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Recently the authors have presented the d-transformation which has proved to be 
very efficient in accelerating the convergence of a large class of infinite series. In this 
work the d-transformation is modified in a way that suits power series. An 
economical method for computing the rational approximations arising from the 
modified transformation is developed. Some properties of these approximants, 
similar to those of the Pade approximants, are derh:ed. In the course of development 
a class of power series to which these rational approximations can be applied 
efficiently is characterized. A numerical example, showing the strong convergence 
properties of the approximations is appended and a comparison with the 
corresponding Pade approximants is given. 

1. Introduction 

RECENTLY the authors have developed some non-linear methods for accelerating the 
convergence of infinite integrals and series, namely the D-transformation for integrals 
and the d-transformation for series, see Levin & Sidi (1981). The convergence analysis 
of these methods has been taken up in a series of papers by Sidi (1979a, 1979b, 1980). 
The numerical examples given in Levin & Sidi (1981), and those given in Levin (1973) 
and in Smith & Ford (1979) for a special case, namely the T-transformation, indicate 
that these methods are very powerful and, in many cases, more efficient than Shanks' 
(1955) e-transformations. For a comparison of Levin's T-transformation and Shanks' 
transformations (or their equivalent e-algorithm of Wynn, 1956) and also the 8
algorithm of Brezinski (1971), see Smith & Ford (1979). 

As is shown in Shanks (1955), the application of the e-transformation to a power 
series gives the Pade table of that series. Similarly, in Levin & Sidi (1981), it is 
mentioned that the application of the d-transformation to a power series gives rise to 
rational approximations to the power series too. The observation that the d
transformation is, in many cases, more efficient than the e-transformation leads us to 
expect that the rational approximations obtained from the d-transformation are 
better than the Pad6 approximants. 
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In this work we modify the definition of the d-transformation as given in Levin & 
Sidi (1981), in a way that suits power series; the new definition, unlike the original 
one, enables us to give a very economical method of computing the rational 
approximations. In the course of development, a class of power series, for which these 
approximations are appropriate, is characterized. We derive some properties of these 
approximations, similar to those for Pade approximants. Finally, we give a numerical 

. example showing the strong convergence properties of them and comparison with the 
Pade approximants. 

2. Modification of the d-Transfonnation and Application to Power Series 

We shall start by reviewing the main results of Levin & Sidi (1981) which bear 
relevance to the present work. The notation used is that of Sidi (1979) and is slightly 
different from that used in Levin & Sidi (1981). 

Definition 2.1 A function IX(X) is said to belong to the set A()), if, as x -7 ex), it has a 
Poincare-type asymptotic expansion of the form 

(2.1 ) 
i=O 

Remark 2.1 From this definition it follows that A(Y) ::l A(,-l) 

Remark 2.2 IffE A(") and g E A(b), thenfg E A(;HI. and if, in addition, g ¢: A(b-ll, 

thenf/g E A\]'-o). If;' 0 is an integer. then f+g E A(<T). where (J = max {y, 0]. 

THEOREM 2.1 Let the elements afthe sequence U;'];."'=l satisfv a homogeneous linear 
difference equation of order m of the form 

m 

fr = L Pk(r)tlfr, (2.2) 
k 1 

where Ll is the forward difference operator operating on the index r, and Pk(X), as 
functions of the continuous variable x, are in AUk) but not in AUk-I), such that ik (Ire 
integers satisfving ik ~ k, 1 ~ k ~ m. Let also 

(2.3) 

Ilfor every integer s -1, 1, 2, 3, ..., 

m 

(2.4) 

where 
(2.5) 

then 
en Rim 1 

L fr L fr+ L R"k(tlfR)Pk(R), (2.6) 
r=1 r=1 k=O 

where 

and 
Pk ~ max (iHl. iH2 1, .. " im'-m+k + 1), 0 ~ k ~ m -1. (2.7) 
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The proof of this theorem can be found in Levin & Sidi (1981). A detailed proof for 
the case m = 1 has been given in Sidi (1979a). 

Remark 2.3 It follows from the proof of Theorem 2.1 that equality holds in (2.7) if 

max {ik+s-s+1j 
l~s~m-J.: 

is achieved only by one of the integers (ik+s-s+1). Consequently, Pm-1 = im. In 
particular, for m = 1 we have Po = i l (see Sidi, 1979a). Furthermore, without loss of 
generality, the inequality in (2.7) can be replaced by an equality, by remark 2.1. 

The definition of the d-transformation given in Levin & Sidi (1981) is based on the 
result in (2.6). For power series, however, it is more convenient to express (2.6) in a 
different manner and use this new form of (2.6) to modify the d-transformation. 

Corollary. Equation (2.6) can be re-expressed in the form 

R-1 m 1 

I Jr+ RW'JR+kOk(R), (2.8) 
r~ 1 r= 1 

where Ok E A(O), 0",; k",; m-l, and Wk are integers satisfying 

(2.9) 

Proof Using the fact that 
k 

t:J.kJR = I rJ.k,JR+j' (2.10) 
j=O 

where 

Clk,j=( O"';j",;k,I t -j G), 
we can express the second sum on the right-hand side of (2.6) in the form 

m-1 m 1 

Q I RP'(LlkJR)Pk(R) = I RP' (1k.jj~+ jPk(R). (2.11 ) 
k=O k=O 

Upon interchanging the summations on k and j in this last equality we obtain 
m-l m-l 

Q L JR+j I rJ.k,jRP'Pk(R). (2.12) 
j= 0 k= j 

Defining now 

(2.13 ) 
we can write 

m-l 

I rJ.k.jXP'Pk(X) XWjOix), O",;j",;m-l, (2.14 ) 
k=j 

where OJ E A(O), O"';j ",; m-l. Substituting (2.14) in (2.12) and (2.12) in (2.6), (2.8) 
follows. (2.9) follows by using (2.7) in (2.13). • 

We now define a modification of the d-transformation which is based on the 
above corollary and hence is different from and yet completely analogous to the 
d-transformation given in Levin & Sidi (1981). 

6 
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Definition 2.2 Let the sequence {/..}~1' be as in Theorem 2.1. Define 
n (no, n1 , ••• , nm-d with ni non-negative integers. Then d~m.j), the approximation 
to 

together with the parameters fik, i' °~ i ~ 11k' °~ k ~ m- 1, are defined as the 
solution of the set of linear equations 

R 1 m 1 n, 

d~m.j) = I fr+ I Wkj~+k I fiU/Ri, 1 ~j ~ R ~j+N, (2.15) 
r=1 k=O ;=0 

where 
o 

fr = 0, 
r= 

and 
m 1 

N= I (n k +l), (2.16 ) 
k=O 

provided the determinant of the system in (2.15) is non-zero. 
For the case of power series, i.e. 

/.. = 1, a 1= 0, r = 1, 2, ...,r 

equations (2.15) take the form 

m~l n. 

d~m·j)(z) AR 1 + I RW'aR+kzR+k-l I fik,i/R i, 1 ~j ~ R ~j+N, (2.17) 
k 0 ;=0 

where the As are defined as 

Ao = 0, As = I , s = 1,2, .... (2.18 ) 
r= 1 

If the equations in (2.17) are solved directly to obtain d~m,j)(z), then this would 
mean a grcat loss of computational efficiency since for each z these equations have to 
be solved again. This is e.(i.actly the deficiency that the original definition of the d
transformation suffers from and, in general, it cannot be overcome. However, the 
equations in (2.1 7), for the modified d-transformation, can be re-expressed in a form 
that enables one to overcome the deficiency above, and this is done below. 

Multiplying both sides of (2.17) by ZJ+N-R we can re-express it in the form 

m~l nl; 0' 
RA + ". RW' '\' k,i 1 ~j ~ R ~j+N,R-l L aR+k L -T' 

k 0 ;=0 R 
(2.19) 

where 
k 1 

This time the unknowns are d~m·j)(z) and the e~.i and, except for the column 
corresponding to ~m·j)(z), all the other columns in the matrix of equations (2.19) are 
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independent of z. Now using Cramer's rule, d~m·j)(z) can be expressed as the quotient 
of two determinants in the form 

det P 
(2.20)

detQ 

Here P is the matrix whose (s + 1)th column is the (N + 1)-dimensional vector 

[zN-
SA j +s_1, (j+stoaj+svno(j+s), (j+s)"'laj+s+ 1VnJj+s), ... , 

(j+s)Wm-laj+s+m-lvnm~lU+s)Y, S = 0, 1,2, .. .,N, (2.21 ) 

where T denotes transpose, and vM) is the (l + 1)-dimensional row vector 

v/(q) (1.q-l,q-2,,,.,q-I). (2.22) 

The matrix Q, on the other hand, is obtained from P by replacing the first row of P, 
i.e. the row vector 

(2.23 ) 
by 

(2.24) 

and leaving the other rows of P unchanged. 

THEOREM 2.2 d~m,j)(z) is a rational function in z whose numerator has degree 
+N 2 and whose denominator has degree ~N. Actually" d~m,j)(z) is of the form 

(2.25) 

where 15; is the cofactor of i in the first row of the matrix Q. 

Proof Expand det P and det Q with respect to their first rows given in (2.23) and 
(2.24), respectively. By using the fact that the cofactors of the first rows of P and Q are 
identical, (2,25) now follows. Clearly the denominator has degree ~N. Since the 
degree of Ak is k -1, it is easily seen that the numerator of dhm,j)(Z) is of degree 
~j +N - 2. This completes the prooL • 

As can be seen from (2.25), once the bi , which are independent of z, have been 
computed, the approximation d~m,j) is known for all z with very little additional 
effort. From (2.25) we also see that the 15; can be multiplied by a non-zero constant 
without changing d~m,j), Now the 15; satisfy the system of linear equations Ub = 0, 
where U = (uo, UI. UN) is the N x (N + 1) matrix whose columns Us are given by 

Us = [(j+s)"'oaj+svno(j+s), (j+st1aj+s+1Vn,(j+s), ... , 

(j+s)"'mlaj+s+m-lVnm~l(j+s)Y, S = 0, 1, ... , N, (2.26) 

and (j (15o, 15 1• ••. , (jN )'r. This is so since the (j; are the cofactors of the elements of the 
first row of the matrix P (or Q). Combining these facts we can now state the following 
useful result: 
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THEOREM 2.3 Let rank (U) = N. Then the vector 0 can be determined uniquely (up to 
a multiplicative constant) by solving the system of N + 1 equations 

Vo e, (2.27) 

where e = (1,0,0, ... , O)T and V (v/U), i.e. v is the first row ofV and U is the rest of 
V, with v being any (N + 1) dimensional vector such that V is non-singular 

3. Some Properties of d!m,jj(z) 

3.1 A Characterization Result for a Class of Infinite Series to which the d- Trans
formation can be Applied 

Let us recall that the derivation of d~m.J) in the previous section has been based on 
Theorem 2.1 and/or its corollary. The most important condition in Theorem 2.1 is 
(2.2), which has been formulated in the form of a linear homogeneous difference 
equation in the f,., with the coefficients Pk(X) of this equation being in A(i,), kk ::s; k, ik 

integers. For the case of power series, i.e. fr arzr- 1
, his desirable to have a set of 

conditions on the ar (rather than f,.) that will guarantee that all the conditions in 
Theorem 2.1 and hence (2.6) hold. It turns out that such a set of sufficient conditions 
can be formulated and it characterizes a large class of power series 

to which Theorem 2.1 applies and consequently for which the approximations d~m·j)(z) 
are appropriate. This is done in lemma 3.1 below. 

r 1LEMMA 3.1 Letf,. = arz - , r 1,2, ... , and let the ar satisfy the linear homogeneous 
(m + 1)-term recursion relation 

m-l 

(3.1 ) 

where ck(x), as a function of the continuous variable x, belongs to A(!") for some integer 
flk> k = 0, 1, .. .. m-I. Define cm(r) -1, i.e. 11m °and 

ik max {flr] - max {flr] ::s; 0, k 1, 2, .. " m. (3.2) 
k~r~m O~r~m 

Then,for general z, the fT satisir the linear homogeneous difference equation oforder m 

m 

f,.= (3.3 ) 

where Pk(X, z) are rational functions in z given by 

k = 1, .. .,m, (3.4 ) 

L cix)zm- j 

j=O 
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and Pk(X, z), as fimctions of the continuous variable x, belong to AU,). 

Proof. Let us first express (3.1) in the form 

m 

Using the equality ar = z-'-r+lfr and the relation 

brH (1 +LWbr =itG) /j,ibr, (3.5) 

we can write this recursion relation as 

(k) .m k (3.6 ) k~O ck(r)z-r k+ 1 i~O i tifr = 0. 

Multiplying equation (3.6) by zr+m-l and rearranging we obtain 

(3.7) 

Finally, (3.3) and (3.4) follow from (3.7). From remark 2.2, the numerator of Pk(X, z) 
in (3.4), for general z, is in A(;") but not in A(;·,-1), where 

'Yk = max {,lr] 
k~r~m 

and its denominator, for general' z, is in A(Y) but not in A(Y-l), where 

}' = max {Ilr]. 
O~r~m 

By remark 2.2 again we conclude that Pk E Ah-;'). But rk - r ik from (3.2) above, 
hence Pk E AU,). This completes the proof of the lemma. • 

Remark 3.1 It seems that the result oflemma 3.1 holds for every z which is not a 
point of singularity of the function represented by 

although there is no proof of this, yet. 
Using lemma 3.1 we can now prove the following useful result· 

THEOREM 3.1 Let the sequence {ar]~ I be as in lemma 3.1 with the same notation, and 
assume further that the series 

" r" 1L.. arz 

has (/ non-zero radius of convergence (. Then, whenever Izl < (, the sequence {fr) ~ 1, 


where fr = (/rZ,-l, satisfies all the conditions of Theorem 2.1, hence (2.8) holds with 

wk ~ 0, °~ k ~ m 1. 

Proof. From lemma 3.1 it follows that (2.2) is satisfied with ik ~ 0, °~ k ~ m 1. 

Therefore, Pk 0, °~ k ~ m -1, consequently (2.4) is satisfied. Since Pk(X, z), as a 
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function of x, is in A(i", /1sPk(r, z) = O(ri,-S) as r -tOO, hence /1sPk(X, z) in is AU,-s). We 
also have that /1sf,. -t 0 as r -t OC; due to the fact that 

/1Sf,. = I tXs.jf,.+ j' 
j~O 

and that f,. -t 0 as r -t 00 whenever 121 < ,. Now q(r)f,. -t 0 as r -t 00, whenever Izl < C 
if q E A(Y) for some y. Combining these results we can see that (2.3) is satisfied too. 
Hence, we have shown that all the sufficient conditions in Theorem 2.1 are satisfied. 
The rest follows trivially. • 

Remark 3.1 From remark 2.3 it is clear that the Pk in (2.6) are all zero. Many 
examples that we have examined indicate that Wk 0, 0 :(; k :(; m -1, although there 
is no proof of this so far. For the case m = 1, however, Wo = 0 trivially since Wo Po 
and Po = O. 

Remark 3.2 Theorem 3.1 characterizes a large class of infinite power series to which 
the d-transformation can be successfully applied. This class seems to contain a large 
number of power series which, inside their circles of convergence, represent functions 
that have a finite number of poles and branch points in the complex z-plane. See the 
example in Section 4. 

3.2 Some Pade-like Properties of d~m·j)(z) 

We now turn to the derivation of some properties of the approximations d~m·j)(z) 
which are similar to those of the Pade approximant;'. We recall that the (plq) Pad6 
approximant Rpjz) to 

00 

rI arz 1 

r= 1 

is the rational function 

U(z)
R (-)- 130 = 1p.q - - V(z) 

which sa tisfies 
r 1V(z) I

Cf) 

arz - U(z) = O(ZK) 
r~ 1 

as z -t 0, where K = p +q+ 1. As such Rp.q(z) can be determined from U lo a2 , .•. , aK • 

We now show that ~m·j)(z) have a similar property. We start with the following 
general result. 

THEOREM 3.2 Let T(z) = u(z l/v(z), where 

u(z) = 

and 

v(z) 
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where AyC::) are as in (2.18) and I'i are constants. Then 

v(z) I
co 

aiz; l- u(z)=O(zi+ s - 1 ), (3.8) 
i= 1 

and if }'5 # 0, then (3.8) is equivalent to 

I
Xl 

ayz'-l T(z) O(zi+ s - 1 ). (3.8a) 
y= 1 

Proof Using the expressions for u(z) and v(;:) we have 

co S 00 

v(z) I ai zi - 1 - u(;:) 1 I }'t I 
i= 1 i;;::O r;i+j 

(3.9) 

where 

ey= I 
s 

}'iai+i+y' r 0,1, ... , (3.10) 
;=0 

and this proves (3.8). Ifwe now divide both sides of (3.8) [or (3.9j) by v(z) and make 
use of the assumption that As # °(or equivalently v(o) # 0), then (3.8a) follows. 

Recalling (2.25) we obtain from Theorem 3.2 the following: 

Corollary. Let u(z) and v(z) be the numerator and denominator, respectively, of the 
rational approximation d~m.jl. Then Theorem 3.2 applies tod~m.i)(z) with s = Nand 
it Di , i 0, I, ... , N. 

The result stated in this corollary can be sharpened under certain circumstances, 
which have been observed to be valid in many cases of interest, and in Theorem 3.3 
we actually show that, like the Pade approximants, the d~m,j)(z) too have Maclaurin 
series expansions that agree with 

through all the terms that go into their construction, provided DN # 0. 
Let us consider again the rational functions T(z) which have been defined in 

Theorem 3.2. Let 

r= 1 

be the Maclaurin series of T(z). From Theorem 3.2 we have iiy = ar , 

r = 1, .. .,j+s 1. Let r' be such thatj+s+r' = min {rliiy # ay]. Obviously r';::;, O. 
Now 

co co

I (/yZr-l T(z) I (ay-ii,)z'-t, 
r=1 r=j+s+r' 

hence, one measure of the closeness of T(z) to I
00 

arz' -1 is the closeness to zero of 
r= 1 
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(ar-a,), r ~ j+s+r'. If we normalize the denominator v(z) of T(z) such that 
As v(O) = 1, then we can easily see that 6 r = aj+s+r'- r' with 6; as defined in 
(3.10). This suggests that another measure of the closeness of T(z) to 

is the closeness to zero of the 6; provided we take As = 1. In Theorem 3.3 we provide 
bounds on the 6; for some cases of interest, which, to a certain extent, suggest that 
6; -+ 0 as nk -+ 00,0:;;:; k :;;:; m 1. 

THEOREM 3.3 Let Wk ~ O. 0:;;:; k:;;:; m 1 in (2.17) and let u(z) and v(z) be the 
numerator and denominator of d~m.j)(:::) as given in (2.25). For nk ~ W k we have 

co 
N+m 1v(z) L arz

r - 1 -u(z) (3.11 ) 
r= 1 

where if; = 8m+ j, i = 0, 1, ... , and 
N 

8; L 6rai +j +r• r=O.I, .... 
o 

Furthermore, when the sequence {ar}~ 1 is as in lemma 3.1 with the notation therein, 
such that flk:;;:; 0, 0:;;:; k:;;:; m-l, and the functions Ck(X) in (3.1) are infinitely 
differentiable for j :;;:; x :;;:; 00, then 

as Fi -+00 for all t > 0, (3.12) 

where Fi = min (no, n1, ..., nm-tl. 

Remark 3.3 If W k ~ 0, k = 0,1, ..., m-I and 6N =f. 0, then (3.11) implies that the 
Maclaurin series of d~m·j)(z) agrees with 

through the terms 1, r= 1,2, ...,j+N+m-1. On the other hand, from 
equations (2.19) that define ~m·j)(z) we can see that the coefficients ar that determine 
d~m·j)(z) are Q" r = 1,2, .. .,j+ N + m 1. In this respect our rational approximations 
d~m·J)(z) resemble the Pade approximants. If = 0, = 0, 0:;;:; k :;;:; m 1,W k nk 

then d~m·j)(z) is simply the U+m-2jm) Pade approximant, Rj + m - 2 • m(z). 

Proof In order to prove (3.11) all we have to do is show that 8 r 0,0 :;;:; r :;;:; m-1, in 
the corollary to Theorem 3.2. Now 

N 

8 r = L bjQj+i+r det v.., 
i=O 

where v.. is the matrix obtained from P by replacing its first row by the row vector 
(aj+r, Qj+r+1' ..., aj + r + N ), the rest of P staying the same. For nk ~ W k ~ 0,°:;;:; k :;;:; m 1. and 0;;:;; r:;;:; m 1, the first row of v.. is identical to one of the 



163 RATIONAL APPROXIMATIONS FROM THE d-TRANSFORMATION 

remaining rows as can be seen by analysing the structure of P with the help of (2.21) 
and (2.22). Hence Cr 0, 0 ~ r ~ m-1. 

In order to prove (3.12) we proceed as follows. Since the elements (lr' r = 1, 2, ... , 
satisfy (3.1) with 11k :S 0, O:s k :S m 1, it can be shown by induction that 

m 1 

ar+m+s = L c~)(r)(lr+k' r ~ 0, (3.13) 
k=O 

where 
c~O)(x) Ck(X), °~ k :S m-I (3.14) 

C~+I)(X) = C~~I(x+l)+c~) I(x+l)ck(x), O:s k:S m-I, 

with c(s)1(x) 0 for all s. Since the functions Ck(X) belong to A(O) and are infinitely 
differentiable for j ~ x ~ 00, so are the ct'(x). 

Let us map the interval j :S x ~ 00 to °~ ¢ ~ 1 by the transformation ¢ = j/x and 
let 

be the best polynomial approximation of degree p to c\Z)(J/¢) on °:S ¢ ~ 1. Since c<:) 
are infinitely differentiable for j ~ x ~ 00, c~s'(J/¢) are infinitely differentiable for 
o~ ¢ ~ 1. Therefore, 

max IC~)(X)-TC<:!p(J/x)1 o(p-t), (3.15) 
j~x~oo 

as p --'> 00 for any t > 0, by il standard result in approximation theory. Now 

N 

iSs = det V:+m L ojaj +m +s+;' 
1=0 

Substituting (3.13) in this expression, with r replaced by j + i, we obtain 

N m 1 

8s L OJ L c~)(j+i)aj+;+k' (3.16) 
;=0 k 0 

Let v~;t be the matrix obtained from P by replacing its first row by the row vector 

[aj+kr q, (lj+ 1 + k(J + l)-q, ... , aj+N+k(J +Nrq], 
then 

N 

det w,t L OJ(lj+i+k(J+W q = 0 
1=0 

for 0 ~ q ~ nb since ~k, for 0 ~ q :S n k , has two identical rows, one of them being 
the first row. Therefore 

N m 1 GJ)L 0; L TCt~)nk :-+~ (lj+;+k o. . (3.17) 
;=0 k 0 1 

Finally, subtracting (3.17) from (3.16) we obtain 

- _ /II m-l [ (s)" (s) }G. )]
Cs - L 0; L (lj+i+k Ck U+l)-TCk,n, -:-----: . (3.18) 

;=0 k=O +1 
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Taking absolute values on both sides of (3.18) and usmg (3.15), (3.12) now 
follows. • 

The Pade-like properties of d~m·j)(z) are similar to those of the rational 
approximations presented by Brezinski (1979). In both these classes of 
approximations one is making use of some extra assumption about the given formal 
power series; in Brezinski's approximations the poles, or some of them, are 
predetermined, while in the d~:,,·j) approximations we assume that the coefficients of 
the power series satisfy a certain type of recursion relation. An example by Brezinski 
(1979) shows that the Pade approximants are not always optimal and better rational 
approximations can be obtained by a proper choice of the poles. As reported to us by 
the referee, numerical tests show that for the example from Brezinski's paper, 
z 1 log (1 + the d~m.j) approximations perform even better than Brezinski's 
approximations. We are grateful to the referee for carrying out this example. 

4. Practical Implementation of d~m·j)(z) and Numerical Examples 

Let 

be a series with a non-zero radius of convergence. In Theorem 2.1 we gave a set of 
sufficient conditions on the sequence {f,. orz,-I]::"=1 that enables us to apply the d
transformation to this series and obtain good approximations to 

00 

7 r '\' 0 1L. r- . 
r= 1 

The most important condition in this set seems to be (2.2). We note that in order to 
apply the d-transformation to 

00 

'\' 0 7,-1
L., ,

,= 1 

we do not have to know the difference equation in (2.2) explicitly; mere knowledge of 
its existence and ofits order m is enough. Even m does not have to be known exactly, 
an upper bound for tn, if available, can be used instead of m. If no knowledge of m is 
available, one can try, instead of m, the values m' 1,2, .. ., until meaningful 
(quickly converging) approximations d~m··j)(z) are obtained for some value of m' which 
is then taken to be the true value of m. Besides m what goes into the d-transformation 
is the set of integers {wo, ... , Wm _ d. Now in order to know what these W k are, one has 
to have some knowledge of the difference equation (2.2) as can be seen from (2.9). 
Actually, one has to know the ik . Even then (2.9) provides us with upper bounds to 
the Wk in general. Now it turns out that one does not have to know the W k exactly in 
the computation of d~m,j)(z); one can replace Wk by w~ that satisfies W k ~ w~ ~ m 1, 
k = 0, 1, ... , m 1. However, for the power series considered in this work it seems 
that w~ = 0, k = 0, 1, ..., m 1 is an appropriate choice. Furthermore, in many cases 
ofinterest W k = 0 for all k. 

We now give some useful results that are helpful in determining the value of m. 
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Definition 4.1 A sequence {ar)~~l whose elements satisfy an (m+l)-term recursion 
relation of the form given in (3.1) with Ck(X) in A(p,) for some integers J-lk is said to 
belong to G(m). 

LEMMA 4.1 Let {arJ~~l and {br}~l belong to G(m) and G(m'), respectively. Then 
{ar+br]~l and {arbr]~=1 belong to G(m,) and G(m,), respectively,for some mi :s;; m+m' 
and m2 :S;; mm'. 

LEMMA 4.2 Let {ar]~=1 belong to G(m). Then {an~1 belongs to G(m) where· 
m:s;; m(m + 1 )/2. 

These lemmas are simple consequences of lemma 3 and its first two corolli,iries in 
Levin & Sidi (1981). 

Numerous examples done by the authors suggest that if the sequences {arJ ~ I and 
{br ] ':'= I considered in the two lemmas above satisfy all the conditions given in 
lemma 3.1 (i.e. in addition to being in G(m) and G(m') they satisfy the remaining 
conditions of lemma 3.1), then so do {ar+b'];:~l> (a,br}~I' and {a;}':'~1 with m 
replaced by m l , m2, and m, respectively. Usually, mi m+m', m2 mm', and 
m m(m+1 )/2. 

LEMMA 4.3 Let {ar]':'=1 satisfy all the conditions given in lemma 3.1 for some m and let 
g(x) be in A(Ylfor some y. Then {g(r )a,) ~ 1 satisfies all the conditions given in lemma 3.1 
with the same value of m. 

The proof of this lemma is easy and will be omitted. 

Example. Consider the function 

F(z) z- l log(1+z)+(z2+ a)-p, (4.1 ) 

L a,zr-l 

which has three branch points at z = 1 and z = ± ifi. F(z) has a M.aclaurin series 
expansion of the form 

00 

F(z) = 
r= 1 

where Q, = b, + 5r with 
_ly-l

b, = ._.-._..- r 1,2, ..., 
r 

52, = 0, r = 1, 2, ... , 

and this series converges for 

Izl < (= min (1, JI.;j). 
It can easily be shown that 

r ~3P+r-1 5--b and 5r + 7. = r+ 1 r - a r+ 1 r' 
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Hence by definition 4.1 the sequences {br] F 1 and {5r};'7 1 are in G(I) and G(21, 
respectively. By lemma 4.1 the sequence {ar = br+5r}~1 is in G(3). Actually it can be 
shown that the sequence {a r } ~ 1 satisfies 

(lr+3 co(r)ar+cl(r)ar + l +c2(r)ar+ 2 

with co(x), Cl(X), C2(X) being all in A(O). Since 

has a non-zero radius of convergence, by Theorem 3.1, (2.8) holds with m 3 and 
Wk';:;; 0, k = 0,1,2. Therefore, the approximations d~3.j) are appropriate for this case. 
In our numerical experiments we took Wo WI = W 2 = 0 in definition 2.2. 

The numerical results given in Levin & Sidi (1981) and the general convergence 
theory given in Sidi (1979b) suggest that the sequence of approximations d~m-j)(z) with 
j = 1 and n (v, ..., v), v = 0, L 2, ... , have the best convergence properties. We 
denote these approximations by d~m.I). As for the Pade approximants it is well known 
that the sequence of diagonal approximants Rk• k(Z) has the best convergence 
properties. Therefore, any comparison between the two methods has to be made 
between those d~m. I )(z) and Rk• k(Z) which are obtained from approximately the same 
number of terms of the series 

i.e. for m{v+2) ~ 2k+ 1. 
In Table 1 we give the approximations d~3.1)(Z) and Rlo . JO(:) to the function F(z) 

given in (4.1) with IX = 1 and f3 ~. at several points in the complex z-plane. Note that 
both approximants are obtained from the first 21 terms of the Maclaurin series of 
F(x). 

One of the important applications of rational approximations is to approximate the 

TABLE 1 

z . R lO •10(Z) d~3.1 )(z) F(z) 

0·5 1·705357407213 1·705357407216 1-705357407216 
1·0 1-40025390 1-400253961753 ].400253961747 
2·0 0·99648 0·99651956 0·996519739834 
5·0 0·5529 0·554489 0·554468028983 

-0·5 2·2807215514 2·280721552119 2·280721552120 
-0,9 3-298 303015 30301722 

0·95 3·848 3·8737 3,87840 
2+2i 0-7326 0·73166 0·731645 

0·4064i 0·406651 -0·4066951 
-0'2+i 1·995 1·98366 1'98345 

+0'656i +0'64811i +0,648161 
0·9i H079 H0837 3'10839 

-0-3311 -0,3296141 0·329626i 
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TABLE 2 


Poles of R10,lO(z) Poles of d\?' II(Z) Singular points of F(z) 

-1'046 1,024 
-0'005± 1 '016i - 0'0002 ± 1 '00661 ±i 

location of the singular points of the functions being approximated, It turns out that 
some of the poles of the rational approximations d~m,j)(z) and Rk, k(Z), as v -> 00 and 
k -> 00, tend to the singular points of the function being approximated. Table 2 gives 
poles of the approximations d~3, 1)(Z) and RIO. 10(Z) for F(z). 

Similar testing was done for several other values of Ct. and fJ and the conclusions are 
in general as above. Only for integer fJ the poles of the Pade approximants 
approximate the locations of the poles of F(z) better than those of the d~m·j)(z) 
approximations. 

We also computed the first few By [see (3.11)] both for RIO, IO(Z) U(z)jV(z) and 
d~3. 1 )(z) = u(z )iv(z) with V(O) = 1 and v(O) = 1. The results ine as follows: 

V(z)F(z) U(z) ( 0·652 x 1O-3)z21+(0'204xlO-2)z22+( 0·223 x 10- 2)z23 + ... , 

and 

17(z)F(z)- u(z) = ( 0·104 X 10- 6 )Z21 + ( 0·406 X 10- 6 )z22 + (0'536 x 10- 6)Z23 + .... 
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