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ABSTRACT 

Two new classes of nonlinear transformations, the Dtransformation to accelerate 
the convergence of infinite integrals and the d-transformation to accelerate the 
convergence of infinite series, are presented. In the course of the development of these 
transformations two interesting asymptotic expansions, one for infinite integrals and 
the other for infinite series, are derived. The transformations D and d can easily be 
applied to infinite integrals /$’ f(t) dt whose integrands f( t ) satisfy linear differential 
equations of the form f(t)=Zr=:=, pk. t)f@)( t) and to infinite series X$&r) whose 
terms f(r) satisfy a linear difference equation of the form f(r) =X$&r pk( r) A’f(r), 
such that in both cases the pk have asymptotic expansions in inverse powers of their 
arguments. In order to be able to apply these transformations successfully one need 
not know explicitly the differential equation that the integrand satisfies or the 
difference equation that the terms of the series satisfy; mere knowledge of the 
existence of such a differential or difference equation and its order m is enough. This 
broadens the areas to which these methods can be applied. The connection between 
the 0 and d-transformations with some known transformations in shown. The use and 
the remarkable efficiency of the D and d-transformations are demonstrated through 
several numerical examples. The computational aspects of these transformations are 
described in detail. 
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1. INTRODUCTION 

In this work we present some nonlinear transformations to accelerate the 
convergence of slowly converging infinite integrals and infinite series. These 
transformations, in a sense, combine the Gtransformation of Gray, Atchison, 
and McWilliams [l] and the confluent e-algorithm of Wynn [4] on the one 
hand, and some transformations that were obtained by the first author [S-7] 
for accelerating the convergence of infinite integrals and series on the other. 

The Gtransformation and the confluent e-algorithm have in common the 
property that they integrate exactly from zero to infinity functions f(t) which 
satisfy linear differential equations with constant coefficients on (0, co); i.e., 
(in the notation of Gray, Atchison, and McWilliams [l]) the quantity 
G,[ F(t); k] of the Gtransformation and (in the notation of Wynn [4]) the 
quantity e&t) of the confluent r-algorithm are exactly equal to 17 f(t) dt. 
For more details on both the Gtransformation and the confluent r-algorithm 
the reader is referred to [l]. 

For future reference, when dealing with infinite series, we define Acy) to be 
the set of functions a(x), which, as x + co, have asymptotic expansions in 
inverse powers of x, of the form 

(14 

and when dealing with infinite integrals, we define Acy) to be the set of 
infinitely differentiable functions a(x), satisfying (l.l), and such that their 
derivatives of any order have asymptotic expansions, which can be obtained 
by differentiating that in (1.1) formally term by term, 

It turns out numerically. that the G-transformation and the confluent 
e-algorithm work efficiently on functions of the form f = ug, where a E A(7) 
for some y and where g satisfies a linear differential equation with constant 
coefficients, provided F(x)= &f(t) dt is not monotonic as x + co-and 
therefore, on sums of functions of this form. 

In the work of Levin [S] too we find that there is a strong connection 
between the differential equation that the integrand satisfies and the method 
of accelerating the convergence of the infinite integral, or between the 
recursion relation that the terms of the infinite series satisfy and the method 
of accelerating the convergence of the infinite series. In this work of Levin 
methods are given for accelerating the convergence of infinite integrals of the 
form JTa(t)$(t)dt and infinite series of the form Z~&a(r)+(r), where 
a E A(Y) for some y, and where +(t) satisfies a spec$c differential equation in 
the case of the infinite integrals, and e(r), r = 1,2,. . . , satisfy a specific 
recursion relation in the case of the infinite series. That is, for each different 
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function cp(t) or different sequence #(r), r = 1,2,. . . , one has a difibrent 
transformation. This point will be further clarified below. 

So far nonlinear transformations have been developed for a limited class of 
infinite integrals and infinite series. The main purpose of this work is to 
develop a transformation or a class of transformations that will work effi- 
ciently on a large class of infinite series and infinite integrals that arise in 
many problems of applied mathematics and physics. A property common to 
most of these problems is the fact that many of the functions of applied 
mathematics and physics satisfy linear differential equations and/or linear 
recursion relations. This fact will be the starting point in the development of 
our nonlinear transformations. 

We shall see that it is possible to obtain a class of nonlinear transformations 
DC”), that will accelerate the convergence of infinite integrals /$ f(t) dt 
where f( t ) satisfies any linear differential equation of order m with any 
coefficients in A(y) for some values of y. Similarly we shah see that it is 
possible to obtain another class of transformations d(“) for accelerating the 
convergence of infinite series E~!rf(r) where f(r), r=1,2,..., satisfy any 
linear (m + I)-term recursion relation with coefficients in A(r) for some values 
of y. This recursion relation can be written as a linear mthorder difference 
equation witb coefficients again in A (y) for some values of y, this difference 
equation being the discrete analogue of the differential equation mentioned 
above. 

Levin [6], in the development of his transformations for infinite integrals of 
the form S = j; a(t)+(t)dt, where a E tiy) for some y and where r+(t) 
satisfies a second-order linear differential equation, made use of an asymptotic 
expansion of the “remainder” 1,” a( t)+(t) dt, of the form 

where rk are constants and ok(x) are functions which depend on a(x), u’(x), 
#(x), r+‘(x), and explicitly on the coefficients of the differential equation that 
$(x) satisfies. For infinite series of the form S=ZT.ru(r)+(r), where u(x) 
considered as a function of the continuous variable x is in ti7) for some y and 
where +(r), r = 1,2,. . . , satisfy a linear 3term recursion relation, Levin [6] 
derived for the “remainder” Zy+ra( r)+(r) an asymptotic expansion of the 
form 

where rk are constants and 8,(R) are quantities that depend on the elements 
of the series, and explicitly on the coefficients of the recursion relation that 
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the (p(r) satisfy. Since the e,(x) in (1.2) and the 8,(R) in (1.3) enter Levin’s 
transformations, these transformations cannot be used unless one knows fully 
the differential equation that +(t) satisfies or the recurrence relation that the 
+( r ) satisfy. 

In Sections 2 and 5 of this work, in the development of the DC”)- and the 
d(m&ansformations, we make use of some asymptotic expansions which are 
interesting by themselves. For an infinite integral ja,f(t) dt, where f(t) 
satisfies a linear differential equation of order m of the form 

(1.4) 
k=l 

withp,~A(~), k=1,2 ,..., m, under certain mild conditions to be described in 
Section 2, we obtain the asymptotic expansion 

/ 
mj-(t)dt-m$f(k’(x) g &jxf’+ as X’CQ, (1.5) 

r k=O i=O 

wherethejkareintegerswiththepropertyjkGk+l, k=O,l,...,m-l.For 
an infinite series ET!if(r), where f(r), T = 1,2,. . . , satisfy a linear difference 
equation of order m of the form 

0.6) 
k=l 

with pk~Ack), k=1,2 ,..., m, when the pk(x) are considered as functions of 
the continuous variable x, again under certain mild conditions to be described 
in Section 5, we obtain the asymptotic expansion 

again with the jk being integers with the property ik G k -I- 1, k = 0,1,. . . , m - 1. 
Both in (1.5) and in (1.7) the fik, i are constants. Since the quantities fCk)(x), 
k=O,l , . , . ,m - 1, and Akf(r), k = 0, 1, . . . ,m - 1, enter the DC”)- and the 
d(“)-transformations respectively, we see that full knowledge of the differen- 
tial equation (1.4) or the difference equation (1.6) is not required. 

To the best of our knowledge, the existence of such asymptotic expansions 
has not been known in full generality until now except for a few special cases 
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like 

-si(x) = I -- . . . 
x 

I 

sin x 
+- ( H l-2’+?!- 

x x2 x4 -** ’ 
) 

where (sin t )/t satisfies a linear second-order differential equation (see Exam- 
ple 4.1 in Section 4), 

Jrn ( ) x Jo t &_Jo(x) ;_!p+ 12xf;x5_ 12x32xq52x7+ . . . ( I 
+Jgx) 1_f+Ly_ 12x;Bgx52+ . . . , ( 1 

where J,,(t) also satisfies a linear second-order differential equation (see 
Example 4.2 in Section 4), and 

where s >1 Bi are the Bernoulli numbers, and ( ) : , k=O,l,..., are the 

binomial coefficients. This last expansion can easily be obtained from 

where l(s) = Z$ 1 l/ rs is the Biemann S-function (see [17, p. 5381). Here the 
terms f( 7) = l/r’, T = 1,2,. . . , satisfy the 2term recursion relation f( r + 1) = 
(l+ l/r)Y(r)* 

In Section 3 we shall show that the Dtransformation, in a sense, gener- 
alizes the Gtransformation, the confluent c-algorithm, and the P-transforma- 
tion of Levin [7], and in Section 6 we shall show that the d-transformation 
generalizes the c-algorithm of Wynn [3] and the t- and u-transformations of 
Llevin [S]. 
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In Sections 4 and 7 we shall illustrate the use of the LX and d-transfonna- 
tions with several examples of infinite integrals and infinite series. It turns out 
that the D- and d-transformations work efficiently on all the integrals and 
series on which the known methods work efficiently, and in addition to that 
they work on infinite integrals and series such as jc sin(& + bt)dt, 
/TIO(t)Jl(t)dt/t, Z~“=,J,(X,X)/[~,J~((~,)~~ [A, is the 7th positive zero of 
Jo(x)], and Z~COcos(r + ~)#?P,(cos $), on which the known transformations fail 
to work. 

The computational aspects of these transformations are discussed in detail 
in Section 8. 

2. THE D-TRANSFORMATION FOR INFINITE INTEGRALS. 

Let us define B(“) to be the set of functions f which are integrable on 
(0, co) and which satisfy linear mth-order differential equations of the form 

k=l 

wherepkEACk), k=I,2 ,..., m. We assume that this m is minimal. 
We shall now develop the I%transformation which will accelerate the 

convergence of slowly converging infinite integrals whose integrands are in 
I#“‘). In the next two sections we shall deal with some special cases of the 
D-transformation and apply it to some infinite integrals whose integrands are 
in Bc2) and Rc3). 

Let us start by integrating (2.1) from x > 0 to infinity: 

jmj-(t)dt = g /mpk(t)f’k’(t)dt. 
x k=l r 

(2.2) 

Assuming that lim,,, pk(~)f’k-l)(~)=O, k=l,2,...,m, and integrating by 
parts the right-hand side of (2.2), we obtain 

- k~2[mp;(t)fck-1'(t) dt. (2.3) 
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Assuming next that lim,,,p;(X)f’k-2)(X)=0, k=2,3,...,m, and integrat- 
ing by parts the last term on the right-hand side of (2.3) we obtain 

+JW[-p;(t)+&(t)]f(t)dt+ i JWp;(t)f-(t)dt. 
x k=3 X 

(2.4) 

Assuming, in general, that lim,_Oop~f-l)(r)f(k-i)(x)=O, k=i, i+l,...,m, 
i =3,4 , . . . , m, we keep integrating by parts until all derivatives of f disappear 
in the last term on the right-hand side of (2.4). The final result is 

Rearranging the first term on the right-hand side of (2.5), we obtain 

J 0 mf t dt=y 
x k=O 

al.k~~~pL’~~~+~mal~t~fod~~ 

where 

m 

(2.5) 

(2.6) 

~l,k(~)=l=~+~(-l)i+rp~i-L1’(~), k=O,l,...,m-1, 

(2.7) 

&)= : (-l)kpf’(z). 
k=l 

We now use the fact that if h E ACy), i.e., h(x)= hoxY + o(~7-1) as x + W, 
then h’(z)= yh,,~y-~+o(xY-~), i.e., h’EA(y-l), and if hE A(‘), then h’E 
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A(-2). SincepiEA(f), j=1,2 ,..., m,thena, k~A(k+l), k=O,l,..., m-1,and 
a ,E A@. Now al, being the derivative of u~,~, does not contain the power 
x-l in its asymptotic expansion; hence it can be expressed as 

&9= a1 + Cl(X) (2.8) 

where 1~i=Z;1=i(-l)~k!p~,~, p~,O=hx_m~-kpk(~), k=L%...,m, and Cl 
E A(-2). Assuming that q # 1, (2.6) can be written as 

where 

al kb) 
bl,kb)= sp k=O,l,..., m-l, 

1 

(2.10) 

b,(x)=g$ 
1 

WenowseethatblkEA(k+l),k=O,l ,..., m-l,butbl~A(-2);i.e.,bl(x)= 

’ 0(x-s) as x + co. Therefore, the integral lrn b,(t)f(t)dt converges to zero 
X 

faster than j,“f(t)dt as x + co. 
In order to continue the above process we shall prove the following 

lemma. 

LEMMAI. Letb~~A(-‘-‘~,Irl,andZ~~,l(l-l)~~~(Z-k+l)pk,,Z~. 
Then 

j”b,(t)f(t)dt=m$lb 
x k=O 

r+l,k(r)Pk’(x)+~mb,+l(t)f(t)~~7 

(2.11) 

whem bl+i,k E A(k--[) k =O , 1 , ,.*a, m - 1, and br+lE A(+‘). 
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PROOF. Substituting (2.1) in /,” b,(t )f(t) dt and using the procedure that 
led to (2.6), we obtain 

where 

u,+,,k(X)= j=&-l)i+k[b,(*)p,(r)](f-k-l~> k=O,l,...,m-1, 

(2.13) 

%+1(x)= k~l(-l)k[b,(r)pk(~)l'L'. 

The conditions lim, _ o3 p~-‘)(~)f(~-‘)(x) = 0, k = i, i + 1,. . . ,m, i = 

1,2,..., m, that were imposed previously are sufficient for (2.12) to be true for 
all 121, since they also imply lim,,,[bl(X)Pk(X)](i-‘)f(k-i)(X)=O, k=i, i 
+1,..., m, i=1,2 ,..., m, which are sufficient for (2.12) to hold. 

Now al+l,k 
E #--I) k =o 1 m - 1, and al+, 

A(-[-‘) and Z+E A+ we ;an$-fte 
E AC-l-‘). Since CZ~+,E 

%+1(x)= %+,hW+ cl+lw (2.14) 

with aI+,=X~=:=,Z(Z-l)...(Z-k-tl)p,,, and c~+~EA(-‘-~). Since by as- 
sumption (Ye+ 1 # 1, we obtain (2.11) with 

k=O,l ,..a, m-l, 

(2.15) 

b,,,(r)=~, 
If1 

so that b 1+1 k~ Ack-‘) and bl+lE A(-‘-2), thus proving the lemma. 

Starting now with Equation (2.9), with al,,(x), k=O,l,..., m-l, u,(x), 
al, c,(r), b,, k(r), k =O, 1,. . . , m - 1, and b,(x) already defined in (2.7), (2.8), 
and @lo), and assuming that Zr=r Z(Z - 1) . * * (1 - k + l)p,,, # 1 for Ia 1, 
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we use Lemma 1 to define recursively a,,, k(x), k=O,l,...,m-1, al+,(x), 
aI+n cl+r(x), bl+,,Jx), k =O, 1,. . . ,m - 1, and &+,(x), Z= 1,2,. . . ,n - 1, by 
Equations (2.13), (2.14), and (2.15). We then sum Equation (2.9) and 

/ 
mbr(t)f(t)dt=m&l 

x k=O 

1=1,2 ,..,) n-l, (2.16) 

which are obtained by repeated application of Lemma 1. The result is 

jrnf(t)dt = m~la;(z)f(k)(x)+j~b,(t)f(t)dt, (2.17) 
r k=O x 

where 

&b)= i bl,k(x), k=O,l,..., m-l. (2.18) 
Z=l 

In (2.17) &‘E dk+‘), k =O,l,. . . ,m - 1, and &E A(-n-l). Let the asymp 
totic series of pi(x) begin with the power xi,, Since p,~ A(l), i, <l. The 
condition lim x _ o. pl( x )f( x ) = 0 which was previously imposed implies that 
f(x)= o(xPil) as x + 00. Since b”(x)= O(X-“-~) andf(x)= o(C’l) as x + cc, 
the integral 1,” b,,( t )f( t ) dt is o( x-“-~I) as x + cc. If we now choose n and x 
large enough, we can neglect 1,” b,,(t)f(t) dt in (2.17) and still get a good 
approximation to S = ja”f( t) dt; i.e., we can approximate S as 

dt + m&?;(X)f(k)(X). 
k=O 

(2.19) 

Of course, in (2.19) one has to compute the functions j?;(x), k =O, 1,. . . , m - 1. 
But the computation of these functions becomes difficult, as is seen from 
Equations (2.18), (2.15), (2.14), and (2.13). However, as we shall show below, 
we can still make use of (2.19) to derive a transformation that will produce a 
good approximation to S. 
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SillCt! 

Bk”(X)=Bkn-l(X)+b,,k(X)Y k=O 1 , ,***, m -1, (2.20) 

and b,, k~ A(k--n+l), we can write 

s;(X)=Xk+l B;,o+++F$2+ :.. +kL+qy,I 1 
as x+00, k=O,l ,...:m-1, (2.21) 

where the coefficients &, j=O,l,...,n, are the same for all &(x), k= 
0, 1,. . . , m - 1, with 1) n. Therefore, we deduce from (2.17), (2.21), and the 
fact that j,” b,,+,(t)f(t)dt =o(~-“-~-~l) as x + 00 that j,“f(t)dt has a true 
asymptotic expansion which is given as 

In many cases it occurs that the asymptotic series of r)k(x), k = 1,2,. . . ,m, 
do not all start with the power xk; ’ i.e., some may start with the lower power 
of x. We then assume that, in general, pkE Acik), ik G k, k = 1,2,. . . ,m. If one 
now follows the steps that led to (2.17), one can see that some of the /Y$, 
k=Ol , , . . . ,m - 1, may have asymptotic series which do not start with xk+‘, 
but with a lower integer power of x, say xtt. For example, if pkE A(‘), 
k=12 , ,... ,m (which for instance, with m = 2, is the case for Bessel’s 
equation), then from (2.7)-(2.17) one can see that a,, kE A(-‘+‘), k = 
01 , ,***, m - 1, a, E A(-“-‘), and hence CQ = 0, b,,, E alsk, k = O,l,. . . ,m - 1, 
and bl-a,,Z=1,2... . Therefore, /$E A(‘). In general, &‘E A(“), with ik 
integers and jk S k -I- 1, k = 0, 1, . . . , m - 1. Actually, pi(x) = O(b,,,(x)) as 
x+00; hence from (2.7) jk~max(ik+l,ik+2-l,...,im-m+k+1), k= 
0, 1, . . . , m - 1. Therefore (2.22) can be replaced by 

We can summarize ah that has been said so far in the following theorem. 
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THEOREM 1. Let f be integrable on [0, co) and satisfy the linear m&order 
diff&x&iul equation f(x)=& P~(x)~‘~)(x) with pkE dik), ik G k, k = 
1,2,..., m. Zflim,,, pf’-‘)(x)f’k-‘)(r)=O, k=i,i +l,..., m, i=1,2 ,..., m, 
and if for any integer 1 2-l we have Zr=‘=,Z(Z-l)...(Z--k+l)p,,,#l, 
where pk.0 =lir&,x-‘p,(x), then, as X -00, j,“f(t)dt has an asymptotic 
expansion of the fomz (2.23) with jk Gmax(ik+r, ik+a - 1,. . . ,i, - m + k + 1), 
k=O,l,..., m-l. 

We note that the conditions stated in Theorem 1 are sufficient. In ah the 
examples done by the authors ah of these conditions were seen to hold 
simultaneously. Therefore, the authors feel that the result (2.23) of Theorem 1 
might hold even with a smaller number of conditions. 

We note in passing that if f satisfies (2.23) such that &a # - 1, then f is in 
B(“‘). This can be proved by differentiating both sides of (2.22). 

Having established (223, we now define our D-transformation. Following 
Schucany, Gray, and Owen [2] .and Levin [5-71, we demand that the 

approximation Q$,,. ,n,_, to S=/Ff(t)dt satisfy the N=l+Zr~~n, 
equations 

Dlzont)n,,...,*m_, = J (1 ,‘f t dt+m$f(k)(xl)xp 
*k-l p 

k=O 

2 -$, 
i=O 

1=1,2 ,..., N, (2.24) 

with & constants and x1 chosen to satisfy OC x1 < x2 <. . .<xN. The 
equations (2.24) form a linear set in N unknowns, namely, D,$~)n,,,,,,,_, and 

pk$ i=o$l ssse) n,-1, k=O,l ,a.., m - 1, and can, in general, be solved for 
the N unknowns. DA’$,,, ,.,n,_l is expected to be a good approximation to S; 
however, the coefficients BkBk. i do not have to be identical to the &., i in (2.23), 
since the asymptotic series in (2.23) are usually infinite. As it turns out, the 
choice of the xI is important, and this point has been investigated by the 
second author; see Note Added in Proof. For the sake of simplicity, however, 

\ we choose 

xl=[+(z-l)r, 1=1,2 ,...,N, 5~0, 7~0. 

Following Gray, Atchison, and McWilliams [l], we then denote D,!$)n,,,,,,,_, 

by D::‘,,,...,,,_,[F(E); 1 h T w ere F(E)= /t f(t)dt. Usually it is more conve- 
nient to use the “diagonal” transformation DC”) n,n,...,n [F(6); -T] = D(“‘)[ F(t); 71. 
For the case m =2 and j. = ji ~0, which occurs frequently, Di”[ F(5); T] is 
given below: 
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F(5) F(5 + 7) 
f(5) f(t+r) 
f(E) fG+4 

5 5+7 

I: : 

fis) f&d 

D;2’[W); ?I= , 
En-’ (t+ 7)-l 

fib 
f(5) 

5 

Ai) 
En-’ 
f(6) 
flo 

E 

A&) 
(5+ ry-1 
fY5 + 7) 
f% + 4 

t+r 

f(i+ 4 
([+ry 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

F(t +2nr) 

f(5+2nr) 
f(5 +2nr) 

t+2nr 

fY6 +2n71 
fG +274 

5+2nr 

f(E :w 
ff E+2nr) 

[+2nr 

f(5 +2n7) 
((+2nr)“-’ 

f(t +2nr) 
05 +2nr) 

5+2nr 

f([ +2nr) 

([+2nr)“-’ 

187 

(2.25) 

In general, we can write D,, (*)[ F(t); r] as the quotient of two determinants 
using Cramer’s rule as in (2.25). It also turns out that Di”)[F([); r] is an 
“average” of F(t), F(t + r), . . . ,F([ + mnr); i.e., 

2 y,F(t + id 
D;“)[F(t); r] = ‘=’ 

%j ’ 

(2.26) 

i=O 
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where y, are the cofactors of F(E + jr) and are dependent on f(x), 
f(x), . ..,f(“-‘j(x), Therefore, the Dtransformation can be viewed as a 
nonlinear summability method. 

3. SOME SPECIAL CASES OF THE D-TRANSFORMATION AND AN 
EXTENSION OF THE CONFLUENT E-ALGORITHM 

For m = 1 and j,, =O the system of equations (2.24) reduces to that given 
by Levin [7] in his development of the P-transformation. Hence the D!$trans- 
formation is identical to the P-transformation of Levin. The P-transformation 
has been developed for functions of the form f(x)= eiwxh(x) with w constant 
and h E Acy), y (0. It is not difficult to show that these functions satisfy 
first-order linear differential equations of the form f(x)= p(x)f(x) with 
p(x)=[h’(x)/h(z)+iw]-‘, so that pi A”), which implies that j. =O in 
(2.23). It is worth mentioning that the P-transformation has worked very 
efficiently on the Bromwich integral, which is used in inverting Laplace 
transforms. This fact may indicate that the Dtransfoxmation would also 
produce very good results. 

If the asymptotic expansion (2.23) turns out to be finite, i.e., 

(3.1) 

thenS=l,“f((t)dt~D~~),;,,,,,~~_,[F(5);7]foralln;,nk,k=O,l,...,m-1, 
5 > 0, and r > 0. As an example of (3.1) we can consider the Bessel functions 
of the 1st kind of odd order, namely, _lak+i(x), k = 0,1,2,. . . . Using the 
relation [IS] 

J m.hk+l(t)dt = &(x)+2 ii J,Zb), 
?z I=1 

together with the different recursion relations between the Jl, we finally arrive 
at (3.1). For k = 1 (3.1) becomes 

As another example we can consider the functions which satisfy linear 
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differential equations of the form 

f(x)= g $ c& f’k’(X). 
i I k=l f=O 

189 

(3.2) 

Then we can see from (2.7) that al(x) is a constant; hence b, ~0, and b,, k(~) 
are polynomials of degree k + 1, k ~0, 1, . . . , m - 1, i.e., 

/ 
f(k)(X). (3.3) 

x 

If&(x), k=l,2 ,..., m, in (2.1) are constants, then b,,k(x), k =O, 1,. . . ,m - 1, 
in (2.3) are constants too, and hence Dim’ with ik = 0, k = 0, 1, . . . ,m - 1, Iike 
the G,-transformation and the csrn in the confluent ealgorithm, integrates 
exactly functions which satisfy linear m&order differential equations with 
constant coefficients. 

We can make use of (3.3) to obtain another transformation which will 
integrate exactly functions which satisfy equations of the type (3.2). We start 
by writing (3.3) as 

(3.4) 

and differentiate this equation M = m( m + 3)/2 times to obtain a total of 
M+l equations for the M+l constants S=j,"f((t)dt and &I, i=O,l,...,k 

-t-l, k=O,l , . . . , m - 1. We now define the Gtransformation for any integra- 
ble function f. We demand that the approximation Cc”) to S, satisfy the 

M + 1 equations 

f(kw 1 =o, 

i-0,1,... ,M, (3.5) 

where &, are constants. Equations (3.5) can, in general, be solved for the 
M-t-l unknowns C(*)=C(“)[F(x)] and&i, j=O,l,..., k+l, k=O,l, . . . . m 

- 1. Obviously C(“‘)[F(x)] E S if f satisfies (3.2). It is easy to see that the 
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C-transformation is an extension of the confluent e-algorithm of Wynn, since 
this algorithm can be obtained by solving the set of equations 

d’ 

dx’ 

for earn. 

m-l 

I =o, i-O,1 ,..., m+l, (3.6) 

4. APPLICATIONS OF THE D-TRANSFORMATION 

In this section we shall illustrate the use of the LXtransformation that was 
developed in Section 2 for several functions which are in I?(‘) and 13c3). The 
integrals of all those functions considered in this section converge very slowly. 
The high-order Gtransformations work efficiently on some of these functions 
but fail to work on most others. 

It is worthwhile to make a few comments on the practical application of 
the D-transformation. In order to be able to apply the IFtransformation 
efficiently one has to know (1) the smallest possible positive integer m such 
that the integrand f is in B(“), and (2) the parameters jk, k =0, 1, . . . ,m - 1, in 
the asymptotic expansion of j,“f(t ) dt. If the upper bounds for the jk are 
known, then we can substitute these upper bounds for the jk in the equations 
(2.24). If the differential equation that f satisfies is not readily obtained, then 
we proceed as follows: Since integrability of f at infinity means that 
lim x_m/pf(t)dt =O, we must have 

lim Xfqk)(X)=O , k=O,l,..., m-l, (4.1) 
r-+00 

in the asymptotic expansion in (2.23). Therefore, we replace jk in (2.24) by 
the minimum (rk of k + 1 and s,., where sk is the hrgfi!St of the integers s for 
which lim X#c~f(~)(X)=O. If, with jk replaced by uk, the first few coeffi- 

cients, say &,a, &, 1,. . . , Pk, ,ky in (2.24), turn out to be very small compared 
with the rest of the coefficients, then we can assume that jk = ‘Jk - rk in (223) 
and replace jk by ok - rk in (2.24); and if indeed jk = uk - rk, then we are 
likely to obtain better accuracy for the approximations to S = jcf(t ) dt using 
the same number of the F(xi). 

We shall now state a lemma that will be useful in determining the order of 
the differential equations that the function f whose integral is to be evaluated 
satisfies. 
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LEMMA 2. Zf the finctions f and g satisfy linear dij$rential equations of 
order m and n respectively, then their product fg and their sum f + g, in 
general, satisfy linear diffkrential equations of orders less than or equal to mn 
and m + n respectively. 

PROOF. Let f and g satisfy 

f = 5 Pkf? 
k=l 

g = i qlg’? 
I=1 

(4.2a) 

(4.2b) 

Multiplying (4.2a) and (4.2b), we get 

fg = $! i pkqlf(k)d’)* 
k=l I=1 

(4.3) 

In (4.3) we have to be able to express the mn products f (k)g(z), k = 1,2,. . . , m, 

2=12 , ,***, n, as linear combinations of (fg)“), r=1,2,...,mn. Using 
Leibnitz’s rule for differentiating the product of two functions, we have 

(fg)“) = ,4 (;)f’s’g”-s’, r =1,2 ,...,mn. (4.4) 

In (4.4) if s =O, f(“) is replaced by zr=i pk ftk’ using (4.2a), and if s > m, 
then f’“) is expressed as a combination of f, f’, . . . , f cm), by differentiating 
(4.2a) s - m times. The same can be done for g(‘-‘) when r - s =O and 
r--S>n. Then we wih have expressed (fg)“), r=1,2,...,mn, as combina- 

tionsof themnproductsflk)g(‘), k=1,2 ,..., m, 2=1,2 ,..., n; i.e., 

(fg)@‘= 2 i A,,f@‘g”‘, 7 =1,2 ,...,mn. (4 -5) 
k=l I=1 

Now (4.5) is a set of mn linear equations in the mn unknowns f@)g(‘), 
k=1,2 ,..., m, 1=1,2 ,..., n, and can, in general, be solved to give flk)g(‘) as 
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linear combinations of (fg)“), T = 1,2,. . . ,mn. Hence (4.3) becomes 

fg = 5 A,(fg)('). 
r=l 

For the case off + g we add (4.2a) and (4.2b) to obtain 

f+g= i pffk’+ f: t&g”‘. 

(4.6) 

(4.7) 
k=l I=1 

In (4.7) we have to express fck), k=1,2 ,..., m, and g(l), 1=1,2 ,..., n, as 
combinations of (f + g)(‘), r = 1,2,. . . ,m + n. Using (f + g)(‘) = f (‘) + g(‘) 
and the fact that for T > m f(‘) can be written as a combination of 
f’,f” ,...) f’“‘, and for r > n g(‘) can be written as a combination of 
g’,g”,...,g (n), the result follows as in the previous case; i.e., 

m+n 

f+g= 2 Mf+gP. (4.8) 
r=l 

COROLLARY 1. Zf f satisfies a linear diffkrential equation of order m, 
then, in general, f 2 satisjb a linear differential equution of order m(m + 1)/2 
or less. 

PROOF. The proof follows from the fact that the number of unknowns 
ftk)g(‘) in (4.3) is m(m + 1)/2 when f = g. 

COROLLARY 2. Zf the coefj%ients p,, k = 1,2,. . . ,m, and Q~, I= 1,2,. . . , n, 
have asymptotic expansions in inverse powers of x as x 3 00, then so do A,, 
r=l,2,..., mn, in(4.6)andB,, r=1,2 ,..., m+n, in(4.8). 

COROLLARY 3. Zf fE Z3 (m) and g E ACT) or g(x)= eux, then fg satisfies a 
linear differential equation of order m or less with coeficients that have 
asymptotic expansions in inverse powers of x as x + 00. 

The proofs of these corollaries are easy and we omit them. 
From the experience gained in the use of the P- and high-order G-transfor- 

mations, we expect that as n tends to infinity, D,$“)[F(t; T)] should tend to 
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j,“f(t)dt quickly if fE B(“) and satisfies all the conditions of Theorem 1. 
The numerical results in the following examples indeed confirm this. Conver- 
gence properties of the D-transformation have been taken up by the second 
author in a separate paper, see Note Added in Proof. 

EXAMPLE 4.1. 

z= I 
m sint 

0 
-i-dt =; =1.570796326795... . 

The integrand f(t)=(sin t)/t is integrable at infinity and satisfies the 
differential equation f = -(2/t)f’- f”; hence it is in IS(‘). Therefore, we 
expect 0, c2) to work efficiently. Also since sin t satisfies a second-order linear 
differential equation with constant coefficients, we expect G,, to work effi- 
ciently too. This point has been mentioned in the introduction. From the 
differential equation that f satisfies we see that j,, < - 1 and jr ~0. However, 
we used the prescription proposed for the case in which the differential 
equation is not known explicitly, and in (2.24) we replaced j. by a0 =O and jr 
by ur =O, where ok = min(k -I 1, Sk), k =O, 1. Accordingly Di2)[ f(t); 71 was 
computed by solving the 2n + 1 linear equations 

with [=l and r = 1, and F(r)= _j$‘[(sin t)/t] dt. The finite integrals F(< + jr) 
were computed correctly to 14 decimal points using a Gauss-Legendre 
quadrature formula. We also computed G,,[ F(5); r)]. The results of the 
computations with IIA2) and G,, are given in Table 1. Di2)[F([); r] has been 
compared with G,,[F(t); r], since they both use the same finite integrals, 
namely, F([+ j7), j=O,l,..., 2n. 

For the integral /,“[(&I t)/ t] dt we have the asymptotic expansion 
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TABLE 1 
VALUES OF THE APPROXIMATIONSm~,?[ F(1); 11 AND G,,[ F(1); 1] 

TO THE INTJZGFtAL I= 
/ 

[(sin t>/t] dt = n/2” 
0 

n D@)[ F(1). l] n > G,, [ F(l); 11 

2 1.63 1.56 
4 1.5716 1.572 
6 1.5707943 1.57080 
8 1.57079 606 1.57079 55 
10 1.570796323 1.57079 6326 

*n = 2(2)10 

which can easily be obtained by integrating (sind)/t by parts a sufficient 
number of times. We note that since [(sin x)/x ]‘=(cos x)/x -(sin x)/x2, we 
can rearrange (4.10) and obtain 

J -- . . . 
x 

sin x ’ 
+- ( H p2’+41- 

X X2 X4 *** ’ 
) 

(4.11) 

which is in the form (223). We see that j. = - 1 and jr ~0; i.e., j. and jr are 
actually equal to their upper bounds given above. 

We now expect at least the first few pk, i, k =O, 1, in the solution of the 
equations (4.9) to be similar to the corresponding coefficients in the asymp- 
totic expansion given in (4.11). This indeed turns out to be the case. For 
example, for n =lO we obtained &o = -0.000068, & ~2.0076, go,2 = 
-0.32, &a= - 1.41 corresp+iing to 0, 2, 0, -8 respectively, and &o = 
0.999982, Pr, r = -0.m71, /31,2 = - 1.84 corresponding to 1, 0, -2 respec- 
tively. The rest of the coefficients become large as quickly as those in the 
asymptotic expansion (4.11). 

We also note that if one truncates both of the asymptotic series in (4.11) at 
th e power XC9 and uses these truncated series in the computation of 
/,” [(sin t )/t] dt with x =20, th e error in this computation is of the order of 
lo-‘, whereas the Df$[F(l); I] approximation which is obtained by using 
/;‘[(sint)/t] dt h as an error of-the order of 10Vg. 
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EWLE 4.2. 

I, = 
/ 

mJO(t)&=l, I = m %W 

0 
b l ---&dt=K,(1)=0.4210244382401.... 

Since f( t ) = J,(t) is integrable at infinity and satisfies the differential equation 
f=-(l/t)f-f”, wehavefEB . (2) The function g(t)= tJ,(t)/(l+ t2) also 
is in Bc2), and this is suggested by Corollary 3 of Lemma 2, since h(t) = t/(1 
+ t2) is in A(-‘) and fE B(‘). 

Therefore, we expect the DA2)-transformation to work efficiently on both I, 
and I,, and this is confirmed by the results in Table 2. The results in this 
table were obtained by replacing j0 and jl with a0 =O and u1 =O as in 
Example 1. 

For the integral 1,” J$ t) dt there is also a known asymptotic expansion [9] 
which is given by 

p&)&_Jo(x) g2jz+ 12x;y _ 12x32x;52x7+ . ..) 
x ( 

-&(x)(1-$+y- 12x~;x52 + .j. (4.12) 

Since [l,(x)]‘= - II(x), (4.12) is exactly of the foe (2.23). 
In this case too it turns out that the first few &, i, k = 0, 1, in (2.24) are 

similar to the corresponding coefficients of the asymptotic expansion in 
($12). For exam_ple, for n = 10 we obtained &, = -0.00001, /$I = 1.001, 
&, = -0.049, &, = - 1.88, corresponding to 0, 1, 0, - 3 respectively, 

and &.o = 0.99998, &I = 0.0001, &2 = -0.981, corresponding to 1, 0, - 1 
respectively. The rest of the coefficients become large as quickly as those in 
the asymptotic expansion in (4.12). 

If we truncate the asymptotic series in (4.12) at the power x? and use the 
truncated series in the computation of 1,” JO( t ) dt with x = 20, the error in this 
computation is of the order of lo-*. However, the D$)[ F,(l); ll-approxima- 
tion has an error of order 10W9. 

The G,,-transformation was tried on I, and I,, and the results that were 
obtained for G,,[F(E); T] were as good as those for Di2)[F([); 71 in Table 2. 
The reason that G,, works on I, and I, so well is that as t becomes large 
J,(t)=costh,(t)+sinth2(t) with h,,hz~A(-1/2), tid that cost and sint 
satisfy a linear differential equation with constant coefficients. 
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TABLE 2 
VALUES OF THE APPROXIMATIONS oi2’ [ F,( 1); l] AND oA2’ [ Fb( 1); 11 

TO&= 
/ 0 

~JO(t)dtANDzb=jm t&( t)/(l + t 2, dt RESPECTIVELY a 
0 

n D:2qF,W; 11 DC2’[ F,(l);11 n 

2 1.04 0.43 
4 1.003 0.4212 
6 0.999994 0.421027 
8 0.9999998 0.421024433 
10 0.9999999986 0.421024434 
12 0.99999999984 0.4210244382407 

“For n = 2(2)12, where F,(r) = /; J,,(t) dt and Fb(z) = 
/o” tJ,(t)/(l+ t2) dt. 

The integrals I, and I, were computed also by L.&n [6] using a transfor- 
mation designed to work exclusively on integrals of the form 

@)JV(t) dt, hi A(v), 

and very good results were obtained. 

where 

C(z)=~‘_s( tt2) dt and S(x)=Jo”sin( it”) dt. 



Two New Classm of Nonlinear Trutasfmtions 197 

In this example the zeros of the integrand f(t) = sin(at2 + bt ) get closer to 
each other as t --) co; hence it is obvious that f( t ) does not have a behavior 
which would enable the G,,-transformation to work efficiently. Indeed, the 
G,-transformation failed to work in this case. However, f is in Bc2), since it is 
integrable at infinity and satisfies the differential equation f= [2~/(2at + 
b)3] f - [l/(2& + b)‘] f’, therefore, we expect the D,$2)-transformation to 
work efficiently. As we can see from the differential equation, j. G -3 and 
jl < - 2. In this example we computed Di2)[F([); 71 by replacing j0 and jl in 
(2.24) with -3 and -2 respectively and by letting [ = 0.2, T = 0.2. We 
considered the two cases a = r/2, b = 0, and a = r/2, b = n/2. For these 
cases we have Z( n/2,0) = f and Z( 7r/2,7~/2) = 0.3992050565256.. . . The 
results are given in Table 3. 

EXAMPLE 4.4, 

z = lW ‘““,‘:y’ dt=~log2+G=1.460362116753... , 

where G =0.915965594177219.. . is Catalan’s constant. 
The function flt)=[log(l+ t)]/(l+ t2) is integrable at infinity and satis- 

fies the differential equation 

therefore, fE B (2! We also note that i0 91 and jl G2. Numerical results 
indicate that j0 = 1 and jl = 2 exactly. For this case, and for many others 

TABLE 3 
VALUES OF THE APPROXIMATIONS oA2’[ F(0.2); 0.21 

TOl(lr/2,0)hm,I(n/2,?r/2),~eREI(a,b)=lomsin(ot2+bt)dt” 

n D~2’[F(0.2);0.2](~/2,0) Di2'[ F(0.2); 0.2]( 7r/2, n/2) 

2 0.12 0.46 
4 0.495 0.397 
6 0.4993 0.399212 
8 0.5mOOl 0.399205044 
10 0.49999999989 0.39920 50585 18 

“For n=2(2)10, whereF(x)=jtsin(~t~+bt)dt 
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which contain logarithmic terms multiplied by functions in A(u), the choice of 
the xi, j=1,2 ,..., N, in the equations (2.24) becomes very important. If we 
choose the zi equidistantly as in the previous examples, the approximations 
DA2)[ F(t); T] are poor for large n. If we choose xi = [&i)‘, j = 1,2,. . . , N, 
then the convergence of the approximations Di2’ obtained by solving the 
equations (2.24) improves considerably. In our computations we chose 5 = 1 
and r = 0.2. The results of the computations are given in Table 4. 

We note that the G,,-transformation failed to work in this case. 

EXAMPLE 4.5. 

q( y2 dt = ; = 1.57079 6326795.. . , 

The integrandf(t)=[(sin t)/t] 2 is integrable at infinity, and since (sin t)/ t 
is in IS(‘) from Example 4.1, [(sin t)/t12 satisfies a differential equation of 
order 3 or less with coefficients in A (y) for some values of y, according to 
Corollaries 1 and 2 of Lemma 2. Indeed, f satisfies the differential equation 

hence fE Bc3). Therefore, we except the D~3)-transformation to produce good 
results. The G,-transformation does not work efficiently on this function, 
although (sin t)2 satisfies a linear differential equation of order 3 with constant 
coefficients. The parameters jkr k =O, 1,2, in (2.24) satisfy jc, < 1, ii GO, j2 G 1, 
and from numerical results it turns out that j0 = 1, ji =O, j2 = 1. In the 

TABLE 4 
VALUES OF THE APPROXIMATIONS 0;" TO 

I= mhdl+t)dta 
/ 0 1+t2 

n D’2’ 
n 

2 1.14 
4 1.46085 
6 1.46042 
6 1.46036208 
10 1.4603621191 

“Obtained using xi = e(i-‘p.‘, j = 
1,2 ,..., N, for n =2(2)10 



Two New Classes of Nonlinear Transfmtions 199 

TABLE 5 

n Dc3’[ F(1). l] ” 9 

2 1.61 
4 1.5799 
6 1.570793 
8 1.57079635 
10 1.57079932688 

‘For n =2(2)10. 

computation of Q3’ we assumed that the equation was not known and 
replaced jk by uk =min(k + 1, sk), k =O, 1,2, which in this case turned out to 
be equaI to 1. The approximations Di3)[ F(t); r] to Z were obtained by using 
E = 1 and r = 1. The results of the computations are given in Table 5. 

bAA@LE 4.6. 

z= J 0 

mZo(t)l,(t)~=~=0.63661977236758.... 

Since the functions Jo(t) and Zi(t) are in Bc2), according to Lemma 2 and 
Corollary 2 their product satisfies a linear differential equation of order 4 or 
less; in fact, Jo( t )Zr( t )/t turns out to be in Bc3), the differential equation being 
rather complicated. We assumed that the differehtial equation was not known 
and replaced the jk, k =O, 1,2, in (2.24) by the uk. Since flk)(r)= 0(xd2) as 
x+00, k=0,1,2 ,.a., it turns out that uk = 1, k = 0, 1,2. In the computation 
of ZP’[F(5); ] r we chose [ = 1 and r = 1. The results of the computations are 
give: in Table 6. 

TABLE 6 
VALUES OF THE APPROXIMATIONS 

DL3’ [ F( 1); l] TO I = 
/ 
o%wJdwtl &” 

n DA3’[ F(1); l] 

2 0.6341 
4 0.63660 97 
6 0.63661991 
8 0.63661977204 
10 0.636619772340 

aFor n =2(2)10 
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We note that the G,,-transformation failed to work in this case too. 
Di3)[F(6); l] was compared with G3n[F([); r]. Gsc,[F(l); l] was seen to be 
correct to 5 decimal places, and F(31) was seen to be correct to 3 decimal 
places. 

5. THE d-TRANSFORMATION FOR INFINITE SERIES 

Let BCrn) be the set of infinite sequences {f(r)} whose elements f(r), 
r =1,2,3 ,..., satisfy linear mthorder difference equations of the form 

f(r)= k~lr44AkfG93 (5.1) 

where A’f(r)=f(r), Af(r)=f(r+l)-f(r), A’f(r)=A[Af(r)], etc., and 
;k.)2considered as functions of *the continuous variable x, are in A@), 

, )..., m. 
In this section we are going to make use of the ideas that were developed 

in Section 2 to derive the d-transformation that will give good approximations 
to the sums of infinite series of the form X:&f(r), where {f(r)} E @‘“). In 
essence the d-transformation is the discrete analogue of the D-transformation 
for infinite integrals. 

In analogy to Theorem 1 for infinite integrals whose integrands are in Rem), 
we now state Theorem 2 for infinite series whose associated sequences are in 
B(m)* 

THEOREM 2. Let IZ~=“,,f(r)l<co, and Z&f(r), r=l,2 ,..., satisfy the 
linear mth-orderdiff&nce equutionf(r)=I&pk(r)Akf(r) with pk~ACik), 
i,~k, k=1,2 ,..., m. Zf 

rlifnm [A’-‘pk(r)][A’k-if(r)] =O, k=i,i+l,..., m, i=1,2 ,..., m, 

(5.2) 

and 

2 Z(Z-l)+Z-k+l)p,,,#l, 12-1, Zinteger, (5.3) 
k=l 

whew pk.0 =&,, rekpk(r), then ZTzo=, f(r), for R + 00, has an asymptotic 



Two New Classes of Nonlinear Transfmtim !201 

expansion of the fm 

5 f(+y*y(R)Rfr. j3k,o+++%+ . ..) (5.4) 
r=R k=O 

with jk &m&i,+,, ik+s -l,...,i, -m+k+l), k=O,l,..., m-l. 

The proof of this theorem is analogous to that of Theorem 1 of Section 2 
with D E d /dx replaced by A, 1,” replaced by ZTEo=, , and integration by parts 
replaced by “summation by parts” using the formma 

$Rg(r)Ah(r)=-g(R-l)h(R)+g(R’)h(R’tl) 

- 5 [Ag(r-l)]h(r). 
r=R 

(5.5) 

In order to show the similarity of the proof of Theorem 2 to that of Theorem 
1, we give the first step of it in detail, the rest being analogous. 

Summing f(r)=Zrcl pk(r)Akf(r) from r =R to infinity and using (5.5) 
repeatedly together with the conditions in (5.2), we obtain analogously to 

(2.6) 

g flr)=~~~%k(R)AkflR)+ r~Radr)ft~h (5.6) 
r=R 

where 

a,,k(R)= i (-l)‘+kA~-k-lq(R-f+k), k=O,l ,.a., m-l, 
j=k+l 

al(r)= i (-l)kAkpk(r-k), TZ=R. 
(5.7) 

k=l 

We now use the fact that if hE Acy) [i.e., h(r)= horr+ O(rr-l) as r --$oo], 
then Ah(r)=yhOr y-l + O(rym2) as r -+ 00, i.e., AhE A(?-‘); and if hE A’o’, 
then Ah E tie2). This property of the difference operator A is similar to that 
ofthedifferentialoperatorD.Wethenseethata,,kEA(k+1),k=O,1,...,m- 
1, and a,E A(o, and is of the form 

q(r)= a1 + q(r), (54 
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where a1 = Zp=r,( - l)kk!p,,, and C,E A(-‘). Since (or # 1 according to the 
hypothesis stated in the theorem, (5.6) can be written as 

where 

a1 k(R) h,kw= l_ar’ k=O,l,..., m-l, 
1 

(5.10) 

b,(r)=+@, rz=R, 
1 

and where b, kE Ack+‘), k =O, 1,. . . , m - 1, and b,~ AcP2). Since f(r)= o(1) 
and b,(r)= O(rP2) as r + co, the sum ZyTO=Rbl(~)f(r) converges to zero faster 
than the sum IZ~&f(r) as R + cc. 

We now make use of (5.4) to derive the d-transformation for infinite series. 
We demand that the approximation dkr,‘n,,.,.,,__, to S =Zr=rf(r) satisfy the 
N = 1+2&’ nk equations 

1=1,2,..., N, (5.11) 

with & constants and R, chosen to satisfy OG R,< R,< . . . <RN, and 
with 2:: r f(r) =0 when R, = 0. The zquations (5.11) form a linear set in N 
unknowns,namely,d~~~ “,,,,,, ,__,and~k,i,i=O,l,...,nk-l,k=O,l ,... ,m-- 
1, and can, in general, be solved for d$TJn,,,, ,,n,_,. Again for the sake of 

simplicity we choose 

Rl=[+(Z--1)q 1=1,2 ,..., N, 

where 5 2 0, r 3 1 are integers. We denote dkT,),,,,,,,,__l by 

dL;)n, ,..., .,_,[F(U; I. 7 w h ere F(t) is the sum of the first 6 terms of ZT=rf(r), 
i.e., F([)=Zf.-, f(r). We also define the “diagonal” d-transformation as 
d(“‘) n,n,....n [F(t); T] = d’“)[F(& T]. n 
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cl$,“‘)[ F( 0; l] for the case m = 2 and il = iz = 0, which occurs frequently, is 
given below: 

@[F(5); l] = 

F(E) F(.$+l) ..a F(t +2n) 

f(E+l) f(E+2) ... f([+2n+l) 

fG+l) f(E+2n+l) f(5 +2) . . . 
<+1 5+2 {+2n+l 

f(h) f&2) f(<+in+l) 

(E+l)“-’ @+2)“_’ **. (‘$+2n+1)“_’ 

Af(t+l) Af(5+2) a*. Af(t+2n+l) 

Af(t+l) Af(E +2) . . . AI%$;~) 
E+l t+2 n 

Af(i+O Af(i+2) Af(t+&+l) 

(E+l)“-’ ([+2)“-’ *‘* (5+2n+l)“-’ 

1 1 . . . 1 

f(E.+l) f(5+2) --a f(t+Zn+l) 

xs’+i” f(l+2) f(5+2n+l) . . . 

2+2 [+2n+l 

f(c+l) f($ $2) f(c+in+l) 

([+l)“-’ (t+2)“-’ *** (5+2n+1)“_’ 

Af(E+l) Af(5+2) a.- Af(.$+zn+l) 

Af(E+l) Af(E+2) . . . AJT~~;;~) 
E+l E+2 n 

Af(i+l) Af(i+2) Af(5+‘2n +l) 

([+l)“-’ ([t-2)“-’ *** (<+2n+l)“-’ (5.12) 

Like the Dtransformation, the d-transformation is also a nonlinear summabil- 
ity method. 

6. SOME SPECIAL CASES OF THE d-TRANSFORMATION 

For m = 1 and j0 =O the system of equations (5.11) reduces to that given 
by Levin [5] in his development of the t-transformation. Hence the di’)-trans- 
formation is identical to the t-transformation of Levin [5], namely, 
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d;“[F(~);l]=t,,[F(E+l)]. F or m = 1 and f0 = 1 the d~l)-transformation turns 
out to be identical to the u-transformations of Levin [5], namely dt)[F(E); l] 
3 u,[F([ + l)] with n >l. The fact that the t- and u-transformations accel- 
erate the convergence of slowly converging series whose associated sequences 
are in B(l), in the sense that as n + co t,, and U, converge to the sums of the 
series quickly, indicates that the dim)-transformation will be as efficient as the 
t- and u-transformations when applied to series whose associated sequences 
are in BCm) for any m 21; i.e., as n --) CIO, dim) will tend to the sums of these 
series quickly. This was indeed the case in all the examples that were 
considered. (See Section 7.) 

Italsoturnsoutthatd~“~[F(~);1]withj,=O,k=O,l,...,m-1,isidenti- 
cal to the e,,,[ F(t + m)]transformation of Shanks [8], which in turn is 
identical to eZm[ F(t)] of the e-algorithm of Wynn [3]. 

When the d-transformation is applied to power series, rational approxima- 
tions are obtained. From what has been said above we see that the rational 
approximations obtained using di”‘) with jk = 0, k = 0, 1, . . . ,m - 1, are just 
the Pad& approximants, and those obtained using din with j,, = 1 are the u- 
approximants of Levin [6], see also Longman [lo]. The Pade and u-approxi- 
mants have proved to be very efficient for power series whose coefficients 
satisfy simple recurrence relations. However, for power series whose coeffi- 
cients satisfy complicated recurrence relations of the form (5.1) we expect 
that the rational approximations obtained using the d(“‘)-transformation will 
be more appropriate. These rational approximations can be cast into a form 
which is convenient to use. For example, the dF)[ F( 5); l] approximation to a 
power series Z~?,lurrr-l, with i,, = jr = 0, after some elementary row and 
column transformations on (5.12), can be expressed as @[F(E); l] = N/D, 
where 

N= 

t+1 

X2n 5: a,r”-l X2n-l 2 a,x’-l 

r=l 

at+1 

at+1 

E+l 

at+1 

([+l)“-’ 

at+2 
at+2 

5+1 

r=l 

at+2 

at+2 

t+2 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

6 f2n 

I: a$-’ 

r=l 

a&+zn+l 

Uf+2n+l 

t+2n+1 

ac+2n+ 1 

(5+2n +1)“_’ 

at+2n+2 

at+2n+2 

5+2n+1 (6.1) 
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and D is obtained from N by replacing the first row in the determinant 
expression in (6.1) with the row vector (x2n, x2n-1,. . . ,x, 1). 

As is seen from (6. l), the rational approximation obtained using dr) [ F( t ); l] 
has numerator of degree 2n + [ -1 and denominator of degree 2n. In 
general, the rational approximations obtained using dim)[ F(t); l] with jk = 0, 
k=O 1 , ,***, m - 1, will have numerators of degree mn + E - 1 and denomina- 
tors of degree mn. 

7. APPLICATIONS OF THE d-TRANSFORMATION 

In many problems of applied mathematics the solution is obtained in the 
form of an infinite series Z~=ia(r)+~(x), where G,(X) are orthogonal poly- 
nomials, or elementary functions, or special functions, or products of them. 
Hence the functions +Jr) satisfy a linear recursion relation of some finite 
order hence the sequences {+,(x)} are usually in l8”‘) for some m. As we shall 
see below, if a(r) = t” or a E A(v) for some y, then in general, {a(r)$~Jx)} E 
B@Q too. 

Several methods for accelerating the convergence of series of orthogonal 
functions have been developed in the past. Mention can be made of the 
methods of Maehley [ll] and Clenshaw and Lord [14] for Chebyshev series, 
of Holdeman [12] for series of orthogonal polynomials in general, and of 
Fleischer [13] for Legendre series. A recursive method for the computation of 
the approximations of Clenshaw and Lord has been given by the second 
author [ 151. All these methods are of the Pade type. We finahy mention the 
methods of Levin [6] for accelerating the convergence of series of orthogonal 
polynomials, which are like the d-transformation, but unlike the d-transforma- 
tion require full knowledge of the recursion relations that these polynomials 
satisfy. This point has been explained in detail in Section 1. One drawback of 
all these methods is that one needs different transformations for different 
kinds of series, whereas the same d-transformation can be used for all of these 
series. If the function represented by the infinite series in question is analytic, 
then the d-transformation, like the methods given in [ll, 12, 13, 141, can be 
used to analytically continue the series to regions in which the series diverges. 
This point is briefly illustrated in Example 7.1. 

In this section we shall illustrate the use of the d-transformation on 
different infinite series of the form mentioned in the previous paragraph; in 
particular, we shall deal with series whose associated sequences are in B(‘) and 
B(4)* 

The choice of the parameters jk in (5.11) is exactly as explained in Section 
4 for the D-transformation with the derivative operator replaced by the 
forward difference operator A. In analogy to Lemma 2 and its Corollaries 1,2, 
and 3 of Section 4 we state 



206 DAVID LEVIN AND AVRAM SIDI 

LEMMA 3. Zf {f(r)} and {g(r)} satisfy linear dij@rence equations of 
orders m and n respectively, i.e., 

f(r)= i ~k(r)A~f(4 g(r)= i dr)A’gW, (7.1) 
k=l Z=l 

thentheirproduct {f(r)g(r)} undtheirsum{f(r)+g(r)},ingeneruZ,satisji~ 
linear diff?ence equations of orders less than ur equul to mn and m + n 
respectively, i.e., 

f(r)g(r)= 2 Ak(r)Akk[f(r)g(r)ly 
k=l 

m+n 

f(r)+g(r)= Ix %r)@[f(“)+g(r)l. 

U-2) 

k=l 

coRoILAFiY 1. Zf {f(r)] t E sa is es a linear difference equation of order m, 
then, in general, {[f(r)12} t’fze sa zs s a lineur di~erence equation of order 
m(m + 1)/2 or less. 

COROLLARY 2. Zf the coeficients pk( r), k = 1,2,. . . ,m, and ql(r), 1 = 
1,2,..., n, in (7.1) have asymptotic expansions in inverse powers of r as 
r--co, then so do Ak(r), k=1,2,...,mn, and &(r), k=1,2 ,..., m+n, in 
(7.2). 

COROLLARY 3. Zf { f(r)} E g(m) and g(r)= tr or gE A(u) for some y, then 
the terms of the sequence {g( r)f(r)} satisfy a linear diffbence equation of 
order m or less with coeflcients that have asymptotic expansions in inve-rse 
powers of r as r -+ 00. 

The proofs of Lemma 3 and its Corollaries 1,2, and 3 are identical to those 
of Lemma 2 and its corollaries if one uses 

AN[f(r)g(r)]= 5 ( y)Nik( “ik)[A~-‘f(r)][Akt’g(r)l, (7.3) 
k=O j=O 

in the same manner that Leibnitz’s rule for differentiating the product of two 
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functions was used in Section 4. The formula given in (7.3) can be proved by 
induction on N. 

EXAMPLE 7.1. 

where P,(r) is the Legendre polynomial of degree r, r =O, 1,2,. . . . This series 
converges slowly for ( x 1 G 1 and diverges for ( x I> 1. 

Since the Legendre polynomials satisfy the linear threeterm recursion 
relation 

the terms C, = P,(x)/[(l-2r)(2r +3)] of the infinite series above satisfy the 
second-order difference equation 

where 

p (+ (l-x)4r2f(11-6x)2r+(28-5x) 
1 

(x-1)(4r2+12r)+(5x-13) ’ 

2r2 + llr + 14 

“(‘)’ (x-1)(4r2+12r)+(5x-13)’ 

It is seen that for x # 1, pi E AC’) and paE A(o, when p, and p, are considered 
as functions of r for fixed X. However, for x = 1, p,~ A(‘) and p,E A”). This 
sudden transition of pr and p, from A(‘) to A(‘) and Ac2) respectively indicates 
that x = 1 is a point of singularity of g(x), and indeed x = 1 is a branch point 
of g(x). We therefore expect the d~kansformation to produce good ap- 
proximations to g(x) for - 1~ x < 1; i.e., where the series converges to g(x), 
and for x not too close to 1. This is verified by computations done for 
- 19 x <l. It also turns out that the dr)-transformation produces good 
approximations to g(x) for x < - 1, i.e., even when the series diverges. In 
Table 7 we give the values of dF)[F(O, x); l] [with j. and jr in (5.11) replaced 
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TABLE 7 
VALUES OF THE APPROXIMATIONS 

dc,“[ F(0, x); l] TO g(x) = d-/2’ 

n dc2’[ F(0 9 - 1.5); l] ” rft2’[ F(0 ,. 0 5). , I] n d”[ F(0 ,* 0 9). 3 n I] 

2 0.559015 0.2505 0.116 
4 0.559016998 0.249998 0.1114 
6 05590109943 72 0.24999989 0.11177 
8 0.55901699437493 0.24999 99997 8 0.111800 
10 0.55901099437485 0.25000OOOOO27 0.1118039 

Exact 0.5599169943 74947 o.25OOOOOOOOOO 0.111803398874 

“For x = - 1.5,0.5,0.9, and n = 2(2)10. Exact values of g(z) are given in the 
Bottom row. 

by their upper bound, which is zero] for x = - 1.5,0.5,0.9, where F(& x) is 

the $th partial sum of the infinite series evaluated at x; i.e., F(& x) = 
Z;:;P,(x)/[(l-2r)(2r +3)], and F(0, x) = 0. 

We see from Table 7 that for x ~0.9, which is close to x = 1 [the branch 
point of g(x)], the convergence of d,“)[ F(0,O.Q); l] to g(x) as n increases is 
much slower than that of df)[ F(0, x); l] for x = - 1.5 and x ~0.5, which are 
far from x = 1. In order to accelerate the convergence of the approximations 
d:) [ F(& x); T] to g(x) one can use higher values of [ and 7 in the equations 
(5.11). In our computations we took 4 = 1 and T =2 and computed the 
approximations d$)[F(l, x); 21. In Table 8 we given the values of 
dF)[ F(l, x);2] for x =O.Q, which clearly show a great improvement in the 
convergence over those exhibited in Table 7. 

TABLE 8 
VALUES OF THE AFPROXIMATIONS 

@‘[F(1,0.9);2] TO g(r)=dw/2a 

n dF’[F(l,0.9);2] 

2 0.112 
4 0.111805 
6 0.1118032 
8 0.111803393 
10 0.11180339885 

Exact 0.111803398874 

*For n==2(2)10. The exact value of’g(x) 
for x =0.9 is given at the Bottom. 
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EXAMPLE 7.2. 

g(x)=sgnr = ; s shgy-ll)x, --a-=X-CT. 

r=l 

The terms f(r) = sin(2r -1)x, r = 1,2,. . . , satisfy the three-term recursion 
relation 

f(r+1)=2cos2xf(r)-f(r-1); 

hence the terms C, = [4sin(2r - 1)x1/[ n(2r - 1)] of the infinite series satisfy 
the secondorder difference equation 

c, = P~(WG + p,(r)A2C,, 

where 

P,(r)= -1+ (l_~f;223;);2;+l) ’ 

p2(r) = - (1 -co~.&~~4r +2) * 

We see that for cos2x # 1, i.e., x # 0, * 7r, {C,} E B(‘), and p,~ A(‘), p,~ A(‘). 
For r = 0, k s the difference equation is singular, which indicates that at 
x = 0, k s the function g(x) has signularities. Indeed, g(x) has jump discon- 
tinuities at x = 0, 2 7r. We therefore expect the d~%ransformation to produce 
good approximations to g(x) for x not too close to 0, * 7~, where discontinui- 
ties occur, and this is verified by Table 9, which gives values of d,“,[ F(0, x); l] 
with i. and ji in (5.11) replaced by their upper bound, which is zero, for 
r = 7r/6 and x = r/2, where F(& x) =(4/s)&[sin(2r - l)r]/(2r - 1) and 
F(O,x)=O. 

It is worth mentioning that dF)[F(O, r/2); l]_has turned out to be very 
accurate despite the fact that the coefficients Pk,< in the equations (5.11) 
came out very large. The reason for the &, i to be large is that for x = 7r/2 the 
elements of the series are C, = (- 1)‘+‘4/[ lr(2r - l)], which puts {C,.} in B(l), 
and this causes the instability in the computation of the coefficients &, i. 

We note that Fourier sine and cosine series and series of Chebyshev 
polynomials of the first and second hinds can be summed with equal 
efficiency by using the d-transformation, since {sin 1x}, {cos rx}, {T,(z)}, and 
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TABLE 9 
VALUES OF THE APPROXIMATIONS 

d’,2’[ F(0, r); l] TO g(x) = sgn xa 

n d2’[ F(0, n/6); l] n @[ F(0, n/2); 11 

2 1.032 1.00010 
4 1.OcQ31 0.99999 983 
6 0.99997 9 1.OOOOOOO36 
8 0.999999908 0.999999999980 
10 0.99999999932 0.99999999999993 

‘For x = n/6 and I = a/2, and n = 2(2)10. 

{t&(x)}, where T,(x) and U,(x) are the Chebyshev polynomials of the first 
and second kinds respectively, all satisfy similar recursion relations, namely, 

sin(r+l)x=2cosxsinrx-sin(r-1)x, 

cos(r+l)x=2cosxcos?x-cos(7-I)X, 

T,+,(x)=2xT,(x)- T,-,(x)* 

u,+,(x)=2xu,(+ v,-,(x)9 

for r&l. 

EXAMPLE 7.3. 

g(x)=logi =2 f J&x> 
r=l [X,J,(A,)]2 ’ OCxG1, 

where A, is the rth positive zero of JO(x). 
We have not been able to find a recursion relation that the terms 

c,=Zr,(h,~)/[X,J,(h,)]~ of this infinite series satisfy; however, we can 
prove that {C,} E B -c2). For this we shall make use of the following results [16]: 

X,=(r-$)a+a(r), 

Hjl)(x)= e i(x-vn/2-n/4)by(;r), 

(7.4) 

(7.5) 

J,(x)=ReHi’)(x), (7.6) 
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where u(r), considered as a function of r, is in A’-“; b,(x), considered as a 
function of x is in A(-1/2)* 9 > and Hi’)(x) is the Hankel function of the first kind 
of order v. 

First of ah, we see from (7.4) that l/X: considered as a function of r is in 
AcP2). Secondly, from (7.5) and (7.6) 

J,(x,)=ReHI’)(X,)=Re{e +=+=W+7 - 7r/4+ u(r)]} 

=(-1)“‘Re{ein(r)bl[rrr-lr/4+a(r)]}. 

Now since a E A’-‘), i.e., u(r) = O(r-‘) as r + cc, we have eiacr)E A(‘). Using 
the fact that b,[r~ - 7r/4+ a(r)] E A(-li2) [since b,(r)~ A’-1/2)], we have 
that .I1( A,) E A(-‘/2) and hence 1/[J1(h,)]2~ A(‘). 

Finally, we show hat {.Io(h,~)} for fix e d x is in Bc2), Using (7.4) and (7.5), 
we have 

Z-@(A,x) = eirlrrK(r), 

where K( r ) = eiacr)’ e 
A(‘) and b [nr*-n!,;+u(r)x]~A- 

i(‘“‘/4~~~4~bo~m~,; nx/4 + u(r)x]}. Since eiocr)‘E 

-Ys 
we have K(r) E A(-1/2). Since 

{eir”‘} E B for x fixed, we have {iY~l)(&)} E B(‘) using CoroIIary 3 to 
Lemma 3. Also since J,(A,x) = [H$‘)(h,x)+ @)(X,x)]/2, we have 
{I,( h,, x)} E B(‘) in accordance with CorolIary 2 of Lemma 3. And finahy 

{Jo(~,~)/[~,J1(~,)12] E @2), again by Corollary 2 of Lemma 3. Therefore, 
we expect the d, (2)-transformation to work efficiently for 0 < x G 1 and x not 
too close to zero, where the function g(x) = log(l/x) has a singularity. It 
turns out that the @-transformation produces very good approximations to 
g(x) even when x > 1. In Table 10 we give values of dF)[ F(0, x); l] with to 
and jl replaced by a0 = 1 and u1 = 1 for x = 0.6 and x = 1.4, where F([, x) = 

TABLE 10 
VALUES OF THE APPROXIMATIONS 

d”‘[ F(0, x); 11 TO g(x) = log(+)” ” 

n c.P’[ F(O,0.6); l] n dC2’[ F(0 14). l] n 9.1 

2 0.51034 -0.336 
4 0.51077 -0.36437 
6 0.51082 556 - 0.36472 198 
8 0.51082 56237 25 -0.3647223659 
10 0.51082 56237 6559 -0.36472236620986 

Exact 0.51082 56237 65599 -0.36472236621212 

aFor 2 = 0.6 and x = 1.4 and n = 2(2)10. Exact values of g(r) are 
given in the bottom row. 
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El Mw/[~,Jl(~,)12 and F(0, x) = 0. Numerical results indicate that 
i0 = ii = 0. 

dPd4= o r 1/\/2(cos/3-cos+), OGp<c#s<Tr, 

, oc+</3<n, 

Since both cos(r + ;)a, r =O, 1,2,. . . , and P,(cos +), r =O, 1,2,. . . , satisfy 
three-term recursion relations and hence second-order difference equations, 
the terms C, = cos (r + 8)/3 P,(cos t$), r =O, 1,2,. . . , of the infinite series satisfy 
a fourth-order difference equation by Corollary 1 of Lemma 3. This difference 
equation is quite complicated and will not be given here. We expect the 
dr)-transformation to produce good approximations to g(/3, +) for $8 not too 
close to j3, since g(& +) goes to infinity as + approaches /3. Table 11 contains 
values of dff)[F(O, j?, +); l] with ik =O, k =O, 1,2,3, for /? =2~r/3, + = rr/6 
and for /3 = r/6, + =2~/3, where F(& 8, +)=ZfiAcos(r + f)PP,(cos +) and 
F(0, 8, cp)=O. 

We note that the partial sums F([,2~/3,7r/6) for 4 G50 are of order 10m2 
at best, and the d&2kansformation improves the accuracy by about 12 
significant figures. 

2 
3 
4 
5 
6 

Exact 

TABLE 11 
VALUES OF THE APPROXIMATIONS 

&4’[F@, I% +X 11 TO d/% $1” 

= 4x10-e 0.604998 
E+r -2x10-8 0.60500026 
W -2x10-‘0 0.60500033358 
a-gx10-‘3 0.6050003337080 
s=a-2x10-14 0.605000333706045 

0 0.605000333706055 

“For j3 =2~/3, $ = r/6 and for j3 = 97/S, + =2~/3, with 
n =2(l)& hct values of g(B, up) are given in the bottom 
row. 



Two New Clusses of Nonlinear Trarwfmtbns 213 

8. COMPUTATIONAL ASPECTS 

In this section we shall describe briefly the computational aspects of the 
D-transformation, those of the d-transformation being similar. 

When one is given a function f to integrate between zero and infinity, one 
should find out whether this function is in B(“) for some m and what this m 
is. Then, as was described in Section 4, the parameters jk in (2.24) should be 
replaced either by their upper bounds or by the ok whose determination was 
also described in Section 4. Once this is done, one should pick up the xI in 
(2.24) in such a way that the function f(t) has a smooth behavior between 
two consecutive x1’s and hence can be integrated accurately there without 
much effort being wasted. An example of poor behavior was given in Example 
4.3, where f(t) = sin(at’ + bt) with a = 7r/2, b = 0 and with a = 7r/2, b = 
7r/2. This function oscillates with increasing frequency as t becomes large, 
and if the distance between xt and xl+i is so large as to enable the function to 
oscillate a large number of times there, then the accurate computation of the 
integrals uI = Q_ 1 f(t) dt and h ence of F(xf) = Xi=, u, becomes a hard task. 
This is the reason why we took x, = E + (j - 1)r with 6 and r small (actually 
we took 4 = 0.2 and r = 0.2). With this choice of 6 and r, at least the first few 
u, which are needed for the computation of Dis)[F(t); r], say up to n = 15, 
can be computed accurately without any difficulty. We have already pointed 
out in Example 4.4 that sometimes the choice X~ = 6 + (i - 1)~ causes the 
approximations DA”)[F([); r] to be poor even for large n, and this problem 
can be dealt with by taking, for example, x1 = [ +(i - l)%, I > 1, or xI = 
[e(‘-‘)‘; in Example 4.4 we chose the latter. Now that we have chosen the xt 
appropriately, we compute the t.+, the F(x,), and the matrix of the equations 
(2.24) and solve the linear system in (2.24). We used the LINSYST subroutine 
subprogram [18] to solve the linear system in (2.24). This subroutine solves 
linear systems by LU decomposition and iterative improvement. The use of 
Cramer’s rule, as in (2.25) for example, is not advised, since as n and hence 
the number of equations become large, the determinant of the linear system 
(2.24) decreases rapidly and thus errors are introduced in the computation of 
the approximations 0:“). Also it is worth mentioning that the system (2.24) 
becomes very ill conditioned as n increases. However, this does not seem to 
affect the approximations DA”). 

In order to give proper meaning to the numerical results, attention must be 
paid to the coefficients &, *, as well as 0;“). in the solution of (2.24). In most 
cases the D-transformation produces approximations DA”) which, as n be- 
comes large, converge very quickly to the right value. For instance, in most of 
the examples in Section 4, 0:“) is correct to ten significant figures or more. 
As the D,$“), n=1,2 ,..., converge, the first few &(, for each k, approach 
the corresponding Bk,, in the asymptotic expansion in (2.23), and this can be 
recognized very easily even for small n. 
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It may happen, though very rarely, that the convergence pattern of the 
approximations 0;“) is disrupted by some DA”‘), say for n = r; i.e., it may 
happen that D>“) is a worse approximation than D,?“], D$!‘] being better than 
D!_“1’. Thi. is accomp anied by a disruption in the convergence pattern of tbe 
first few Pk, i for each k to &( in (2X$), the rest of the coefficients becoming 
much larger than those for n = r f 1. The reason for this is that the matrix of 
the equations (2.24) for n = r, for computational purposes, is singular. Need- 
less to say, D,?“‘) should be discarded. 

The authors are grateful to Profess0 I. M. Longmun for continuous support 
and encouragement of this work. The computations for this paper were carried 
out on the CDC 6600 computer at the Tel-Aviv University Computation 
center. 
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Note Added in Proof 

The convergence analysis of the D- and d-transformations has been taken 
up by the second author within a more general framework in the paper 

A. Sidi, Some properties of a generalization of the Richardson extrapolation 
process, J. Inst. Maths. Applies. 24:327-346 (1979). 

In this paper the question of the significance of the xl that go into the 
definition of the D-transformation is also considered. 

It turns out that by selecting the xl in an appropriate manner, the 
Dtransformation can be modified and made more efficient for integrands 
f(x) that oscillate an infinite number of times as x --) co. This subject is taken 
up in the papers 

A. Sidi, Extrapolation methods for oscillatory infinite integrals, J. Inst. 
Maths. Applies. 2&l-20 (1986). 

A. Sidi, The numerical evaluation of very oscillatory infinite integrals by 
extrapolation, Math. Camp. 38 (1982) (in press). 

Convergence properties of the T-transformation of Levin [5] have been 
taken up in the papers 

A. Sidi, Convergence properties of some non-linear sequence transforma- 
tions, Math. Comp. 33:315-326 (1979). 

A. Sidi, Analysis of convergence of the T-transformation for power series, 
Math. Camp. 35:833-850 (1986). 

The t- and u-transformations, which are special cases of the T-transformation, 
are simply d(l)-transformations as mentioned in Section 6 of the present work. 


