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By Avram Sidi 

Abstract. Some nonlinear transformations for accelerating the convergence of infinite 

sequences due t o  Levin are reviewed, and new results of practical importance in appli- 

cations are given. Using these results, the transformations of Levin are modified and 

used t o  obtain new numerical integration formulas for weight functions with algebraic 

and logarithmic endpoint singularities, which are simpler t o  compute and practically as 

efficient as the corresponding Gaussian formulas. They also have the additional ad- 

vantage that different weight functions of a certain type can have the same set of ab- 

scissas associated with them. It is shown that the formulas obtained are of interpola- 

tory type. Furthermore, for some cases it is proved that the abscissas are in the inter- 

val of integration, although numerical results indicate that this is so in all cases and 

that the weights are all positive. Several numerical examples that illustrate the high ac- 

curacy and convenience of the new formulas are appended. 

1. Introduction and Motivation. Let f(z) be a function which is analytic in a 
simply connected open set G of the comp1ex.z-plane, which contains the finite real 
interval [a, b ] . Also, let I? be a closed Jordan curve in G,  containing [a, b ]  in its 
interior. Then from Cauchy's theorem 

whenever zo is in the interior of I?. Using (1.1), it is possible to express the integral 

whenever w(x) is an integrable function on [a, b]  , as 

where 

(1.4) H(z) =J 
a z - X  

dx. 

The function H(z) is analytic in the z-plane cut along [a, b ]  and for sufficiently large 
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z has the expansion 

where ,= ibw(x)x"-~dx, n = 1 , 2 ,  . . . . (1.6)  

Let x ~ , ~ , 1 ,  2 ,  . . . , k, be k distinct points and let n = 

be a numerical quadrature formula. Assuming that x ~ , ~are all in the interior of F 
and using (1.1) , we can express (1.7)  in the form 

where 

Now the error in the numerical quadrature formula (1 .7 )  can be expressed as 

1
(1.10)  Ek Ifl = I V1 - Ik V1 = -2ni Ir [H(z)-Hk(z) ]  R z )  dz .  

From (1 . l o )  we trivially obtain 

1I E k [ f ] I < r;; max If(fll  lrlH(z) -Hk(z)l ldzl .  
f gI-

It is clear from (1.1 1) that if IH(z) -Hk(z)l is small on I', then I E k [ f ] I will be small 
too. Furthermore, if H(z)  -Hk(z)  -+ 0 uniformly on F as k -+ -, then Ek [ f ]  3 
0 too. Since we want the error to go to zero for all f(z)  analytic on [a, b ]  and, 
hence, in some region containing [a, b ]  , we should actually demand that H(z)  -
H k ( z )  -+ 0 uniformly in the complement of any open set G that contains in its in- 
terior the branch cut of H(z) ,  i.e., the line segment [a, b ]  ; this is what we shall mean 
below by uniform convergence of Hk(z)  to H(z) .  If this convergence is also quick, 
then Ek [ f ]  -+0 quickly too. The uniform convergence of Hk(z)  (in the above sense) 
may be very critical as we now demonstrate by considering two well-known numerical 
quadrature methods. 

(1 )  Numerical quadrature formulas of interpolatory type: For these formulas 

where the abscissas x ~ , ~ (1.12)  can be proved easily by recalling are preassigned. 
that 
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and expanding Hk(z) in inverse powers of z and comparing with (1.5) with the help of 
(1.13). It turns out that Hk(z) is not a very good approximation to H(z) for small z 
when x ~ , ~  =are arbitrarily assigned. In fact, for Newton-Cotes formulas in w h ~ c h x ~ , ~  
a + (n - l)(b - a)/(k - I), n = 1, . . . , k, Ik[f] may diverge as k -+ .o, even when flz) 

is analytic on a simply connected open set G containing [a, b] in its interior, see Pdlya 

(1933) and Davis (1955). This fact together with (1 .lo) shows that, for this choice of 
the x ~ , ~ ,  Hk(z) does not converge to H(z) uniformly in z (in the above sense). We thus 
conclude that EkCf) may diverge if Hk(z) does not converge to H(z) uniformly, even for 
analytic f(z). 

(2) Numerical quadrature formulas of Gaussian type: For these formulas 

where the abscissas x ~ , ~  - l)/k)are not preassigned. Hk(z) in this case is simply the ((k 
Pad6 approximant to the series (1.5). The proof of (1.14) is similar to that of (1.12). 
If w(x) 2 0 on [a, b] and K(x) then all the ,w(t)dt is strictly increasing on [a, b] $:= 

x ~ , ~are distinct and are in (a, b). Besides all the Ak,n  are positive, see Davis and Rabin- 
owitz (1975, p. 74). It is also known that, as k -+ -, Hk(z) converges to H(z) uniformly 
in z (in the above sense), see Baker (1975, Chapter 16). Indeed, the convergence of 
Hk(z) to H(z) is very quick, which accounts for the h g h  accuracy of IkIf] even for mod- 
erate k. 

Our purpose in this work is to use a modification of some nonlinear sequence 
transformations due to Levin (1973) to obtain new rational approximations Hk(z) to 
H(z) and use these to derive new numerical quadrature formulas. There is ample numer- 
ical evidence that suggests that the Hk(z) obtained this way converge to H(z) uniformly 
(in the above sense) and also very quickly as k -+w, see e.g. Longman (1973), and this 
suggests that they could be used to develop numerical quadrature formulas of high ac- 
curacy, provided of course, that the x ~ , ~are all real and distinct and lie on [a, b] and 
that the Ak,n are all positive. It seems that both of these conditions are satisfied for 
some useful weights w(x). Although these numerical quadrature formulas are not de- 
rived by imposing conditions like (1.13), they do give rise to relations similar to them. 
They also have the very interesting property that their abscissas are the same for certain 
classes of weights w(x), e.g., for the integral J: xPf(x)dx, 0> -1, the abscissas are the 
same for all 0.Another property which makes these formulas useful is that the approxi- 
mationsIk Ifl are practically as good as those obtained using the corresponding Gaussian 
rules. In addition, the computation of the abscissas is simpler for the new rules than for 
the corresponding Gaussian rules, since the polynomials that give them are readily avail- 
able. 

2. Levin's Transformations and Some Recent Results. In this section we briefly 
review Levin's transformations and some recent developments due to the present author, 
see Sidi (1979), which are crucial for understanding when these transformations work 
and why they work so well. 
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Let A. = 0, A,, r = 1 , 2 ,  . . . ,be an infinite sequence (convergent or not) whose 
limit or antilirnit in the language of Shanks (1955) and Levin (1973) is A .  Then the ap- 
proximation Tk,n to A together with the parameters yi, i = 0, 1, . . . ,k - 1, is defined 
by the equations 

where R, will be specified below. The solution to these equations is simply 

The equations in (2.1) and, hence, the expression for Tk,n in (2.2) are slightly different 
from those given by Levin in that Levin writes A, on the left-hand side of (2.1) instead 
O ~ A , - ~  Now for the and, hence, A n + j  instead O ~ A , + ~ - ,  in the numerator of (2.2). 
t-transformation of Levin R l  = A  R, =A, -A, ,,r > 2, and for the u-transformation 
of Levin R 1  =A l ,  R, = r(A, -AP1), r > 2. For these two transformations it is easy to 
show that the definition in (2.1) and that of Levin give identical results for Tk,n. How- 
ever, for our purposes in this work it is more appropriate to use (2.1). We shall say more 
on this later. 

The convergence properties of Tk,n have been partially studied by the present 
author, Sidi (1979), and some convergence theorems for two limiting processes, namely, 
(I) k fixed, n -+rn, (2) n fixed, k d m ,  have been proved. The analysis in the above 
work and also numerical experience suggest the following: 

(1) Tk,n is a good approximation to A (limit or antilimit) and converges to A 
very quickly as k -+ when A, is of the form 

where f(x), when considered as a function of the continuous variable x ,  has an asymp- 
totic expansion of the form 

and is an infinitely differentiable function of x up to x = rn. When A, is not of this 
form, then Tk,n is useless. Therefore, it seems that conditions (2.3) and (2.4) are the 
most crucial for the quick convergence of Tk,n as k +m. 

(2) If we define R, = R,g(r), where g(x) has the same properties as f(x) and 
lim,,,g(x) # 0, then we can write (2.3) in the form 

where x x )  =f(x)/g(x) and Rx) has the same properties as f(x). Therefore, judging from 
(I), the exact form of R, in (2.2) is not important, and R, can be replaced by R,. 

(3) For k 4m, it does not make much difference if R, in (2.2) is replaced by 
PR, where s is a positive integer which is not too large. However, s < 0 may destroy the 
accuracy of Tk,n. This is in agreement with the numerical results of Levin (1973) which 
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show that the u-transformation is efficient when the t-transformation is, but the oppo- 
site is not true. 

The following theorem, whose detailed proof can be found in Sidi (1979), gives suf- 
ficient conditions for (2.3) and (2.4) to hold for the case of a convergent sequence. 
This theorem is a special case of a more general theorem due to Levin and Sidi (1975). 

(4) THEOREM 2.1. Let the sequence A ,  = Xi=, ai, r = 1,2 ,  . . . ,be such that the 
terms a, satisfy a linear first-order homogeneous difference equation of the form 

where Aa, = a,+, -a, and p(x), considered as a function of the continuous variable x 
has, as x --t=, an asymptotic expansion of the form 

for i an integer < 1. Let lim,,A, = A  exist. Assume that lim,,p(r)a, = 0 and that 
ml i f  1 ,1=-1 ,1 ,2 ,3  , . . . ,  ~herep=lim,,~p(x)/x. ThenA-A,, =Zi=,ajhas,as 

r --+ w, an asymptotic expansion of the f o k  

m 

A-A,, = 
j= r 

Remark. The condition 15+ -1, 1 ,2 ,  . . . ,seems to be satisfied for all convergent 
sequences. 

We see from (2.7) that a very natural choice for R,  is J'a, and this, with i = 0 and 
i = 1, gives Levin's t-and u-transformations, respectively. 

We now give another result whch is a special case of a general result due to Levin 
and Sidi (1975). 

(5) If the numbers a, r = 1,2,  . . . ,satisfy (2.5) and (2.6), then the numbers 
aPr-', r = 1,2,  . . . ,satisfy similar relations. Therefore, if we define A ,  = X i = ,  atxi-' , 
r = 1,2,  . . . ,and lirn,,A, = A  exists then Theorem 2.1 applies and A -A,, has an 
asymptotic expansion like that in (2.7) so that, by (1) we expect Tk,nto converge to A 
very quickly as k -+ 00. (Experience shows that the same Tk,nconverges quickly to the 
analytic continuation of Xi"=, aid-' when x is outside the circle of convergence.) 

We state here that dl of what has been said in (1)-(5) is important in the develop- 
ment of the numerical quadrature formulas which we take up in Section 4. 

Before we close this section we shall give two results that will be of use later in 
this work. 

THEOREM2.2. If A. = 0,A,  = Zi=, aj/z( r = 1,2,  . . . ,and R,= cr/zr, where 
c, is independent of z, then 

and the coefficient C of 1/zn+ in the Maclaurin series of Tk.n is given by 
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Crgd (-lY(rS)(n +j)k-lan+jIcn+j 
(2.9) C = -

(- ~ ) ~ ( n  ++ k ) k - l / ~ n  

Proof: Let us subtract An+k-l from Tk,n.  We obtain 

Now 

for 0 <j < k - 1. Therefore, the numerator of (2.10) is simply 

Similarly, the denominator of Tk,n is 

Combining (2.1 1) with (2.1 2) in (2.10), we obtain (2.8) and (2.9). 

COROLLARY. If C ,  = qfa,, where q is a constant, s is an integer, and 0 < s < 
k - 1 ,  then C = an+k and hence 

Proof. If we let c, = q f a ,  in (2.9), we obtain 

Now 

Therefore, 

Using this last equality in (2.14) the result follows. 
Remark. The corollary above applies to Levin's t-and u-transformations. 

LEMMA 2.1. Let H(z) and pj be as in (1.4)-(1.6), and let 
r 

Then 

(2.16 )  
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Pro05 (2.1 6)  follows by using the identity 

in (1.4) and then noting (1.6). 

THEOREM2.3. Let the sequence A,, r = 0 , 1 ,  . . . ,be as in Lemma 2.1 and define 
the polynomials D(z) and N(z)by 

and 

where Xi are constants. Then 

and 

where 

(2.21) Q(z) =lab dx.w(x) 
z - x  

Proof: The proof of (2.20) follows by multiplying (2.16), with r = n +i,by 
~ . z ~ + ~ - ' ,  (2.19) now follows easily from (2.20),and then summing over j from 0 to k.I 
(2.21),and (1.4). 

With the help of Theorem 2.3 above we can now give an exact expression for the 
error in Tk,n as applied to the partial sums of H(z). 

THEOREM2.4. Let the sequence A,, r = 0 , 1 , 2 ,  . . . ,be as in Lemma 2.1;and let 

R,  = cr/zr-' in the expression (2.2)for Tk,n. Then Tk,n N k , n ( ~ ) / D k , n ( ~ ) ,= where 
Dk,, ( z )  and Nk,  ( z )  are exactly of the form (2.17 )  and (2.1 8 )  with 

Therefore, 

and 
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where 

dx. 
z - x  

3. Asymptotic Expansions for H(z). Let us consider the expansion (1.5) for H(z), 
and define 

In view of what has been said in the previous section we expect Tk,nto converge 
to H(z) as k -+ if the p, satisfy (2.5) and (2.6). It turns out the moments of many 
important weight functions do satisfy (2.5) and (2.6). These weight functions and their 
moments are given in Table 3.1 below. (The finite interval [a, b] is taken to be [0, 11.)-
In the rest of this work we shall deal only with these weights. This is not a limitation as 
far as practice is concerned, since these weights contain the most important algebraic and 
logarithmic endpoint singularities that one comes across in much of scientific work. 

TABLE3.1 

1 l lm  

xP l l ( m + p ) , p > - 1  

(1-x)"xP a ! ( m + p - l ) ! l ( m + a + p ) ! , a > - l , p > - 1  

(- log x)' v!/mv+' , v > -1 

xP(- log x)' v!/(m + p)'+ ', p > - 1, v > -1 

(1 -x)"xP(- log x)' not known explicitly for general a ,  P, v, 

a + v > - 1 , p > - 1  

For the first five moments in Table 3.1 it is easy to show that (2.5) and (2.6) are 
satisfied. For this we write the identity 

(3.2) 1.1, = h(m)Apm, m = 1 , 2 ,  . . . , 

where h(m) = [p, + ,/pm - I]-' has an asymptotic expansion of the form 


For the sixth moment, for which an explicit simple expression is not known to the au- 
thor, we can still show that (2.5) and (2.6) are satisfied and this will be done later. 

Now for all the weight functions in Table 3.1 the sequence in (3.1) converges to 
H(z) for lz I > 1. Therefore, we can make use of Theorem 2.1 of the previous section to 
conclude that an asymptotic expansion like that in (2.7) exists for lz I > 1. However, 
for lz I < 1, since lim,,Ar does not exist, we cannot say off-hand that an asymptotic 
expansion like that in (2.7) exists. Nevertheless, such an asymptotic expansion does 
exist as we show below: 
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THEOREM3.1. Consider the weight function w(x) = (1 -X ) " X ~ ( - ~ O ~ X ) ~ ,a + v > 
-1,p>-1,on [a, b ]  = [ 0 , 1 ] .  Then foreveryznotonthecut  [ O ,  l ] ,H(z)-A, ,  is 

o f  the form 

(3.4) 

where 

(3.5) R Z r1,= l / ( r f f + ~ + l  

andfir)  is as described in ( 1 )  of Section 2. 

Proof: Using the result of Lemma 2.1, we have 

(3.6) H(z) -A,-' = 71 
Jol (1 - ~ ) ~ x @ ( - l o ~  Ax)'xr-' 

Z 1 - x / z '  

Making the change of variable x = eFt in the integral above, we obtain 

Now (1 - e t ) O  = t" [ ( l  -e-')/t] ", and it can be shown easily that the function 
[(I - eFt) / t]a has a convergent Maclaurin series expansion. Actually, [(I - e-?/t] Oi = 

1 + O(t)as t -+0 +. Letting g(t) = [(I -eFt) / t]  "eFpt/(l -eFt/z),we express (3.7) in 
the form 

Now g(t) has a convergent Maclaurin series too which we denote by g(t) = 2L0giti, 

withg(0) = z/(z - 1)# 0.  Using Watson's lemma in (3.8), see Olver (1974,p. 71),we 

then have 

which is of the form (3.4) with R r  as in (3.5) and 

(a  + v + i)! 
Ar) - - 5, as r -=. 

i=o + 
This completes the proof of the theorem. 


We can in a similar manner show that 


Using (3.10), it is now easy to  show that (3.2) and (3.3) are also satisfied. 

4. Numerical Quadrature Formulas. In thls section we shall be concerned with 
numerical quadrature formulas for the integral 
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Letting R r  = l/(r"+v+l z ) ,Ar  = Z;=l pi/z,i r = 1, 2 , .  . . , and A. = 0 in (2.2), 
we obtain 

zkZ0 + [(n + j)" +'+ l zn +j] ~~~~1 p,.,,/zm(- ly(>(n
(4.2) T,,, = Cko(-l)i(W [(n +j)"+'+lzn+i I 

As we can see from (4.2), Tk,n is a rational approximation whose numerator is 
Nk,n(z) = (polynomial of degree < n + k - 2) and whose denominator is Dk,,(z) = 
zn- 1 x (polynomial of degree k), so that (degree of denominator) > (degree of numer- 

ator) + 1, a property that Hk(z) is required to have; see (1.9). Hk(z) is also required 
to have simple poles; this implies that we must take n = 1 or n = 2. Otherwise, there 

is a multiple pole at z = 0. In this and the next sections we shall discuss the case n = 

1 only; the case n = 2 will be discussed in Section 6. For the case n = 1 we, there- 
fore, have 

Of course we should make sure that the poles of Tk,l are all simple and lie on [0, 11. 
We shall show below that for a + v a nonnegative integer this property holds. 

Assuming that the poles x ~ , ~  of Tk,l are all simple and lie on [0, 11, we can 
expand Tk,l in partial fractions as follows: 

where Ak,j are given simply by 

where ' denotes differentiation with respect to z. We then define our numerical 

quadrature formula by Ik = z;=, Ak,S(xk,i). 
This formula has several advantages over the Gaussian integration formulas, 

which we now explain: 

(1) The abscissas of the Gaussian integration rules are the zeros of the polyno- 
mials orthogonal with respect to w(x) on the interval of integration, and their weights 
can also be expressed in terms of these polynomials; and all methods of computing 
Gaussian integration rules make direct or indirect use of the orthogonal polynomials 
and, thus, require their generation if they are not known. These polynomials can be 
generated by using their 3-term recursion relation. Given the 3-term recursion rela- 
tion one can use, for example, the algorithm of Golub and Welsch (1969), to compute 
the abscissas and the weights. When this recursion relation is not known explicitly 
it can be computed, for example, by using the methods of Gautschi (1968), (1970). 
In one of these methods one computes by some approximate quadrature rule the coef- 
ficients of the 3-term recursion relation of the orthogonal polynomials. If this method 
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is applied to a weight functioil of the form w(x) = xP(-log x)' for general v, the con- 
vergence may be rather slow. In the second method one makes use of some modified 
moments of w(x) whose computation can again become difficult when w(x) = 

xP(-log x)' for general v, for example. In our new integration rules the polynomials 
that give the abscissas are readily available, and the weights can be computed from 
Eq. (4.5). 

(2) The denominator of Tk,' (and of Tk,n, any n) is independent of 0and de- 
pends on a and v through a + v. Therefore, the poles x ~ , ~of Tk,' are independent 
of and depend only on a + v. This implies that for all 0>- 1 and all a, v such 
that a + v >- 1 is fixed, our numerical quadrature formulas have the same abscissas, 
and only their weights are different. But the determination of the weights can be 
accomplished trivially with the help of (4.5). No such property exists for the Gauss- 
ian integration formulas. (This property does not exist if, instead of taking R, = 

~ / ( p + ~ + ' z ' ) ,we take R, = pJzr, like in the t-transformation of Levin.) 
(3) In view of (3) of Section 2 we can replace R, = ~ / ( r ~ + ~ + ' z ' )  =by R, 

IS/(ra+v+l~r),where s is a nonnegative integer which is not too large (s = 1, 2, for 
example), and Tk,n will still be a very good approximation to H(z). This implies 
that the abscissas for the weight w(x) = (1 - x)", where a' + v' =~ ) ~ ' x P ' ( - l o ~  a + 
v - s, are good for the weight w(x) = (1 - ~ ) ~ x ~ ( - l o ~In particular, the abscis- x)'. 
sas for the weight w(x) = 1 are good also for the weights w(x) = -log x ,  and w(x) 
= xP(-log x). Also, this property does not exist for Gaussian integration formulas. 
(As in (2), this property does not exist if instead of taking R, = l/(ra+v+'z') we 
take R, = pr/zr.) 

(4) Our numerical quadrature formulas, in general, are about as efficient as 
the Gaussian formulas as the numerical results obtained over a set of different func- 
tions show; see Section 5. 

We now give some properties of the new numerical quadrature formulas. 

THEOREM4.1. Let Ik[f] in (1.7) be the numerical quadrature formula associat- 
ed with Hk(z) as given in (4.4). Then 

Proof: Using (3.1) in Theorem 2.2, it follows that 

and now the result follows as for the case of numerical quadrature formulas of inter- 
polator~ type wluch were described in Section 1. 

Remark. For the weights w(x) = (-log x)', v >- 1, we have pm = v!/mY+', 
so that R, = pr/zr. The corollary to Theorem 2.2 applies to this case, and we have 
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From (4.8) it now follows that 

(4.9) I ~ [ x ~ ]=I[xi],  i = O , l ,  . . . , k. 


The results in (4.8) and (4.9) hold also if we take R, = p,./zr instead of R, = 


l /(P+V+lz')  as in (4.2) and (4.3). 

From (4.6) and (4.9) it follows that Ikis a numerical quadrature formula of in- 

terpolator~ type whose abscissas are not preassigned. 
We now go on to investigate some properties of the poles of Tk,n as defined in 

(4.2). 

THEOREM42. Let 

Then Dk,n,m (z) has n + k - 1 zeros on [O, 11 ,such that z = 0 is a zero of multipli- 
city n - 1, z = 1 is a zero of multiplicity k - m only if m <k - 1, and the rest are 
simple zeros in (0, 1). Furthermore, the simple zeros of Dk,n-,m(z) and those of  
Dk,n,m- (z), on (0, I), interlace. 

Proof: We start by observing that 

Therefore, 

Now Dk,n,o(z) = zn-'(1 - zlk has a zero of multiplicity n - 1 at z = 0 and another 
of multiplicity k at z = 1. Then by (4.12), 

so that by Rolle's Theorem, Dk,n, 1 ( ~ )  has a zero of multiplicity n - 1 at z = 0 and one of 
multiplicity k - 1 at z = 1 and another simple zero x: in (0,1). Dk,n,z(z), again by 

(4.12) and Rolle's Theorem, has a zero of multiplicity n - 1 at z = 0, one of multiplicity 
k -2 at z = 1 and two simple zeros x:, x; in (0, 1) one of them being in (0, x:), the 
other, in (xi,  1). Continuing this way we can show that Dk,n,m(z) has a zero of mul- 
tiplicity n - l at z = 0, one of multiplicity k - m at z = l and m simple zeros on 
(0, I), provided m <k - 1. When m = k - 1, z = 1 is a simple zero, and therefore, 
for m > k there is no zero at z = 1. Consequently, for m >k, the number of simple 
zeros in (0, 1) is k. This way we also see that the simple zeros of Dk,n,m-l(~)  and 
Dk,n,m(z) on (0, 1) interlace, starting with x y  <xy-'. This completes the proof of 
the theorem. 

As an immediate consequence of this theorem we have the following result: 

COROLLARY.If CY + v is a nonnegative integer, then Tk, in (4.3) has k simple 
poles in (0, 1). 
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Now it is known that the zeros of two orthogonal polynomials of consecutive 
order have the interlacing property. It turns out that the polynomials Dk,n ,m(~ )have 
a similar property. Before we give this result let us denote the number of the simple 
zeros of D k , n , m ( ~ )on (0 ,  1) by p. According to the previous theorem if m < k - 1 ,  

p = m and if m 2 k, p = k i.e., p = min(m, k) .  Let us denote these simple zeros by 
0 <x;,m <x;,m < .<x;lm < 1 .  

THEOREM^.^. If m 2 2 ,  the simple zeros ~fD~,~,~(z)andD~-,,~,~-~(z)on 
(0,  1) have the interlacing property, i.e., 

Proof: We start by writing (4.1 1) in the form 

If we let z = xFm and z = xriy (1 < j <p) in (4.14) and use the fact that L;,,,,,(z) 

= 0 for these values of z ,  we obtain 

Now we showed in the previous theorem that the simple zeros of Dk,,,,(z) and 
Dk,n ,m- l (~ )on (0 ,  1) interlace. Therefore, Dk,,,,-, ( x f t m )# 0 ,  i = 1 ,  . . . ,p; fur-
thermore, Dk,n,m-l(~F1m)and D k , n , m - l ( ~ ~ ; ~ )have opposite signs. This together 

with (4.15) implies that Dk- l ,n ,m- l (~F1m)and Dk-l,n,m-l(~;;y) have opposite 
signs, too. Therefore, Dk- l , n ,m- l (~ )must vanish at least once in (xFrm, xf;?). But 
since the number of simple zeros of Dk-l ,n, m- ( z ) in (0 ,  1 )  is p - 1 ,  there can be at 
most one zero in (x;lm, xi";?); and this completes the proof of the theorem. 

COROLLARY.When a + v is a nonnegative integer, the poles of Tk,  and 
Tk-,  ,, interlace in (0 ,  1 ) .  

Remark. Although we have proved that the x ~ , ~are simple and lie in (0 ,  1) and 
that they have the interlacing property only for the case a + v a nonnegative integer, 

numerical results indicate that this holds for all a + v such that a + v >- 1 .  Numeri-
cal results also indicate that the weights Ak, j  are all positive, although no proof of 
this is available at the time of writing. Now the positiveness of the Ak , j  together with 
the result of Theorem 4.1 implies that limk+Jk [ f ]  = I [ f ], for every function Rx) ,  

continuous on [0, 1 1 .  This follows from Pblya's theorem on numerical quadrature; 
see Pblya (1933). The positiveness of the Ak,j  is also important numerically, for if 
the Ak, j  are of mixed sign, large losses of significance may take place by cancellation. 

Finally, we shall give an exact expression for the error in case the integrand is 
analytic as described in Section 1 .  Combining (1 .lo) with (2.23),we have the follow- 
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ing exact expression for the error 

Unfortunately, numerous efforts to find the asymptotic behavior of Q,, ,(z)/D,,, (z) 
as k -+ have not been successful so far. However, as pointed out in Section 2, 
this quotient, at least numerically speaking, goes to zero very quickly for all values of 
z which makes I ,  [f] a very accurate numerical quadrature formula even for small k. 

5. Numerical Examples. As mentioned in the previous section, the implementa- 
tion of the new numerical quadrature rules for the weight functions in Table 3.1 is 
very simply achieved as we now explain. First we find the zeros xltri of the denomi- 
nator of Tk,,,namely, we solve the polynomial equation, z;=~ XjzJ= 0, where 

where s is a small nonnegative integer like 0 ,  1, 2. Once the x ~ , ~  are found we com- 

pute the weights using the formula in (4.5) which we give explicitly here: 

All that one needs for computing these formulas is a good polynomial equation solver 
and a subprogram that computes the factorial (or gamma) function accurately for de- 
termining the p,, both of which can be found in a reasonably good computer library. 
The gamma function, for instance, is a standard library function on the IBM-370 corn- 
puter. Furthermore, the computer program that one has to write for solving the prob- 
lem, judging from (5 .l) and (5.2), is remarkably trivial, provided double or extended 
precision is used. If the p, are not known explicitly, then they can be computed 
numerically as follows: Making the change of variable x = e-t (see Section 3), pm 
can be expressed as 

where G(t) = e-(,-'It((l - eLt)/t)" is a function that is regular at t = 0 and behaves 
like e-(m-l)tt-ff at infinity. Since 0 + 1 > 0 , making a further change of variable 
(p + l)t = 7, we can approximate the infinite integral in (5.3) by Gauss-Laguerre 
quadrature associated with the generalized Laguerre polynomials L?+')(T). Of course, 
other methods can also be employed in the approximation of the integral in (5.3). 

We note however, that since the +. in (5.1) alternate in sign and also become 
large as k -+ =, for large k, a loss of significance may take place in the computation 
of the x,,~ and hence the The same problem exists also for orthogonal polyno- 
mials in Gaussian integration, but this problem is overcome by using the 3-term recur- 
sion relation for the polynomials provided such a recursion relation is known explicitly 
Even when the 3-term recursion relation is not known explicitly, it can be computed 
numerically as shown by Gautschi (1968), (1970) and others. For the polynomials 
Dk, ,,(z) no such recursion relation has been found so far. 
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TABLE5.1 

The abscissas xk,i  for the new numerical quadrature formulas J,' w(x)f(x)dx 
Zf= A k, if (xk, i), where w(x) = (1 - x ) ~ x O ( - log x)' such that a + v is a 

small nonnegative integer like 0, 1, 2. These xkti\are the roots of the poly- 
nomial equation ZF=, A# = 0 with X, = (- l)f(IC)(i + l )k ,  j = 0 1, . . . , k .I , 
The weights Ak,i can be computed from (5.2). 
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In Table 5.1 we give the abscissas for the weight function w(x) = 1, which are 
also good for w(x) = xP, 0>- 1, by (2) of Section 4 and for w(x) = xP(-log x) or 
more generally for w(x) = x)', y i th  a + v = 0, 1, 2, for example, by (1 - ~ ) ~ x ~ ( - l o ~  
(3) of Section 4. These abscissas have been computed by taking = (- ly'(?(i + ilk, 
i = 0, 1, . . . ,k, i.e., by taking s = a + v, since a + v is a small nonnegative integer. 

G, and S, stand for the k-point Gaussian and new rules, respectively, with 
w(x) = 1. The abscissas for Sk are those given in Table 5.1. 0 means that 
Ik[f] has at least 16 correct significant decimal digits. (If the computa- 
tions are done using double precision on IBM-370 (word length approxi- 
mately 16 decimal digits), round-off error sets in starting with S8 for the 
function f(x) = x/(eX - I).) 

i 
11[fI - 1,<[fll for the In tegra ls  

t 

d x  1' d x

.jl$ 61% ;;;_ -l+ex 011-
G, 7 % 1 0 - ~  2 X 1 ~ - 3  I ~ I O - ~  2 X 1 ~ - 5  7 X 1 0 - 6  

~ X I O - ~ 4 x 1 0 - ~  1 x 1 0 - ~  1 ~ 1 0 - ~3 x 1 0 - 5  . '2 

2 X 1 0 - 5  2 ~ 1 0 - ~  1 x 1 0 - 9  1 ~ 1 o - l ~ri4 

5 x 1 0 - 5  3 ~ 1 0 - ~s4 4 ~ 1 0 - ~  3 ~ 1 0 - ~I X I O - ~  

G6 
5 x 10-7 1 x l 0 - 8  7 x 10- lo 4 x 10-14 0 

2 x 10-5 3 x 10-7 2 x 10-9 1 x 1 0 - l ~  1 10'12'6 

7 x 2 x 6 x i O - l 3  0 0'8 

5 l o -7  1 l o -9  4 1 0 - l ~  1 l 0 ' l 4  o . '8 

4 x lo-''1 x l o - l 3  6 X 0 05 0  

1 x lo-e4 x 1 x l O - l 3  0 0'10 

2 x 1 0 - l 3  1 x i o - 1 6  o o o5 2  

2 1 0 - l ~  5 10-13 o o o- s12 

Exac t  0.866972. ..0.785398.. . 0.693147.. . 0.379885.. . 0.777504.. . 

In Tables 5.2, 5.3, 5.4, and 5.5 we compare the approximations Ik[fl,obtained 
by using the new rules and the Gaussian rules, with w(x) = 1, w(x) = x-', w(x) = 

xm'(-log x), and w(x) = (1 - x)'x-', respectively. The abscissas of the new rules 
for the first three weight functions are the same and are those given in Table 5.1. The 
abscissas of the new rules for the fourth weight function are the zeros of the polyno- 
mials ~ i k _ ~  = *, j = 0, 1, . . . ,k. Although Theorem A#, where Xi (- l)j(?)(j + 1)" 
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4.2 does not apply to this case and to the cases for which += (- ly'(;)(j + ilk+", in 
general, nevertheless, the abscissas are all real, distinct, and lie in (0, I), and the weights 
are all positive, as numerous computations have shown. (We shall not give tables of 
these rules here.) 

Gkand Sk stand for the k-point Gaussian and new rules, respectively, with 
w(x) = x-%. The abscissas for Sk are those given in Table 5.1. 0 means 
that Ik[f] has at least 16 correct significant decimal digits. 

1 

11[f1 - ~ , [ f ] l  t o r  ~ [ f ]- 1: x- ' f(x)dx 

Rule f (x )  - l+x4 
1f ( x )  ---7 

I+x 
f k ) - 1I+x f ( x )  - -  

1+eX ex-I 
f ( x ) - X  

. 

c2 I ~ I O - ~  2 % 1 0 - ~  z x 1 o - 3  4 . 1 0 - 5  2 x ~ ~ - 5  

S2 8 X 1 ~ - 3  2 X 1 ~ - 2  2 X 1 ~ - 2  6 . 1 0 - ~  2 . 1 0 - ~  

G~ l x 1 o m 5  I ~ I O - ~  2 % 1 0 - ~  3 % 1 0 - ~  3 X 1 0 - 1 1  

s4 5 lo -5  3 l o -5  2 %  lo -7  I lo -7  

G~ 2 X 1 0 - 8  2 X 1 0 - 9  1 ~ 1 0 - ~ 3  o 

s6 2 10-5 5 10-7 2 10-9 2 1 0 - l ~  3 1 0 - l ~  

Gg I lo-' 5 1 0 - l 1  2 10- l2  0 0 

s8 4 10-7  3 10-9 2 1 0 - I ]  3 1 0 - l 4  

clO 3 1 0 - l ~  I 1 0 - l 3  I I O - I ~o o 

s l o  4 2 l o - "  1 0 0 

cI2 7 10 - l3  o o o 

sI2 2 .1 0 - l ~  10 - l3  o o 

Exact 1.84930. .-. 1.73394.. . 1.57079.. . 0.838932.. . 1.69969.. . 

As can be seen from Tables 5.2-5.5, the new rules can, in general, compete favor- 
ably with the Gaussian rules, when applied to functions analytic in a domain containing 
the interval [0, 11. When the singularities of the integrands f(x) are not too far away 
from the interval [0, 11 as, for example, for f(x) = (1 + x4)-', fix) = (1 + xZ)-' and 
f(x) = (1 + x)-' in Tables 5.2-5.5, both rules converge quickly, the Gaussian rules be- 
ing slightly better. For functions fix) whose singularities are far away from the inter- 
val [0, 11 as, for example, for f ( x )  = 1/(1 +8 )and fix) = x/(eX - 1) in Tables 5.2- 
5.5, the convergence of both rules becomes quicker, that of the Gaussian rules becom- 
ing even quicker. 

The fact that the abscissas of the new rules that are given in Table 5.1 do not in- 

clude the endpoints of the interval of integration (a property shared by the Gaussian in- 
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tegration rules too), suggests that they can, like the Gaussian rules, be used in numeri- 
cal integration by avoiding endpoint singularities, see Davis and Rabinowitz (1975, p. 
144). It turns out that the new integration rules with w(x) = 1 on [0, I ] ,  work very 
efficiently on integrals of the form Jb' flx)dx, where the functions flx) have algebraic 
or logarithmic singularities or products of them at x = 0, especially when the Ax) are 

Gk and S stand for the k-point Gaussian and new rules, respectively, with 
w(x) = x 5 ~ l o gx). The abscissas for Sk are those given in Table 5.1. 0 
means that S, has at least 16 correct significant decimal digits. Gkhave 
been computed using the 12-figure tables of Boujot and Maroni (1968). O* 
means that Gkhas at least 12 correct significant decimal digits. 

1 

I1[f] - I,[f]l f o r  I [ f ]  = I: p- f ( - log  x) f ( x ) d x  

1 1 f (x) = -1 = -1f (x) = 4 f (x) = ---3 f(x1 f(x) = -5-
Rule l+x l+x l +ex  ex-1 

4 S X I O - ~  2 x 1 0 - ~  Z X I O - ~  8 x 1 0 - ~G2 

1 x 1 0 - I  1 ~ 1 0 - l  I ~ I O - ~  3 X 1 0 - 3S2 

G~ 5 ~ 1 0 - 5  I ~ I O - ~  1 x ~ ~ - 9  l x l ~ - l l  

s4  4 x 1 ~ - 5  4 x 1 ~ - 5  3 X . t ~ - 4  3 X ~ 0 - 6  1 x 1 ~ - 6  

G6 5 x 1 0 "  1 x 1 0 ' ~  ~ X I O - '  O* O* 

s6 2 ~ 1 0 - ~  2 x 1 0 - ~  2 x 1 0 - 7  i ~ i o - ~  4 x 1 0 " ~  

2 x 4 x l o - ' '  O* O* O*G8 

2 x 6 x loe9 2 x 1 x 10 - l 3  0S8 

3 x l o - "  O* O* O* O*Gl0 

s1 0 1 x l o -a  8 x 1 0 - l ~  3 l o - 1 3  0 0 

G12 o* o* o* o* o* 

s12  5 l o -10  4 x ~ o - 1 4  1 1 0 - l ~  0 0 

Exact 3.96017.. . 3.874184.. . 3.663862.. . 1.890524.. . 3.791043.. . 

continuous at x = 0. For such integrals, numerous computations have shown that the 
new rules are superior to the Gaussian rules. A comparison of Gaussian and new rules 
with w(x) = 1 on 10, 11 for the functions flx) = x-'/", flx) = log x, flx) = x' log x, 
flx) = x', and flx) = x3I2, is given in Table 5.6. Note that the first function is the 
most singular, the second function is less singular, the third even less, etc. 
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For hi = (- lY(;)(i + I ) ~all the abscissas xkPi are in (0, 1) as mentioned before. 

By (3) of Section 4, we can take 

affecting very little the accuracy of Tk,n hence that of Ik[f]. This time, however, the 

endpoint z = 1 is an abscissa by Theorem 4.2. Thus, we have obtained accurate numer- 
ical integration rules similar to the Radau rules, see Davis and Rabinowitz (1975, pp. 
79-80). The performance of these rules is demonstrated through two examples in 
Table 5.7, where f(x) = (1 + x)-'. (We shall not give tables of these rules here.) 

Gk and Sk stand for the k-point Gaussian and new rules, respectively, with 
w(x) = (1 - x)l/"x-l/". The abscissas of S are the zeros of the polynomial 
~ 7 = ~  = 0 means that Ik[f]has at least hizi, where hi (- ly(>(i + I)~''. 

16 correct significant decimal digits. 


II[~I - ~ , [ t ] ~ t o r  I[GJ"- ~ ~ - x ) * x - * f ( x ) d x  

1 1 1
f(x)-; ; ;F f l x ) = 7  f ( x ) = T i ;  f ( x ) = - f ( x ) = X  

Rule 1 +x 1+eX ex- I 

4 x 1 0 - ~  6 x 1 0 - ~  I X I O - ~  2 x 1 0 - ~  ~ X I O - ~G2 

S X I O - ~  6 x 1 0 - ~  ~ X I O - ~  3 x 1 0 - ~  ~ x I o - ~ 'S2 


3 x l ~ - 5  8 x 1 ~ - 6  1 ~ 1 0 '  1 lo -g  2 lo-1i
G~ 


s4 2 4 10-5 I 10-5 4 10-a 3 


6 x 8 x 1 x 5 x l o -14  0
G6 

s6  2 x 10-5 2 10-7 5 10-lo 4 x 2 x 10-13 

5 x 3 10 - l1  1 10- l2  0 0G~ 

s8 3 I 1 10-9 2 10 - l1  2 10-l5 0 

3 x l o 2  6 x lo- ' '  0 0 0GlO 


1 x lo-' : 3 x 1 x lo ' l3  0 0
$10 

c12  5 10- l3  o o o o 

s12 1 10 - lo  4 10-l3 0 0 0 

Exact , 1.507274.. . 1.429706.. . 1.301290.. . 0.689653.. . 1.390691.. . 

6. Numerical Quadrature Using Tk,2: The Case n = 2. Here we briefly discuss 
the case n = 2 which was mentioned in Section 4. As can be seen from (4.2) and the 
discussion following (4.2), the denominator of Tk,, is a polynomial of degree k + 1 
with a simple zero at z = 0, and the numerator is a polynomial of degree < k, such 
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that the numerical quadrature formula obtained from Tk,2 is a (k + 1)-point rule. 
Having one of the endpoints (z = 0) as an abscissa, these are rules of Radau type. 

Letting Hk(z) = Tkel ,2 and making use of Theorem 2.2, we can see easily that 
the results of Theorem 4.1 and the remark following Theorem 4.1 apply to the numeri- 
cal quadrature rules obtained from this new H,(Z). Similarly the corollaries to Theo- 
rems 4.2 and 4.3 apply too. That is, when cu + v is a nonnegative integer, Tk-l ,2 has 
k simple poles in [0, I ] ,  one of them being at z = 0 for all k; and the poles of Tk-2,2 
and Tk-l ,2 interlace on (0, 1). 

TABLE 5.6 

G, and Sk stand for the k-point Gaussian and new rules, respectively, with 
w(x) = 1; i.e., the singularity of f(x) at x = 0 is ignored. The abscissas for 
S, are those given in Table 5.1. 

~ ~ l f l - ~ , ~ [ f ] ~f o r t h e i n t e g r a l s  

L1 
l o g  x dx b1 

xilog x dx 
1 
xtdx [x3"dx 

0 

G~ 
3 x 1 0 - I  I X I O - ~  2 lo - *  7 x l o -3  1 x lo -3  

S L  3 10-I  5 x 1 3 1 0 ' ~  g x 

G~ 3 x 1 0 - L~ ~ 1 0 - l  4 IO-3 1 10-3 5 x 10-5 

S4 6 lo - '  6 5 2 7 

G6 1 l o - '  1 2 10-3 4 

s6 1 9 8 lo- '  8 5 

c8 1 x 1 0 - I  1 10-3 2 2 x 

s8 5 X 1 0 - 4  2 * 1 0 - ~  1 l o - s  3 4 x 

3 8 X 6 X 5 9 X 1 ~ - 5  ~ X I O - ~ 

s l o  2 10-3 10-5 I, 7 x 1 0 - ~  5 x 1 0 - 9  

G~~ 7 4 l o - 3  3 6 3 x 

s12 1 x 1 0 - 3  z x 1 o 3  4 x 10-7 ~ X I O - ~ 2 x 1 0 - l 1  

Exact 2 - 1 4/9 213 2/5 

Several computations have been done using the numerical quadrature formulas 
obtained from Tk,2. The results of these computations indicate that the accuracy of 
these rules is practically the same as that of the numerical quadrature rules obtained 
from Tk,l .  
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Sk and Skare the new k-point rules whose abscissas are the roots of the 
polynomial equation ~ 7 = ~hjzj = 0,where h, = (- ly(>(I + l)k for Sk 
and Aj = (- ly'(>Q' + ilk-' for ck.For the first column w(x) = 1 and 
for the second column w(x) = x-%. z = 1 is an abscissa for the rules gk. 

/ I [ f l  - ~ ~ [ f l lf o r  the integrals 

1 dx 

0 

' 2 
1 x 1s-3 2 X 

-
2 6 x 7 

'4-

3 . 10-3 3 x 10-5 '4 


5 8 xx 

. I 0-92 3 10-3 
'6 


T6 5 ‘. lo-g 2 lo-7 

4 . lo-" 2 x 10-l1 '8 

-


1 . 1o-IO 2 '; 10-lo '8 


i::
1 
 I r 1 x 10-l~ 

3 x1 1 .1 1
Exact 0.633147,.. 1 .5707963.. . 

For the sake of completeness we give here the coefficients of the polynomial ~ r = ~hjzjc ' whose zeros are the abscissas xk+, ,,, i = 1 ,  . . . , k + 1 : 

where s is a small nonnegative integer like 0,1 ,  2. We take xk+1 , 1  = 0. The corre- 
sponding weights are then 

with 

Finally, if the Aj are taken to be 
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(for w(x) = xP, 0 > - 1, for example), then z = 1 is also an abscissa; and hence, the 
new rule has both of its endpoints as abscissas, thus becoming a Lobatto-type rule, see 
Davis and Rabinowitz (1975, pp. 79-80). 

7. Symmetric Rules. As can be seen from Theorem 4.2 and Table 5.1, the 
abscissas x ~ , ~  = H for w(x) 1 or for any weight are not symmetric with respect to x = 

function which is symmetric with respect to x = H. Actually, Table 5.1 indicates 
that as k becomes large many of the x ~ , ~  cluster about x = 0. We now show how 
symmetric rules can be obtained. Consider the integfal 

0.1) 

where w(x) is an even weight function, and define 

(7.2) pm = I_,+ 1 
w ( ~ ) x ~ ( ~ - l ) d r ,m = 1 , 2 ,  . . . . 

Then 

If we now let 

and 

in (2.2), and simplify the rational function that is obtained, we can see that Tk,n can 
have simple poles only if n = 1 or n = 2. When n = 1, the numerator of Tk,l is an 
odd polynomial of degree 2k - 1, and its denominator is an even polynomial of degree 
2k. Therefore, Tk,l can provide us with a 2k-point numerical quadrature formula. 
When n = 2, on the other hand, the numerator of Tk,2 is an even polynomial of de- 
gree 2k, and its denominator is an odd polynomial of degree 2k + 1. Therefore, Tk,2 
can provide us with a (2k + 1)-point numerical quadrature formula. It is seen easily 
that for these rules if [ is an abscissa, so is - 6 ,  and their corresponding weights are the 
same. 

As an example, we shall consider the case w(x) = 1. For this case pm = 
2/(2m - I), m = 1, 2, . . . . Therefore, we choose R, = 1/(rz2'-l), r = 1, 2, . . . . 

kThe denominator of Tk, becomes Zjzo +.zzi, where 

and the denominator of Tk,, becomes ZF=o ~ j z ~ ~ + ' ,  where 

Using Theorem 4.2, we can see that all the poles of Tk,l and Tk,2 are in (- 1, 1). As 
before, by replacing (i+ l)k in (7.6) by (i + l)k-l and 0' + 2)k in (7.7) by 
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(i+ 2)k-1, we can make the endpoints z = + 1 also abscissas, thus obtaining Lobatto- 
type formulas. 

Now making use of Theorem 2.2 we can conclude that the numerical quadrature 
formulas obtained from Tk, and Tk,2 using (7.6) and (7.7) satisfy 

and 

(7.9) r 2 k + l [ ~ i ]  =I[xi] ,  i = 0 , 1 ,  . . . , 2 k + l , k = 1 , 2  , . . .  . 

If, however, we let R, = 2/[(2r - l)z2'-'1, then making use of the corollary to Theo- 

rem 2.2 we can replace (7.8) and (7.9) by 

Several computations using these methods have also been done. Their performance is 
very similar to the performance of the rules that use the same number of abscissas, 
given in the previous sections. 

Let us finally consider the symmetric weight function w(x) = (1 - x2)" on 
[- 1, 11 which contains algebraic singularities at both endpoints. An analysis similar 
to that given in Section 3 shows that R, = l/(rl +"z2'-I), i.e., there is no way of get- 
ting rid of the a-dependence in the R,. This implies that for different a's different 
sets of abscissas are needed unlike some of the rules of the previous section. 

8. Concluding Remarks. We have reviewed some nonlinear transformations for 
accelerating the convergence of infinite sequences due to Levin and used a modification 
of them to obtain numerical quadrature formulas for weight functions with algebraic 
and/or logarithmic endpoint singularities. These rules are simpler to compute than the 

corresponding Gaussian rules and practically as efficient as them. They also have the 
advantage that a whole family of weight functions can have the same set of abscissas, 
which we believe should be of practical importance. We have also shown how differ- 

ent numerical quadrature rules (of the Lobatto and Radau type) can be obtained. We 
have proved some properties for some of these new rules although our theory is not com- 

plete. However, all the numerical computations that we have done indicate that these 
rules are good integration rules, i.e., all their abscissas are distinct and lie in the inter- 

val of integration, and all their weights are positive. It is hoped to contribute further 
to the theory of these new numerical integration rules in the future. 

Acknowledgement. The author wishes to thank Dr. D. Levin and Professor P. 
Rabinowitz for useful discussions and comments. The computations for this paper 
were carried out on the IBM-370 computer at the Computation Center of the Tech- 
nion, Israel Institute of Technology. 

Computer Science Department 

Technion-Israel Institute of Technology 

Haifa 32000, Israel 




874 AVRAM SIDI 

G. BAKER, JR. (1975), Essentials of Padk Approximants, Academic Press, New York. 
J. P. BOUJOT & P. MARONI (1968), Algon'thme Gknkral de Construction de Tables de 

Gaum pour les Probdmes de  Quadratures, Institut Blaise Pascal, publication No. MMX/8.1.8/,41. 
P. J. DAVIS (1955), "On a problem in the theory of mechanical quadratures," Pacific J. 

Math., V. 5, pp. 669-674. 
P. J .  DAVIS & P. RABINOWITZ (1975), Methods of Numerical Integration, Academic Press, 

New York. 
W. GAUTSCHI (1968), "Construction of GaussChristoffel quadrature formulas," Math. 

Comp., v. 22, pp. 251-270. 
W. GAUTSCHI (1970), "On the construction of Gaussian quadrature rules from modified 

moments," Math. Comp., v. 24, pp. 245-260. 
G. H. GOLUB & J. H. WELSCH (1969), "Calculation of Gauss quadrature rules," Math. 

Comp., v. 23, pp. 221-230. 
D. LEVIN (1973), "Development of non-linear transformations for improving convergence 

of sequences," Internat. J. Comput. Math., v. B3, pp. 371-388. 
D. LEVIN & A. SIDI (1975), "Two new classes of non-linear transformations for accelerating 

the convergence of infinite integrals and series," Appl. Math. Comput. (To appear.) 
I. M. LONGMAN (1973), "On the generation of rational approximations for Laplace trans- 

form inversion with an application t o  viscoelasticity," SIAM J. Appl. Math., v. 24, pp. 429-440. 
F. W; J. OLVER (1974), Asymptotics and Special Functions, Academic Press, New York. 
G. POLYA (1933), " ~ b e r  die Konvergenz von Quadratuwerfahren," Math. Z., v. 37, pp. 

264-286. 
D. SHANKS (1955), "Non-linear transformations of divergent and slowly convergent se- 

quences," J. Math. and Phys., v. 34, pp. 1-42. 
A. SIDI (1979), "Convergence properties of some nonlinear sequence transformations," 

Math. Comp., v. 33, pp. 315-326. 




