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ABSTRACT

Two new classes of nonlinear transformations, the D-transformation to accelerate
the convergence of infinite integrals and the d-transformation to accelerate the
convergence of infinite series, are presented. In the course of the development of these
transformations two interesting asymptotic expansions, one for infinite integrals and
the other for infinite series, are derived. The transformations D and d can easily be
applied to infinite integrals [¢° f(¢) dt whose integrands f(t) satisfy linear differential
equations of the form f(t)=3, p(t)f*(t) and to infinite series 3%, f(r) whose
terms f(r) satisfy a linear difference equation of the form f(r)=2p, p,(r) Af(r),
such that in both cases the p; have asymptotic expansions in inverse powers of their
arguments. In order to be able to apply these transformations successfully one need
not know explicitly the differential equation that the integrand satisfies or the
difference equation that the terms of the series satisfy; mere knowledge of the
existence of such a differential or difference equation and its order m is enough. This
broadens the areas to which these methods can be applied. The connection between
the D- and d-transformations with some known transformations in shown. The use and
the remarkable efficiency of the D- and d-transformations are demonstrated through
several numerical examples. The computational aspects of these transformations are
described in detail.
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1. INTRODUCTION

In this work we present some nonlinear transformations to accelerate the
convergence of slowly converging infinite integrals and infinite series. These
transformations, in a sense, combine the G-transformation of Gray, Atchison,
and McWilliams [1] and the confluent e-algorithm of Wynn [4] on the one
hand, and some transformations that were obtained by the first author [5-7]
for accelerating the convergence of infinite integrals and series on the other.

The G-transformation and the confluent e-algorithm have in common the
property that they integrate exactly from zero to infinity functions f(#) which
satisfy linear differential equations with constant coefficients on (0, c0); i.e.,
(in the notation of Gray, Atchison, and McWilliams [1]) the quantity
G, [F(t); k] of the G-transformation and (in the notation of Wynn [4]) the
quantity €,,(t) of the confluent e-algorithm are exactly equal to [5° f(¢)dt.
For more details on both the G-transformation and the confluent e-algorithm
the reader is referred to [1].

For future reference, when dealing with infinite series, we define A" to be
the set of functions a(x), which, as x — o0, have asymptotic expansions in
inverse powers of x, of the form

a(x)~x7(a0+-a—l+9—2+---), (1.1)
X x2

and when dealing with infinite integrals, we define A") to be the set of
infinitely differentiable functions a(x), satisfying (1.1), and such that their
derivatives of any order have asymptotic expansions, which can be obtained
by differentiating that in (1.1) formally term by term.

It turns out numerically. that the G-transformation and the confluent
e-algorithm work efficiently on functions of the form f = ag, where a € A
for some y and where g satisfies a linear differential equation with constant
coefficients, provided F(x)= f§ f(t)dt is not monotonic as x — co—and
therefore, on sums of functions of this form.

In the work of Levin [6] too we find that there is a strong connection
between the differential equation that the integrand satisfies and the method
of accelerating the convergence of the infinite integral, or between the
recursion relation that the terms of the infinite series satisfy and the method
of accelerating the convergence of the infinite series. In this work of Levin
methods are given for accelerating the convergence of infinite integrals of the
form (§°a(t)¢(t)dt and infinite series of the form 32, a(r)¢(r), where
a € A for some v, and where ¢(¢) satisfies a specific differential equation in
the case of the infinite integrals, and ¢(r), r =1,2,..., satisfy a specific
recursion relation in the case of the infinite series. That is, for each different



Two New Classes of Nonlinear Transformations 177

function ¢(t) or different sequence ¢(r), r=1,2,..., one has a different
transformation. This point will be further clarified below.

So far nonlinear transformations have been developed for a limited class of
infinite integrals and infinite series. The main purpose of this work is to
develop a transformation or a class of transformations that will work effi-
ciently on a large class of infinite series and infinite integrals that arise in
many problems of applied mathematics and physics. A property common to
most of these problems is the fact that many of the functions of applied
mathematics and physics satisfy linear differential equations and /or linear
recursion relations. This fact will be the starting point in the development of
our nonlinear transformations.

We shall see that it is possible to obtain a class of nonlinear transformations
D), that will accelerate the convergence of infinite integrals [ f(¢)dt
where f(t) satisfies any linear differential equation of order m with any
coefficients in AY) for some values of y. Similarly we shall see that it is
possible to obtain another class of transformations d‘™ for accelerating the
convergence of infinite series 322, f(r) where f(r), r=1,2,..., satisfy any
linear (m + 1)-term recursion relation with coefficients in A for some values
of y. This recursion relation can be written as a linear mth-order difference
equation with coefficients again in A(" for some values of y, this difference
equation being the discrete analogue of the differential equation mentioned
above.

Levin [6], in the development of his transformations for infinite integrals of
the form S= [ a(t)p(t)dt, where a€ AV for some y and where ¢(t)
satisfies a second-order linear differential equation, made use of an asymptotic
expansion of the “remainder” [ a(t)¢(t)dt, of the form

00

[ “a(t)e(t)dt~ 3 nh(x), (1.2)

k=0

where 7, are constants and 8,(x) are functions which depend on a(x), a’(x),
¢(x), ¢'(x), and explicitly on the coefficients of the differential equation that
¢(x) satisfies. For infinite series of the form S=3%,a(r)¢(r), where a(x)
considered as a function of the continuous variable x is in A for some y and
where ¢(r), r=1,2,..., satisfy a linear 3-term recursion relation, Levin [6]
derived for the “remainder” 222 pa(r)¢(r) an asymptotic expansion of the

form
00 >}

2 a(r)é(r)~ Z nb(R), (1.3)

r=R k=0

where 1, are constants and §,(R) are quantities that depend on the elements
of the series, and explicitly on the coefficients of the recursion relation that
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the ¢(r) satisfy. Since the 6,(x) in (1.2) and the §,(R) in (1.3) enter Levin’s
transformations, these transformations cannot be used unless one knows fully
the differential equation that ¢(t) satisfies or the recurrence relation that the
¢(r) satisty.

In Sections 2 and 5 of this work, in the development of the D{™- and the
d™-transformations, we make use of some asymptotic expansions which are
interesting by themselves. For an infinite integral [;°f(¢)dt, where f(¢)
satisfies a linear differential equation of order m of the form

0= 3 n(e)r o) (19

with p, € AP, k=1,2,...,m, under certain mild conditions to be described in
Section 2, we obtain the asymptotic expansion

. m—1 0
[TAtydt~ 3 fO(x) 3 B as xoo0,  (15)
x k=0 i=0
where the j, are integers with the property j, <k +1, k=0,1,...,m —1. For
an infinite series 22, f(r), where f(r), r =1,2,..., satisfy a linear difference
equation of order m of the form

= 3 plr)ats(r) (16

with p,€ A®, k=1,2,...,m, when the p,(x) are considered as functions of
the continuous variable x, again under certain mild conditions to be described
in Section 5, we obtain the asymptotic expansion

o0 m—1 00

2 flr)~ 2 &f(R) X By ;R*™ as Rooo, (1.7)
r=R k=0 i=0
again with the j, being integers with the property j, <k +1,k=0,1,...,m —1.
Both in (1.5) and in (1.7) the B, ; are constants. Since the quantities f *)(x),
k=0,1,...,m—1, and A*f(r), k=0,1,...,m —1, enter the D™- and the
d™-transformations respectively, we see that full knowledge of the differen-
tial equation (1.4) or the difference equation (1.6) is not required.

To the best of our knowledge, the existence of such asymptotic expansions

has not been known in full generality until now except for a few special cases
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like
°°smt sinx { O!+1!1 2143  4!+5!
—si(x) = [ SLar~ x( e B —)
+(@1)(1__+ﬂ_...),
x x?  xt

where (sint¢ )/t satisfies a linear second-order differential equation (see Exam-
ple 4.1 in Section 4),

o 1 I12X3  12X3%2X5 12X32Xx5%ZX7
f]o(t)dt~10(x)(;— = + - . +)

x X

2 2 22 2
+]0(x)(1_1_+1 X3 1 36><5 +)

x x

where J(t) also satisfies a linear second-order differential equation (see
Example 4.2 in Section 4), and

21 1{ 1 11 Byys\1 B,
2 F[s~1+§ﬁ'+? Jm 73w ]

where s>1 B; are the Bernoulli numbers, and (2) k=0,1,..., are the
binomial coefficients. This last expansion can easily be obtained from

% r—ISN( )_s—l R*ll)

+ L l..?z(S)l B(s+2)1
B2 2\1JR 4\ 3 Jps ’

where {(s) =22 =1 1/r¢ is the Riemann {-function (see [17, p. 538)). Here the
terms f(r)=1/7°,r=1,2,..., satisfy the 2-term recursion relation f(r +1) =
(1+1/ryf(r).

In Section 3 we shall show that the D-transformation, in a sense, gener-
alizes the G-transformation, the confluent e-algorithin, and the P-transforma-
tion of Levin [7], and in Section 6 we shall show that the d-transformation
generalizes the e-algorithm of Wynn [3] and the ¢ and u-transformations of
Levin [5).
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In Sections 4 and 7 we shall illustrate the use of the D- and d-transforma-
tions with several examples of infinite integrals and infinite series. It turns out
that the D- and d-transformations work efficiently on all the integrals and
series on which the known methods work efficiently, and in addition to that
they work on infinite integrals and series such as [{°sin(at?+ bt)dt,
JEIOI@)Ydt/t, T2 06 x) /[N I(A)]2 [A, is the rth positive zero of
Jo(x)], and 22 cos(r + §)BP,(cos ¢), on which the known transformations fail
to work.

The computational aspects of these transformations are discussed in detail
in Section 8.

2. THE D-TRANSFORMATION FOR INFINITE INTEGRALS.

Let us define B™ to be the set of functions f which are integrable on
(0, o0) and which satisfy linear mth-order differential equations of the form

f2)= 3 p) o), (21)

where p, € AV, k=1,2,...,m. We assume that this m is minimal.

We shall now develop the D-transformation which will accelerate the
convergence of slowly converging infinite integrals whose integrands are in
B, In the next two sections we shall deal with some special cases of the
D-transformation and apply it to some infinite integrals whose integrands are
in B® and B®.

Let us start by integrating (2.1) from x > 0 to infinity:

[“0d= 3 [“norea ()

Assuming that im , _, o p(x)f* P(x)=0, k=1,2,...,m, and integrating by
parts the right-hand side of (2.2), we obtain

m

[0 di== 3 pulo)r* = [pie)fte)

= 3 [Tnore e (29)

x
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Assuming next that im_ _, , pi(x)f*"2(2)=0, k=2,3,...,m, and integrat-
ing by parts the last term on the right-hand side of (2.3) we obtain

[PAa=— 3 n®f )+ 3 s ()
x k=1 k=2

[Pl piO+ O d+ 3 o) r () .
x k=3

x

(2.4)
Assuming, in general, that lim, _ . p% " P(x)f* (x)=0, k=i, i +1,...,m,

i=3,4,...,m, we keep integrating by parts until all derivatives of f disappear
in the last term on the right-hand side of (2.4). The final result is

[[r0a= 3 1’ 3 054 )

(=]
¥
x

Rearranging the first term on the right-hand side of (2.5), we obtain

él (~ l)kpi"’(t)] f(t)at. (2.5)

[10d="3 a0 @+ [TaOd @o)

where

g (x)= 3 (-1 P D(x),  k=0,1,...,m—1,
i=k-+1

(2.7)

m

a,(x)=k2 (—D*pf().

=1

We now use the fact that if h € A, ie., h(x)=hex?+ O(x* 1) as x - 0,
then A'(x)=yhyx? 1+ O(x772), i.e., W€ AY™D, and if h€ AQ, then W' E



182 DAVID LEVIN AND AVRAM SIDI

AT, Since p,€ AP, j=1,2,...,m, then a, ;€ A®tD k=0.1,...,m—1, and
a,€ A®. Now a,, being the derivative of a, o, does not contain the power
x~ ! in its asymptotic expansion; hence it can be expressed as

ay(x)=ay +cy(x) (2.8)

where a, =37 (—1)*k!p; 0, Pro =lim, _, ,x *pp(x), k=1,2,...,m, and ¢,
€ A9, Assuming that a; #1, (2.6) can be written as

00 m-1 o
[ 0yde= 3 b P+ [ChOfd @9)
where

bl,k(x)z%l%(gxll, k=0,1,....m—1,

(2.10)
alx)

l_al )

by(x)=

We now see that b, ;€ A**Y, k=0,1,...,m —1, but b, € ACD; e, by(x)=
O(x~2) as x - 0. Therefore, the integral f b,(t)f(¢) dt converges to zero

faster than [ f(t)dt as x > c0.
In order to continue the above process we shall prove the following
lemma.

Lemmal. Letb,e A" D121, and 37 I(l—1)---(I—k+1)p o *1.
Then

Y m-—1 w
[To)f)di= T by ) O()+ [T bia(O)A8) dt,
* k=0 M
(2.11)
where by, € A% D, k=0,1,....m~1, and b, , € AT,
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Proor. Substituting (2.1) in [ b,(t)f(t) dt and using the procedure that
led to (2.6), we obtain

[H0f0d="3 a2 D@+ a0, @12)

where

m k-
g (x)= 2 (’1)f+k[bz(x)1’f(x)](’ Y k=0,1,...,m—1,
j=k+1

o= 3 (D TBp]”

The conditions lim, . p§ P(x)f* Nx)=0, k=4,i+1,...,m, i=
1,2,...,m, that were imposed previously are sufficient for (2.12) to be true for
all I=1, since they also imply lim__, o [b,(x)p(x)]¢ VF* I(x)=0, k=1,i
+1,...,m,i=1,2,...,m, which are sufficient for (2.12) to hold.

Now a, ;€ A*™D k=0,1,...,m~—1, and a,,,€ A”'"V, Since a,,,€
ACD and b€ AT, we can write

a1 y(%) = @ 1by(x) + ¢y () (2.14)

with a;, ;=37 I(I—-1)---(I—k+Dp,, and ¢, ,€ AT, Since by as-
sumption «,;,; % 1, we obtain (2.11) with

_ a1 (x) _
bl+1,k(x)— l—al+l s k"o,l,- ,m 1,
(2.15)
by, (x)= (%)
1+1 x)‘_ l_al+1 >

so that b, € A*"D and b, ;€ A9, thus proving the lemma.

Starting now with Equation (2.9), with a, ;(x), k=0,1,...,m —1, a,(x),
ay, ¢i(x), by i (x), k=0,1,...,m —1, and b (x) already defined in (2.7), (2.8),
and (2.10), and assuming that 3, I(I—1)---(I—k+Dp,  #1 for =1,
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we use Lemma 1 to define recursively @, , ;(x), k=0,1,...,m —1, a,, (%),
al+1, Cl+1(x), bl+l, k(x), k :0, 1, ves s — 1, and le(x), l = 1,2,. Y (R 1, by
Equations (2.13), (2.14), and (2.15). We then sum Equation (2.9) and

o) m—1 o]
- ¥ k
jf bi(t)f\t)dt— L bH—i,k(x)f( )(x)+J[ bi+1(t)f(t)d"’
x k=0 x

1=1,2,...,n—1, (2.16)

which are obtained by repeated application of Lemma 1. The result is

[(r0a="3 g0 [Ch@sa, @
where

Bi(x)= X b i(x), k=0,1,....m—1, (2.18)
=1

In (2.17) Br€ A**D k=0,1,...,m —1, and b,€ AT "™, Let the asymp-
totic series of p,(x) begin with the power x'.. Since p,& AV, i, <1. The
condition lim, _ ., p,(x)f(x)=0 which was previously imposed implies that
f(x)=o(x"1)as x — o0. Since b,(x)=O(x"""!) and f(x)=o(x" ") as x — 0,
the integral (b, (¢)f(t)dt is o(x " "'1) as x - c0. If we now choose n and x
large enough, we can neglect [* b, (#)f(t)dt in (2.17) and still get a good
approximation to S = [°f(t)dt; i.e., we can approximate S as

s+ [ xf(t)dt+t§—0 B2(x) FP(z). (2.19)

Of course, in (2.19) one has to compute the functions 8(x), k =0,1,...,m — L.
But the computation of these functions becomes difficult, as is seen from
Equations (2.18), (2.15), (2.14), and (2.13). However, as we shall show below,
we can still make use of (2.19) to derive a transformation that will produce a
good approximation to S.



Two New Classes of Nonlinear Transformations : 185
Since
e(x)=B " Yx)+b, (), k=0,1,....m—1, (2.20)

and b, ;€ A*"*D, we can write

Bi(x)==x""1|B

n Bi.1 4 B2 4+ ’B";” +0(x 1)
x <2 x

as x - 00, k=0,1,...,m—1, (2.21)

where the coefficients B; ;,, 1=0,1,...,n, are the same for all Bj(x), k=
0,1,...,m —1, with I > n. Therefore, we deduce from (2.17), (2.21), and the
fact that J2b, (#)f(t)dt =o0(x"""17) as x > o0 that [Pf(t)dt has a true
asymptotic expansion which is given as

m—1

f°°f(t)dt~ 2 FO(x)x*t /3,;,0+£i’—1+’%2+---). (2.22)
x X

k=0

In many cases it occurs that the asymptotic series of p,(x), k=1,2,...,m,
do not all start with the power xF; i.e., some may start with the lower power
of x. We then assume that, in general, p, € AUV, i, <k, k=1,2,...,m. If one
now follows the steps that led to (2.17), one can see that some of the 87,
k=0,1,...,m —1, may have asymptotic series which do not start with x**1,
but with a lower integer power of x, say x'*. For example, if p,€ A©,
k=1,2,...,m (which for instance, with m =2, is the case for Bessel’s
equatlon) then from (2.7)-(2.17) one can see that a,, €AY, k=
0,1,....m— laEA(ll) and hence @,=0, b, , =a,;, k=0,1,....m—1,
and b, =a,l= . Therefore, Br€ A®. In general, Bre A(’*) with
integers and ik<k+1, k=0,1,...,m —1. Actually, B7(x)=0O(b, i(x)) as
x - o00; hence from (2.7) jy<max(iz,; é410—1,....i,,—m+k+1), k=
0,1,...,m — 1. Therefore (2.22) can be replaced by

o ot B, B
[ A)dt~ T fO(x)xk| Bo+ L+ T2 4 ) (2.93)
x x

k=0

We can summarize all that has been said so far in the following theorem.
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THEOREM 1. Let f be integrable on [0, o) and satisfy the linear mth-order
differential equation f(x)=2p, pu(x)f®(x) with p,€ AV, i, <k, k=
12,...,m. Iflimx_,mpi"_l)(x)f("”")(x):O, k=i,i+1,....m, i=12,...,m,
and if for any integer l=—1 we have 37, l(1—1)-- (l~—k+1)pk 0#1
where p; o, =lim, _, ,x *p;(x), then, as x > oo f2f)de has an asymptotic
expansion of the form (2.23) with j, <max(ij,,, 40— 1,....,i, —m+k+1),
k=0,1,....m—1.

We note that the conditions stated in Theorem 1 are sufficient. In all the
examples done by the authors all of these conditions were seen to hold
simultaneously. Therefore, the authors feel that the result (2.23) of Theorem 1
might hold even with a smaller number of conditions.

We note in passing that if f satisfies (2.23) such that 8, , # —1, then fis in
B, This can be proved by differentiating both sides of (2.22).

Having established (2.23), we now define our D-transformation. Following
Schucany, Gray, and Owen [2] and Levin [5-7]), we demand that the
approximation D{™), = to S= [P f(t)dt satisfy the N=1+3""ln,
equations

"ot Be
t

DAy = [ F(E e+ 2 50 Pl
x
1=1,2,...,N, (2.24)

with 8, ; constants and x; chosen to satisfy O<x;<x,<:---<x,. The
equations (2.24) form a linear set in N unknowns, namely, D{™) . and
ﬁk »=01,...,n,—1, k=0,1,...,m —1, and can, in general, be solved for
the N unknowns D,f;")n poeosfmy 1S expected to be a good approximation to S;
however, the coefficients Bk ; do not have to be identical to the B, ; in (2.23),
since the asymptotic series in (2.23) are usually infinite. As it turns out, the
choice of the x; is important, and this point has been investigated by the
second author; see Note Added in Proof. For the sake of simplicity, however,

, we choose
x=¢+(1-1)7, 1=1,2,....N, £>0, 7>0.

Following Gray, Atchison, and McWilliams [1], we then denote D{™)

o, Ny, Ry

by D,(,;")nl [LF(§); ] where F(§)= J& f()dt. Usually it is more conve-
nient 16 use the * ‘diagonal” transformation D{™)  [F(§); 1]= D{™[F(£); 7).

n,n,...,

For the case m =2 and j, = j, =0, which occurs frequently, D{™[F(£); 7] is
given below:
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F(¢&) F(¢+1) cee F(¢+2n71)
A8 fi§+7) - flé+2n71)
&) fé+7) flé+2nT)
¢ (41 E+2nr
f§) fé+7)  fl§+2nT)
A (¢+2n7)" !
¢ fE+ny - f(§t+2nr)
f¢) frE+r)  f§+2nr)
£ E+r E+2n7
f(¢) fl+r)  f(§+2nr)
A S (¢+2n7)" 7!
D®[F(¢); 7] =
1 1 1
8 fg+7)y -+ fl§+2n7)
fl§) Afé+7) flé+2nT)
¢ ¢4+ 1 £42n7
f§) flE+7)  flé+2nr)
S R (§+2n7)" 7!
¢ fE+n) - f(§+2n1)
¢ frE+) f(§+2n7)
¢ £+ E+2nr
£ fE+7) . _flEt+2nr)
A R (£+2n7)" 1

(2.25)

In general, we can write D{™[F(¢); 7] as the quotient of two determinants
using Cramer’s rule as in (2.25). It also turns out that D{™[F(¢); 7] is an
“average” of F(§), F(§+ 1),...,F(§+mnr); ie.,

”i vF(+ir)
D[ F(£); v = 12—, (2.26)

2 Y;
i=0
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where y; are the cofactors of F(£+j7) and are dependent on f(x),
fi(x),....f™ Y(x). Therefore, the D-transformation can be viewed as a
nonlinear summability method.

3. SOME SPECIAL CASES OF THE D-TRANSFORMATION AND AN
EXTENSION OF THE CONFLUENT ¢-ALGORITHM

For m =1 and j, =0 the system of equations (2.24) reduces to that given
by Levin [7] in his development of the P-transformation. Hence the D{V-trans-
formation is identical to the P-transformation of Levin. The P-transformation
has been developed for functions of the form f{x)= e*“*h(x) with w constant
and he A, y<0. It is not difficult to show that these functions satisfy
first-order linear differential equations of the form f{x)=p(x)f'(x) with
p(x)=[h(x)/h(x)+iw]™!, so that p€ AY, which implies that j, =0 in
(2.23). It is worth mentioning that the P-transformation has worked very
efficiently on the Bromwich integral, which is used in inverting Laplace
transforms. This fact may indicate that the D-transformation would also
produce very good results.

If the asymptotic expansion (2.23) turns out to be finite, i.e.,

o m—1 n;—1
[“Roa="3 fo@an 3 Les, (3.)
x k=0 i=0 X

then S= [ A(t)dt =D, .. [F(§);r]forallni=n,, k=0,1,....m—1,
£>0, and 7> 0. As an example of (3.1) we can consider the Bessel functions
of the 1st kind of odd order, namely, [, ,(x), k=0,1,2,.... Using the
relation [16]

w0 k
f Forrr(8) dt = Jo(x) +2 X Ly(x),
x 1=1

together with the different recursion relations between the J;, we finally arrive
at (3.1). For k=1 (3.1) becomes

[@ar=5@( 5+ )+ 5o 1+ %)

As another example we can consider the functions which satisfy linear
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differential equations of the form

m k
= 5 [ 3 et ©2)

Then we can see from (2.7) that a,(x) is a constant; hence b, =0, and b, ;(x)
are polynamials of degree k +1, k=0,1,...,m —1, i.e,

o m-—1{k+1
[Aoyae=3 (_goﬂk,,xk“—f)ﬂ“(x). (33)

If pi(x), k=1,2,...,m, in (2.1) are constants, then b, ,(x), k=0,1,...,m—1,
in (2.3) are constants too, and hence D{™ with j, =0, k =0,1,...,m —1, like
the G,-transformation and the ¢,, in the confluent e-algorithm, integrates
exactly functions which satisfy linear mth-order differential equations with
constant coefficients,

We can make use of (3.3) to obtain another transformation which will
integrate exactly functions which satisfy equations of the type (3.2). We start
by writing (3.3) as

m~—1[k-+1
S-——F(x): 2 (g Bk’ixk+l—i)f(k)(x) (3.4)

k=0

and differentiate this equation M =m(m +3)/2 times to obtain a total of
M +1 equations for the M +1 constants S = [°f(t)dt and B, ,, j=0,1,...,k
+1, k=0,1,...,m —1. We now define the C-transformation for any 1ntegra-
ble function f. We demand that the approximation C(™ to S, satisfy the
M +1 equations

d,‘ m—1[{k+1 _

W C™—F(x)— 3 ( 2 &,ﬂ"“")f""(ﬂl =0

i=0

k=0

i=0,1,....M, (3.5)

where Bk ; are constants. Equations (3.5) can, in general be solved for the
M +1 unknowns C(™ = C™[F(x)] and ,Bk 5, 1=0,1,....k+1,k=0,1,.
—1. Obviously C™[F(x)]=S if f satisfies. (3.2). It is easy to see that the
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C-transformation is an extension of the confluent e-algorithm of Wynn, since
this algorithm can be obtained by solving the set of equations

d, m—l_
—|m—F(x)— Z Bf®(x)[=0, j=0,1,...m+1, (36)
dx k=0

for ¢,,,.

4. APPLICATIONS OF THE D-TRANSFORMATION

In this section we shall illustrate the use of the D-transformation that was
developed in Section 2 for several functions which are in B® and B®. The
integrals of all those functions considered in this section converge very slowly.
The high-order G-transformations work efficiently on some of these functions
but fail to work on most others.

It is worthwhile to make a few comments on the practical application of
the D-transformation. In order to be able to apply the D-transformation
efficiently one has to know (1) the smallest possible positive integer m such
that the integrand fis in B™, and (2) the parameters j;, k =0,1,...,m —1, in
the asymptotic expansion of [°f(¢)dt. If the upper bounds for the j, are
known, then we can substitute these upper bounds for the j, in the equations
(2.24). If the differential equation that f satisfies is not readily obtained, then
we proceed as follows: Since integrability of f at infinity means that
lim, _ [ f(t)dt =0, we must have

lim £ f®(x)=0, k=0,1,...,m—1, (4.1)
x— o0

in the asymptotic expansion in (2.23). Therefore, we replace j, in (2.24) by
the minimum o, of k +1 and s;, where s, is the largest of the integers s for
which lim, _, ,x°f*)(x)=0. If, with j, replaced by o,, the first few coeffi-
cients, say :Ek,o’ Ek,l,..., By, ., in (2.24), turn out to be very small compared
with the rest of the coefficients, then we can assume that j, = o — 13 in (2.23)
and replace j, by o, —r, in (2.24); and if indeed j, = o, — 1y, then we are
likely to obtain better accuracy for the approximations to S = [§°f(t) dt using
the same number of the F(x;).

We shall now state a lemma that will be useful in determining the order of
the differential equations that the function f whose integral is to be evaluated
satisfies.
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LemmMa 2. If the functions f and g satisfy linear differential equations of
order m and n respectively, then their product fg and their sum f+g, in
general, satisfy linear differential equations of orders less than or equal to mn
and m + n respectively.

Proor. Let fand g satisfy

= 2 pef®, (4.2a)

k=1

n

g= 2 q8". (4.2b)
=1

Multiplying (4.2a) and (4.2b), we get

fe= 2 2 pmaif®g?. (4.3)

k=11=1

In (4.3) we have to be able to express the mn products fg), k=1,2,...,m,
I=1,2,...,n, as linear combinations of (fg)"”, r=12,...,mn. Using
Leibnitz’s rule for differentiating the product of two functions, we have

r
(fg)(r)= 2 (;)f(a)g(r—s), r=1,2,...,mn. (4.4)
s=0

In (4.4) if =0, f© is replaced by I, p, f* using (4.2a), and if s >m,
then £ is expressed as a combination of f*, f”,...,f™), by differentiating
(4.2a) s —m times. The same can be done for g~ when r —s=0 and
r — s>n. Then we will have expressed (fg)”, r =1,2,...,mn, as combina-
tions of the mn products f*g®, k=1,2,...,m, 1=1,2,...,n; ie.,

m n
(R)7=3 T Auf®e®, r=L2,..mn. (4.5)
k=11=1

Now (4.5) is a set of mn linear equations in the mn unknowns f®g®,
k=12,...,m,1=1,2,...,n, and can, in general, be solved to give f*)g® as



192 DAVID LEVIN AND AVRAM SIDI

linear combinations of ( fg)"), r =1,2,...,mn. Hence (4.3) becomes
mn ( )
fe= 2 A(f2)". (4.6)
r=1
For the case of f+ g we add (4.2a) and (4.2b) to obtain
m n
fte= 2 pfP+ 3 qe® (4.7)
k=1 1=1

In (4.7) we have to express f%, k=1,2,...,m, and g®, 1=1,2,...,n, as
combinations of (f+g)®, r=1,2,...,m +n. Using (f+g)" = f" +g®
and the fact that for r>m f) can be written as a combination of
Fof’seosf™, and for r>n g can be written as a combination of
g,g",....g™, the result follows as in the previous case; i.e.,

m+n

f+e= 3 B(f+g)". (4.8)

r=1

CoroLrary 1. If f satisfies a linear differential equation of order m,
then, in general, f satisfies a linear differential equation of order m(m +1) /2
or less.

Proor. The proof follows from the fact that the number of unknowns
F®Pg® in (4.3) is m(m +1)/2 when f=g.

CoroLLARY 2.  If the coefficients py, k=1,2,...,m, and q;, 1 =1,2,...,n,
have asymptotic expansions in inverse powers of x as x — oo, then so do A,,
r=12,...,mn, in (4.6) and B,, r=1,2,...,m + n, in (4.8).

CoroLLARY 3. If f€ B™ and g€ A or g(x)= e, then fg satisfies a
linear differential equation of order m or less with coefficients that have
asymptotic expansions in inverse powers of x as x — 00.

The proofs of these corollaries are easy and we omit them.
From the experience gained in the use of the P- and high-order G-transfor-
mations, we expect that as n tends to infinity, D{™[F(£; 7)] should tend to
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2 f(t)dt quickly if f€ B™ and satisfies all the conditions of Theorem 1.
The numerical results in the following examples indeed confirm this. Conver-
gence properties of the D-transformation have been taken up by the second
author in a separate paper, see Note Added in Proof.

ExampLE 4.1.

I =f0°°s—utl—tdt =2 =1570796326795...

The integrand f(t)=(sint)/¢ is integrable at infinity and satisfies the
differential equation f=—(2/t)f"— f”; hence it is in B®. Therefore, we
expect D® to work efficiently. Also since sint satisfies a second-order linear
differential equation with constant coefficients, we expect G, to work effi-
ciently too. This point has been mentioned in the introduction. From the
differential equation that f satisfies we see that j, < —1 and j, <0. However,
we used the prescription proposed for the case in which the differential
equation is not known explicitly, and in (2.24) we replaced j, by 0, =0 and j;
by o6, =0, where o, =min(k +1, s;), k=0,1. Accordingly D[ f(§); 7] was
computed by solving the 2n +1 linear equations

sin(£ +jr) "§ Bo,

D®[F(£); 7] = F(§+ir)+ : :
PLEE)I=F(E+ i) §tit S, (£+ir)

. . rn—1 )
e Y ST

§+ir o (g+in)

with £ =1and r =1, and F(x)= [§[(sin¢)/¢] dt. The finite integrals F(§ + j7)
were computed correctly to 14 decimal points using a Gauss-Legendre
quadrature formula. We also computed G, [F(£§); 7)]. The results of the
computations with D and G,, are given in Table 1. D®[F(¢); 7] has been
compared with G,,[F(£); 7], since they both use the same finite integrals,
namely, F(¢ + j7), =0,1,...,2n.

For the integral [*[(sint)/¢] dt we have the asymptotic expansion

f“ﬂdtﬁi’”‘(“ 3! _51*".)+cosx( 2! 4l )
P X ’
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TABLE 1
VALUES OF THE APPROXIMATIONS D®@[F(1);1] anD G, [ F(1);1]

TO THE INTEGRAL | = fw[(sin t)/t]dt=m/2°

n DP[F(1)1] Gan[F(1):1]

2 1.63 1.56

4 1.5716 1572

6 1.5707943 1.57080

8 1.57079606 1.5707955

10 1.570796323 1.570796326
*n =2(2)10

which can easily be obtained by integrating (sint)/t by parts a sufficient
number of times. We note that since [(sin x)/x) =(cosx)/x —(sinx)/x%, we
can rearrange (4.10) and obtain

fwsmtdt~51nx(0l+ll_2l+3!+4l+5!_“.)
x t x x x3 x5
sinx \’ 21 4]
+(——x—) (1—;4';—-”), (4.11)

which is in the form (2.23). We see that j, = —1 and j, =0; i.e., j, and §, are
actually equal to their upper bounds given above.

We now expect at least the first few B, ;, k=0,1, in the solution of the
equations (4.9) to be similar to the corresponding coefficients in the asymp-
totic expansion given in (4.11). This indeed turns out to be the case. For
example, for n =10 we obtained B, ,= —0.000068, B, ,=2.0076, B,,=
—~0.32, By 3= —1.41 corresponding to 0, 2, 0, —8 respectively, and B, , =
0.999982, B, , = —0.00071, B, , = —1.84 corresponding to 1, 0, —2 respec-
tively. The rest of the coefficients become large as quickly as those in the
asymptotic expansion (4.11).

We also note that if one truncates both of the asymptotic series in (4.11) at
the power x~? and uses these truncated series in the computation of
[Z[(sint)/t] dt with x =20, the error in this computation is of the order of
1078, whereas the D{P[F(1);1] approximation which is obtained by using
21[(sint)/t] dt has an error of the order of 10~°.
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ExampLE 4.2.

_[® _ to(t)
Ia—fo L)di=1, I,= fo 5t =Ky(1)=0.4210244382401 .

Since f(¢)= Jy(¢) is integrable at infinity and satisfies the differential equation
f=—(1/t)f' — f”, we have f€ B®. The function g(t)=tJ(t)/(1+¢>) also
is in B®, and this is suggested by Corollary 3 of Lemma 2, since h(t)=1¢/(1
+ %) is in AV and f€ B®.

Therefore, we expect the D{?-transformation to work efficiently on both I,
and I,, and this is confirmed by the results in Table 2. The results in this
table were obtained by replacing j, and j; with g,=0 and 0,=0 as in
Example 1.

For the integral [°J,(¢) dt there is also a known asymptotic expansion [9]
which is given by

3 I2X3 X5 12X3*X52X7
f]o(t)dt~fo(x)( + 128 . +)
X X
2 2 2 2 2 2
—]l(x)(1—1—+ EX5” X3 X5, ) (4.12)
X x X

Since [Ji(x)]'= — Ji(x), (4.12) is exactly of the form (2.23).

In this case too it turns out that the first few Bk ;» k=01, in (2.24) are
similar to the corresponding coefficients of the asymptotic expansion in
(4.12). For example, for n =10 we obtained BO o= —0.00001, B,,=1.001,
BO 5= —0.049, ,B0 3= —1.88, corresponding to 0, 1, 0, —3 respectively,
and B, , = 0.99998, B, , =0.0001, B, , = —0.981, corresponding to 1, 0, —1
respectively. The rest of the coefficients become large as quickly as those in
the asymptotic expansion in (4.12).

If we truncate the asymptotic series in (4.12) at the power x~° and use the
truncated series in the computation of [ J,(¢) dt with x = 20, the error in this
computation is of the order of 1078 However, the D{2[F,(1); 1}-approxima-
tion has an error of order 107°,

The G, -transformation was tried on I, and I, and the results that were
obtained for G,,[F(£); 7] were as good as those for D?[F(£); 7] in Table 2.
The reason that G, works on I, and I, so well is that as ¢ becomes large
Jo(t) =cost h(t)+sint hy(t) with hy, h,€ A'/?, and that cost and sint
satisfy a linear differential equation with constant coefficients.
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TABLE 2
VALUES OF THE APPROXIMATIONS DP[F,(1); 1] anp D®[Fy(1);1]

[=2] o0
TO Ia=f fo(t)thNDIbzf tly(t)/(1+ t?) dt RESPECTIVELY®
() 0

n DP[F,(1);1] DP[F,(1);1]

2 1.04 0.43

4 1.003 0.4212

8 0.999994 0.421027

8 0.9999998 0.421024433

10 0.9999999986 0421024434

12 0.9999999998 4 0.42102 44382407

2For n = 2(2)12, where F(x) = j’g Jo(t) dt and Fy(x) =
§ Ho(2)/Q+¢%) de.

The integrals I, and I, were computed also by Levin [6] using a transfor-
mation designed to work exclusively on integrals of the form

[Tr@)e)dr,  neam,
0
and very good results were obtained.

ExampLE 4.3,

I(a,b):/owsin(at“rbt)dt
:E{sin(%) C ‘/21’.%)—‘;]

el )i )3 o

where

C(x)=j:cos(%t2)dt and S(x)=_{)xsin(%t2)dt.
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In this example the zeros of the integrand f(t) = sin(at2 + bt ) get closer to
each other as ¢ — oo; hence it is obvious that () does not have a behavior
which would enable the G, -transformation to work efficiently. Indeed, the
G, -transformation failed to work in this case. However, fis in B®, since it is
integrable at infinity and satisfies the differential equation f=[2a /(2at +
b)}1f —[1/(2at + b)*] £, therefore, we expect the D®-transformation to
work efficiently. As we can see from the differential equation, j,< —3 and
j, < —2. In this example we computed D®[F(£); 7] by replacing j, and j, in
(2.24) with —3 and —2 respectively and by letting £ =02, 1=0.2. We
considered the two cases a =n/2, b=0, and a=7/2, b=7/2. For these
cases we have I(7/2,0)=4 and I(7/2, 7/2)=0.3992050585256.... The
results are given in Table 3.

ExaMPLE 4.4.

sz“li’g—(lit—)dt =T 1og2+ G =1.460362116753....
o 1+1¢? 4

where G =0.915965594177219... is Catalan’s constant.
The function f(t)=[log(1+¢)]/(1+¢2) is integrable at infinity and satis-
fies the differential equation

_ 5t2+4t+1
2(2t +1)

I GER)CER))

F= 2(2¢ +1)

f s

therefore, f€ B®. We also note that j,<1 and j, <2. Numerical results
indicate that j, =1 and j, =2 exactly. For this case, and for many others

TABLE 3
VALUES OF THE APPROXIMATIONS D{2[ F(0.2);0.2]

70 I(7/2,0) anD I(n/2, 7/2), wisre I(a, b)= [ *sin(at® + bt) dt®
0

n D®[F(0.2);0.2)(7/2,0) D®[F(0.2);0.2)(/2,m/2)
2 0.12 0.46

4 0.495 0.397

6 0.4993 0.399212

8 0.500001 0.39920 5044

10 0.49999999989 0.3992050585 18

*For n =2(2)10, where F(x)= [&sin(at>+ bt) dt
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which contain logarithmic terms multiplied by functions in A, the choice of
the x;, j=1,2,...,N, in the equations (2.24) becomes very important. If we
choose the x; eqmdlstantly as in the previous examples, the approximations
DP[F(£); r] are poor for large n. If we choose x,=§e'"V7, j=1,2,...,N,
then the convergence of the approximations D‘z) obtained by solvmg the
equations (2.24) improves considerably. In our computations we chose £ =1
and 7 = 0.2. The results of the computations are given in Table 4.

We note that the G -transformation failed to work in this case.

ExAMPLE 4.5.

1=[" ( s“‘t) dt = 2. =1570796326795 .
0 t

The integrand f(¢)=[(sint)/t]? is integrable at infinity, and since (sint) /¢
is in B® from Example 4.1, [(sint)/t]? satisfies a differential equation of
order 3 or less with coefficients in A" for some values of y, according to
Corollaries 1 and 2 of Lemma 2. Indeed, f satisfies the differential equation

— 2x2+3 ‘4 3 (43 x 4
f= = -5

hence f€ B®. Therefore, we except the D®-transformation to produce good
results. The G transformation does not work efficiently on this function,
although (sin ¢ )? satisfies a linear differential equation of order 3 with constant
coefficients. The parameters ., k =0,1,2, in (2.24) satisfy j, <1, j; <0, j, <1,
and from numerical results it turns out that j, =1, j,=0, j,=1. In the

TABLE 4
VALUES OF THE APPROXIMATIONS D TO
 log(1+
I— f log(1 2t)
1+t

D®

114

1.46085
1.46042
1.46036 208
1.4603621191

S ® O3

*Obtained using x, = e 102 ;=
1,2,...,N, for n =2(2)10
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TABLE 5
THE APPROXIMATIONS D[ F(1); 1]

Tolzfow[(sint)/t]2dt“

D®[F(1);1)

1.61

1.5709
1.570793
1.57079635
1.57079632688

S0 o3

2For n =2(2)10.

computation of D{® we assumed that the equation was not known and
replaced j; by o, =min(k +1, 5;), k=0,1,2, which in this case turned out to
be equal to 1. The approximations D[ F(¢); 7] to I were obtained by using
£=1 and 7 =1. The results of the computations are given in Table 5.

ExamrLE 4.6,

0
1 =/ ]o(t)Il(t)% =2 —0.63661977236758....
0 T

Since the functions Jy(t) and J(t) are in B®, according to Lemma 2 and
Corollary 2 their product satisfies a linear differential equation of order 4 or
less; in fact, Jy(t)J,(t)/t turns out to be in B, the differential equation being
rather complicated. We assumed that the differential equation was not known
and replaced the f;, k =0,1,2, in (2.24) by the o,. Since f*)(x)=0(x72) as
x - 00, k=0,1,2,..., it turns out that 6, =1, k=0,1,2. In the computation
of D®[F(£); 7] we chose £ =1 and 7 =1. The results of the computations are
given in Table 6.

TABLE 6
VALUES OF THE APPROXIMATIONS

DO(FAyl o I= [ P It/ 8] de*

D®[F(1);1]
0.6341
0.6366097
0.63661 991
0.63661977204
0.636619772340

Soonnla

2For n =2(2)10
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We note that the G -transformation failed to work in this case too.
D®[F(¢);1] was compared with Gg,[F(£); 7]. Gg,[F(1);1] was seen to be
correct to 5 decimal places, and F(31) was seen to be correct to 3 decimal
places.

5. THE d-TRANSFORMATION FOR INFINITE SERIES

Let B™ be the set of infinite sequences {f(r)} whose elements f(r),
r=1,2,3,..., satisfy linear mth-order difference equations of the form

f(f)=élpk(f)A"f(f), (5.1)

where A°f(r)= f(r), Af(r)= f(r +1)— f(r), A2f(r)=A[Af(r)], etc., and
pi(x), considered as functions of the continuous variable x, are in A®,
k=1.2,....,m.

In this section we are going to make use of the ideas that were developed
in Section 2 to derive the d-transformation that will give good approximations
to the sums of infinite series of the form 32, f(r), where { f(r)} € B™. In
essence the d-transformation is the discrete analogue of the D-transformation
for infinite integrals.

In analogy to Theorem 1 for infinite integrals whose integrands are in B(™),

we now state Theorem 2 for infinite series whose associated sequences are in
B™,

Tueorem 2. Let |22, f(r)| <oo, and let f(r), r=1,2,..., satisfy the
linear m th-order difference equation f(r) = S, p.(r) Af(r) with p, € AW,
i<k k=12,...m If

Lim [A"_lpk(r)][A"_"f(r)] =0, k=i, i+1,....m, i=1,2,...,m,
=00
(5.2)
and

DUI-1)---(I=k+Dpro#1, 1=-1, linteger, (5.3)
k=1

where p, =lim, , v *p,(r), then =2 4 f(r), for R - o0, has an asymptotic
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expansion of the form

m—1

) Bei | Bz, ...
f(r)~k§0A"f(R)R’ Bk,o+—1"f+ R"22+ ) (5.4)

i
EMS

T

with f <max(iy,y,igse—L...,i, —m+k+1), k=0,1,...,m—L

The proof of this theorem is analogous to that of Theorem 1 of Section 2
with D =d /dx replaced by A, [ replaced by 22 5, and integration by parts
replaced by “summation by parts” using the formula

S g(r)Ah(r)=—g(R—1)h(R)+ g(R)R(R +1)

r=R

- gﬂ[Ag(f—l)]h(f)- (5.5)

In order to show the similarity of the proof of Theorem 2 to that of Theorem
1, we give the first step of it in detail, the rest being analogous.

Summing f(r)=37, pu(r) ¥f(r) from r =R to infinity and using (5.5)
repeatedly together with the conditions in (5.2), we obtain analogously to
(2.6)

m— [e o]

3 0= 3 e BB 3 a0t 69

0 r=R

where

m
a(R)= 3 (1" p(R—j+k), k=0,1,....m—1,
i=k+1

m (5.7)
a,(r)= kgl(—l)kA"pk(r—k), r>R.

We now use the fact that if h€ A [ie,, h(r)=hyr"+O(r" 1) as r - 0},
then Ah(r)=vyhyr* '+ O(r*"%) as r > o0, i.e., AhE AV™D; and if he AO,
then Ah€ A2, This property of the difference operator A is similar to that
of the differential operator D. We then see that a, ;€ A**D, k=0,1,...,m —
1, and a,€ A® and is of the form

a,(r)=a;+¢(r), (5.8)
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where a; =37 (—1)*klp; , and ¢,€ AT, Since &, 71 according to the
hypothesis stated in the theorem, (5.6) can be written as

5 AN="3 bREART S BN, (69
where
bl,k(R)zall%(:lﬂ, k=0,1,....m—1,

(5.10)
by(r )— Cl(r r=R,

and where b, ;€ A**D, k=0,1,...,m —1, and b;E A2, Since f(r)=o(1)
and by(r)=0O(r"2) as r > o0, the sum T2 Rbl(r)f(r) converges to zero faster
than the sum Z2 5 f(r) as R — o0.
We now make use of (5.4) to derive the d-transformation for infinite series.
We demand that the approximation ), . to S=3%, f(r) satisfy the
=1+ 37, ny equations

R, m—1 1 8,
dm = + AAR, +D(R,+1)* B B
R0, RLse M1 rglf(r) kE::o [ fl l )]( 1) i§0 (Rl+1)l

1=1,2,...,N, (5.11)

with ,Ek , constants and R, chosen to satisfy 0<R,<R,<--- <Ry, and
with 2R1 L f(r)=0 when R, =0. The equations (5. 11) form a lmear set in N
unknowns, namely, d{™), and B, ;,i=0,1,. -1, k=0,1,....m—

ng, ny,.

1, and can, in general, be’ solved for d('") Ay Again for the sake of
simplicity we choose

R,=¢+(1-1)7, [=12,..,N,

where £€>=0, 7=1 are integerss We denote dﬁ,”‘)n by
a, [F(£); 7], where F(§) is the sum of the first { terms of 2, A,
ie., F(£) 2 =1 f(r). We also define the “diagonal” d-transformation as
df{"f? ,,,, [F(E) T]=d{[F(§); ]
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d™[F(§);1] for the case m = 2 and j, = j, = 0, which occurs frequently, is
given below:

F(§)  F@E+1) -~ F(§+2n)
G+ fE+2) - fiE+en+])
fE+1)  fE+2)  flE+2n+])
£+1 £+2 (4+2n+1
fE+1)  f§+2) fls+3n+1)
(t+1)"" (¢+2)" ! (¢+2n+1)"""
Af(E+1) Af(E+2) --- Af(§+2n+1)
Af(§+1) Af(¢+2)  Af(§+2n+1)

§+1 £+2 £+2n+1

AE+1) ARE+2) Af(E+2n+1)

+D)"7 (g+2)" 7! +2n+1)""!
S (G M e (§+2n+1)
1 1 1
flE+)  fE+2) - fE+2n+1)
flE+1)  flE+2) fl§+2n+1)
£E+1 £+2 £4+2n+1
fE+1)  AE+2)  flEt+2n+l)
(E+1)"7 (g+2)" ! (¢+2n+1)" 7"
Af(¢+1) Af(§+2) --- Af(§+2n+1)
Af(§+1) Af(§+2)  Af(+2n+1)

£+1 £+2 o ¢+on+1

Af(E+1) AM(E+2)  Af(§+2n+1)
£+ (g+2)" 7! (¢+2n+1)" 7! 5.12)

Like the D-transformation, the d-transformation is also a nonlinear summabil-
ity method.

6. SOME SPECIAL CASES OF THE d-TRANSFORMATION
For m =1 and j, =0 the system of equations (5.11) reduces to that given

by Levin [5] in his development of the #-transformation. Hence the d{-trans-
formation is identical to the t-transformation of Levin [5], namely,
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dP[F(£);1]1=1t,[F(¢+1)]. For m =1 and j, =1 the d{V-transformation turns
out to be identical to the u-transformations of Levin [5], namely d{V[F(§);1]
= u,[F(§{+1)] with n>1. The fact that the ¢ and u-transformations accel-
erate the convergence of slowly converging series whose associated sequences
are in BV, in the sense that as n —> oo £, and u, converge to the sums of the
series quickly, indicates that the d{™-transformation will be as efficient as the
t- and u-transformations when applied to series whose associated sequences
are in B(™ for any m =>1; i.e., as n — o0, d{™ will tend to the sums of these
series quickly. This was indeed the case in all the examples that were
considered. (See Section 7.)

It also turns out that d{™[F(¢);1] with j, =0, k=0,1,...,m —1, is identi-
cal to the e, [F(¢+ m)]-transformation of Shanks [8], which in turn is
identical to €,,,[ F(£)] of the e-algorithm of Wynn [3].

When the d-transformation is applied to power series, rational approxima-
tions are obtained. From what has been said above we see that the rational
approximations obtained using d{™ with j, =0, k=0,1,...,m —1, are just
the Padé approximants, and those obtained using d{ with j, =1 are the u-
approximants of Levin [6], see also Longman [10]. The Padé and u-approxi-
mants have proved to be very efficient for power series whose coefficients
satisfy simple recurrence relations. However, for power series whose coeffi-
cients satisfy complicated recurrence relations of the form (5.1) we expect
that the rational approximations obtained using the d{™-transformation will
be more appropriate. These rational approximations can be cast into a form
which is convenient to use. For example, the d@[F(£); 1] approximation to a
power series 22 ,a,x"" !, with j, =7, =0, after some elementary row and
column transformations on (5.12), can be expressed as d@[F(£);1]=N/D,
where

¢ £+1 ¢+2n
x2n E arxr—l x2n—1 2 a,x’_l - 2 afxr-l
r=1 r=1 r=1
Aera Aepo T Aeion+l
Aey Aeig o Qeion+1
£+1 £+2 §+2n+1
a£'+1 af.+2 . a$+.2n+1
N= (¢+1)" 1 (¢+2)" 7! (¢+2n+1)" 1
Agio Qry3 T Qeyontg ’
Aeyo Qi3 L Qeron+2 6.1
B+l E+2 Eront1 | 6D
‘15.+2 a£'+3 o a£+'2n+2
(¢+1)" 71 (¢+2)" 1 (¢+2n+1)" 1



Two New Classes of Nonlinear Transformations 205

and D is obtained from N by replacing the first row in the determinant
expression in (6.1) with the row vector (x2°, x2"1,...,x,1).

As is seen from (6.1), the rational approximation obtained using d @[ F(¢); 1]
has numerator of degree 2n+£&—1 and denominator of degree 2n. In
general, the rational approximations obtained using d{™[F(§);1)] with j, =0,
k=0,1,...,m—1, will have numerators of degree mn + § —1 and denomina-
tors of degree mn.

7. APPLICATIONS OF THE d-TRANSFORMATION

In many problems of applied mathematics the solution is obtained in the
form of an infinite series 22 ,a(r)¢,(x), where ¢,(x) are orthogonal poly-
nomials, or elementary functions, or special functions, or products of them.
Hence the functions ¢,(x) satisfy a linear recursion relation of some finite
order hence the sequences {¢,(x)} are usually in B™ for some m. As we shall
see below, if a(r) =t" or a € A for some v, then in general, {a(r)¢,(x)} €
B™ too.

Several methods for accelerating the convergence of series of orthogonal
functions have been developed in the past. Mention can be made of the
methods of Maehley [11] and Clenshaw and Lord [14] for Chebyshev series,
of Holdeman [12] for series of orthogonal polynomials in general, and of
Fleischer [13] for Legendre series. A recursive method for the computation of
the approximations of Clenshaw and Lord has been given by the second
author [15]. All these methods are of the Padé type. We finally mention the
methods of Levin [6] for accelerating the convergence of series of orthogonal
polynomials, which are like the d-transformation, but unlike the d-transforma-
tion require full knowledge of the recursion relations that these polynomials
satisfy. This point has been explained in detail in Section 1. One drawback of
all these methods is that one needs different transformations for different
kinds of series, whereas the same d-transformation can be used for all of these
series. If the function represented by the infinite series in question is analytic,
then the d-transformation, like the methods given in [11, 12, 13, 14], can be
used to analytically continue the series to regions in which the series diverges.
This point is briefly illustrated in Example 7.1.

In this section we shall illustrate the use of the d-transformation on
different infinite series of the form mentioned in the previous paragraph; in
particular, we shall deal with series whose associated sequences are in B® and
B®,

The choice of the parameters j, in (5.11) is exactly as explained in Section
4 for the D-transformation with the derivative operator replaced by the
forward difference operator A. In analogy to Lemma 2 and its Corollaries 1, 2,
and 3 of Section 4 we state
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Lemma 3. If {f(r)} and {g(r)} satisfy linear difference equations of
orders m and n respectively, i.e.,

f(f)=k§:‘.lm(f)A"f(f), g(r)—zq,(r)A ), (1)

then their product { f(r)g(r)} and their sum { f(r)}+ g(r)}, in general, satisfy
linear difference equations of orders less than or equal to mn and m+n
respectively, i.e.,

(#)o(r)= 2 A (YA A g ()]
JAT BT K= LI e )
k=1
) (7.2)
flr)+g(r)= Z Br)A[f(r)+e(r)].
k=1

CoroLLarY 1. If {f(r)} satisfies a linear difference equation of order m,
then, in general, {[ f(r)]®) satisfies a linear difference equation of order
m(m+1)/2 or less.

CororrLary 2. If the coefficients p(r), k=1,2,...,m, and q/(r), 1=
1,2,...,n, in (7.1) have asymptotic expansions in inverse powers of r as
r— 00, then so do Ay(r), k=1,2,...,mn, and Bi(r), k=12,....m+n, in
(7.2).

CoroLLarY 3. If {f(r)} € B™ and g(r)=1t" or g€ A" for some v, then
the terms of the sequence {g(r)f(r))} satisfy a linear difference equation of
order m or less with coefficients that have asymptotic expansions in inverse
powers of r as r — 0.

The proofs of Lemma 3 and its Corollaries 1, 2, and 3 are identical to those
of Lemma 2 and its corollaries if one uses

wtneel= 3 (¥) T (V7 lerollaem). @)

=0\ 7

in the same manner that Leibnitz’s rule for differentiating the product of two
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functions was used in Section 4. The formula given in (7.3) can be proved by
induction on N.

ExampLE 7.1.

P(x) e
g(x)= V (1 anerva)’ ==l

where P(x) is the Legendre polynomial of degree r, r =0,1,2,... . This series
converges slowly for |x|<1 and diverges for |x|>1.

Since the Legendre polynomials satisfy the linear three-term recursion
relation

2r+1

Pf+1(x) xP(x) 1 P_\(x),

the terms C, = P(x)/[(1—2r)}2r +3)] of the infinite series above satisfy the
second-order difference equation

Cr = pl(r)ACr + p2(1) AzCr’
where

(1—x)4r%+(11—-6x)2r +(28—5x)

P = @t +12r)+ (52 —13)

H

2r2 +11r +14
(x ~1)(4r2 +12r)+(5x —13)

po(r)=

It is seen that for x 1, p, € A® and p,€ A® when p, and p, are considered
as functions of r for fixed x. However, for x =1, p,€ A? and p,€ A®. This
sudden transition of p, and p, from A® to AV and A® respectively indicates
that x =1 is a point of singularity of g(x), and indeed x =1 is a branch point
of g(x). We therefore expect the d@-transformation to produce good ap-
proximations to g(x) for —1<x <1; i.e., where the series converges to g(x),
and for x not too close to 1. This is verified by computations done for
—1<x<1. It also turns out that the d®-transformation produces good
approximations to g(x) for x <—1, i.e., even when the series diverges. In
Table 7 we give the values of d@[F(0, x); 1] [with j, and , in (5.11) replaced
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TABLE 7
VALUES OF THE APPROXIMATIONS

dP[F(0,x);1) To g(x)=/(1-x)/2 /2*
dP[F©O,~ 1.5)1] dP[F(0,05;1]  dP[F(0,0.9)1]

0.5590169943 7493 0.24999999978 0.111800
0.55901 69943 7485 0.25000 0000027 0.1118039

Exact 0.559016994374947  0.250000000000 0.111803398874

n
2 0.559015 0.2505 0.116

4 0.55901 6998 0.249998 0.1114
6 0.55901 6994372 0.24999989 0.11177
8
10

2For x = —1.5,0.5,0.9, and n = 2(2)10. Exact values of g(x) are given in the
bottom row.

by their upper bound, which is zero] for x = —1.5,0.5,0.9, where F(§, x) is
the £th partial sum of the infinite series evaluated at x; ie., F(§ x)=
S22 P(x)/[(1—2r)2r +3)], and F(0,x)=0.

We see from Table 7 that for x =0.9, which is close to x =1 [the branch
point of g(x)], the convergence of d?[F(0,0.9);1) to g(x) as n increases is
much slower than that of d@[F(0, x);1) for x = —1.5 and x =0.5, which are
far from x =1. In order to accelerate the convergence of the approximations
dD[F(§, x); 7] to g(x) one can use higher values of £ and 7 in the equations
(5.11). In our computations we took §=1 and 7=2 and computed the
approximations d@[F(1,x);2]. In Table 8 we given the values of
dP[F(1,x);2] for x =0.9, which clearly show a great improvement in the
convergence over those exhibited in Table 7.

TABLE 8
VALUES OF THE APPROXIMATIONS

dP[F(1,0.9):2] To g(x)=y/(1—%)/2 /2°
dP[F(1,0.9);2]

n

2 0.112

4 0.111805

6 0.1118032

8 0.111803393

10 0.1118033988 5
Exact 0.1118033988 74

aFor n =2(2)10. The exact value of g(x)
for x =0.9 is given at the bottom.
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ExamMmpLE 7.2.

[=2] . —
g(x)=sgnx=% > sin(2r — 1)z —r<x<m.

2r—1 °

r=1

The terms f(r) =sin(2r —1)x, r =1,2,..., satisfy the three-term recursion
relation

f(r+1)=2cos2x f(r)— f(r —1);

hence the terms C, = [4sin(2r —1)x]/[7(2r —1)] of the infinite series satisfy
the second-order difference equation

Cr = pl(r)ACr + p2(r) A2Cr’
where

cos2x —3
(1—cos2x)(2r +1)’

pi(r)=—-1+

2r+3
(1—cos2x)(4r+2)°

po(r)=—

We see that for cos2x # 1, i.e., x #0, = 7, {C,} € B®, and p, € A?, p,€ AO.
For x =0, = 7 the difference equation is singular, which indicates that at
x =0, = 7 the function g(x) has signularities. Indeed, g(x) has jump discon-
tinuities at x = 0, = 7, We therefore expect the d ®-transformation to produce
good approximations to g(x) for x not too close to 0, = 7, where discontinui-
ties occur, and this is verified by Table 9, which gives values of d @[ F(0, x); 1]
with f, and 7, in (5.11) replaced by their upper bound, which is zero, for
x=7/6 and x = m/2, where F(§, x) =(4/m)3t_ [sin(2r —1)x] /(2r —1) and
F(@,x)=0.

It is worth mentioning that d?[F(0, 7/2);1] has turned out to be very
accurate despite the fact that the coefficients ,Bk ; in the equations (5.11)
came out very large. The reason for the Bk ; to be large is that for x = 7 /2 the
elements of the series are C, =(—1)"*'4/[m(2r —1)], which puts {C, }in BO,
and this causes the instability in the computation of the coefficients B ;.

We note that Fourier sine and cosine series and series of Chebyshev
polynomials of the first and second kinds can be summed with equal
efficiency by using the d-transformation, since {sinrx}, {cosrx}, {T,(x)}, and
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TABLE 9
VALUES OF THE APPROXIMATIONS
dP[F(0,x);1] To g(x) =sgnx*

n dP[F(O,7/6);1] dP[FO, m/2);1]
2 1.032 1.00010

4 1.00031 0.99999983

6 0.999979 1.000000036

8 0.999999908 0.999999999980
10 0.99999999932 0.99999999999993

2For x=7/6 and x = 7/2, and n = 2(2)10.

{U(x)}, where T(x) and U(x) are the Chebyshev polynomials of the first
and second kinds respectively, all satisfy similar recursion relations, namely,

sin (r +1)x =2cos xsin rx —sin (r —1)x,
cos(r +1)x =2cos xcos rx —cos (r —1)x,
T (x)=22T(x)—T,_ (x),

U (x)=2xU(x)—U,_y(x),

for r=1.

ExampLE 7.3.

1 o _Jo(Ax)
x)=log— =2 Ty 1(x V2~
g( ) gx ,21 [}\,Jl(kr)]2

O<x=<l,

where A, is the rth positive zero of Jy(x).

We have not been able to find a recursion relation that the terms
C.=2J,(A\,x) /[N, Ji(A,))}? of this infinite series satisfy; however, we can
prove that {C,} € B®. For this we shall make use of the following results [16]:

A =(r—7+a(r), (7.4)
HP(x)= o137 ), 19

J(x)=Re HV(x), (7.6)
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where a(r), considered as a function of 7, is in AT Y; b,(x), considered as a
function of x, is in AC"1/?; and HV(x) is the Hankel function of the first kind
of order ».

First of all, we see from (7.4) that 1/)2 considered as a function of r is in
A2, Secondly, from (7.5) and (7.6)

Ji(A,)=Re HO(A,)=Re{e'l7+eOlp [rn — m/4+a(r)] }

=(— 1)'+1Re{e‘“(’)bl[m —a/4+a(r)]}.

Now since a € ATV, ie., a(r)=O(r 1) as r - 00, we have e**€ A, Using
the fact that b,[rm — m/4+ a(r)] € A”1/? [since by(r)€ A"1/?], we have
that Jy(A,) € A( /9 and hence 1/[J}(A,)]2€ AD.

Finally, we show that {Jo(A,x)} for fixed x is in B®. Using (7.4) and (7.5),
we have

H®P (A, x) =e"™K(r),

where K(r)=e'*®M*(e="=/4="/Dp [rax — 7x /4+ a(r)x]}. Since e**)*€
A©® and by[rnx — 7x /4+ a(r)x]EA( 172 we have K(r)€ A”1/?, Since
("™} € B(l) for x fixed, we have {H(l)()\ x)}€ BY using Corollary 3 to
Lemma 3. Also since Jy(A,x) = [HP(A,x)+ HP(A,x)]/2, we have
{Jo(A,, )} € B® in accordance with Corollary 2 of Lemma 3. And finally
{(J\,2)/IN (A D)%) € BO, again by Corollary 2 of Lemma 3. Therefore,
we expect the d @-transformation to work efficiently for 0<x <1 and x not
too close to zero, where the function g(x)=log(1/x) has a singularity. It
turns out that the d @-transformation produces very good approximations to
g(x) even when x>1. In Table 10 we give values of d@[F(0, x);1] with f,
and f, replaced by 6, =1 and 0, =1 for x = 0.6 and x = 1.4, where F(§, x) =

TABLE 10
VALUES OF THE APPROXIMATIONS
dP[F(0, x); 1] To g(x) =log(1/x)"

n d®[F(0,0.6); 1] dP[F(0,1.4);1]

2 0.51034 —0.336

4 0.51077 —0.36437

6 0.51082 556 —0.36472198

8 0.51082 56237 25 —0.36472 23659

10 0.51082 56237 6559 -0.36472 23662 0986
Exact 0.51082 56237 65599 —0.36472236621212

2For x =0.6 and x =1.4 and n=2(2)10. Exact values of g(x) are
given in the bottom row.
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2 LA x)/IN (A2 and F(0,x)=0. Numerical results indicate that
fo=#H=0.

ExampLE 7.4.

g(B,q,):{l/m, 0O<p<o¢<m,
0,

0<¢p<B<m,

oo

g(B.9)= I cos(r+3)BP(cosep), O<B<m, 0<¢<7, B+#¢.
r=0

Since both cos(r +$)B, r=0,1,2,..., and P(cos¢), r =0,1,2,..., satisfy
three-term recursion relations and hence second-order difference equations,
the terms C, =cos(r +3)BP,(cos ), r =0,1,2,..., of the infinite series satisfy
a fourth-order difference equation by Corollary 1 of Lemma 3. This difference
equation is quite complicated and will not be given here. We expect the
d®-transformation to produce good approximations to g(8, ¢) for ¢ not too
close to B8, since g(B, ¢) goes to infinity as ¢ approaches 8. Table 11 contains
values of dP[F(0, B8, ¢);1] with §, =0, k=0,1,2,3, for B =27/3, ¢ =7/6
and for B =7/6, ¢ =2n/3, where F(¢, B, 9)=3¢_2cos(r + 4)B P(cos ¢) and
F(0, B, $)=0.

We note that the partial sums F(£,27/3, 7/6) for £ <50 are of order 10~2
at best, and the d{P-transformation improves the accuracy by about 12

significant figures.

TABLE 11
VALUES OF THE APPROXIMATIONS

d®[F©, B, $).1] T0 g(B, $)*

2 ~ 4%x107° 0.604998

3 ~—2X1078 0.60500026

4 ~—2X 10710 0.60500033358

5 ~—9X10713 0.6050003337 080

] ~—9X107 14 0.60500 03337 06045
Exact 0 0.60500 0333706055

*For B=2n/3, ¢ =7/6 and for B=n/6, ¢ =27/3, with
n =2(1)6. Exact values of g(B, ¢) are given in the bottom
row.
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8. COMPUTATIONAL ASPECTS

In this section we shall describe briefly the computational aspects of the
D-transformation, those of the d-transformation being similar.

When one is given a function f to integrate between zero and infinity, one
should find out whether this function is in B™ for some m and what this m
is. Then, as was described in Section 4, the parameters j; in (2.24) should be
replaced either by their upper bounds or by the o, whose determination was
also described in Section 4. Once this is done, one should pick up the x, in
(2.24) in such a way that the function f(¢) has a smooth behavior between
two consecutive x,’s and hence can be integrated accurately there without
much effort being wasted. An example of poor behavior was given in Example
4.3, where f(t) =sin(at?+ bt) with a=x/2, b=0 and with a =7/2, b=
7/2. This function oscillates with increasing frequency as ¢ becomes large,
and if the distance between x,; and x,., is so large as to enable the function to
oscillate a large number of times there, then the accurate computation of the
integrals u, = [¥ f(t)dt and hence of F(x,;) = 3., u, becomes a hard task.
This is the reason why we took x;, =§ +(j —1)7 with £ and 7 small (actually
we took § = 0.2 and + = 0.2). With this choice of £ and 7, at least the first few
u; which are needed for the computation of D®[F(£); 7], say up to n =15,
can be computed accurately without any difficulty. We have already pointed
out in Example 4.4 that sometimes the choice x,=§+(j—1)7 causes the
approximations D{™[F(£); 7] to be poor even for large n, and this problem
can be dealt with by taking, for example, x,=£+(i—1)"r, I>1, or x;,=
$e~D; in Example 4.4 we chose the latter. Now that we have chosen the x,
appropriately, we compute the u,, the F(x,), and the matrix of the equations
(2.24) and solve the linear system in (2.24). We used the LiNsYsT subroutine
subprogram [18] to solve the linear system in (2.24). This subroutine solves
linear systems by LU decomposition and iterative improvement. The use of
Cramer’s rule, as in (2.25) for example, is not advised, since as n and hence
the number of equations become large, the determinant of the linear system
(2.24) decreases rapidly and thus errors are introduced in the computation of
the approximations D{™. Also it is worth mentioning that the system (2.24)
becomes very ill conditioned as n increases. However, this does not seem to
affect the approximations D{™.

In order to give proper meaning to the numerical results, attention must be
paid to the coefficients B; ,, as well as D{™, in the solution of (2.24). In most
cases the D-transformation produces approximations D{™ which, as n be-
comes large, converge very quickly to the right value. For instance, in most of
the examples in Section 4, D{™ is correct to ten significant figures or more.
As the D{™), n=1,2,..., converge, the first few Ek’,, for each k, approach
the corresponding B, , in the asymptotic expansion in (2.23), and this can be
recognized very easily even for small n.
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It may happen, though very rarely, that the convergence pattern of the
approximations D{™ is disrupted by some D{™), say for n =r; i.., it may
happen that D{™ is a worse approximation than D{™), D{™) being better than
Df™). This is accompanied by a disruption in the convergence pattern of the
first few B, ; for each k to 8; , in (2.23), the rest of the coefficients becoming
much larger than those for n = r = 1. The reason for this is that the matrix of
the equations (2.24) for n = r, for computational purposes, is singular. Need-
less to say, D{™ should be discarded.

The authors are grateful to Professor I. M. Longman for continuous support
and encouragement of this work. The computations for this paper were carried
out on the CDC 6600 computer at the Tel-Aviv University Computation
Center.
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Note Added in Proof

The convergence analysis of the D- and d-transformations has been taken
up by the second author within a more general framework in the paper

A. Sidi, Some properties of a generalization of the Richardson extrapolation
process, J. Inst. Maths. Applics. 24:327-346 (1979).

In this paper the question of the significance of the x; that go into the
definition of the D-transformation is also considered.

It turns out that by selecting the x, in an appropriate manner, the
D-transformation can be modified and made more efficient for integrands
f(x) that oscillate an infinite number of times as x — oo. This subject is taken
up in the papers

A. Sidi, Extrapolation methods for oscillatory infinite integrals, J. Inst.
Maths. Applics. 26:1-20 (1980).

A. Sidi, The numerical evaluation of very oscillatory infinite integrals by
extrapolation, Math. Comp. 38 (1982) (in press).

Convergence properties of the T-transformation of Levin [5] have been
taken up in the papers

A. Sidi, Convergence properties of some non-linear sequence transforma-
tions, Math. Comp. 33:315-326 (1979).

A. Sidi, Analysis of convergence of the T-transformation for power series,
Math. Comp. 35:833-850 (1980).

The t and u-transformations, which are special cases of the T-transformation,
are simply d ®-transformations as mentioned in Section 6 of the present work.



