES 

Using the determinant representations for f(z) -fi , j(z) 

which have been given in the previous section, we can 
now derive the asymptotic error bounds for [zl -~ 0 
and Iz] ~ o o .  

Following McCabe and Murphy let us define 

ar a r + l  " ' "  a r + s  

ar -1 ar • " " a r +  s - 1  

a r - s  a r - s +  1 " " " ar 

r = O, + 1,-+2,... 
s = O, -+ 1 ,  + 2 . . . . .  (4.1) 

Theorem 4 

As t z l~  0 

If(z) - fi,j(z) [ = 
D i  - m ,  m 

D i - m - 1 ,  m - 1  

and as [ z  [ -~ oo 

If(z) - fi,j(z) [ = 
D i - m  -1, m 

D i - m ,  m -  1 

both f o r i ~ j  and i < j .  

[ z l i [ l +  0(z)l 

(4.2) 

Iz l-J-l[1 + 0(z-l)] 
(4.3) 

Proof 
The proof of (4.2) follows by examining the deter- 

minant representations det P(z) / det Q(z) (i > j) and 

det F~(z) / detQ(z) (i < j) in the limit I z J ~ 0, and 

the proof of (4.3) followsby examining det P(z)/det (~(z) 

(i > j) and det R(z) / det Q (z) (i < j) in the limit 

The results in (4.2) and (4.3) when i ~ j check with 
those given by McCabe and Murphy who use the con- 
tinued fraction formulation. 

5. RECURSION RELATIONS 

Using the determinant representation of section 3 it is 
possible to derive three-term recursion relations for 
the numerators and denominators of two-point Pad~ 
approximants. In order to derive one such relation we 
shall make use of the Sylvester determinant identity 
(see Gragg [6]). 
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Theorem 5 (Sylvester determinant identity) 

Let 
T 

a l l  a 1 

A ' =  a i A 
T 

a21 a 2 

a12 

a2 

a22 

[ lI:l A l l  * * 1 

• a22 a21 

A21 _ A2 

(5.1) 

where A" is a n  (m + 1) × (m + 1) matrix, A is an 
( m - l )  x (m-17 matrix, and A i ., i,j = 1,2, are m × m 

matrices, a i j ,  i, j = 1, 2 are sca?ars, ai,  ai, i = 1, 2 are 

(m -17-dimensional column vectors, and * denotes 
m-dimensional row or column vectors. Then 

det A" det A = det A l l  det A22 - det A12 det A21. 

(5.2) 

Let us denote the matrices P(z) and Q(z 7 in (3.17-(3.3) 
by Pi, m (z) and Qi, m (z7 respectively. Let us also parti- 

tion Pi, m (z) and Qi, m (z) as in (5.1) with the notation 

therein. 

Theorem 6 

Pi, m (z) and Qi, m (z) satisfy the recursion relations 

det Pi, m(Z) det A = det Pi, m_l(Z) det A22 

- z det Pi-1,  m-1  (z) det A21 (5.3) 

det Qi, m(Z) det A = det Q i , m -  1 (z) det A22 

- z det Qi-1, m - I  (z) det A21, (5.4) 

with the same A, A21, and A22 in both (5.3) and 
(5.4). 

Proof 
The proof  of  (5.4) follows from the easily verifiable 

fact that det A l l  = Qi, m-1  (z) and 

det A12 = z det Qi-1,  m -1 (z)" 

The proof  of  (5.3) is based on the fact that 

det A l l  = det Pi, m -1 (z7 and 

det A12 = z det Pi-1,  m-1  (z) both for i ~ m and 

i ~ m, and this requires some attention. For i > m it 

is easy to see that det A12 = z det Pi -1 ,  m - 1  (z)" 

That det A l l  = det Pi, m-1  (z) can be shown by sub- 

tracting from the first row of A l l  the product of the 

row (am_ l ,  am_ 2 . . . . .  a0) with z m-1 .  For i *g m it is 

easy to see that det A l l  = det Pi, m-1  (z)" That 

det A12 = z det I~ i_1, m -1 (z) can be shown by adding 

to the first row of  A12 the row (a 1 , a 2 . . . .  ,a  m ). 

Corollary 

LetPi  ' m(Z) = det Pi, m (z) /de t  Qi, m (0) and 

qi, m (z) = det Qi, m (z) /det  Qi, m (0)" Then 

Pi, m(Z) = Pi, m_l(Z) + ¢oz P i_ l ,m_ l (Z) ,  (5.5) 

qi, m(Z) = qi, m_l(Z) + 6~z q i _ l , m _ l ( Z ) ,  (5.6) 

where co is the same constant both for (5.5) and (5.6). 

Proof 

It is easy to see from (3.27 that det Qi, m(0) = det A22 

and det Qi, m-1  (0) = det A. Dividing (5.3) and (5.4) 

by det A det A22 and defining 

co = - det Qi-1,  m - 1  (0) det A21/ (de t  A det A22 ), 

(5.5) and (5.6) follow. 
We note that since qi, m(0) = 1, we see that 

qi, m(Z) = 1 + 31z + ... + 3m zm and 

Pi,m (z) = a0 + a l z  + "'" + amzm as in (1.3). 

The next theorem gives another recursion relation 
which is based solely on the definition (1.1)-(1.47 of 
fi,j  (z). 

Theorem 7 

Let fk ,£  (z) = Pk,n (z) / qk, n(Z), 

qk, n ( 0 ) =  1, k +  £ = 2n, all k,n. Then 

pi+ 1 ,m+  l(Z)= XPi, m(Z) +/~Pi, m + l(Z), (5.7) 

qi+ 1 ,m+l (Z)  = Xqi, m(Z) + pqi,  m + l(Z), (5.8) 

where X and p are the same constants for both (5.7) 
and (5.8) and ~ +/a = 1. 

Proof 
Let us, for the sake of  simplicity, denote the coefficients 

ofp(z)  ~ Pi, m+  l(Z), p*(z) -= P i + l , m + l ( Z ) ,  and 

p" (z) ~ Pi, m (z) by a r,  a 'r ,  and a r respectively and 

define 3 r, 3r*, 3 r similarly. From the relation in (1.5) 

we have 

p(z) -q (z )  f(z) = 0(z  i) as I z l ~  0 (5.9) 

and 

p*(z) - q*(z) f(z) = 0 (z i + 1) as I z I -" O. (5.10) 

Let us devide (5.9) and (5.10) by 3 m + 1 and 3 m + 1 

respectively and subtract (5.10) from (5.9). We obtain 
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[~(z) p * ( z ) _ ] _ [ q ( z )  q*(z) ] f(z).=O(zi) as 

m + l  3 " + 1 - L ~ - ~ + I  3 " + 1 -  

Izl-- 0. (5.11) 

Now using the fact that 

= a* * = - a0/2,  we can see a m + l / 3 m + l  m + l / 3 m + l  

that in (5.11) p-(z) = p (z) / ~m + 1-P*(z)//~m + 1 and 

~-(z) q ( z ) /3m+ 1 q*(z)/ * = - 3m + 1 are both poly- 

nomials of  degree m at most. Let us now divide p(z) 
and ~(z) by z m . Then 

z [ p(z) q(z) f(z)l 
p ( z )  q ( z )  _ f ( z )  = - -  lz--m--~+ 1 z m + l  
z m z m /~m+l J 

, z  F p~' (z) q* I , > l  L f(z) /~m + 1 (5.12) 

tion of  the form 

ti + 1, m + 1 (z) = (Az + 1) ti, m(Z) + Bzt  i_ l ,  m-1  (z)' 

where (5.19) 

A =  co', B=- ) . co .  

Eliminating t i + 1, m + 1 between (5.7) or (5.8) and 

(5.17) we obtain : 

Theorem 9 

The Pk, £ and qk, £ satisfy a three-term recursion rela- 

tion of the form 

ti, m +l(Z ) = (Dz +E)ti ,  m + F t i +  1,m(Z), (5.20) 

where D = co'l/t, E = -X// t ,  F = l / / t .  

In order to understand the meaning of  the various 
recursion relations obtained we first organize the two- 
point Pad~ approximants in a two-dimensional array 
as in figure 1. 

Making use of (1.6), (5.12) becomes 

p-(z) q'(z) f (z )=  0(z - ( 2 m - i + 1 ) )  as Iz I--" ~ i=0 
zm zm i = 1 

(5.13) 
Hence 

i=2 
f(z)-_P-(Z) =0(z i ,  z_ ( j+ l ) )  ' i + j = 2 m ,  (5.14) 

q (z) i= 3 

and by the uniqueness theorem p-(z) / q-(z) = fi,j (z). i=4 

Hence we have proved the existence of  (5.7) and (5.8). i= 5 
We now have to fred X and/t .  It can be seen easily that 

q-(0) : 1 1 (5.15) i : 6  

3m+1 ~ * + 1  Fig. 1. 
Therefore,/t = 3 *  + 1 / 3m +1 and 

;k = (3m +1 - ~m + 1) / 3m +1" This completes the proof. 

We note that the method "of proof of  theorem 7 is 
similar to the one used by Longrnan [3] for ordinary 
Pad~ approximants. 
The recursion relations given in (5.5-6) and (5.7-8) are 
quite fundamental in that they can be used to obtain 
other recursion relations as is shown below. 
From the corollary to theorem 6 we have 

ti, m(Z) = ti, m_l(Z ) + coz t i_ l ,m_l (Z) ,  (5.16) 

t i + l , m + l ( Z  ) = t i + l , m ( Z  ) + co 'z t i ,  m(Z ) ; (5.17) 

and from theorem 7 we have 

t i + l , m ( Z )  = Xti, m_l(Z) + / t t i ,  m(Z ), (5.18) 

where tk, £(z) stands for Pk, j~(z) or qk, ~(z). Eliminat- 

ing ti, m_l(Z ) and t i+ 1,m(Z) from (5.16) -(5.18) and 

using the fact that X + / t  = 1, we obtain : 

Theorem 8 

The Pk, g and qk, ~, satisfy a three-term recursion rela- 

0/1 

1/1 

2/1 

3/1 ~ 

4/1 * 

5/1"i 

6/1"i 

0/2 

1/2 

2/2 

3/2 

4/2 

5/2* 

6/2* 

0/3 

1/3 

2/3 

3/3 

4/3 

5/3 

6/3 

0/4 0/5 

1/4 1/5 

2/4 2/5 

3/4 3/5 

4/4 4/5 

5/4 5/5 

6/4 6/5 

0/6 

1/6 

2/6 

3/6 

4/6 

5/6 

6/6 

The starred positions have no meaning since for them 
j < 0. The entries between the two thick lines are those 
that can be computed when ak, -6 ¢ k < 5, are given. 
The first row (i= 0) consists of the entries on the main 
diagonal of the ordinary Pad~ table of (1.2), as was 
mentioned in the proof of theorem 1. 
The recursion relations given in (5.5) and (5.6) to- 
gether with (5.7) and (5.8) show that to a staircase in 
figure 1, e.g., (0/3), (1/3), (1/4), (2/4) . . . . .  there cor- 
responds a continued fraction which, from a certain 
point on, is of the type 

coz X co'z X" 
...+ 1 + /t + i + /.{" +... 

(5.21) 
)k + /t = ;k /+  / t ' =  . . . .  1. 

It is not difficult to see that the continued fraction 
whose convergents are (1/1), (2/1), (2/2), (3/2) . . . . .  
has the structure 

dz  ;kl ¢°1z X2 c°2z 
- -  X i + = c +  l + e z + / t l +  1 +/~2 + 1 + . . . .  /ti 1, 

with fl,l(Z) = c + d z / ( 1 +  ez), etc. 
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The recursion relations in (5.19), on the other hand, 
show that  to a diagonal sequence in figure 1, e.g., 
(0/3), (1/4), (2/5) . . . . .  there corresponds a continued 
fraction which, from a certain point on, is of  the type 

Bz B "z (5.22) 
. . . + A z + l  + A ' z + l  + . . .  

It is easy to see that (5.22) is actually one of  the con- 
tinued fraction representations given in McCabe and 
Murphy, and can be obtained from (5.21) by contrac- 
tion. 
We note that McCabe and Murphy have applied a q-d 
algorithm to (5.22) for the determination of the fi, j (z). 
However, their algorithm necessitates the computa- 
tion of  quantities which have no connection with the 
fi,j (z), and one application of  their algorithm produces 

only part  of  the fi,j(z) that derive from a given number 
of  terms of (1.1) and (1.2). 

It is worth mentioning that the continued fractions 
(5.21) and (5.22) are equivalent (in form) to those 
given in Perron ([7], p. 176). 
Two other recursion relations can be obtained as follows : 
Apply the corollary of  theorem 6 to ti, m, t i + 1,m and 

ti  + 1, m + 1' and theorem 7 to t i + 1,m' ti + 1, m + 1' 

and t i + 2, m + 1' and eliminate t i + 1, m + 1" 

Similarly, apply the corollary of  theorem 6 to 

t i + l ,  m, t i + 2 ,  m, and t i + 2 ,  m + 1 , and theorem 7 to 

ti + 1 ,m, t i + 2 , m ,  1, and t i + 3,m + 1, and eliminate 

t i + 2,m" The recursion relations that are obtained are 
summarized below : 

Theorem 10 
Between the tk, z(z) the following recursion relations 
hold : 

t i + 2 ,  m + l ( Z  ) = t i + l , m ( Z  ) + ? z t i ,  m(Z ) (5.23) 

t i + 3 , m + l ( Z  ) = t i + 2 , m + l ( Z )  + ~ z t i +  1,m(Z) (5.24) 

From theorem 10 we can see that to a sequence of  the 
form (i/m), (i + l /m) ,  (i + 2/m + 1), (i + 3/m + 1) . . . . .  
e.g. (0/3), (1/3), (2/4), (3/4), (4/5) . . . . .  there cor- 
responds a continued fraction, which, from a certain 
point on is of  the type 

7z  bz  
- -  - -  (5.25) 

. . . +  1 + 1 + . . .  

This continued fraction has also been given by McCabe 
and Murphy. 

6. COMPUTATIONAL ASPECTS 

In this section we shall make use of  some of  the recur- 
sion relations that were established in the previous 
section in order to compute the a ' s  and fl's in the two- 
point Pad6 approximants.  

From the determinant representation given in (3.1) in 
theorem 3, the denominator of  fi , j  (z) is 

m 
det Q(z)  = I~ ")'s zs, where ")'s is the cofactor o f z  s in 

s=0 
the in-st row. From (1.3), however, the denominator  of  

m 
fi , j(z) is q (z )=  I~ fls zs wi th /30=1.  Therefore q(z) 

s=0 
is equal to det Q(z) up to a multiplicative constant. 
Consequently, 

7 s = dfl s, s = 0, 1 . . . . .  m, (6.1) 

where d = det Q (0). From the theory of determinants 
we know that the inner products o f  the vector 
(70, 71 . . . . .  7m ) with the 2nd, 3rd . . . . .  (m + 1)th rows 

of  Q(z) are all zero. This together with (6.1) gives 

m 
flsar_s = 0, r =  i - m , i - m + l  . . . . .  i - 1 ,  (6.2) 

s = 0  

for all i and j. 

Equations (6.2) with fl0 = 1 are enough for determining 

the fl's. As is clear from (6.2), however, as m increases 
the number of  equations to be solved increases too. 
Therefore, it is desirable to have a method which will 
obviate the need for solving a large system o f  equations. 
We now give one such method.  
Let us first denote fi,j(z) = Pi, m (z) / qi, m (z)' where 

i + j  = 2m, 

a ( i ' m ) z  s ~ fl(i' m)zs .  
Pi, m(z) = s = 0  s ' qi, m ( z ) = s = 0  s 

Theorem 11 

If  

fl!i,m) a i - m - l - s e 0 '  (6.3) 
S = 0  a 

then 

f l ( i + l , m + l )  ~i+ 1,m) ~(i,m) 
s =fl  +cO/Js_ 1 , s = 0 , 1  . . . . .  m + l ,  

(6.4) 
/ 1  £) ~ ( k ,  9.) 

where we have def'med f l~ '  = ~ . + 1  = 0, andco is 
given by 

mz fl(i_ + 1,m) 
s=O s a i - m - s  

CO = (6.5) 
m ~i,m) 
Ig fl a i _ m _  1_ s s=0 

Proof 

That a relation like that in (6.4) exists follows from 

the corollary to theorem 6. Also for 

s = 0 3~ x- + 1,m + 1) = 3[0 I- + 1 , m ) =  1. Only (6.5) re- 

mains to be verified. Let us multiply equations (6.4) by 
a t -  s and sum from s = 0 to s = m + 1. The left hand 

side, using (6.2), satisfies 
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m+l  
Ir= s~O 3~i+1,m+1)ar-s  =0,  r = i - m ,  i - m + l  ..... i. 

(6.6) 

We now have to show that the right hand side 

m + l  (i 
j r  = s=E0 [3 s + 1,m) + w/31i.?)] a r - s '  (6.7) 

satisfies Jr = 0, i -  m ~ r < i, too. But using (6.2) again 

J r = 0 ,  r = i - m + l  . . . . .  i. (6.8) 

Finally, using (6.3) and (6.5) it is easy to verify that 
J i - m  = 0 too. This proves the theorem. 

In exactly the same way, starting from the relation 
(5.8) in theorem 7, we can prove the following : 
Theorem 12 

If 

/t~ i'm) ai_ ~ 0 (6.9) 
s = 0  m - l - s  

then 

/a/31i, m + 1)= 3~i + 1,m+ 1) x31i, m ) (6.10) 

where X + # = 1, and 

m+lz/30+1,m+1) 
~= s=0 s a i - m - l - s  

(6.11) 
m ~i,m) 

13 a i _ m _ l _  s s=0 

Theorems 11 and 12 enable us to compute recursively 
all of the two-point Pad~ approximants which derive 
from a given number of the coefficients a s. For ex- 
ample, when ak, - 6 ~ k < 5 are given, the recursive 

computation of the 3's can be performed as is shown 
in fig. 2. 

1 / 1 ,  1/2 L 

2/1 2/2[ 

"3/1 3/2 I 

"4/1 4/2 L 

"5/1 "5/2 I 
"6/1 *6/2 

0/3 0/4 0/5 0/6 

1/3 1/4 1/5 1/6 
I_~ 

2 / 3 [  2/4 2/5 2/6 

3/3 L 3/4 L 3/5 3/6 

4/3[~ 4/4 L 4/5 4/6 

5/31_ . 5/41_ " 5/51~ 5/6 

6/3 6/4 6/5 6/6 

Fig. 2. 

As can be seen from figure 2 the starred positions 
which have no meaning enter the computation like 
the rest of the positions. The algorithm is started by 

letting/3(01,1) =1, /3~i,1) = _ai_l/ai_2 in the first 

column. The second column, starting with (1/2), is 
computed from the first column using theorem 11. 
The position (0/2) is computed from (0/1) and (1/2) 

by using theorem 12. The third column is computed 
similarly. The 4th, 5th and 6th columns are now com- 
puted by making use of theorem 11 only. 
The computation of the ct's can be carried out in exact- 
ly the same way by using theorem 2. We compute the 
expansions for g(z) = l / f  (z) by solving two triangular 
systems of linear equations and determine the/~'s for 
gi,j(z) using the algorithm above. From theorem 2 we 

know that the/3's for gi,j(z) are very simply related to 
the a's of fi,j(z) througK (2.4), and this solves the 
problem. 
Once the/3's have been computed it is also possible to 
compute the numerator of fi,-'(z) without having to 
know the a's explicitly. For t~is let (w0(z), Wl(Z ) ..... Wm(Z)) 
denote the first row of P(z) in the determinant representa- 
tion given in theorem 3. Expanding both det P(z) and 
det Q(z) with respect to their first rows and making use 
of (6.1) we obtain 

m 
/3s Ws (z) 

s=0 (6.12) fi,J (z)= m 

s--E0/3s zs 

We note that the recursion relations given in theorems 
11 and 12 are similar in nature to those given by 
Clenshaw and Lord [2] and Sidi [5] in the computa- 
tion of the Chebyshev-Pad~ table. 

CONCLUSION 

Two-point Pad6 approximants have been considered 
using the determinant approach. Asymptotic error 
estimates have been given. Two fundamental recursion 
relations have been derived and through them the 
existence of three different continued fraction repre- 
sentations, two of which are those given by Murphy 
and McCabe, has been shown. A recursive method for 
computing the parameters of all the approximants 
which derive from a given number of terms has been 
proposed. It is expected that as in the case of the 
ordinary Pad~ approximants, the determinant approach 
given in this paper will be useful in deriving other prop- 
erties of two-point Pad~ approximants. 
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