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A set of necessary and suflicient conditions for the existence and uniqueness of a 
solution to the problem of interpolation at equidistant points by a sum of 
exponential functions is given. Simultaneously a simple method for constructing the 
solution is developed. The confluent interpolation problem in which all the points of 
interpolation coincide is dealt with similarly. Integral representations for the 
solutions to both problems are given and a limit result is proved. 

1. INTRODUCTION 

Suppose the function f(x) is to be approximated by a sum of exponential 
functions 

U(X) = $J Ctjf?oJ/x, (1.1) 
j=l 

where the a, and a1 are unknown parameters to be determined by the inter- 
polation conditions 

ct =f(x, + ih) = u(x, + ih), i = 0, l,...) 2n - 1. (1.2) 

Substituting (1.1) in (1.2), and defining ti, = cz,e~lxO and c, = e‘@, j = l,..., n, 
we have 

ci= i ttij[j, i = 0, l,..., 2n - 1. (1.3) 
j=l 

These equations have been solved for the a, and C, by Prony [7], and the 
relation of Prony’s method of solution with the (n - l/n) PadC approximant 
F n- ,,n(~) to the power series F(z) = Cf!!;’ c,zi has been shown by Weiss 
and McDonough [8]. It turns out that the rj are the reciprocals of the poles 
of F n- ,,Jz) if F,-,,“(z) has simple poles. 
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Prony’s method is discussed in several books on numerical analysis, e.g. 
Hildebrand [3, pp. 378-3861, Lanczos [6, pp. 272-2801, Hamming 
[2, pp. 620-6271. Some theoretical aspects of the interpolation problem, 
when the function f(x) is completely monotonic, have been dealt with by 
Kammler [4]. 

Prony’s method cannot be applied if Fn- ,,n(~) has multiple poles. In this 
case it turns out that u(x) as given in (1.1) does not exist. The interpolation 
problem, however, may have a solution provided u(x) is modified in an 
appropriate manner, and this is the subject of the present work. With this 
modification we give a set of necessary and sufficient conditions for the 
existence and uniqueness of the solution to the interpolation problem, and 
simultaneously give a simple method for constructing it. Later we do the 
same for the confluent interpolation problem, in which all the points of inter- 
polation coincide. Under certain cnditions, we prove that the solution to the 
confluent interpolation problem is the limit of that of interpolation at 
equidistant points when the distance between them tends to zero. 

Since both problems are ultimately connected with Pade approximants, we 
start with them. 

2. PADS APPROXIMANTS 

Let 

g(z)= f CiZ( (2.1) 
i=O 

be a formal power series. The (m/n) entry in the Padl table of (2.1), if it 
exists, is defined as the rational function 

pm,n(z) E:T=O aizi 

gm*n(z) = Q,,,(z) = CL0 bizi’ 
b,= 1, (2.2) 

such that the Maclaurin series expansion of g,,,(z) in (2.2) agrees with the 
formal power series in (2.1) up to and including the term c,+,zm+“, i.e., 

g(z) -&&) = wm+n+‘) as z-+ 0. (2.3) 

For the subject of the Pad& table as defined above, see Baker ]I, Chaps. 
1321. 

It can be verified that for there to be a solution it is necessary and 
sufficient that the equations 

min(l,n) 

c ci-,bj=O, i=m+l,...,m+n, 
j=o 

(2.4) 
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have a solution with b, = 1. Once the 6, have been determined, the a, can be 
computed from 

min(i.n) 

(2.4a) 

Although P,,,(z) and Qmqn(z) in (2.2) may be non-unique, the fraction 
g,,,(z) is unique, as stated in the following theorem. 

THEOREM 2.1. If g,,,(z) exists, it is unique. I 

For a proof of this see Baker [ 1, p. 81. 
We shall now concentrate on the approximations g,- ,,Jz) since these are 

relevant to the problem of interpolation described in the previous section. 

DEFINITION 2.1. A rational function u(z) is said to have property R if its 
numerator polynomial has degree strictly .less than that of its denominator 
polynomial, i.e., if lim,,, V(Z) = 0. 

If g,- i,n(~) has property R, then after cancelling common factors from the 
numerator and denominator, we can express g,-,,,(z) as 

where the degree of F(z) is strictly less than that of Q(z), and the degree of 
Q(z) is n’, for some n’ < n. Let z , ,..., z, be the zeros of Q(z) of multiplicities 
P 1 3***, Pcls respectively, so that xi”=, ,uj = n’. Since b, = 1, zj # 0 for all j. 
Then, for some constants A,,L, 1 <k<pjui, 1 <j<s, g,-l,,(z) has the 
following unique partial fraction expansion: 

gn_,,n(Z)z ;1 + *jvk 
,yl k:, (z - Zj)“’ (2.6) 

THEOREM 2.2. Let g(z) and its (n - l/n) Pad& approximant g, _ ‘,Jz) be 
given by (2.1) and (2.6), respectively. Then the parameters zj and A,.k in 
(2.6) satisfy the set of non-linear equations 

ci= + + (-qk 
j*, ke, (“:i; 1)$v 

i = 0, l,..., 2n - 1, (2.7) 

where 

(+, (~)=fW)-;~-~+l), r = 1, 2,.... (2.8) 
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Proof. Expanding g,- ,,Jz) as, given in (2.6), in its Maclaurin series, we 
obtain 

g”-,,“(Z)= $ =+ -5 (-l)‘+k 
i=O I 

Jy, ke, ( yk) $[zi. (2.9) 

Upon using the fact that 

(\k)=(-1)i (k+y)=(-l)‘(“j++I’) (2.10) 

in (2.9), and recalling (2.3), we obtain (2.7). m 

We now state the converse of Theorem 2.2. 

THEOREM 2.3. Let co, c, ,..., c,,-, be given numbers. Let s and pj, 
j = I,..., s, be positive integers such that Cj= 1 pj < n. Suppose that zj # 0, 
A j,k, 1 < k < pj, 1 <j < s, are the solution to the set of non-linear equations 
given in (2.7). 

Then the rational function 

v(z) = f +? Aj,k 
jY1 kTL (z -zj)k 

(2.11) 

is simply the (n - l/n) Pad& approximant to the power series CfEO’ Cizi. 
Consequently, this Pad& approximant has property R. 

Proof: Identical to that of Theorem 2.2. 1 

COROLLARY. Given co, c, ,..., c2,,-, , there is at most one choice of the 
integers p, ,..., ,uS with Cj,, p, < n, and the parameters zj # 0, Aj,k, 
1 < k < ~juj, 1 <j < S, which satisfy (2.7). 

ProoJ Suppose that there is more than one choice. This implies the 
existence of more than one (n - l/n) Pad& approximant to Ct!!, ’ CiZi, 
according to Theorem 2.2. The result now follows from Theorem 2.1 and the 
uniqueness of the partial fraction decomposition of rational functions. 1 

We note that whether the PadC approximant g+,,Jz) exists and has 
property R can be decided by analyzing the C-table of (2.1), and this is 
connected with the normality property and the block structure of the Pade 
table. Necessary conditions for g, _ , Jz) to exist and to have property R can 
be formulated in terms of the C-determinants, but we shall not do this here. 
We shall only state that a sufficient condition for g,-i,,(z) to have property 
R is that the Pade table of g(z) should be normal. For the definition of 
normality, the C-table, and the block structure of the Padi table see Baker 
[ 1, Chap. 21. 

640/34/2-U 
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3. SOLUTION OF THE INTERPOLATION PROBLEM 

DEFINITION 3.1. The sets of functions U, and UE for h # 0 are defined by 

U,, = u(x) = c ‘? Bj,kxk-‘eOJX 1 uj distinct, k Aj < n , 
I j:l krL i=l I 

ui = 
I 
U(X) = ’ a Bj kXk-r<~lh 1 cj distinct, --K < arg & < x, - 9 ,r, k=, 

[T takes on its principal value, i A, < n 
I 
. (3.1) 

j=l 

Clearly f!Ji c U,. 

THEOREM 3.1. There exists a unique function u(x) in Vi, which solves 
the interpolation problem 

c, = u(x,, + ih), i = 0, l,..., 2n - 1, for some h # 0, (3.2) 

if and only if the (n - l/n) Pade’ approximant F,- ,,Jz) to F(z) = xi!!;’ c,z’ 
exists and has property R. If F, _ , Jz) has the partial fraction decomposition 

F 

then 

where 

x - x0 
k+7- 1 

k-l 

(3.3) 

L;, = z; ‘, E/,k = (-l)k Aj,kZ,:k, 1 <k<p,, 1 <j<s. (3.5) 

Proof. Suppose that F,- ,,Jz) exists, and has property R. Then F,- ,,,(I) 
has a partial fraction decomposition; assume it is the one given in (3.3). We 
would like to show that u(x) in (3.4~(3.5) solves the interpolation problem. 
Now (“‘zb) is a polynomial of degree m in t, as is seen from Eq. (2.8). 
Consequently u(x) is in Ui. Let us substitute x =x, + ih, i = 0, l,..., 2n - 1, 
in (3.4). Using (3.5), we obtain 

u(x,, +ih)= c ‘? (-l)k jy, kT, i = 0, l,..., 2n - 1. (3.6) 
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But the zj and A,,,, being the parameters of the partial fraction decom- 
position of F,,-,,n(~), by Theorem 2.2, satisfy the equations 

i = 0, l,..., 2n - 1. (3.7) 

Thus u(x) satisfies (3.2). 
Suppose now that there exists u(x) in Ut that satisfies equations (3.2); 

assume that it is given by (3.4). Define the parameters zj and Aj,k, 
1 < k <pj, 1 <j ,< s, through Eqs. (3.5). Equations (3.2) imply that the zJ 
and Aj,k satisfy Eqs. (3.7). Invoking now Theorem 2.3, we conclude that 
F n-,,n(~) exists and has property R. 

As for the uiqueness of u(x), only one set of &‘s and Ej,k’~ can exist, since 
from the corollary to Theorem 2.2, only one set of zis and Aj,k’~ can satisfy 
Eqs. (3.7). This completes the proof. m 

Note. There does not exist a unique solution to the interpolation problem 
above from U,,. For if U(X) in (3.4) is a solution from U,, then zi(x), which 
is obtained from U(X) by adding to arg cj in (3.4) arbitrary multiplies of 21ci, 
is also a solution. Also when XT=, ,uj < n - 2, we can add to U(X) in (3.4) 
U,(X) = C sin(mrr(x - x,)/h), where C is an arbitrary constant and m is an 
arbitrary integer, and U(X) + u,(x) solves the interpolation problem, and is in 
Ull. 

The method of construction of u(x) that satisfies the interpolation 
conditions in (3.2) is now clear. First we obtain the (n - l/n) Pade approx- 
imant of F(z) = Cf!Y;’ cizi in its reduced form (and make sure that it has 
property R), then find its poles and form its partial fraction decomposition, 
and finally form the sum in (3.4) with the help of the relations between the [, 
and zj and Ej+k and AjVk. 

COROLLARY. Zf cO,c,,...,cZnpl are real numbers, then u(x) in Theorem 
3.1 is a real function, provided none of the zJ is in (--a~, 01. 

ProoJ: Since CO, c, ,..., cZn-, are real, the Pade approximant F,- ,,,(z) is a 
real analytic function. Hence if zj is a complex pole of multiplicity pj, so is 
its complex conjugate. Let zp be the complex conjugate of zj. Then A,,, is 
the complex conjugate of Aj,k, 1 < k < pj = ,u,,. If, on the other hand, zj is a 
real pole of multiplicity ,u,, then the A,,,, 1 < k <,uj, are all real. The rest of 
the proof now is obvious. I 

4. THE CONFLUENT PROBLEM 

So far we have considered the problem of interpolating a functionf(x) by 
functions from Vi at equidistant points. We now turn to the confluent 
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problem in which the points of interpolation coincide, i.e., x0 = x, = a.. = 
xzn _, . Then the problem is to lind a function u(x) in U, such that 

yi = f “’ (x0) = v (i’ (x0), i = 0, l,..., 2n - 1. (4.1) 

It turns out that the solution to this problem too is closely connected with 
Pade approximants as the following theorem shows. 

THEOREM 4.1. There exists a unique function v(x) in U,, which solves 
the problem described by Eqs. (4. l), if and only if the (n - l/n) Pade’ approx- 
imant Vn- ,,Jr) to the power series V(r) = Et!!;’ yizi exists. When V,-,,“(r) 
exists, V,,-,,Jo) = a-IV,-,,,(a-‘) has property R; let its partial fraction 
decomposition be 

Then v(x), the solution to the confluent interpolation problem, is given by 

Bj,k k I eo,‘.r-~,,’ 

(k-l)! (x-xo) - 

Proof Suppose that Vn-,,n(r) exists. Consequently, V,-,,,(O) is finite. 
Then it can easily be verified that v,- ,,Jo) has property R, and its 
denominator polynomial has degree at most n. Let its partial fraction decom- 
position be the one given in (4.2). Define v(u) = a-‘V(u-‘). With the help 
of (2.3) it can be shown that 

V(u) - V,-,,“(U) = O(u-*“-I) as u-+00. (4.4) 

As a consequence of (4.4), the parameters uj and B,,, in (4.2) satisfy the 
equations 

, i = 0, l,..., 2n - 1. (4.5) 

Now we want show that v(x) as given in (4.3) is the required solution. First 
of all, it is clear that u(x) is in U,. Next, after some algebra and with the 
help of Eqs. (4.5), it can be shown that v(x) satisfies Eqs. (4.1). 

It is now possible to prove results similar to Theorem 2.3 and its 
corollary. With these results the rest of the theorem can be proved in a 
manner analogous to Theorem 3.1. We omit the details. 1 

COROLLARY. Zf yo,yl,..., y2n-, are real numbers, then v(x) in Theorem 
4.1, if it exists, is a real function. 
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Proof: Identical to that of the corollary to Theorem 3.1. 

5. INTEGRAL REPRESENTATIONS AND A LIMIT THEOREM 

We now give some contour integral representations for the solutions to the 
two interpolation problems that were dealt with in the previous sections. 

THEOREM 5.1. Let the function u(x) be as in Theorem 3.1. Then u(x) 
has the integral representation 

where C is a simple closed Jordan curve whose interior contains all the poles 
of F,-,,,(z) and such that it never touches the line (-co,O], w= 
(x - x,)/h + 1, and z--W takes on its principal value and has a branch cut 
along the line (-co, 01. 

ProoJ: Substituting the partial fraction decomposition of F,-,,=(Z) in 
(5.1), we have 

u(x)=--!.-\ + ‘? *jTk kz-“&. 
. c ,ZI ky1 (Z - Zj) 

(5.2) 

Now 

z-w = [(z - Zj) + Zj] --O 
=zi”[l +(z-zj)/zj]-w 

=zY izo (-;) (y$ (5.3) 

where the last equality holds when z is sufficiently close to zj. Substituting 
(5.3) in (5.2), d an using the residue theorem, we obtain 

u(x) = - k ? A,,,z,-” 
j=l kel ’ 

which, upon using (2.10) and the fact that w = (x -x,)/h + 1, reduces to 
(3.4) - (3.5). I 
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THEOREM 5.2. The function u(x) in Theorem 4.1 has the integral 
representation 

o(x) = & [ V, ,,n(u) eO’x-xO) da, (5.5) 
-D 

where D is a simple closed Jordan curve whose interior contains all the poles 

of vn- I,kJ). 

Proof Substituting the partial fraction decomposition of v,-,,,(a) in 
(5.5) and computing residues, (5.5) can be shown to be identical to (4.3). 1 

The following determinant representations for F, _ ,,n(~) and v, _ ,,,(o) will 
be useful in the remainder of this section. 

THEOREM 5.3. If F,-,*,(z) exists, then it is given by 

z”S-,(z) z”-‘S,(z) ..* zs,-,(z) zOs,-,(z) 

CO Cl . . . C n-1 cn 
Cl c2 

. . . 
cn C llfl 

c n-1 c, -.* CZn-2 Czn-1 

F n- ,,n(z> = 9 (5.6) 
Zn 

Zn-l . . . Z 1 
co Cl . . . C n-1 C, 
Cl c2 

. . . Cl2 C II+1 

where 

c n-l c, *** CZn-2 C2”- I 

S-,(z) = 0, s, = i CiZi, 
i=O 

k = 0, l,..., (5.7) 

provided the cofactor of 1 in the first row of the denominator determinant is 
non-zero. This will be the case, for example, when the denominator 
polynomial of F, _, ,,(I) has degree exactly n, and, apart from a constant, has 
no common factor with the numerator polynomial; in this case F,-,,,(z) has 
property R too. 1 

For a proof of (5.6) see Baker [ 11. 
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COROLLARY. Zf VnelJr) exists, then V,-,,,(u) is given by 

0 oOTo(u) *** u “-*T&7) a”-‘T,-,(u) 
YO YI . . . Yn-I Yn 
Yl Yt ..’ Y, Y ntl 

Yn-I Yn **’ Yzn-2 Yzn-I 

C,,"bJ) = 9 (5.8) 
1 U . . . u"-l U" 

Yo YI ..' Yn-I Y, 

Y1 Yz *** Ytl Y ntl 

Yn-1 Y" --* Yzn-2 Yzn-I 

where 

k 

T/,(u) = 2 yi/d, k = 0, l,..., 
i=O 

(5.9) 

provided the cofactor of u” in the first row of the denominator determinant is 
non-zero. This will be the case, for example, when the denominator 
polynomial of v,,n-,,n(u) has degree exactly n, and, apart from a constant, 
has no common factors with the numerator polynomial; in this case 
v,, _ ,,,(a) has property R too. 1 

THEOREM 5.4. Let w(u) be the polynomial given by 

u/(o) = Yl Y2 *** Yn+1 
. . 

Yn-I Yn *** YZn-I 

3 (5.10) 

and suppose that w(u) has exactly n zeros, which we denote by di, i = I,..., n, 
counting multiplicities. Let Q(z; h) be the polynomial in z given by 

Z” p-1 .,. 1 
CO Cl a’* 

Q(z; h) = c, c2 ... c,“:, . (5.11) 

c n-l c, ..’ CZn-I 

Then for h suflciently close to zero, Q(z; h) has exactly n zeros, which we 
denote by Ii;(h), i = l,..., n, counting multiplicities, with the property that Zi(h) 



204 AVRAM SIDI 

are continuous in a neighborhood of h = 0, and dlrerentiable at h = 0, such 
that 

ii(O) = 1, i = l,..., n, (5.12) 

and 

dFi(h) 
dh 

zz -ai, i = l,..., n, 
h=O 

(5.13) 

with proper ordering. 

Proof: Let us define the forward difference operators Ak by Aoar = a,, 
Aka =Ak-‘a r r+, - Ak-‘al, k = 1, 2 ,.... Then it is known that 

Aka,= 4 (-l)k-i 
iC0 

(5.14) 

from (5.11) 

Q(z; h) = (5.16) 

If a, = znPr, r = 0, l,..., n, then 

Akao = zflpk( 1 - z)~, k = 0, l,.... (5.15) 

By simple row transformations, with the help of (5.14), it is easy to obtain 

Z” y-1 . . . Z 1 
CO c, ... C n--l C, 

AC, AC, a.’ AC,-, AC, 

A+, A”-+ I a.. &c,-, A”-%, 

. By simple column transformations, and using (5.15), (5.16) can be expressed 
as 

Zn z”-‘(1 -z) ... z(1 -Z)n-’ (1 -z)” 
. . . A”-lC 

Q(z, h)= dceo, :co ... A”coo 
A “co 

A”+’ co * (5.17) 

A+, A+, . . . ’ o /,2n-lC AZ”- lc * o 

Dividing thejth column by h’-‘,j = 1,2,..., n + 1, then dividing the first row 
by z”, and the ith row by hie2, i = 2 ,..., n + 1, and defining 

6, = A Pco/h p, p = 0, l,..., 2n - 1, (5.18) 

and q by 

v = (I- z)/W), (5.19) 
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we obtain from (5.17) 

Q(z; h) = hn2z”((q; h), (5.20) 

where #(q; h) is the polynomial defined by 

1 
s” 

n . . . 
z 

qqq;h)= 2 s: ::: a,:, . (5.21) 

di i n-1 n *-* 6’ Zn-1 

Recalling that Ci =f(x, + ih), yi =fCi)(xO), i = 0, l,..., 2n - 1, and that f(x) 
has 2n - 1 continuous derivatives in a neighborhood of x,,, we have, from a 
well known result on divided differences, 

dp=Yp+Ep, with s,,=o(l) as h+O, p=O, l,..., 2n- 1. (5.22) 

Therefore, by continuity, the coefficients of the polynomial d(q; h) = 
C;IO ai vi are related to those of w(a) = CyCO biai, by a,(h) = bi + o(1) 
as h + 0. Since I&) has exactly n zeros, 6, # 0; consequently, by continuity, 
for h sufftciently close to zero, a,(h) # 0, hence d(q; h) has exactly n zeros, 
(i,(h), i = l,..., n, which can be ordered so that 

ii,(h) = 6) + o(1) as h + 0, i = l,..., n, (5.23) 

so that ii,(h) are continuous in a neighborhood of h = 0. Let us now define 

r;.(h) = l 
1 + hqi(IZ) ’ 

i = l,..., n. 

The c(h) are also continuous in a neighborhood of h = 0, and satisfy 

r;.(O) = 1, i = l,..., n. (5.25) 

Solving (5.24) for vi(h), we obtain 

qi(h) = 1 - r,(h) 
hi%) ’ 

i = l,..., n. (5.26) 

Since lim,,, q,(h) = 6, and lim,,, r;(h) = 1 # 0, we see from (5.26) that 
d<i(h)/dhI,=, exists and is given by 

&i(h) dh = -oi, 
h=O 

i = l,..., n. (5.27) 
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Writing now d(n; h) = a,(h) n;=, (q - ij,(h)), and substituting (5.19) and 
(5.26) in this expression, we obtain from (5.20) 

Q(z; h) = a,,(h) h"*-" (5.28) 

Hence whenever h is suffkiently close to zero, Q(z; h) has exactly n zeros 
z;(h), and these are simply [r(h), i = l,..., n. 

This completes the proof of the theorem. 1 

Collecting the results of Theorem 3.1, Theorem 4.1, Theorem 5.3 and its 
corollary, and Theorem 5.4, we can state the following result: 

THEOREM 5.5. Let the denominator polynomial of v,- ,,Ju) be of degree 
exactly n, and assume that, apart from a constant, it has no common factors 
with the numerator polynomial. Then 

(1) tT,-,,,(o) has property R and is given by (5.8)-(5.9); i.e., its 
denominator is w(a) in Theorem 5.4. Consequently v(x) exists. 

(2) For h sufJiciently close to zero, F,-,,,(z) exists, has property R, 
and has no poles in (-a, 01, and is given bq’ (5.6)-(5.7); i.e., its 
denominator is Q(z; h) in Theorem 5.4. Consequently, u(x) exists and we 
now denote it by u(x; h). 

(3) The following limit result is true: 

;y u(x; h) = v(x). 
+ 

(5.29) 

Proof The proofs of (1) and (2) are trivial and we shall omit them. For 
the proof of (3) we proceed as follows: Let us apply the column and row 
transformations that led from (5.11) to (5.20)-(5.2 l), to the numerator deter- 
minant of F,-,,,(z) as given in (5.6)-(5.7). Then 

F 
z-’ p(v; h) 

“- bt(Z) = h #(a; h) 7 (5.30) 

where 

O (dSgl)‘ho 
. . . (d”%,)/h”-’ 

JO 

p(n;h)== 6, 

. . . 
s; 

4 
. . . 6 

h 
fl+1 , (5.31) 
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where 

Sk = Z”-k-lSk(Z), k = -1,O ,..., n - 1, (5.32) 

and (5.19) has been used. In the Appendix to this work it is proved that 

Z-n+‘(dkS-I) = $-, ‘2’ di,9, 
hk-I 

i=O 

(5.33) 

Since, for h sufficiently close to zero, all the poles of F,, _ , Jz) are close to 
1, Theorem 5.1 applies and U(X; h) is given by (5.1), where C can be taken 
to be a circle with its center at z = 1 and radius I < 1. Let us now make the 
change of variable z = e-O” in (5.1). Then, with the help of (5.30), (5.1) 
becomes 

u(x; h) = & ,freu” H eO(x-xO) da, 

where q is given in terms of u by 

1 --I eoh - 1 &l=-=-. 
hz h 

(5.34) 

(5.35) 

The contour C can now be taken to be a fixed simple closed Jordan curve 
which contains in its interior all the poles of v”._ I.n(u), since the poles of 
p(q; h)/$(q; h) in the u-plane are approaching those of v,- i,,(u) as h -+ 0. 
Furthermore, c is positively oriented. Now for u fixed 

(5.36) 

since di + yi, i = 0, l,..., 2n - 1, and q + CJ, and hence z-“C’(dkS-I/hk-l)+ 
uk-*T,-,(u), k = l,..., n, as h + 0, and these limits are attained uniformly in 
u on C. 

Consequently, from (5.34) 

the right hand side being nothing but U(X). This completes the proof of the 
Theorem. 1 
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APPENDIX: PROOF OF 

It is sufficient to show that 

k-l 

(5.33) 

Z -“+‘AkS-, = 1 (A’c,)(z-’ _ l)‘-’ 

i=O 

k-l 

= s (Ak-i-'~o)(z-' - 1)'. 

i=O 
(A.11 

Now, making use of (5.14), we have 

i-1 

Z 
-fI+lAkf-, = 5 (-l)k-i S cjz-(i-i)+lm (A-2) 

i=l J=O 

Making the substitution i -j =p + 1, and changing the order of summation, 
(A.2) becomes 

k-l 

Z-n+LAkS-,= s z-p 

p=o 
i=$+, (-l)k-i (: ) Ci-p-l]* (A.31 

Substituting the identity 

z-P=[1+(z-‘-l)]P=f r 
( 1 

p (z-‘-l)r 
r=O 

in (A.3), and changing the order of summation, we obtain 

k-l k-l 

Z-"+'Akf-, = x (z-l- 1)' c ; 

r=O [ 0 p=r 
(A.5) 

All we have to show now is that the double sum inside the square brackets, 
which we now denote by D, is just AkPr-‘co. Making the substitution 
q= i-p- 1, and changing the order of summation, this double sum becomes 

(A.6) 

The proof of (5.33) will be complete if we show that 

Ar.q= kg’ (f ) (,+i+ 1)(1)“= (k-;-r)9 
O<q<k-l-r, O<r<k- 1. 64.7) 



INTERPOLATION BY EXPONENTIALFUNCTIONS 

Let us define for any a 

a 

( ) 
= 0, rn a negative integer. 

m 

Then it is well known that 

(“Ll)= (i)+ (mal) forallintegersm. 

LEMMA A.l. The A,., satisfy the 3-term recursion relation 

Ar,q=A,+,,q +Ar+,,q--l, O<q<k- 1 -r, O<r<k- 1. 

ProoJ From (A.7), A,, L,q- 1 is given by 

A r+,.q-l=,~l (r; 1 ) (,:,) (-1)p-‘-1* 

Making the substitution p = m + 1, (A. 11) becomes 

A r+l&--l= kg (;I:) (m+“,+ 1) (-1)“-‘* 

From (A.9) we have 

(rl:)= (r+ml)+ (Y)’ 

Substituting (A. 13) in (A. 12), we obtain 

A r+l,17-1=~~~’ (r+ml) (m+t+l)(-““-’ 

+ k-g (;) (m+“,+ 1) (-1)“-‘. 
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(A.8) 

64.9) 

(A. 10) 

(A.ll) 

(A.12) 

(A.13) 

(A. 14) 

Now the second sum is just A,,,. In the first sum, the first term, i.e., that 
with m = r, is zero since (r:l ) = 0, hence this sum actually starts with the 
term m = r + 1. Consequently, the first sum is nothing but -A,+ I,q. From 
these observations (A.10) follows. 1 

LEMMA A.2. Equation (A.7) holds for q = k - 1 - r, 0 < r ( k - 1. 

ProoJ: By inspection of (A.7). fl 
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LEMMA A.3. Equation (A.7) holds for r = 0, 0 < q < k - 1. 

Proof. We have to prove that 

k-l-q 

p;Q (q+pk+l)(-l)p= (",'). O<q<k- 1. (A.15) 

That (A.15) is true follows from the relation 

for any b, (A.16) 

see Knuth [5, p. 57, Eq. (18)]. 1 

From Lemma A.1 it is clear that A,,, satisfy the 3-term recursion relation 
satisfied by (“-i-‘) too. From Lemma A.2 and Lemma A.3 we see that A,,, 
have the same values as (“-G-‘) on two sides of the triangle bounded by the 
straight lines r = 0, q = 0, r + q = k - 1, in the q - r plane. These boundary 
values together with the 3-term recursion relation are enough for determining 
A r,Q uniquely at all grid points of the triangle above. This completes the 
proof of (A.7). 
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