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The non-linear transformations for accelerating the convergence of slowly convergent 
infinite integrals due to Levin & Sidi (1975) are modified in two ways. These 
modifications enable one to eval uate accurately some oscillatory infinite integrals 
with less work. Special emphasis is placed on the evaluation of Fourier and Hankel 
transforms and some simple algorithms for them are given. Convergence properties of 
these modifications are analysed in some detail and powerful convergence theorems 
are proved for certain cases including those of the Fourier and Hankel transfonns 
treated here. Several numerical examples are also supplied. 

l. Introduction 

RECENTLY Levi n & Sidi (197 5) have given non-linear methods fo r the accurate 
evaluation of infi nite integrals and series which have proved to be very efficient in 
accelerating the convergence of slowly converging infinite integrals and series of 
various kinds. The numerous examples given in their work show that these methods 
have very good convergence properties. Lately, convergence properties of these 
methods have been partially analysed by the present author, see Sidi (1979a , 1979b, 
1980). 

The purpose of the present work is to modify the methods of Levi n & Sidi (1975) to 
deal with some oscillatory infinite integrals. These modifications enable one to 
evaluate accurately these integrals with less work . Convergence properties of the new 
methods are also analysed . 

Before we go on we shall give a brief outline of the results o f Levin & Sidi (1975) 
and Sidi ( 1979b) that bear relevance to the present work. 

Definition l. We shall say that a function a(x), defined for x > a ~ 0, belongs to the 
set At, ) if it is infi nitely differentiable for all x > a and if, as x ...... 00, it has a Poincare­
type asymptotic expansion of the form 

a(x) "" x' L 
~ 

ajx l
, (1.1) 

1- 0 

and all derivatives, as x ...... 00 , have Poincare-type asymptotic expansions which are 
obtained by differentiating the right-hand side of (1.1 ) term by term. 

From this definition it follows that Ab l :::;l A (1- 1) :::;l 

Remark . It also follows that if a(x) is in A(O ), then it is infinitely differentiable for all 
x> a including x = 00 (but no t necessarily analytic at x = (0 ). 
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THEOREM 1. Let f(x) be for x> a ~ 0, be integrable at infinity, and a 
homogeneous linear equation order m of the 

m 

f(x) (1.2) 

where P. but Pk ¢ 1), such that i. are integers satisfying i k ~ k, 1 ~ k ~ m. 
Let also 

l)(X) /ik-i)(X) 0 . ..-' k ..-' 1 ..-' ......lim } , l:::::c :::::c m, :::::c I :::::c m. (1.3) 

If for every 1=-1,1,2,3, ... , 

m 

l(l 1) ... (l k+ 1)):\ # 1, (1.4) 

where 

Pk = lim x kpk(X), 1 ~ k ~ m, (1.5) 
X->(J) 

then· 
"x m 1 

dt 1f(t) dt + x Pkf(k)(X)f3k(X) (1 

such that Ph are satisfying 

Pk ~ max (i k + l' Ik + 2 1, ... , im~m+k+ 1),· 0 ~ k ~ m 1, (1.6b) 

and 13k E A(O), 0 ~ k ~ m-l. It also follows that 

lim XPkPk)(X) = 0, 0 ~ k ~ m-l. 

Remark. An point about this result is that the functions XPk f3k(X) 
only on the Pk(X) and are independent of f(x). An immediate consequence of this is 
that if there is another function besides f(x) equation (1 and the rest 
of the conditions of Theorem 1, then bothf(x) and g(x) satisfy (1.6a) with the same Pk 
and f3k(X), i.e. 

r {
f(t)} m-l Pk {f")(X)} (1.7)~x i{t) dt= x g(k)(X) f3k(X). 

We shall apply Theorem 1 to some Fourier and Hankel transforms in Section 2. 

Definition 2. Let f(x) be as in Theorem 1 with the same notation and let 
nl,"" nm-d, where nk are integers. The D~m.j) 

to f(t) dt together with the parameters h 0 ~ i ~ nk , 0 ~ k ~ m 1, are defined 

by the set of linear equations 

Cf(t) dt +m j~l~j+N, (1.8) 
va 


m 1 


where N (nk+l) and XI are chosen such that a < Xo < Xl < X2 < ..., and 



3 EXTRAPOLATION METHODS 

lim XI = 00, provided that the matrix of the equations in (1 is If the 
I~CI) 

Ph are not known exactly, then in (1.8), the Pk can be replaced by the integers (Ik 

defined by (Ik min (Sk' k + 1), where 

Sk max lim xsPk)(x) = 0, S , 0",::; k ",::; m 1. 
X~CQ 

It can be shown that Pk"'::; (Ik"'::; k+l and that 

lim X"kPk)(X) = 0, 0",::; k ",::; m 1. 

X1 

(The integrals f(t) dt can be evaluated very accurately by using a low orderrva 

Gaussian rule.) 
(The notation in the definition above is different from that given in Levin & 

Sidi, 1975.) 
'onvpr'opr,,,'" properties of the approximations have been for two kinds of 

limiting processes, see Sidi (1979b): 

(1) Process 1: Yl fixed,j -> 00, 
1 . (2) Process 2: j fixed, Ylk -> 00, °",::; k ",::; m , 

and Process 2, under certain circumstances, has been shown to have better 
convergence In particular (under certain 

If" f(t) dt -> 0, 

(1) at least like for Process 1 and (2) faster than any inverse power of v for 
Process 2, where v = min {no, n1, ~ •• , Yl J}. It also turns out that the Ph. i in 
equations (1.8) are approximations to 

m 

the coefficients rh. i in the asymptotic 
expansions of the f3k(X) in (1.6), where 

as X -> 00, 0",::; k m - 1. (1.9) 

The rates of convergence for D~m.j) in Sidi (1979b) indicate that depend 
mainly onj and Yl and very little on'm. But the amount of computing that has to be 
done for obtaining D~m.j) depends very strongly on m. Firstly, the number of the finite 

rX! 
integrals I. f(t) dt that have to be computed isj +N + 1. Secondly, the number of the 

~a 

that have to be solved to obtain D~m.j) is N + 1. And N increases as m 
increases. In view of this observation we ask whether we can do something to obtain 

an approxim<j.tion to f(t) dt which is about as accurate as D~m.j) but less 

It turns out that this is possible for certain 
the XI are chosen in a suitable way, and the method is modified, as we show in 
Section 3. In Section 4 we will give another modification that will further simplify 
things. We shaH apply the new methods of Sections 3 and 4 to Fourier and Hankel 
transforms. Some convergence theorems will also be supplied in Sections 5 and 6. 
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2. npp,,,:uU'UIIl> of Theorem 1 to Fourier and Hankel Transforms 

We now two applications of Theorem 1 to Fourier and Hankel transforms. 
The results of this section will be of use in the remainder of this paper. 

Fourier 

We shall consider the I'D f(t} where 

COS 
f(x) = 	g(x) . 1)

{ Sill 

where is of the form 

g(x} = 	h(x) e<l>(;<), (2.2) 

such that is a real polynomial in x of k ~ 0, for some integer k, and 
hE AIr) for some y. If k > 0, then for g(x) to be at infini ty lim 4> (x ) 00 

is necessary. If k 0, then 9 E hence y < 0 in order for f(x) to be integrable at 
infinity. 

Now let 
COS 

u(x) = . 
{ Sill 

Then u"(x)+u(x) O. Since u(x) = f(x)/g(x) ), we have + O. 
Substituting (2.2) in this differential equation we obtain f pdf +pd", where 

2(4)' + hi/h) 
Pl(X) = 1+(4)'+ (4)'+ hi/h)' 

1 
pz(x) = 	 I+W+ 

Now if k 0, then it can be shown and the properties of 4> (x ) and h(x) that 
Pj E with i l k +1 and iz 2k +2. If k = 0, i.e. 4>(x) == constant, then 
Pj E with i1 1 and i z = O. Since ij < j, j 1, 2 in all these cases, we see that 
PI = 0 in Theorem 1. It can now be verified that all the conditions ofTheorem 1 
are satisfied with m = 2 and 

{ k+l if k > 0 
Po = max (iI' i2 -1) 

1 	 if k = 0 

if k > 0{~2k+2PI i2 
if k = O. 

Hence 

(2.5) 

where flo, fli E A(O), and flo(x) and .are the same both for u(x) cos x and 
u(x) sin x. 
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Hankel Transforms 

We now consider the integral Ix"" f(t) dt, where 

Jv(X)}f(x) = { Y.(x) , 

where g(x) is as described above in the sub-section on Fourier with the 
same the only difference that when k 0, }' < 1/2, and and Y.(x) 
are the Bessel functions of order v of the first and second kind, respectively. If we let 
u(x) denote J,(x) or then u(x) satisfies the differential """<\Tl,,,n 

+xul(x) + 
Le. Bessel's Again the fact thatf = gu, we have u = fig. Substituting 
this in the differential equation above we obtain pd' +pd", where 

2X2(4)' + hllh)
Pl(X) = ()wx 

x 

(2.7) 

P2(X) 

where 

w(x)=x2 [(4>'+;;h')2 - (4>'+;;h')'] -x (4>'+;;h')'+ (2.8) 

From (2.7) and (2.8) it can be shown that Pj E A(i;) where ij are the same as those 
obtained for the Fourier transforms above. Therefore, = 0, and we can 
that all the conditions of Theorem 1 are satisfied with m = 2, and Po and PI are the 
ones in (2.4). Hence holds with f(x) as in (2.6), and 130,131 E A(O). 

Again Po(x) and Pt(x) are the same both for u(x) = Jv(x) and u(x) Yv(x). 

3. The 15-Transformation 

Suppose that the functionf(x) is as in Theorem 1 with the same notation and that it 
some of its derivatives vanish an infinite number of times at infinity, i.e. 

assume that there exist Xl> 1= 0, 1,2, ... , such that a < Xo < Xl < X2 < .., 

!,k/)(Xl)=O, 1=0,1, ... , O~kl< < ... < ~m-l. (3.1) 

with this choice of the XI' the matrix of Equations (1.8) is since it 
has columns all of whose elements are zero. This problem can be remedied by 
reducing the number of the equations as follows: 

Definition 3. Let the function f(x) be as in the first of this section. Denote 
E={O,l, ...,m-l} and Ep={k1, ...,kp }, q=m-p, and let ii={nAi 
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Then D~q·j), the approximation to 1"" f(t) dt, together with the parameters 

o~ i ~ nk , k E E\Ep, are defined as the solution to the set of linear equations 

(3.2) 

where 
m-I 

N = L (nk+ 1). 
k=O 
k ¢ E, 

If the Pk are not known exactly, then the O"k of Definition 2 can be used instead of 
the Pk' 

We now demonstrate the use of the D-Transformation with a few examples. 

Example I-Fourier Transforms 

Consider the integral 1""f(t) dt with a ~ 0, where f(x) is as described in Section 2, 

sub-section on Fourier transforms. Let u(x) denote cos x or sin x . By taking Xo to be 
the smallest zero of u(x) greater than a, and letting Xo, x I, x 2 , ••. , be the consecutive 
zeros of u(x), we have p = 1, kl = 0, q = 1 in (3.1). Equations (3.2) then become 

-(1) ~ 111 .
D".J =F(x1)+XP1 g(x/)u'(x/)L -T' j ~ I ~j+nl +1, (3 .3) 

i=O XI 

where 

F(x) = LX f(t) dt. 

Now lu' (xl)1 = 1 and U'(XI)U'(X/+ d = -1, 1= 0, 1, . . .. Since XI = Xo + In, 
1= 0, 1, . . . , Equations (3.3) have a simple solution (see Appendix A) given by 

"1 + I (n +1)L I (xo /n+j +r)"IF(xj+r)/[xj.Lg(xj+r)] 
D~l.j) = r= 0 r (3.4) 

n "1 +1 (n + 1)
r~o I r (xoln+j+r)"I/[xj·Lg(xj+r)] 

Numerical example. We have used (3.4) to evaluate the integral 

LX) t sin t/ (1 + t 2
) dt = n/ (2e). 

For this case, a = 0, k = 0, Y = - 1. Some of the results are given in Table 1. 

Example 2-Hankel Transforms 

Consider the integral 1"" f(t) dt with a ~ 0, where f(x) is as described in Section 2, 
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TABLE 1 

Approximations fj~l, 0) for 1.''' t sin t/(l dt 
~O 

fjt1.0)n1 " 
1 0-57792 
3 0-5778616 
5 0-57786368 
7 0-577863674888 
9 0-57786367489538 

Exact 0-57786367489546 

sub-section on Hankel transforms. Let u(x) denote Jv(x) or ¥v(x). Again by taking Xo 

to be the smallest zero of u(x) than a, and letting xo, Xl' x 2 , ••• , be the 
consecutive zeros ofu(x) we have p = 1, kJ = 0, q = 1 in (3.1). (3.2) 
become 

", 
= F(x/) +xP1 g(x)u'(x/) L 

i=O 

where F(x) f(t) dt and 1) < 0, I = 0, 1, _ . _ . But this time U'(XI) is not 

as as that of 1 and the Xl are not as those of 1_ 
Research on a simple algorithm for solving (3.5) is under way although at the time of 
writing there does not seem to be a simple solution for as that given in (3.4). 

the solution of (3.5) has to be found by (3.5) numerically 
on a computer. 

Numerical We have solved (3.5) for the case [" Jo(t)dt = 1, i.e. a = 0, 
~o 

g(x) 1 (k = 0, y = 0) and v = 0. Some of the results are in Table 2. 

TABLE 2 

OXllnali~ons fj~l. 0) for ["' J o(t) de = 1 
~o 

1 0-9995 
3 0·999997 
5 1{lOOOOOOl 
7 0·999999999988 
9 0·9999999999998 

Exact 
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Example 3 - Loo (sin t/tf dt = n/2 

The integrandf(x) = (sin X/ X)2 satisfies all the conditions of Theorem 1 with m = 3 
and (1.6) holds with Po = 1, PI = 0, P2 = 1, see Levin & Sidi (1975 ; example 4.5). If . 
we choose x, = (/+ 1)n, 1= 0, 1, ... , then f(x /) =!'(x,) = 0, 1= 0,1, .. . , i.e. p = 2, 
kl = 0, k2 = 1, q = 1. Table 3 shows some of the results obtained for D~I . O) . 

TABLE 3 
.( 

Approximations jj~I . 0) Jor L X> (sin tl t)2 dt = 1'£/2 

jj~I.0) 
n 

1 1·572 
3 1·570795 
5 1·5707962 
7 1·570796329 
9 1·57079632673 

Exact 1·570796326795 . . . 

4. The D-Transformation 

The D-transformation that has been introduced in the previous section is especially 

useful when the x, in Equation (3.1) are readily available, either from tables or can be 

computed by use of tables. Otherwise they have to be computed numerically by 

solving Equations (3 .1) and this may be not so practical. We now give a modification 

of the D-transformation which is very simple to implement and has proved to be as 

efficient as the D-transformation. 


There are cases in which the integral loo f(t) dt can be expressed in the form 

l oo f(t) dt = :t~ uk(x)bk(x), (4.1) 

where the functions uk(x) satisfy lim Uk(X) = 0, are simpler than f(k)(X) , and some of 

them have an infinite number of zeros at infinity that are readily available, and 

bk E A(O), °~ k ~ m-l. Let then these zeros be x,, 1= 0, 1, . .., such that 

a < Xo < XI < .. " and lim x, = co and such that 


1- 00 

Uk;(X/) = 0, 1= 0, 1, ..., °~ kl < k2 < ... < kp ~ m-1. (4.2) 

Definition 4. Let the functionf(x) be as in Theorem 1 and as in the previous paragraph 
and let E, Ep , q, ii and jiJ be as in Definition 3. Then fj~q.j), the approximation to 



9 EXTRAPOLA TION METHODS 

f.() f(t) dt, and the parameters JJk, j, are defined as the solution to the set of linear 

equations 

I
Xl m-l "k 

D~q,j) = j(t)dt + L vk(X/).L JJk.JX;, j ~ I ~j+N. (4.3) 
a k=O .=0 

k ¢ E, 

We now apply the D-transformation to a few examples. 

Example 4-Fourier Transforms 

Consider the integral of Example 1 with the same notation. Using the properties of 
h(x) and ¢(x) in (2.2) we can re-express (2.5) in the form 

fO f(t) dt = vo(x)bo(x)+ V l (x)b l (x) (4.4) 

vo(x) = xPo +y e4>(x) u(x) 
(4.5) 

Vl (x) = x PI + Y e4>(x) u'(x) 

where u(x) denotes cos x or sin x as in Example 1. 
Letting now xo, Xl' x 2 , •.. , be as in Example 1 we have Qnce more p = 1, kl = 0, 

q = 1, in (4.2). Hence Equations (4.3) become 

"I 

·D~l. !j) = F(xrH·-I7-rtxr>L--P-cJxj, j ~ I ~ j +n l + 1. (4.6) 
i=O 

The solution of these equations is as before (see Example 1 and Appendix A) 

'"1 + 1 (n + 1)
L 1 (xol1t+j+rrIF(xj+r)/[xn~Y e4>(Xj+,)] 

D~l,j) = r=O r (4.7) 
" "IL+ 1 (n

1 • 
+ 1) (xol1t+j+r)"l/[xn~Y e4>(Xj+,)] 

r= 0 I 

TABLE 4 

Approximations IN,OJ for D'(sin tlJ4+ti)dt = (n/2)[Io(2)-Lo(2)] 

1 0·5372 
3 0·537447 
5 0·53745040 
7 0·53745038905 
9 0·5374503890636 

Exact 0·5374503890637326 
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Numerical example. We have used to the integral 

[0 t/J"4+tZ )dt (1[/2)[/0(2) Lo(2)] , 
vo 

where lo(x) and Lo(x) are the modified Bessel and Struve functions of order zero, 
i.e. g(x) (4+ ll, hence k = 0, 'Y 1, a = O. Some of the 

results are given in Table 4. 

Example 5-Hankel Transforms 

Consider the of 2 with the same notation. The Bessel functions 
Jv(x) and have the property that 

u(x) = {Jy(X)} cos x (Xo(x)+sin x (XI for all v (4.8)
Y.(x) 

where (Xo, (XI E , which follows by manipulating the asymptotic expansions of 
J ,(x) and Yv(x) as x -> . Using (4.8) together with the of h(x) and ¢(x), we 
can re-express (2.5) in the form by (4.4) such that bo, b l E A(O) and 

e4>(x) cos x } 
p = max (4.9) 

e4>(X) sin x 

now Xo, x I, ... , be consecutive zeros of sin x; greater than a, we have p = 1, ' 
kl = 1, q 1 in (4.2). Hence (4.3) become 

,J) F(x/) + vo(x/) I
"0 

Po. (4.10) 
i=O 

The solution of these is again 1,4, and Appendix A). 

Ill.}) 
n (4.11) 

Numerical We have used (4.11) to approximate the 

too Jo(2t)[Oj(t)/Oz(t)] where 

OJ(t) = t(t2 + {2t2 exp [1/5(t2+ 1)1] + 1) exp [-1/5(t 2 

and 
02(t) = (2t 2 + 1f - 4t2 (t 2 + 1/3)!(t2 + 1 

This has been computed to accuracy by ~~''' ....''uu (1956) the 
Euler transformation. 

First of all the above can be put in the form 
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i.e. g(x) 81(x/2)/[28 2 (x/2)] , and a = 0. Although the function has a 
complicated appearance, a careful analysis of the functions 81(t) and shows that 
g(x) is of the form in (2.2) with ¢(x) = x/tO (k = 1) and hE A(!), hence 
Po PI = 0, and therefore P = 0, see The fact that ¢(x) = -ax may tempt one 
to believe that makes the integral converge quickly at infinity, hence no 

",,-,,n"'LAVU is necessary. However, e<P(x) is not until x becomes very 
this being due to the fact that a is very small. Numerical results also indicate that F(x) 
converges very slowly as x increases. Table 5 shows some of the results obtained for 
this 

TABLE 5 

F(Xno+l) and the approximations D~I.O) to the 

[C Jo(t)[e l (t/2)je 2(tI2)] dtl2 
.0 

1 -0,0724 -0,0252 
3 0·0509 -0'02661 
5 0·0399 - 0·026608992 
7 -0,0339 -0·026608998119 
9 -0,0307 0·02660899812797 

In connection with the second column of Table 5, we no£e that only F(x/), 
1~ no + 1 enter the of fj~1. 

This has been treated by Levin & Sidi (1975, 4.6). It can be 
shown that f(x) = J o(x)J1(x)/x satisfies all the conditions of Theorem 1 with m 3. 
The approximations D~3.0) (Definition 2) to this integral have been computed by 
replacing Po, PI' P2 by ()o, ()I' ()2 which all turn out to be 1, i.e. 

2 

f(t) dt = (4.12) 

with Pk E A(O), k 0,1,2. If we substitute (4.8) into (4.12), then we can show after 
some manipulation that 

(4.13) 

VO(x) X-I 


vl(x) = X-I cos 2x (4.14) 


v2 (x) x- 1 sin2x. 


Xl = (1+1)11:/2, 1= 0, 1, ..., so that = 0, 1= 0, 1, ..., we have p = 1, 
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TABLE 6 

Approximations Jj~2.0) to the 2/n 

1 0·6360 
3 0·636616 
5 0·6366199 
7 0·636619770 
9 0·6366197724 

Exact 0·63661977236 ... 

q 2, k j = 2, in (4.2). Therefore, i5~2.j) are given solving (4.3), with U(.l.UVU.:> 

ii = {no, nd. Table 6 shows some of these results. 

5. Convergence Theorems for J5 and 15-Transformations 

"'Yr.",,,,,,,,,,,, of the and 15- transformations are very similar to those of 
the D- and d-transformations of Levin & Sidi (1975) which have been partially 

in Sidi (1979b)., 
Let Q be the +l)x (N+l) matrix of the equations in (3.2) the 

transformation) or in (4.3) (for the 15-transformation), such that the first column of Q 
is the vector (1, 1, ' . "If, (T denotes Let also c be the vector of 
unknowns whose first element is or 15~q·j), and the rest are the 11k,i' 

Let also 

where 

F(x) 

Then Equations (3.2) or (4.3) can be as Qc d, If we denote the first row of 
the inverse matrix Q-l YI' ' . ',YR), then we have 

R 
D= (5.1 ) 

N 
where D denotes J5~q.j) Of 15~q,J1, the fact that Q IQ = I, it follows that I YI 1, 

/=0
N 

and therefore I IYll ;::: I, 
/=0 

Using 

f" f(t) dt = F(x/) + m -I xfhj<kl(xl)fh(x,), 0, 1, , , " (5,2) 

'Ii 
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which follows from (1 and (3.1) and the fact that 

[" f(t) dt = F(x/) + m -1 vk(x/)bk(x/), 0,1, ..., (5.3) 
~. k 

k¢ 

which follows from (4.1) and and the techniques of Sidi (1979b), the following 
results can be proved. 

Process 1 (j -+ CX), nfixed) 

THEOREM 2. Let f(x) be as in Theorem 1 and let the be as explained in Section 3 (for 
the V-transformation) or in Section 4 (for the with the same 
notation. Let Wk(X) and A/Ax) denote x p'1(k)(X) and f3k(X), respectively or vk(x) and bk(x), 

such that 

00 

Define 

(5.5) 
j= 

Then the approximation D satisfies the equality 

fil m-l 

f(t) dt-D = (5.6) 

Proof Similar to Theorem 3.1 in Sidi (1979b). 

Corollary. If 

then 

11
00 

(5.8)f(t) dt 

at least, where 

l1=minn+1. (5.9) 
Proof Similar to those of the corollaries to Theorem 3.1 in Sidi (1979b). 

Process 2 (jfixed, nk -+ CX), k E\Ep) 

THEOREM 3. Letf(x) be as in Theorem 2 with the same notation. Transform the interval 
Xj :::;:; x :::;:; CX) to 0 :::;:; e:::;:; 1 by the transformation e Let 

(5.10) 

be the best polynomial approximation of s to the function Ak(xR), k E 
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(5.11) 

Then D satisfies the equality 

00 R m I1f(t) dt - D (/ I Vtk(Xj+/)u!.(xj+1), 
k=O 
k rf Ep 

Similar to Theorem 3.2 in Sidi (1979b). 

If 

then 

f(t) dt-DI = 0(11-'), as nk -+ 00, k E E\Ep, (5.14) 

at least, for every r > 0, where 11 is as defined in (5.9). 

Proof Similar to those of the corollaries to Theorem 3.2 in Sidi (1979b). 

Similar results for the i in can be obtained as in Sidi 
(1979b). Essentially, the 11k.; turn out to be VAj'U"H'~'"'' to the j, and under 
certain circumstances it can be shown that Ilk. i i -+ 0. In this work, however, we " 
shall not deal with the j. 

We note here that (5.7) and are sufficient but not necessary for the 

convergence of D to f(t)dt. Usually it is very difficult to see theoretically whether 
a 

this condition is satisfied or not. In one case though this can be done with relative ease 
and we turn to that case now. 

6. Convergence Theorems for and V-Transformations Applied to Fourier and 
Hankel Transforms 

We now apply the results of the previous section to the Fourier and Hankel 
transforms that we dealt with in Sections 2,3 and 4. Actually, we shall do this in more 

terms and in detail. We shall let, as in the section, Vtk(X) 
denote either or vk(x), denote either fh(x) or and be as in 
We shall assume as in Sections 3 and 4 that there exist Xi> 1= 0, 1,2, ..., such that 
a < Xo < Xl < ..., lim XI = 00, and that 

l~oo 

(6.1 ) 

and 

Vtk(XC)Vtk(X/+ d < 0, 0,1, .. " k E l' (6.2) 

Actually the set E\Em -1 contains one value of k, say k r. For the sake of 
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simplicity we shall write I/J(x) instead of I/Jr(x) and A(X) instead of Ar(X), Then (6.2) 
becomes 

I/J(X,)I/J(X, + 1) < 0, 1= 0, 1, .... (6.3) 

Similarly, (5.2) and/or (5.3) become 

Loof(t)dt = F(x,)+I/J(X/)A(X,), 1= 0, 1, ... , (6.4) 

and Equations (3.2) and/or (4.3) become 

D = F(x,)+I/J(x,) I 
n 

X/xl, j ~ I ~j+n+1, (6.5) 
i=O 

where n denotes nr for short. 
For the Fourier and Hankel transforms dealt with in Sections 2, 3 and 4 we have 

the following: m = 2, p = 1 = q. For the D-transformation (6.3) holds provided 
g(x) > °for x > a. For the D-transformation (6.3) always holds. 

The solution for D of Equations (6.5), by using Cramer's rule can be expressed as 
D = det M/det K , where M and K are (n +2) x (n +2) matrices. The matrix M is given 
by 

F(xj)!I/J(X) F(xj + 1 )!I/J(xj +d F(xj+n + 1 )!I/J(xj +n + d 
1 1 1 
-I - 1 -IM= Xj xj + 1 xj + n + 1 (6.6) 

-n -n -n 
Xj Xj + 1 Xj +n + 1 

and the matrix K is obtained from M by replacing the first row of M by the row vector 
(1!I/J(x), 1!I/J(xj +1), ... , 1!I/J(xj +n +d). 

If we now denote the minor of F(xj +,)/I/J (xj + ,) in M (or of 1!I/J(xj +,) in K) by Tt;, and 
expand det M and det K with respect to their first rows we obtain 

n+1 

I (-1 )'[Tt;!I/J(xj+,)]F(xj +,) 
. '=0

D = n+ 1 (6.7) 

I (-1)'[Tt;!I/J(xj +,)] 
'=0 

hence 

I=O, . ..,n+l, (6.8) 

in Equation (5.1), where (Yo, 'YI' . . . , 'Yn + d is the first row of the inverse matrix Q-I . 
The minors Tt; are given by 

Vo = V(xj-+\, . . " Xj-+~+I) 

0< I < n, (6.9) 
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where 

(6.10) 

(0 (1 (~ 

is the Vandermonde determinant. It is known that 

(6.11 ) 
O~i<j~n 

and therefore if (0 < (I < ... < (n, then V((o, (I"'" (n) > O. ~-
Since Xo < XI < ..., all of the V, have the same sign. Using this fact, together with 

(6.3), we can see that the quantities ( _l)/v,/IJ!(Xj + I), 0 ~ I ~ n + 1, all have the same 
sign. Therefore, YI > 0 for all I, which follows from (6.8). (We have also proved that if 
(6.3) is satisfied, then equations (6.5) always have a unique solution, since we have 
shown that the determinant of the matrix of coefficients is non-zero.) Consequently 

n+1 n+1 

I IY/I = I YI = 1. (6.12) 
1=0 1=0 

Theorem 2 then becomes 

00 

THEOREM 4.<. The approximation D to 1f(t) dt satisfies 

001f(t) dt-D = ~t~ YI!{!(Xj+/)Wn(Xj+/), (6.13) 

where 
n 

wn(x) = A(X) - I Xjxi (6.14) 
i=O 

and A(X), which is in A(O), has the following asymptotic expansion: 

A(X) ~ I
00 

Xjxi as x -> 00. (6.15 ) 
i=O 

Corollary. For n fixed and j -> 00 (i.e. Xj -> (0) 

1100 

f(t) dt - DI = O(Xj-n -I). (6.16) 

Proof. From (6.13) it follows that 

00 

(6.17)11 f(t) dt-DI ~ Ct~ IY/I) ~~a~ 1!{!(x)1 ~~a~ Iwn(x)l· 

(6.16) now follows from (6.12) and by using the fact that !{!(x) = 0(1) and 
wn(x) = o(x-n- I

) as x -> 00. 
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Similarly, Theorem 3 becomes 

THEOREM 5 . The approximation D to LX) f(t) dt satisfies 

LX) f(t) dt-D = ~t~ YIl/!(Xj+I)Un(Xj+I), 	 (6.18) 

where 

(6.19) 

and 
n 

1tn(O = 	I CXn,i¢i (6.20) 
i=O 

is the best polynomial approximation of degree n in ¢ to 2(xj/¢) in [0, 1]. 

Corollary. Defining ¢l = XjXl' I = 0, 1, .. . , we have 

00 f(t) dt - DI ~ max 1I/!(Xj¢I)1 max lun(xjOI (6.21 ) 
Ifa j ,;;; I';;;j+n+1 0';;;~';;;1 

hence for j fixed and n --+ 00 

If" f(t)dt-DI = o(n-I') for any J.l. > 0. (6.22) 

Proof 	(6.21) follows from (6.18) and (6.12). (6.22) follows from the fact that 
I/!(x) = 0(1) for all x> a and the fact that max lun(xj¢)1 = o(n-I') for any J.l. > 0. 

0';;;<,;;;1 

This in turn is a consequence of the fact that 2(x) is infinitely differentiable for all 
x > a including x = 00 (hence 2(xj¢) is infinitely differentiable for °~ ¢ ~ 1). 

Another proof of (6.21) will be given in Appendix B. 

Note. The situation in which Yl > °for all I is the most ideal situation from the 
numerical point of view. This suggests that the error in the computed value of D is of 
the order of the maximum of the errors in F(XI)' For this point see Sidi (1979b). 

7. A Further Application to Complex Fourier Transforms 

In Section 6 we have seen that the oscillatory nature of I/!(Xl), I = 0, 1, ' .. , forces 
the condition in (6.12) which in turn guarantees the rates of convergence in (6.16) and 
(6.22). It turns out for complex Fourier transforms too, the points Xl' I = 0, 1, ... , can 
be chosen so as to make I/!(Xl) oscillatory. 

Let us putf(x) = e6: g(x) where g(x) is again as in Section 2, sub-section on Fourier 
transforms. Then f(x) satisfies the linear first order homogeneous differential 
equationf = pJ', where 

(7.1 ) 

A simple analysis shows that if k > 0, then PI E A(-k+ I), and if k = 0, then PI E A(O). 

2 
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Hence in both cases PI = °and all the conditions of Theorem 1 are and 

. _ {- k + 1, if k > ° 
Po II - 0, if k 0. 

Hence 

(7.3) 

where flo E A(O). Using the properties of g(x), we can also express (7.3) in the form 

Loo J(t) dt xPo+ Y (7.4) 

with bo E A(O). 

Consider now the integral J(t) dt with a ;;?;: °andJ(x) as above. By taking Xo to 

be the smallest zero of sin X which is than a and Xo, XI' X2' ..., be the 
consecutive zeros of sin x, i.e. XI = xo+ In, I 0, 1, .. " we have that -1, 
I 0,1, ... , Hence from (7.3) we obtain 

['00 J(t) dt rX1J(t) dt+ (-I)lxfOg(x/)fJo(x/), 1= 0, 1, .. (7.5) 
~a ~a 

and from (7.4), we obtain 

l°O J(t)dt= l x1J
(t)dt+( (7,6) 

means that ljJ(x), in the notation of Section 6, satisfies (6.3), in the D­
of Levin & Sidi (1975) provided g(x) > °for x > a, and in the D-

transformation, Hence the approximations D~~·j) and ,i) are computed by 
Equations (6.5), or from 

D (7.7) 

where D stands for D~1.J) or D~1,j) depending on the choice of "'(x).
o 0 

As mentioned above, Theorems 4 and 5 and their corollaries directly to these 
approximations. 

We note that the result here for the D-transformation is a generalization of 
that due to Levin (1975), while the D-transformation is new. However, the special 
choice of the XI> which has been guided by the results of Section 6, considerable 

over the results of Levin (1975) who uses X I+ 1 xII, 1= 0, 1, .. ,. 

This work is based in part on the last chapter of the author's Ph.D. thesis which 
was done under the supervision of Prof. 1. M. Longman at the Tel Aviv 
The author wishes to thank Prof. I. M. Longman for introducing him to the subject of 
acceleration of convergence and his continued support and 
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Appendix A 

We shall now consider the solution of the linear equations 

T = F(x,)+v(x,) I 
n 

c5Jx;' j:( I :(j+n+ 1, (A.1) 
i=O 

where T and the c5 i are unknowns and Xo > °and XI = Xo + Is, I = 0, 1, ... , such that 
s > °is a fixed constant. Defining c5; = c5jsi , i = 0, ... , n, we can write equations (A.1) 
in the form 

T = F(x,)+v(x,) I 
n 

c5i/(xo!s+l)i, j:( I :(j+n+l. (A.2) 
i=O 

Now these equations can be solved using Cramer's rule and the procedure described 
in Levin (1973), and the result is 

n+ I (n+ 1)
T=r~o(-1)' r (xo!s+j+r)"F(xj+r)/v(x j +r) 

(A.3) 
n+ 1 (n+ 1)
r~o (-1)' r (xo!s+j+r)"/v(x j +r) 

Appendix B 

The following proof of (6.21) has been given by Prof. Nira Richter-Dyn of Tel-Aviv 
University (Private communication). 

Subtracting (6.5) from (6.4) and dividing by I/J(x l ) we obtain 

l°O!(t)dt-D . 


I/J(x,) = A(X,) - i~O Xjx), j:( I :( j +n+ 1. (B.1 ) 
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Defining ~ = xi x and ~l = xixl, I = 0, 1, ... , we write (B.1) as 

I oo f(t) dt - D 

t/!(x/) = 2(xRd-Pn(~/)' j ~ I ~ j+n+1, (B.2) 

where P.(~ ) is the nth degree polynomial 

Pn(~) = L 
n 

(X;/X))~i. (B.3) 
i=O 

Using (6.3) in (B .2) we have that 2(xi O- Pn(O assumes alternately positive and 
negative values on the n +2 consecutive points ~j > ~j+ I > ... > ~j+n+ l ' Invoking 
now one of the theorems of de la Vallee Poussin, see Cheney (1966, p. 77), we have 

min 12(xi~/)- Pn(~/)I ~ max IUn(xi~)I. (B.4) 
j " /"j+n+l . O"e " l 

Substituting (B.4) into (B.2), (6 .21) now follows. 
Of course in order to be able to write down the steps above we need to show that 

Equations (6.5 ) have a unique solution. And this has been done prior to Theorem 4. 


