A new method for deriving Padé approximants for some hyper-

geometric functions

ABSTRACT

Avram Sidi (*)

In this work a unified method for obtaining the Padé approximants for some hypergeometric
functions is given. This method is based on a set of linear equations that are obtained from the
determinant expressions for Padé approximants and their solution by using two simple theorems

developed in the text.

1. INTRODUCTION AND THEORY

Let .
f(z)= Z a 2" (1.1)
n=0

n

be a formal power series, The (m/n) Padé approxi-
mant to (1.1), if it exists, is defined to be the rational
function

R z)= _mzi(_zl__ (1.2)

m, n(*) = Q. n (@

whose numerator Py, p,(2) is a polynomial of degree
at most m and whose denominator Qp, ,(z) isa
polynomial of degree at most n, such that

£()-Rpy p(2)=0E™ 2+ (1.3)

Rp, n(2) can be expressed in the form (see Baker [1],
p-9):

Rpp,n()= 45N, a4
where »
_anm—n Zn_lFm n+1 zOFm ]
im-n+1 m-n+2 m+1
M=tap, n42 m-n+3 m+2
_am m+1 am+n_

. (1.5)
] k .
where F_] —k2=:0 az, j=01,..., and Fj =0 and

a;= 0 for j < 0. N is obtained from M by replacing

the first row of M by the vector (2", 2™~ 1. ) of

course, we assume in (1.4) that det N # 0, Judgmg
from above we have the following :

Lemma

R, n(z), if it exists, is the solution to the set of linear
4]
equations

m-r m-
20T =27 TTR m,n(® + 2 5:a (1.6)

irad
r=m-n,m~-n+1,...,m,

where the 8; are additional unknowns, and the deter-
minant of coefficients is non-zero.

Proof
Solve for Ry, 1, (z) by using Cramer’s rule .

It turns out that for some hypergeometric functions
the equations in (1.6) for m > n -1 can be solved for
Ry, n(2) analytically in a simple form. In order to be
able to do this we need the following result :

Theorem 1

Let Tand v;, i=0,...
ing set of equations :

,n-~1, be defined by the follow-

b n -1 %
A = T+c + —_—], 1.
[70 i= 1 a+r+1—1] (1.7)

r=k, k+1,....k +n,
or
A<bTic s i

= + ’ B
r T cr i=0 (a-+l')i (1 8)
r=k, k+1,...,k+n,
where

a+r+i-1+0, i=1,...,n-1, r=k,..

Then

Hk+n,
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Ak+J

+]

jg 17 () @+kaidy 4

(-1) ( D) (a+k+i),_

The Pochhammer symbol (a) ; is defined by

1 if j=0
(a): = (1.10)
J i .
- (a+i-1) ifj=1,2,..,
i=1

Proof
Multiplying (1.7) by (@ +1), _4/c, we obtain :

Ar br
(@+1)y g7 =@+0)y 3 =T
r X

nil (a'+r)n—1
tlpE+aat 2 Moy )
: (1.11)

r=k,...,.k+n

Now the term inside the square brackets on the right
hand side of (1.11)is a polynomial in r of degree

n -]
n-1, since (@+r), 1= .]'[1 (@+r+j-1).

Similarly, if we multiply (1.8) by (a+r1), _4/c., we

obtain :

A b n-1 (a+r)
a o (a41), LT+ = gzl
@+1)y1 <, (@+r)nq c, L=o71(a+r)i

r=k,...,k +n. (1.12)

The summation in the square brackets on the right
hand side of (1.12) too is a polynomial in r of degree
<n-1. Now if we define Ap(x) = p(x +1) - p(x), and

Azp(x) = A[Ap(x)], etc., then APp(x) = 0 whenever
p(x) is a polynomial in x of degree <n-1. Let us now
apply AR to (1.11) or (1.12) with r = k. This is equiva-
lent to multiplying each of the equations in (1.11) or
(1.12) by a constant and then forming their sum, The

new equation that we obtain from both (1.11) and
(1.12) is

A b
An[(a+k)n__1—éii 1= A%[(a+k),_; ch]’ (1.13)

where A™ operating on the summations on the right
hand side of (1.11) and (1.12) gives zero. Solving
(1.13) for T we obtain :

AM(@+k), | —K]
T= i Ck , (1.14)

by
A(a+k), ¢ Q]

which, upon using the relation

=2 "I ak+i,

ie anciltr caan +tA ha /1 QY

(1.15)

Another version of theorem 1 which is also useful is
as follows :
Theorem 2

Let T and Y i=0,...,n-1, be defined by the follow-
ing set of equations :

k+n
(1.16)

such that p;(x) are polynomials in x of degree <n-1.
Then T is given by :

A;
2 Ne 1)) §H—= k”

T=3 - k+j | (1.17)
2 i) = k”
j=0

n-~1
A =bT+c, iEoyiPi(r), r=k, k+1,...,

Proof

Divide (1.16) by c, and apply to the resulting equatlon
with r = k the operator AR, remembering that

A"p;(x) = 0 for all i. Finally, use (1.15) to obtain (1.17).

2. APPLICATIONS

Example 1
f(z) = 1F1(1:8:2) =

°° 2
ol

For this case aj=1/ (5) , j=0,1,.
(1.6) for m = n-1 become

—, f+0,-1,~2,,

. Hence equations

5.
2MTE =z ’rR (z) + E —r
: 1By
r=m-n,...,m, (2.1)
Using the relation
(@) 4.q= @pla+Pg 2.2)
equations (2.1) can be put in the form
n-1 v
ZBTR = M7IR (z) + 1 )2 L s
¥ m,n ) (B)H_1 i=0 B+ r+1);
r= m—-n,u-;m’ (2-3)
where ;= 6i+1’ i=0,1,...,n-1,

The linear system in (2.3) is of the form (1.8) with

A =2"7F, be=2" T, T=Ry 5(2)

cy=1/(8)r +1> @a=B+1, k=m-n. Hence using (1.9)
of theorem 1 we obtain :

Rm,n(z)

n ‘o )
jEO (—l)J(j Y(B+m-n-+j +1)11—1(B)m-—n+j 17

n-j

1:m--n+j

n j n . n-
Z 0('1) (j JB+m-n+j-1); 1(B)my_n4j+12
1= 2.4)
which, upon making use of (2.2), can be put in the form



2 n-j
A (") Bm+j? Fmonsj
an’n(z) ~ . ?

4 jn
§ (1)()(6)m+J

(2.5)

For 8= 1, f(z)= exp(z) and for this case (2.5) be-

comes

n J(m+_1)! n-j m- -n+j i
j>=:0( )(n'J)'J' ‘ 120 il

Ry n(z): -

i % (_1)] (m +J) ! n-j

j=0 (n-j)1j! (2.6)

Example 2

f F.(1,u38;z ce (u)j zj

(z)=5 1(Lu3B52) = _]—0 (B)J ’

u,B=0,-1,-2,..
For this case 2= (ﬂ)j/(ﬁ)j ,j=0,1,..
equations (1.6) for m > n-1 become
(M) 44
! (B)r +1 .

. Therefore,

TR = MR ) 4 z 5
(2.7)

I=m-1N,..,m

Using (2.2), the equations in (2,7) can be reexpressed

in the form

(Mg B B+rtD) 4

TF, =Ry () +

r=m-n,..., m (2.8)
Now, forp=1, 2,...,
War+l)y  (rapsel)r+p+2) ... (c+pep)
(B+l'+1)p (t+B+1)(x+B+2) ... (r+B+D)
P A
=1+ 3 P23 (2.9)
q=1 B+r+gq
where AP q 27 constants. Therefore,
n +r+1 n~-1 7.
za(”r )i-1 i (210

— +
=1 1(B+r+1)1 1 =70 i=1 B+r+i

where Vo= _21 8i and Yp fori=1,...,n-1, are linear
1=

combinations of products of the §; and the AP g
b
whose explicit form is not of interest to us in this

work. Therefore, equations (2.8) can be written in the
form (1.7) with A, b,, and T as in example 1, and
Cr= (M)r+1/(ﬂ)r+1, a= 3+1, k= m-n.

Using theorem 1 again we have :

Rpm, n(z) 4

n . B)r . .
¥ ntitl m-n+j+1l n-j
j=0( ) (J)(ﬁ+m n+j+ )n'lm(“)m-mju

B)pyq i=1 L(B+r+l),_;

m-n+j

(3)m—n+j +1 zn-j

£aa)

2 (OB rmntity, g

Making use of (2.2) we obtain :

n (8) -

3 jn m+]j n-j _
) <z>-<j=°( D e Fenss
m,nt jn (6)m+_] n-j

z () 2

j=0 J (“)m—n+j+1 (2.12)

Forf=1 f(z)=1Fq (k)= (1~2)* and Ry 1 (2)

for this case becomes : -

Rm’n(z)
g madt T F .
i=0 il(n=i)! . m-n+j
J J'(n J) (#)m_n+J+1
B mapt P
i=0 jln-j)! (M) . (2.13)
i jHn-j)! m-n+j+1
For f=p +1, f(z) =,F1(Lps1+1;2)
© ]
=uZ Z ., M=0,-1,-2,..., hence (2.12)
=0 p+]

for this case becomes :

2 (- 1)J(J) (K +m-n +j+1)nzn'jF

J O m—n+j
Rinn(2) = — —
_Eo(—l)J(j)(/.l+m—n+j+1)nz J

= (2.14)

For =1 £(z) = ,F; (1,15252) = -2~ L log (1-2) and
hence (2.14) becomes :

Rnn(@)
(_1)j (m+j+1)! n-j )
_J=0" " jl(n-j)l(m-n+j+1)! m-n+]
§ (1)_] (m+j+1)! n-j
j=0" 7 jl(n-j)!(m-n+j+1)! (2.15)
-1/2

Foru=1/2 f(z)= 2F1(1,1/2;3/2;52) =2 arctanhzllz,

and Ry n(2) is similarly obtained from (2.14).

Example 3

w0 .
£(2) = 5F (L, 52) =j§0 (u)sz, p#0,~1,-2,...

Equations (1.6) form > n-1 become

n
m- m-—
z rFI‘ =2z rRm’n(Z) + izl 8i (ﬂ)r +1i° r=m-n,...,m,

(2.16)

which, with the help of (2.2), can be reexpressed in
the form
zm-rFr =

m-r ) 1
2 Ry a2+ (B)pyg 2 Bi(Rr+l) g,
(2.17)

r=m-n,..., m.

Since each of the (u+r+1);_1, i=1,...,n, isa poly-
nomial in r of degree <n-1, theorem 2 applies and we



obtain, with A, b, and T as in the previous examples,

and cp = (M)r 41
n-j
(' ) ( )—z_——_Fm-n+j
3 (),
Rm,n(z)= W njjﬁ.l
(— 1%

3 Wmoneje (2.18)

The case g =1 is the Euler series which is related to
the exponential mtegral Eq(-1/z), and for this case

f(z)= ZFO(llz)-— E _]'zJ

Example 4
o0 . j
f(z)=_Z p()z,
j=0" .
s-1=0.
It can easily be verified that f(z) is a rational function

whose numerator is of degree < s-1 and whose de-
nominator is of degree exactly s.

p(j)isa P°lyn°mi31 in j of degree

Actually the denominator is just (1~z)°, Letting
m3>s-1and n> m +1 > s, equations (1.6) become :

Zm—rFr - zm—r

n :
Rm,n(z> + i=21 S;p(r+1),

r=m-n,,..,m

(2.19)
Since the sum on the right hand side of (2.19) isa
polynomial in r of degree <s-1<n-1, we can apply
theorem 2 to this case. The result is

2

2:(1)J F

m-n+j

f(z)=R, ()=
z <—1>J(>

m> n-1>s-1.
(2.20)

= Rs-l,s(z) ’

Hence, we have actually constructed f(z) analytically
from its Maclaurin series in a simple manner.

We note that Ry, ,(z) for example 1 and example 2,

in particular for f(z) = exp(z), and f(z) = (1-2)"H,
have been given in the literature previously and can

be found in Luke [3, p. 174, p. 192]. The cases

exp(z) and (1 -z)™H have also been reconsidered re-
cently by Iserles [2] through Kummer’s first identity
for the confluent hypergeometric functions and Euler’s
theorem for the Gaussian hypergeometric functions.

CONCLUDING REMARKS

In this work we have presented a new method by which
Padé approximants to some hypergeometric series can
be obtained in closed analytic form with very little
effort. This has been accomplished by defining the
Padé approximants by the linear set of equations in
(1.6) and then invoking the two theorems of section 1.
It is worth noting that, unlike the previous methods,
the method of the present work makes direct use of
the series themselves.
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