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Numerical Quadrature Rules for Some 

Infinite Range Integrals 


By Avram Sidi 

Abstract. Recently the present author has given a new approach to numerical quadrature 
and derived new numerical quadrature formulas for finite range integrals with algebraic 
and/or logarithmic endpoint singularities. In the present work this approach is used to 
derive new numerical quadrature formulas for integrals of the form $om x%-Xf(x) du and 
J om xaEp(x)f(x)du,where E,(x) is the exponential integral. It turns out the new rules are of 
interpolatory type, their abscissas are distinct and lie in the interval of integration and their 
weights, at least numerically, are positive. For fixed a the new integration rules have the 
same set of abscissas for all p. Finally, the new rules seem to be at least as efficient as the 
corresponding Gaussian quadrature formulas. As an extension of the above, numerical 
quadrature formulas for integrals of the form $2I~lPe-~lf(x)du too are considered. 

1. Introduction. In a recent paper, [8], the present author has presented a new 
approach to numerical quadrature for finite range integrals with algebraic and/or 
logarithmic endpoint singularities. In particular, the integrals dealt with are of the 
form 

(1.1) 

where w(x) = (1 - x)"xP(-log x)", a + u > -1, P > -1, and the numerical 
quadrature formulas are of the form 

k 


These formulas are based on some rational approximations obtained by applying a 
modification of the nonlinear sequence transformations due to Levin [6], to the 
moment series of w(x) and seem to have some very important advantages whlch we 
now summarize. 

(I) The abscissas x,,~are all in the interval [0, 11 and their weights turn out to be 
positive. For the weight functions w(x) with a + u = 0, 1, 2, . . . , that the abscis- 
sas are in [0, 11 has been proved. 

(2) The abscissas are the same for a large class of endpoint singularities; in 
particular, they are independent of P and depend solely on a + u. Also if a + u is a 
small nonnegative integer llke 0, 1,2, the abscissas x,,~for the case w(x) = 1 can be 
taken to be the same for all these cases. In view of these remarks the weight 
functions w(x) = 1, w(x) = xP, w(x) = xP(-log x), w(x) = xP(-log x12, w(x) = 

xP(1 - log x)-'I2, w(x) = xP(l - lo^x)'l2, etc., all have the same 
set of abscissas regardless of what P > -1 is. 
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(3) The polynomials whose zeros are the abscissas x,,~, are readily available in 
analytic form and the weights can be computed very easily once the abscissas 
have been determined. 

(4) The new quadrature formulas have very strong convergence properties and 
are practically as efficient as the corresponding Gaussian formulas. For more 
details and numerical results the reader is referred to the paper of Sidi [8]. 

It turns out that the fruitful approach that has been used for the finite range 
integrals can be used for some infinite range integrals, among them some integrals 
that come up in radiation theory and involve the exponential integral as a weight 
function. 

We shall now motivate the derivation of the new quadrature formulas for infinite 
range integrals in a manner analogous to that given in Sidi [8] and also exploit the 
motivation for introducing some of the notation to be used in the remainder of this 
work. 

Let f(z) be an analytic function in every finite subset of a simply connected open 
set G of the complex plane which contains the real infinite interval [0, m). Let also 
r be a Jordan curve in G, containing the interval [0, ao) in its interior. Assume that 
f(z) = O(z-") as z -+ao, z E G, for some a > 0. Hence, by Cauchy's theorem, we 
have 

whenever tois in the interior of and the integral is taken around r in the 
counterclockwise direction. 

Define the infinite range integral J [  f ]  and its k-point numerical quadrature rule 

Jk[f 1 

where the abscissas x,,, are distinct. Define also 

The function H(z) is analytic in the z-plane cut along the positive real axis [0, ao) 
and has the divergent asymptotic expansion 

where 15, are the moments of w(x), 

(1.7) a = (omw(x)xn-l dx, n = 1,2, . . . . 

Let Ek[f] = J[f]  - Jk[f]. Then with the help of (1.3), (1.4), and (1.5) it can be 
shown that, when all the x,,~are in the interior of r, 

provided the integral on the right-hand side exists. Now if thls integral tends to 
zero as k -+ ao, then Ek[ f ]  -+ 0 as k -+ao. As mentioned in [8], in order for the 
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integral in (1.8) and consequently for Ek[ f ]  to go to zero quickly as k -+ao, we 
should demand that the sequence of the rational functions Hk(z) tend to H(z) 
uniformly and quickly in any region of the complex z-plane that is at a finite 
positive distance from the positive real axis. 

If Hk(z) is taken to be the (k - l /k)  Pade approximant to (1.6), then J,[ f ]  turns 
out to be the k-point Gaussian quadrature formula for J [  f]. Furthermore, if 
w(x) > 0 on [0, ao), and the moments p.,, satisfy Carleman's condition, see Baker 
[2, Chapter 161 (this turns out to be the case for the w(x) considered in this work), 
then as k -+ ao, Hk(z) -+ H(z) uniformly, in the sense of the previous paragraph. 

In the present work we shall use again a modified version of the T-transforma- 
tion of Levin to obtain another sequence of rational approximations Hk(z), 
k = 1, 2, 3, . . . , to H(z) from the series (1.6) and use these H,(z) to derive new 
numerical integration rules for some useful weight functions like w(x) = xae-", 
a > -1, and w(x) = x *EP(x), a > -1, p + a > 0, where w(x) = E , ( x ) and w(x) = 

E,(x) come up in radiation theory; see Chandrasekhar [3, Chapter 21. We shall also 
show that these new rules have advantages similar to those for the singular finite 
range integrals of [8], which we have summarized at the beginning of this section. 
We note that these advantages are a direct outcome of the results of a recent work 
by the author, [lo]. 

The Gaussian quadrature formulas for the weight function w(x) = xae-", a > 
-1, have been widely tabulated. Gautschi [5] and Danloy [4] have considered the 
Gaussian quadrature rules for w(x) = Ep(x), p > 0, and have given some tables for 
the casep = 1. 

2. Asymptotic Expansions for H(z). As is explained in [8], see also [7], [9], whether 
or not one can apply the T-transformation successfully to the partial sums of the 
infinite series in (1.6), to obtain good approximations to H(z), depends on whether 
H(z) satisfies a relation of the form 

where R,, depend on the moments, and f(y), as a function of the continuous 
variable y, has an asymptotic expansion of the form 

and is an infinitely differentiable function of y up to and includng y = m. 
In a recent work, [lo], the present author has shown that for w(x) = xae", 

a > -1, (2.1) is satisfied with 

and 
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where 

Furthermore, (2.1) holds for all z G [0, oo). 
In [lo] it is shown that also for w(x) = xaEp(x), a > -1, p + a > 0, where 

Ep(x) = l?(e"'/tP) dt is the exponential integral, whenever Re z < 0, (2.1) is 
again satisfied with 

and R,, exactly as given in (2.4), and f(y) given by 

where 

Although the truth of (2.1) and (2.2) for this case has been shown only for 
Re z < 0, we believe that they hold also for Re z > 0. 

For the details of the computations that lead to the results above, see [lo]. 

3. Derivation of Numerical Quadrature Formulas and Some Properties. We now 
take up the problem of derivation of the new numerical quadrature formulas Jk[fl 
for the infinite range integrals J [ f l  (see (1.4)) for the weight functions w(x) = 

~ ~ e - ~ ,  and w(x) xaEp(x), a > -1, p + a > 0. Let A,= 0 and A, =a > -1, = 

Xj,' &/zi, r = 1, 2, . . . , and I$ = [(a + r - l)!/zr]r-', r = 1, 2, . . . . Applying 
the modified version of the T-transformation (see Eq. (2.2) in [8]), namely, 

to the sequence above, and cancelling a factor of z from the numerator and the 
denominator, we obtain 

Tk,, is an approximation to H(z) in (1.5), obtained from the first n + k - 1 terms 
of its asymptotic series (1.6). It can easily be verified that Tk,, is a rational function 
in z whose numerator Nk,,(z) is a polynomial of degree < n + k - 2 and whose 
denominator Dk,,(z) is zn- '  times another polynomial of degree exactly k, so that 
(degree of denominator) > (degree of numerator) + 1, a property that Hk(z) must 
have (see (1.5)). Hk(z) is also required to have simple poles, otherwise the numerical 
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quadrature formula contains derivatives of f(x) as well as f(x) itself, whlch is 
undesirable. Consequently, we must deal with the cases n = 1, 2 exclusively (the 
cases n = 3, 4, . . . , give rise to a multiple pole at z = 0). Therefore, it seems that 
we could set Hk(z) = Tk,, or Hk(z) = Tk-,,, and use these Hk(z) to derive 
numerical quadrature formulas Jk[ f ]  for the integral J [f]. For example, for n = 1, 
for which we give numerical results in this paper, we have 

Then the abscissas x,,~are the zeros of the denominator of T,,, (which are simple as 
we shall show below), and the weights are the residues of T,,, at the 
corresponding x,,~, i.e., 

Remark 1. Since the denominators of T,,, and Tk- ,,, depend only on a and not 
on p, their zeros, therefore, the abscissas x,,~ of our new numerical quadrature 
formulas, are independent of p.  Consequently, we have the same set of abscissas for 
the weight functions w,(x) = xae-" and w2(x) = xaEp(x), a > -1, p + a > 0. 
Furthermore, the polynomials that provide us with the abscissas are known 
analytically. This is not the case for the Gaussian formulas for the weight function 

w2(x). 
Remark 2. The advantage of the new formulas mentioned in Remark 1 are a 

consequence of our flexible modification of the T-transformation of Levin. If 
Levin's t- (or u-) transformation is used to obtain the new numerical quadrature 
formulas, then, since R, = p,/zn (or R, = np,,/zn), this advantage disappears 
altogether. 

We demand of a good numerical quadrature formula that its abscissas be in the 
interval of integration. For the formulas obtained from Hk(z) = T,,, and Hk(z) = 

Tk-,,, we can show that this holds true. 

THEOREM3.1. Let 

where m is a nonnegative integer. Then 

where L ~ ) ( z )  is the generalized Laguerre polynomial of degree k. Furthermore, 
D,,,,,(z) has a zero of multiplicity n - 1 at z = 0 and k simple zeros in (0, oo) and 
between two simple zeros of Dk,n,m(~) there is exactly one simple zero of Dk,n,m-l(~), 
and the first positive zero of D,,,,,(z) is smaller than the first positive zero of 

Dk,n,m- I('). 
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Remurk. Note that the case of interest in thls work is m = k. 
Proof. (3.6) follows from (3.5) by observing that 

and identifying the summation on the right-hand side of (3.7) as 
~ ~ , ~ ~ n - l ~ p + n -1)(z), where C,,, = k!/(a + n + k - I)!, see Abramowitz and 

Stegun [ l ,  p. 7751. From (3.6) it follows that 

The rest of the theorem can now be proved by induction. Set m = 0. First 
Dk,n,O(z)= Ck,nzn - 'LP+"- (a), has a zero of multiplicity n - 1 at z = 0 and k 
simple zeros x?), i = 1, . . . ,k, in (0, co) which we order as 0 < xi0) <xi0)
< . . .  < xjO), namely those of LP+"- ' )  (z). Therefore, Dk,,,,(z) = 

(d/d~)[zD,,~,,(z)], by Rolle's theorem, has a zero of multiplicity n - 1 at z = 0 and 
k simple zeros xi('), i = 1, . . . ,k, such that 0 < xi') <XP<xi') < xi0) < . . . < 
xi') < xi0) The rest of the proof for general m is now obvious. 

By letting m = k in Theorem 3.1 we have the following result. 

COROLLARY. has a simple pole at z 0Tk,' has k simple poles in (0, co) and Tk- = 

and k - 1 simple poles in (0, co); i.e., the abscissas of the numerical quadrature 
formulas obtained by setting Hk(z) = Tk,l (or Hk(z) = Tk- are distinct, real and 
in (0, co) (or in [0, co) with z = 0 being one of them). 

THEOREM 0, 1, 2, . . . , be constants independent of k, and define 3.2. Let 9,j = 

Proof. We can express (3.9) in the form 

The result in (3.10) now follows by noting that (;)(k - j) = k(k,~l) for j = 

0, . . . , k - l a n d O f o r j =  k. 

COROLLARY.The polynomials Dk,,,,(z) satisfy 

(3.12) Dk,n,m(z) = (n + k)Dk,n,m-l(z) - kDk-l,n,m-l(z). 

Proof. (3.12) follows from the fact that Dk,,,(z) are polynomials of the form of 
Gk,,,, (a) in Theorem 3.2 above with 9 = (-l)j/(a + n +j - I)!, j = 0, 1, . . . . 

Malung use of Theorem 3.2, we can prove that the abscissas of our new 
numerical quadrature formulas have the interlacing property llke those of the 
Gaussian quadrature formulas. 
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THEOREM3.3. Let xFrn < x,k," < . . . < xfm be the simple zeros of Dk,,,,(z) in 
(0, oo) (see Theorem 3.1). Then between two consecutive such zeros of Dk,,,,(z) there 
is exactly one simple zero of Dk - ,,,,, - ,(z), m > 2. 

Proof. If we let z = and z = ?%?, 1 < j < k - 1 in (3.12) and use the fact 
that Dk,,,,(xikm) = 0, i = j ,  j + 1, we obtain 

In Theorem 3.1 we showed that between two simple zeros of Dk,,,(z) in (0, oo) 
there is exactly one simple zero of Dk,,,,-,(z). # 0,Therefore, Dk,n,m-l(~k,m) 
i = 1, 2, . . . , k, furthermore Dk,,,,- ,(x;") and D,,,,, - ,(x;;?) have opposite signs. 

,(x;,~) and Dk- ,,,, ,-, (Xk,,) haveThis together with (3.13) implies that Dk- ,,,,,- ,+, 
opposite signs too. Therefore, Dk-,,n,m-,(z) must vanish at least once in 

4~) .But since the number of simple zeros of Dk-,,n,m-,(z) on (0, oo) is 
k - x;;?).1, there can be at most one zero in (Xik3m, This completes the proof of 
the theorem. 

COROLLARY. the numerical quadrature formulas The positive abscissas of new 
obtained from the rational functions T,,, and Tk- ,,, (n = 1, 2) interlace. 

Although we have not proved the positiveness of the weights of our new 
numerical quadrature formulas, numerical results indicate that they are. This, as is 
known, is an important property that numerical quadrature formulas are required 
to have. 

Another property of our new formulas is that they are of interpolatory type, see 
[8], as the following result states. 

THEOREM3.4. Let Jk[ f ]  in (1.4) be the numerical quadrature formula associated 
with Hk(z) = T,,, or Hk(z) = Tk- Then 

(3.14) Jk[xi ]  = J [ x i ] ,  i = 0, 1 , .  . . , k - 1, 

both for w,(x) = xae-" and w,(x) = xaEp(x),a > -1, p + a > 0, and 

= J [x i ] ,  = 0, 1 , .  . . , k,(3.15) J ~ [ x ~ ]  i 

for w2(x) whenever p + a = 1. 

Proof. The same as that of Theorem 4.1 and the remark following it in [8]. 
Remark 3. Theorems 3.1 and 3.3 and their corollaries are similar in nature to the 

corresponding theorems in [8]. The result of Theorem 3.2, however, is new and 
contains Eq. (4.14) in [8] as a special case. 

4. Numerical Results. In this section we shall give some numerical results 
obtained by taking Hk(z) = T,,,. The results for Hk(z) = Tk- are about the same 
as those for Hk(z) = T,,, (they both are k-point formulas) and will not be given 
here. 
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TABLE4.la 
The abscissas for the new numerical quadrature formulas 1;x ~ , ~  w(x)f(x) du = 
Xf,, AkJxk,J where w(x) = xaEp(x), p > 0. These x ~ , ~or w(x) = are the roots of the 
polynomial equation X:-o +zj = 0 with + = (-1)'(:)0 + l ) k / j ! ,  j = 0, 1, . . . ,k. The 
weights Ak,i can be computed from (4.2). 

K =  2 K: 9 
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TABLE4.1b 
The weights Ak,ifor the new numerical quadrature fonnulm e - 3 x )  G!X w Zf-,AkViflxkvi). 
The x ~ , ~are giwn in Table 4.la. 
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TABLE4 . 1 ~  
The weights for the new numerical quadrature formulas jr El(x)f(x) dx = 
Zf, A, , i f (~ , ,~) .The x , ,~are given in Table 4.1a. 
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TABLE4.2 
Sk and Gk stand for the k-point new rule and Gauss-Laguerre rule respectiuely, with w(x)  = 
e-". The abscissas for Sk are those giwn in Table 4.la, and the corresponding weights are giwn 
in Table 4.lb. 

6 2 ~ i 0 - ~  1 . 1 0 - ~  I ~ I O - ~ 2 x l ~ - 5  2 x 1 ~ - 6  1 x 1 [ ) - 5  

6 3 x 1 x 4 x 6 x 2 x 5 x 1 1 ~ - 6  

S8  I X I O - ~ 1 ~ 1 0 - ~  1 * 1 0 - ~  5 . 1 0 - '  6 x 1 0 - 8  3 x 1 0 - 7  

8 1 x 1 0 - 3  4 x 1 0 - 6  3 x 7 * 

s l 0  8 x 1 ~ - 5  1 x 1 ~ - 6  9 . ; 1 0 - ~  2 x 1 0 - 8  2 x 1 0 - n  3 %  1 0 - a  

G 1 0  6 . 1 0 - ~  8 . 1 0 - ~  1 x 1 ~ - 6  4 %  1 

2 2 x 5 x lo- '  9 .X 3 x 1 x 3 ;. 

G1 2  l X m 4  8 x 1 0 - 7  2 x 1 ~ - 7  1 ~ 1 0 - ~1 . 1 0 - ~  1 ~ 1 0 - l ~  

E x a c t  0 .62144  . . .  0 .19951  . . .  0 .30685 .  . .  0 .59634  . . .  0 . 3 6 1 3 2 . .  0 . 5  

The abscissas xkYi for the weight functions w,(x) = xae-" and w,(x) = xaEp(x), 
a > -1, p + a > 0, have been determined for different values of a and those for 
a = 0, k = 2(1)12, are given in Table 4.la. Recall that for a fixed value of a,  w,(x) 
and w,(x) (for all p such that a + p > 0) have the same set of abscissas obtained 
by solving the polynomial equation x;=, hiti = 0, where 

Once the abscissas x,,~have been computed, the correspondng weights can 
be determined from the formula 

In Table 4.2 we compare the approximations Jk[f] obtained by using the new 
numerical quadrature formulas and the corresponding Gauss-Laguerre rules with 
w(x) = e-". The abscissas for the new rules are those given in Table 4.la, and the 
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TABLE4.3 
Sk and Gk stand for the k-point new rule and Gauss-Laguerre rule respectively with w(x)  = 
e-X, i.e., the singularities of the integrands f (x)  at x = 0 are ignored. The abscissas for Sk are 
those giwn in Table 4.la, and the corresponding weights are giuen in Table 4.lb. 

J[fl f o r  J [ f ]  r e - ' f ( x ) d x- ~ ~ [ f l l  = 
0IRu le  

f ( x )  = x-)I f ( x )  = l o g  x  f ( x )  = x4l o g  x  f ( x )  = x 4  f ( x )  = x 3 I 2  

2 2 x 1 0 - I  9 x 1 0 - ~  2 A 1 0 - 2  t i x  1 1 0 - I  

6 1 0 - I  3  l o - '  5 x 4 X  P X  l o - 2G2 


S4 3 x 1 0 - ~  ~ I ~ 7 x 1 0 - 4  1
X O -

G4 4 x 1 0 - I  2 x 1 0 - I  3 ~ 1 0 - ~  1 X 1 ~ - 2  3 x 1 ~ - 3  
-

~ X I O - ~ ~ X O - ~ 8 x l 0 - ~  3 l o - 5  2I 

3  x  10-1 1  x 1 0 - I  2  x 7 1G6 

3 x 1 0 - ~  1 x 1 0 - ~  3 ~ 1 0 - ~3 x 1 0 - 5  8 x 1 0 - '8 

3 x 1 0 - I  8  x l o - '  1 x l o - '  5 5
8 

S1 0  2 1 7 10-7 9 .  10-7 3 

3 x 1 0 - I  6  x l o - '  1 x 3 30 

corresponding weights are given in Table 4. lb. As can be seen from Table 4.2, for 
analytic f(x), the new rules compare favorably with the Gaussian rules and in some 
cases give better results. It is worth noting that, as the singularities of f(x) become 
farther away from the interval of integration [0, m), the J,[f] become better for 
both rules. 

Since the abscissas of the new rules that are given in Table 4.1 do not include the 
lower limit x = 0 (a property shared by the Gaussian rules too), we can use the 
new rules for obtaining approximations to integrals for which f(x) are singular at 
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TABLE4.4 
S, and Gkstand for the k-point new rule and Gaussian rule respectiwb with w(x) = E,(x).  
The abscissar for S, are those giuen in Table 4.la, and the corresponding weights are giwn in 
Table 4 . 1 ~ .  The abscissas and weights for G,,, haw been taken from the 14-digit tables of 
Danloy [4]. 

J [ f ]  - ~ ~ [ f l=f o r  J [ f ]  f r1  ( x ) f ( x ) d x  
0

Rule . 
1 f ( x )  = -1 f ( x )  = -1 1 f ( x )  =-I--f ( x )  = emxf ( x )  = 

1 +x 4+x 2 ex+] 
f ( x ) =  -l + x  2+x 

2 x ~ ~ - 3  3 x 1 ~ - 3  4 x 1 ~ - 4  I ~ I O - ~  3 x 1 ~ - 32 

5 x 3 x 8 x 2 x l o m 4  2 x 3 x
4 

1 1 1 9 2 4
6 

2 x ~ ~ - 4  4 x 1 0 - 6  2 x 1 ~ - 7  1 x 1 ~ - 6  3 x 1 0 - 8  2 x 1 ~ - 8
'8 

3 10-5 1 ;0-6 2 ~ ~ - 17 10-7 1 10-9 2 10-10
0 

G1 0 ~ X I O - ~ 2 x 1 0 ~ ~ 6 x 1 0 - '  2 x 1 0 ' ~  Z X I O - ~  2 x , 1 0 - ~ O  

2 x 1 x 6 x l o m 8  1 x 2 x 1 x
s12 

Exac t  0.80759.. . 0.22806.. . 0.39225.. . 0.74519.. . 0.41835.. . 0.69314.. . 

x = 0, by avoiding the singularity. It turns out that the new formulas for w(x) = 

e-" work very efficiently on integrals of the form I," e-"f(x) dx, where the 
functions f(x) have algebraic or logarithmic singularities or products of them at 
x = 0, especially when f(x) are continuous at x = 0. For such integrals, numerous 
computations have shown that the new rules are superior to the Gaussian rules 
with w(x) = e-". In Table 4.3 we compare the new rules and the Gaussian rules, 
with w(x) = e-", for a set of singular functions. We note that as we proceed to the 
right along this table, the f(x) become less and less singular. 

In Table 4.4 and Table 4.5 we compare the new rules and the Gaussian rules 
with w(x) = E,(x) ,  on the same functions f(x) that appear in Table 4.2 and Table 
4.3 respectively. The abscissas for the new rules are again those given in Table 4.la, 
and the corresponding weights are given in Table 4. lc. The results for the Gaussian 
rules in this case have been obtained by using the 10-point and 20-point 14-digit 
tables of Danloy [4]. The conclusions from this comparison are the same as those 
for the case w(x) = e-". 
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TABLE4.5 
Sk and Gk stand for the k-point new rule and Gawsian rule respectiwh with w(x)  = E,(x);  
i.e., the singularities of the integramh f ( x )  at x = 0 are ignored. The abscissas for Skare those 
given in Table 4.la, and the corresponding weights are giwn in Table 4.lc. The abscissas and 
weights for Glo and GZ0 haw been taken from the 14-digit tables of Danloy [4]. 

-
I - J f f o r  	 J [ f l  = f ~ ~ ( x ) f ( x ) d x

0Ru le  . 
4
f ( x )  = x-+ f ( x )  = l o g x  f ( x )  = x l o g x  f ( x )  = x 4  f ( x )  = x 3 I 2  

1 x 100 2 x 3 x 10-2  	 2 x 1 0 - 2S2 

4 x 1 0 - I  1 x 1 0 - ~  5 Z ~ I O - ~  7 x ~ ~ - 54 

7 x l o - '  1 x lo- '  6 x 2 4'6 

8 x 1 x 2 5 1 l o - 68 

3 x 1 0 - 2  4 x 1 0 - 4  8 x 4 x 1 0 - ~  4 x 1 0 - ~  

l x l o O  2 . 1 0 - I  3 x l o - 2  7 4 10-4G~~ 

2 2 3 5 x l o - 6  3 x 1 0 ~ ~ 4 x 1 0 - ~  

G20 1 x 1 0 ~  l x l O - l  1 x l o - z  3 x 8 x 

E x a c t  3.5449 ... -1.5772.. .  -0.37231 ... 0.59081 . . . 0.531 73. .. 

5. Extension to Doubly Infinite Range Integrals. In this section we deal with 
integrals of the form 

where w ( x )  is an even function of x and all its moments exist. Then 

+"

(5.2) 	 H ( Z )  =I ,  w ( x )  
d x  = 2 z L" d x  - 00 

vi as z 4 oo, 
z - x  - x 2  i = l  z 

where 

[f we let w ( x )  = ~ x l ~ e - " ~  	 t in (5.2), thenand make the change of variable x Z  = 
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and 

This H(z) is the same as that for w(x) = xae-" dealt with in Sections 2, 3 and 4, 
with a = ( p - 1)/2 and z replaced by z2. If we let A,  = 0, A, = Z:,, v ; / z ~ ~ - ' ,  
r = 1, 2, . . . , and R, = v,z-~'+'~-',r = 1, 2, . . . , then the approximations T,,, to 
H(z) are again very accurate. Of course, T,, also in this case is a rational function 
of z. T,, has simple poles only when n = 1, 2. When n = 1, the numerator of T,,, 
is an odd polynomial of degree < 2k - 1 and its denominator is an even poly- 
nomial of degree 2k. The zeros of the denominator are 2fl, i = 1, 2, . . . , k, 
where tiare the zeros of ((d/dt)t)k~F)([), s = ( P  - 1)/2. When n = 2 the numera- 
tor of T,,, is an even polynomial of degree < 2k and its denominator is an odd 
polynomial of degree 2k + 1. In this case the zeros of the denominator are 0 and 
k a , i = 1, 2, . . . , k, where ti are the positive zeros of ((d/d[)[)k[~t)([)], 
s = ( p - 1)/2 + 1. Therefore, the rational approximations T,,, and T,,, give rise 
to numerical quadrature formulas with 2k and 2k + 1 abscissas, respectively. For 
these formulas the weights corresponding to the nonzero abscissas + fl are 
equal. Numerical computations with these formulas show that they are practically 
as efficient as the corresponding Gaussian formulas. 

6. Concluding Remarks. In this work we have used the approach of Sidi [8] to 
obtain new numerical quadrature formulas for infinite range integrals of the form 

w(x)f(x) dx, where w(x) = xae-", a > -1, or w(x) = xaEp(x), a > -1, a + p 
> 0. We have shown that the abscissas of these formulas are related to the 
generalized Laguerre polynomials and furthermore we have proved that they are 
distinct and lie in the interval of integration. The weights of these formulas turn out 
to be all positive although no proof of this is available yet. We have shown that 
these formulas are of interpolatory type. An important advantage of these formulas 
is that for a fixed value of a ,  both w(x) = xae" and w(x) = xaEp(x) have the 
same set of abscissas independent of p. Finally, comparison of the new formulas 
with the Gaussian formulas indicate that the former, on the average, are better than 
the latter. 
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