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Summary. A special case of a generalization of the Richardson extrapolation 
process is considered, and its complete solution is given in closed form. 
Using this, an algorithm for implementing the extrapolation is devised. It is 
shown that this algorithm needs a very small amount of arithmetic oper- 
ations and very little storage. Convergence and stability properties for some 
cases are also considered. 

Subject Classifications: AMS(MOS): 63B05; CR: 5.13. 

1. Introduction 

In a recent paper [6] the author has presented a generalization of the well 
known Richardson extrapolation process - called GREP  for short - which is 
suitable for accelerating the convergence of a large class of infinite sequences, 
and has also analyzed some of its convergence properties. By its definition, 
G R E P  is implemented through the solution of systems of linear equations. As 
has been mentioned in [6]. the matrices of these linear systems become large 
in dimension if one wishes to improve the accuracy in extrapolation. Although 
the solution of these systems can be achieved, for example, by Gaussian 
elimination, it is clear that as the dimension of the matrices increases this 
becomes costly. Therefore, it is desirable to have efficient algorithms for solv- 
ing the linear systems above. Obviously an algorithm, in order to be efficient, 
has to take advantage of the special character of the equations defining GREP. 
Unfortunately, so far no such algorithm has been developed for the general 
form of GREP.  For a special case of GREP,  however, such an algorithm can 
be given and this is done in the present work, whose contents can be sum- 
marized as follows: 

a) In Sect. 2 we obtain the complete solution to a special case of GREP,  
which is defined by linear systems of equations of the form 

A~J)=A(y,)+~b(y,)~fi, yl ", I= j , j+ l  ..... j + n + l ,  (1.1) 
i=0 

0029- 599 X/82/0038/0299/$01.80 



300 A. Sidi 

where Yt, A(Yt), q~(Yl) are given, r is a fixed constant,  and A~ ) and fli are 
unknowns.  

b) Using this solution, in Sect. 3 we devise an efficient algori thm, which we 
call the W-algorithm, for the recursive computa t ion  of  A~ ~. 

c) In Sect. 4 we make  some statements about  the convergence propert ies of 
this extrapolat ion method.  Fur thermore ,  for a special case, which comes up in 
the computa t ion  of oscillatory infinite integrals (see [7, 8]), we prove  that the 
W-algorithm is stable. 

Note  that for some special cases of  the extrapolat ion method dealt  with in 
this work algori thms exist, and these cases are: 

1) ~b(y)-=constant, any y~. This is the Richardson  extrapolat ion process, and 
there is a recursive algori thm for it. For  a detailed review of the subject and a 
list of  references see [4]. 

2) r =  1, y l = ( l +  1) -1, l = 0 ,  1 . . . . .  This ext rapola t ion method,  which is known 
as the T-transformation,  has been given by Levin [5], and a non-recursive 
algori thm for it exists. 

3) r =  1, yz=(x  o + Iv)-1, / = 0 ,  1 . . . .  , for some fixed x o and ~ such that  z >0.  
This has been given by in [7] and comes up in the computa t ion  of some 
oscillatory infinite integrals by methods that  the author  has denoted a s / )  and 
/)- t ransformations.  The non-recursive a lgor i thm given in [7] for this case is 
a lmost  the same as that for the T-transformation.  

The extrapolat ion prob lem defined by Eqs. (1.1) for general y~ and with r =  t, 
has come up in the computa t ion  of what  the author  has called very oscillatory 
infinite integrals, see [8]. 

Before closing this section we note that  recently H~vie [2] and Brezinski 
[1-1 have given an algori thm for the general extrapolat ion problem. Due to its 
generality, however,  this algori thm, when applied to (1.1), is uneconomical  
compared  with the W-algorithm. More  details on this will be given in Sect. 3. 

2. Theory 

The following definition characterizes the class of sequences with which we 
shall be concerned. 

Definition 2.1. We shall say that  a function A(y), defined for O<y<b, for some 
b > 0 ,  where y can be a discrete or cont inuous variable, belongs to the set F (1~, 
if there exist functions qS(y) and fi(y) and a constant  A, such that 

A = A (y) + ~b (y) fl (y), (2.1) 

where A = lim A(y) whenever this limit exists, in which case lim ~b(y)=0, and 
y~O+ y ~ O +  

fl(~), as a function of the cont inuous variable ~, is cont inuous for 0 < ~ < b, and 
for some constant  r > 0 ,  as ~ 0 + ,  has a Poincar6-type asymptot ic  expansion 
of the form 

oo 

/3(4) ~ ~ '  fi, {~'. (2.2) 
i = 0  
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If, in addition, the function B(t )~ f l ( t  1/') is infinitely differentiable for O<t<b ' ,  
we shall say that  A(y) belongs to the set F~ 1). 

For  the definition of the sets F ~m) and F~ ") see ([6], Definition 1.1). 
Our  problem is to extrapolate  A(y) to y = 0  and obtain A (or an approxi-  

mat ion  to it) whether lira A(y) exists or not. Following Sidi ([6], Definition 
y ~ 0 +  

t.2) this is done as follows. 

Definition 2.2. Let A(y)EF (t) with the notat ion of Definition 2.1. Then Atf, the 
approx imat ion  to A, and the parameters  /~, i=O, 1 . . . . .  n, are defined to be the 
solution of the system of n + 2 linear equations 

n 

A f = A ( y t ) + O ( y t )  - , ,  X f l ,  y , ,  I = j , j + l  . . . . .  j + n + l ,  (2.3) 
i = 0  

such that y t > 0  for all 1>=0, b > y o > y l > y 2 >  .... and l i m y , = 0 ,  provided, of 
1~cO 

course, that  the matr ix  of the coefficients of Eqs. (2.3) is nonsingular.  
Note  that for determining A f  one has to know q$(y) explicitly. The func- 

t ion fl(y), however, does not have to be known explicitly; mere knowledge of 
its existence and of r in (2.2) is enough. Under  certain conditions it can be 
shown that  the fl~ are approximat ions  to the corresponding fl~ in (2.2), see [6]. 

Before going on we shall let t=y"  and t~=y~, l=0 ,  1 . . . . .  and define 
a(t) =- A(y) and (p(t)--- q$(y). Then  Eqs. (2.3) become 

n 

A])=a(t,)+~p(tl) X fiitl, l = j , j +  l . . . . .  j + n + l .  (2.3)' 
i = 0  

F r o m  here on we shall use bo th  A(y), cb(y) and a(t), (o(t). 
The solution of Eqs. (2.3)', or equivalently of (2.3), can be computed  as in 

the following theorem. 

Theorem 2.1. Let D~ s) denote the divided difference operator over the set of  points 
ts, ts+ 1 . . . . .  ts+k+ 1, where for any function g(t) defined at these points 

D~S){g(t)}-g[ts, ts+1 . . . . .  ts+k+l] , s>O, k > - 1 ,  (2.4) 

(see [3], Chap. 2). Then provided cp(tt) + O, j <__ l <__j + n + 1, A ,  ~) and fl~, i = 0 . . . . .  n, 
can be computed recursively from 

�9 (J) f l i  t i -  p -  1 D])_p_,{[A~ - a ( t ) ] t - P - 1 / f p ( t ) } = D ] ) p _  1 , p = - l , O ,  1 . . . . .  n, 
i 

(2.5) 
in this order. The explicit expression for A(, ~) is 

flo is given by 

A(j) = D~ j) {a(t)/q~(t)} (2.6) 
" D ( ]  ) { 1 / ~ o ( t ) }  " 

J+") " " '  /~0 = ( -  1)" t,  ~ . - 1  {[A. (2.7) 
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and the rest of  the fli can be computed from 

t ip=(-1)"  P ,~, D~.')._ ,-o _ , } h ' ' ,  - - a ( t ) ]  t -p  ' /~p(t)-- ~ fli ti " - '  , 

, o = 1 , 2  . . . . .  n. (2.8) 

Proof. Let 

s + k +  1 
c(S) - -  k,l-- H (t l--t i) -1" 

i=x 
i* l  

Then, see (1-3], Chap. 2), 

l = s , s + l  ..... s + k + l ,  k>O. (2.9) 

s + k +  1 

D(k'){g(t)}= • c~)tg(tt), (2.10) 
l= s  

i.e., D~ ~) {g(t)} is a linear combination of g(t~), l=s,  s + 1 . . . . .  s + k + 1. 
Let us now express equations (2.3)' in the form 

[A(j)--a(tt)]/qg(tl) = flltt, l = j , j + l  . . . . .  j + n + l .  (2.11) 
i = O  

For - l < p < n ,  multiplying the first n - p + 1  of equations (2.11) by ,u) - -  ~ n  p 1 , l  

t? p-l, t = j , j + l  . . . . .  j + n - , 0 ,  and adding all, and finally invoking (2.10), we 
obtain (2.5). 

Let p = -  1 in (2.5). Then s tilt i p 1= s fliti is a polynomial of degree at 
i = 0  i = 0  

most n. But 

D~k~){g(t)}=0, if g(t) is a polynomial of degree < k, (2,12) 

see ([3], Chap. 2). Therefore, the right hand side of (2.5) vanishes when ,0 = -1 .  
Using this with the fact that DJ ) is a linear operator, we obtain (2.6). 

Next let us put p = 0  in (2.5). Then ~ flit i P - l = f l o t - ' +  ~ fli ti-1, the 
i = 0  i = 1  

summation on the right hand side of this equality being a polynomial of 
degree at most n - 1 .  Therefore, with the help of (2.12), for `0=0, (2.5) yields 

flo -o~j)- I {[A('J)-a(t)] t-i/go(t)} 
n f _ l ( t _ ,  } (2.13) 

with A~ ) already computed in (2.6). Using the result 

s + k +  i ) - 1 

Dtk~){t-1}=(--1) k + l .  i~_s t i , s > O , k > = - l ,  (2.14) 

in (2.13), (2,7) follows. (2.14) can be proved by induction with the help of a 
recursion relation given in (3.7) in the next section. The validity of (2.8) can be 
established in a similar way. The details will not be given here. [] 
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Theorem 2.1 provides us with a method of evaluating A~ ), flo, fll . . . . .  r , ,  in 
this order. The following variation of Theorem 2.1 provides us with another  
method that enables us to evaluate A~ ),/~,, r , _  ~ . . . . .  rio, in this order. 

Theorem 2.2. A(f ' and the ri in (2.3)' can be computed recursively from 

f L  ) 
(J) {[A~)-a(t)]/go(t)} - (J) ~ r , t '~  p = - l , 0 ,  17 .,n, (2.15) O n - p -  1 - - D . _ p _  1 ..  

I i = O  ) 

in this order. The exact expression for A/) is as given in (2.6) and the ~i can be 
computed from the formulas 

~ - D  (j) {[A~J)-a(t)]/rp(t)} - -  n - - i  

and 
(2.16) 

L@ 
(2.17) 

ri,-p-- D(J),-p-1 {[At, J)-a(t)]/qo(t) - 
i = n - - p +  1 

p = l , 2  . . . . .  n, 

in this order. 

Proof The proof  of (2.15) is achieved exactly as that of (2.5). The proof  of (2.16) 
is achieved by letting p = 0  in (2.15) and using the fact that 

D~S){tk+ 1} = 1, s>=O,k>= - 1 .  (2.18) 

The proof  of (2.17) is achieved similarly. [ ]  

In most problems it is mainly A~ ) that we are interested in. In some 
problems though we may wish to know the first few fli in the asymptotic 
expansion of fi(x) as given in (2.2). As mentioned previously, ri  is an approxi- 
mat ion to fl~, i=0 ,  1 . . . . .  hence Theorem 2.1 can be used to obtain A~ j) and the 
first few of the ri without having to compute the rest. 

3. The W-Algorithm 

We now give the W-algorithm that enables us to compute the A~f recursively 
in an efficient manner.  Algorithms for each of the ri can be devised similarly. 

Theorem 3.1. (The W-algorithm.) Define 

M~)I =a(ts)/(p(ts) 

N(_S) 1 = 1/q)(ts) 

and define recursively 

l tX(s+ 1 ) lL4(s) M~,) _ ~ ' ,  k -  1 - -  " " k -  1 

ts+k+ 1 --  Is 

N(S+ t) N(S) 
]V(s) _ _  k - -  i - -  k - -  1 
' ' k  - -  

ts+k+ 1 - -  t s  

s=O, 1,2 . . . .  , (3.1) 

s = 0 ,  1 . . . . .  k = 0 ,  1 . . . . .  (3.2) 
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Then 

A ( S )  _ ]td(s) / i~i(s)  
k - - ~ ' * k  / ' ' k  ' s = 0 , 1  . . . . .  

or equivalent ly  

~ ( s +  1 ) A ( s +  1)  ~T(s) A~S)_ A(kS)=~'k-i Z a k - - 1  - - ~ ' k - - 1  1 

N(S + 1 ) __ M ( s )  
k - 1  ~ ' k - 1  

where we have defined 

A~)I = a(ts), 

P r o o f  (3.3) follows by showing that  

M(k ~) = D(k s) { a( t)/q)( t) } 
N~S)= D(k') { 1/q~(t)) 

which is a consequence of the relation 

s = 0 , 1  . . . . .  

s = 0 , 1  . . . . .  

k = 0 , 1  . . . . .  

A .  S i d i  

S=0 ,1  . . . . .  k = - l , 0 , 1  . . . . .  

(3.3) 

k = 0, 1 . . . . .  (3.4) 

(3.5) 

(3.6) 

where Q(k s) stands for M(k s) in one table and for N(k s) in the other, and the arrows 
show the order  of  computa t ion .  

Now the elements of  the first column, namely  Q~)I, s = 0 ,  1 . . . . .  are known 
from (3.1). This enables us to compute  the elements of  the second column from 
those of the first, etc. 

It is not  difficult to see that  given the sequence a(tt), l=0 ,  1 . . . . .  n + l ,  the W- 
algori thm, defined through (3.1)-(3.3), enables one to obtain  all the approxi-  

Q,_o) 1 

Q(1) 1 , Q(o~ 

Q~)I ' Q(o l) 

Q(3~ , Q(o ~, 
i i 

I I 

, QT) 

) Q ( 1 )  

i 
i 

I 

,0(~ o, 
J x 

I \ 

I \ 

D ( s +  1)  - -  D~) 
D~ ') {g(t)} - - - -k-1 {g(t)} 1 {g(t)}, s = 0, 1 . . . .  , (3.7) 

t s + k +  1 - -  t s  

k = 0 , 1  . . . . .  

(3.4) follows by substi tut ing (3.2) in (3.3). This completes  the p roof  of  the 
theorem. [ ]  

F r o m  Theorem 3.1 we can form two tables of  the form 
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mations ~kA(S), O<_s<k<n, t h a t _  _ obtain from this sequence, the operation count 
being 3n2/2 + O(n) divisions and 3n2/2+ O(n) subtractions. If we compute only 
the sequence A(k ~ 0 <_ k <_ n. then the number of divisions drops to nZ+ O(n), the 
number of subtractions staying the same. (As is mentioned in [6], the se- 
quences ~*kA(3)" k=0,  1 . . . . .  j being fixed, have the best convergence properties, and 
in practice one takes j = 0.) If we apply the algorithm of Hgtvie [2] or Brezinski 
[1] to compute A~ ~ O<=k<n, then the operation count is basically O(n 3) 
multiplications, O(n 3) divisions, and O(n 3) additions, see [1]. This, of course, is 
due to the fact that this algorithm, unlike the W-algorithm, is designed to treat 
a very general extrapolation problem hence does not take advantage of the 
special character of the problem dealt with in this work. 

4. Some Convergence and Stability Properties 

Using (2.10) in the numerator of (2.6), and recalling the second of equations 
(3.6), we obtain 

j+n+ I 

A(, j)= Z tJ) (4.1) 7,, t a(fi), 
l= j  

where 
cL/e(t,) 

,,(J) - l =j , j  + 1 .. . . .  j + n + 1. (4.2) 

Some of the results and observations in [6], which have been given for GREP, 
for the special case treated in this paper, read as follows: 

j+n+ 1 j+n+ 1 

1. ~ ,,(J) - 1 hence F(, j ) -  ~ ly.~,l >__ 1 / 'n, l - -  - -  " 
t= j  t= j  

2. a) If A(y)EF ~1), supF~J)<~ with n fixed, and lim A(y) exists, then }A 
j y ~ 0 +  

_A~)] =o(y~(,+ 1)) as j -~  ~ .  (See Corollary 3 to Theorem 3.1 in [6].) 
b) If A ( y ) ~  1), sup F~J)<~ with j fixed, and lim A(y) exists, then [A 

n y ~ O +  

-A~)[=o(n -~) as n-~ ~ for any 2>0.  (See Corollary 3 to Theorem 3.2 in [6].) 
3. No matter which method is used for computing at J) it has been observed 

that the size of F~ j) controls the round-off error propagation in the computed 
value of A(~); the larger r_~ ~) is, the larger is the round-off error in A~ ~. 

It follows from 1), 2), 3) above that the most ideal situation for both 
convergence and stability is one in which ~,~)>0 ~,,l , j<l<__j+n+l,  for then F_~J) 

j+n+ 1 

= ~ r,."(J)z-- 1, and this is the minimum value that _F (j). can have. This situation 
l= j  

occurs in some cases in which A(y) oscillates about A as y ~ 0 + .  Since A(y) 
=A-~b(y) fl(y), and fl(y) has a fixed sign as y ~ 0 + ,  ~b(y) should be oscillatory 
about zero. Examples of this case would be some alternating series, infinite 
oscillatory integrals of the kinds treated in [7, 8]. 

We now wish to address ourselves to the problem of stability of the W- 
algorithm as described in Theorem 3.1, in situations in which ,,(J) "- r,,l~O,j<=l<=j+n 
+1. 
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L e m m a  4.1. A necessary and sufficient condition for 7 ~/) > 0, j < l < j  + n + 1, is 

~(yt)()(yt+~)<O, j < l < j + n .  (4.3) 

Proof Assume first that (4.3) holds. Recalling y t > y t . t ,  hence fi>t~+~, 
/ = 0 ,  1 . . . . .  (see Definition 2.2), it is easy to see from (2.9) that  

c(*) ~(~) < O, s _< l _< s + k, s >_ O, k >_ O. (4.4) 
k , l  ~ k , ~ +  1 - -  - -  

Combin ing  (4.3) and 0.4), we see that all the terms c~i.~/q~(h), j < l__<j + n + 1, are 
nonzero and  have the same sign, i.e,, 

(J) % , h ( t 3  = Ic~l~(t,)l sgn[c}~/q~(t j)] 

- c(J)/,,(t ~l j<= 1, - , v 'et  msgn~o(tj), l < j + n +  

since sgn c (~) - + 1. Now by (3.6) and (2.10) we have 
k , s  - -  

s + k +  1 

N(2 )= ~ c(S) /'~rt ~ _ k , l / ~ k ' \  l ] ,  S~-- -O,  

(4.5) 

Therefore, from (4.5) it follows that  

j + n +  1 , 

N(, j )= " ~ j  Ic~(]/~o(t~)[) sgnq~(tj)+0, (4.7) 

hence we can divide by N(J) This also proves that  the solution to equations 
~ ' n  " 

(2.3) exists. Combin ing  (4.5) and (4.7), and recalling (4.2), ,,(J)>0, j < l < j +  n + 1, I n ,  t 

follows. The  necessity of (4.3) can be proved similarly and we shall omit  the 
details. [ ]  

L e m m a  4.2. Suppose that (4.3) is satisfied. Then 

N~k~+ t) N~) < 0, j < s < j + n - k - t ,  - l < _ k < _ n - i .  (4.8) 

Proof For  k =  - 1 we have N ~ I  = 1Ao(t,) f rom (3.I), Therefore,  by (4.3) it is seen 
that  (4,8) holds for k = - l .  F o r j < s < j + n - k - 1  and O < k < n - 1 ,  (4.7) applies 
to ~(*) hence we obtain  

sgn rM(s + ,) ~r(s)q L' 'k "'k J =sgn[~p(t,+ a)(P(t,)] = - - 1  (4.9) 

by (4.3). This proves the temma.  [ ]  

Theorem 4.1. Suppose that (4.3) is satisfied. Let 5(tl)=a(fi)+~ t, 0(ti)=~p(tz) (1 
+ ~ll)- 1, such that [ezl <e,  [rhl < q < 1, i.e., assume that errors have been introduced 
in a(tl) , qg(tl) , j < l < j + n + l .  Let us now apply the W-algorithm to g(tl), (o(tz), 
j _<- 1 _<-j + n + 1, and compute ""kATt(~), Ntk~) ' and A~k ") by 

f4~), = a(t~)/O(tA, f~) ,  = 1/r j =< s < j  + n + 1, 

M(~+,_M?~_ ~(~+ ~ ) f ~ _ ~  ~ ( s ) _  k -  ~ 1 - - -  "'*k , N(kS)_''k- 1 , j<=s<_j+n-k,  O<_k<_ n, 
ts+k+ 1 - - ts  ts+k+ 1 -- ts  

At~)-~Tf('~/iV (~ j < s < j + n - k ,  - l < k < n  (4.10) 
k - - ~ " k  / k ~ - -  - -  " 

k > 0. (4.6) 
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Then for j < s < = j + n - k ,  - l <k<_n, 

b?~S)=N~S)( I + q(ks)), '/k" (s) = ' ,  < (4.11) 

f/l(s)- Ax(~)= ,2ts) ]E~ s)] <_[N~S)[(rla+e(1 + t/)), (4.12) 
k - - ~ ' ~ k  ~ k  " 

where a= m a x  la(tt)l, and 
j<=l<=j+n+ 1 

AtS)_A(~ ) < 2 t / a  +e(1  + t / )  (4.13) 
k " ~ k  = l - r /  

Proof: W e  shall  p r o v e  (4.11) by  i n d u c t i o n  on  k. (4.11) is t rue  for k = -  1, wi th  
q~)~ =r/~. A s s u m e  tha t  (4.11) ho lds  for  k < q - 1  < n .  T h e n  f rom (4.10) we have  

N(S+1)tlj_,(s+x)~_N(~) 1( 1 (s) +r/q_ 1) gq-(S)-- q - - 1  \ - - ' l q - - 1  ] - ' q - -  (4.14) 
is+q+ i -- ts 

Applying Lemma 4.2 in (4.14), we obtain 

~ 'q -  i (4.15) 
Its+q+ 1 -ts] 

hence  

([N~_+ll)[ + [N~ )_ 
1]) \ (1 + r/~s)), (4.16) 

where  min(r/~ )_ 1 nts+ i ) ~ < , ~ < s ) < , ~ t , ( ~ )  ,,(s+ ~)~ By L e m m a  4.2 again ,  the  t e rm , " t q - - 1  / = ' l q  = * ' ~ \ ' l q - - l ~  ' l q - - 1  1" 

in pa r en these s  on  the r ight  h a n d  s ide  of  (4.16) is jus t  [N~S) I. (4.11) now fol lows 
easily.  (4.12) can  be  p r o v e d  s imi l a r ly  by induc t ion .  (4.13) fol lows f rom (4.11) 
a n d  (4.12) t oge the r  wi th  

is) < (s) IM k ] = I N  k ]a (4.17) 

which  can  be p r o v e d  easi ly  a lso  by  induc t ion .  [ ]  

Acknowledgement. The author wishes to thank the anonymous referee for his criticism of the 
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