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Recently the authors have presented the d-transformation which has proved to be
very efficient in accelerating the convergence of a large class of infinite series. In this
work the d-transformation is modified in a way that suits power series. An
economical method for computing the rational approximations arising from the
modified transformation is developed. Some properties of these approximants,
similar to those of the Padé approximants, are derived. In the course of development
a class of power series to which these rational approximafions can be applied
efficiently is characterized. A numerical example, showing the strong convergence
properties of the approximations is appended and a comparison with the
corresponding Padé approximants is given.

1. Introduction

RECENTLY the authors have developed some non-linear methods for accelerating the
convergence of infinite integrals and series, namely the D-transformation for integrals
and the d-transformation for series, see Levin & Sidi (1981). The convergence analysis
of these methods has been taken up in a series of papers by Sidi (19794, 19795, 1980).
The numerical examples given in Levin & Sidi (1981), and those given in Levin (1973)
and in Smith & Ford (1979) for a special case, namely the T-transformation, indicate
that these methods are very powerful and, in many cases, more efficient than Shanks’
(1955) e-transformations. For a comparison of Levin’s T-transformation and Shanks’
transformations (or their equivalent e-algorithm of Wynn, 1956) and also the 0-
algorithm of Brezinski (1971}, see Smith & Ford (1979).

As is shown in Shanks (1955), the application of the e-transformation to a power
series gives the Padé table of that series. Similarly, in Levin & Sidi (1981), it is
mentioned that the application of the d-transformation to a power series gives rise to
rational approximations to the power series too. The observation that the d-
transformation is, in many cases, more efficient than the e-transformation leads us to
expect that the rational approximations obtained from the d-transformation are
better than the Padé approximants.
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154 A. SIDI AND D. LEVIN

In this work we modify the definition of the d-transformation as given in Levin &
Sidi (1981), in a way that suits power series; the new definition, unlike the original
one, enables us to give a very economical method of computing the rational
approximations. In the course of development, a class of power series, for which these
approximations are appropriate, is characterized. We derive some properties of these
approximations, similar to those for Padé approximants. Finally, we give a numerical

. example showing the strong convergence properties of them and comparison with the
Padé approximants.

2. Modification of the d-Transformation and Application to Power Series

We shall start by reviewing the main results of Levin & Sidi (1981) which bear
relevance to the present work. The notation used is that of Sidi (1979) and is slightly
different from that used in Levin & Sidi (1981).

Definition 2.1 A function a{x) is said to belong to the set A7, if, as x — o0, it has a
Poincaré-type asymptotic expansion of the form

2(x) ~ %7 S afx 2.1)

i=0
Remark 2.1 From this definition it follows that A" 5 4G~V 5 |
Remark 2.2 If fe A and g € A®, then fg € AS*®, and if, in addition, g ¢ 4°®~ 1,
then f/g € AY 9. If y—& is an integer, then f+g € A, where ¢ = max {7, 8}.
THEOREM 2.1  Let the elements of the sequence 1 f,}2 | satisfy a homogeneous linear
difference equation of order m of the form

m

fr=2 plrAtf, (2.2)
k=1
where A is the forward difference operator operating on the index r, and pi(x), as
functions of the continuous variable x, are in A% but not in A%V, such that i, are
integers satisfying i, < k, 1 < k < m. Let also
lim [A71p, (M ][A* ] =0, i<k<sm, 1<i<m (2.3)

If for every integer s =—1,1,2,3,...,

Yoss—1) ... (s—k+1)p, # 1, (2.4)
K=1
where
Pp=lim x *p,(x), 1<k<m, (2.5)
then '
o0 R—-1 m—1
Y fi= 3 H+ Y RHAYMRIBUR), (2.6)
r=1 r=1 k=0
where
B,eA® 0<k<m—1,
and

pr <max (iysq,iges—1, .. ip—m+k+1), 0<k<m—1. Q2.7
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The proof of this theorem can be found in Levin & Sidi (1981). A detailed proof for
the case m = 1 has been given in Sidi (19794).

Remark 2.3 It follows from the proof of Theorem 2.1 that equality holds in (2.7) if

max {i,—s+1]
1<s<m—k

is achieved only by one of the integers (i,,,— s+ 1). Consequently, p,,_; = i,,. In
particular, for m = 1 we have p, = i; (see Sidi, 1979a). Furthermore, without loss of
generality, the inequality in (2.7) can be replaced by an equality, by remark 2.1.
The definition of the d-transformation given in Levin & Sidi (1981) is based on the
result in (2.6). For power series, however, it is more convenient to express (2.6) in a
different manner and use this new form of (2.6) to modify the d-transformation.

Corollary. Equation (2.6) can be re-expressed in the form
o R—-1 m-—1
L h=2 St X R™raibi(R), (2.8)
r=1 r=1 k=0

where 0, € A9, 0 < k < m—1, and w, are integers satisfying
W, S MaX (fey 1> It gn e - r )y 0SS m—1. (2.9)

Proof. Using the fact that

k

AkfR = z ak,ij+ja . (2.10)
=0
where !

(k
o ;= (=1 (]) 0<j<k,

we can express the second sum on the right-hand side of (2.6) in the form

m-—1 m—1 k
Q=3 RMAYBR)= 3 R™ Y ay ;i fr+iPu(R). (2.11)
k=0 k=0 j=0
Upon interchanging the summations on k and j in this last equality we obtain
m—1 m—1
0= Z frej 2 % R7B(R). (2.12)
j=0 k=j
Defining now
W= max (0, Pjr1s - - Pm—1) 0<j<m—1, (2.13)
we can write
m—1
Y XM Bi(x) = x"0(x), 0<j<m—1, (2.14)
k=j

where 6; € A®, 0 <j < m—1. Substituting (2.14) in (2.12) and (2.12) in (2.6), (2.8)
follows. (2.9) follows by using (2.7) in (2.13). W

We now define a modification of the d-transformation which is based on the
above corollary and hence is different from and yet completely analogous to the
d-transformation given in Levin & Sidi (1981).

6



156 A. SIDI AND D. LEVIN

Definition 2.2 Let the sequence {f}2;. be as in Theorem 2.1. Define
n = (ng, Ny, ..., ",_1) with n; non-negative integers. Then 4", the approximation
to

together with the parameters 6, ;, 0 <i
solution of the set of linear equations

N

e, 0<k<m—1, are defined as the

R—-1 m—1 ny
A =3 fit 2 R"frex 2 Ouid/R, 1<j<R<j+N, (2.15)
r=1 k=0 i=0
where
0
2 fr=0,
r=1
and
m-—1
N=73 (m+1), (2.16)
k=0 '

provided the determinant of the system in (2.15) is non-zero.
For the case of power series, i.e.

fi=az"t a#£0, r=1,2,...,

equations (2.15) take the form

m-—1

d7z)=Ag 1+ Y R™ag 2® 1 Y 0, /R, 1<j<R<j+N, (217)
k=0 i=0
where the A are defined as

Ag=0, A=) az7!, s=1,2,.... (2.18)
r=1
If the equations in (2.17) are solved directly to obtain d¢"(z), then this would
mean a great loss of computational efficiency since for each z these equations have to
be solved again. This is exactly the deficiency that the original definition of the d-
transformation suffers from and, in general, it cannot be overcome. However, the
equations in (2.17), for the modified d-transformation, can be re-expressed in a form
that enables one to overcome the deficiency above, and this is done below.
Multiplying both sides of (2.17) by z/*¥~® we can re-express it in the form
) . . & 0
ZJ+N—Rd$Im,J)(Z) =Z]+N—RA i+ Z R%ag, . Z R‘ , 1<j<R<j+N,
(2.19)
where
Ik.i — gk‘iZj+N+k71.
This time the unknowns are d"”(z) and the 6} ; and, except for the column
corresponding to d{™J(z), all the other columns in the matrix of equations (2.19) are



RATIONAL APPROXIMATIONS FROM THE d~TRANSFORMATION 157

independent of z. Now using Cramer’s rule, d"™/(z) can be expressed as the quotient
of two determinants in the form

det P
detQ’

dymi(z) = (2.20)

Here P is the matrix whose (s+ 1)th column is the (N + 1)-dimensional vector

[ZN;SAJI‘FS— 1+ 0, (G+5), G+ a4 10, (+5) -
G+ gem iy, G+ s=0,1.2,.. N,  (221)
where T denotes transpose, and v,(q) is the (I + 1)-dimensional row vector

2

Uz(‘])=(1’ q‘lv q_ CERIRARS] q_l)' (222)

The matrix @, on the other hand, is obtained from P by replacing the first row of P,
i.e. the row vector

(zNAj_l, zN‘lAj, ZN“ZAJ-H, conzZAjin_a Ajen—1)s (2.23)
by
NNz 0) (2.24)

and leaving the other rows of P unchanged.

TueoreM 2.2 d™(z) is a rational function in z whose numerator has degree
<j+N —2 and whose denominator has degree <N. Actually, d™7)(z) is of the form

N
Z 5iZN_iAj+i—1
dimi(z) = =0 ) (2.25)

§;zN

o

0

{f

1
where 9; is the cofactor of z¥ ! in the first row of the matrix Q.

Proof. Expand det P and det Q with respect to their first rows given in (2.23) and
(2.24), respectively. By using the fact that the cofactors of the first rows of P and Q are
identical, (2.25) now follows. Clearly the denominator has degree <{N. Since the
degree of A, is k—1, it is easily seen that the numerator of d\™”(z) is of degree
<j+ N —2. This completes the proof. W

As can be seen from (2.25), once the J;, which are independent of z, have been
computed, the approximation d™? is known for all z with very little additional
effort. From (2.25) we also see that the §; can be multiplied by a non-zero constant
without changing d™?. Now the §, satisfy the system of linear equations Ud = 0,
where U = (ug, u;, uy) is the N x (N + 1) matrix whose columns u, are given by

Ug = [(j—)—s)WOaijno(j—}-s), (j+5)wlaj+s+1vnl(j+5)» BN
G+ gem-10,, (j+5)]7, s=0,1,.. N, (2.26)
and § = (8¢, 6, . . ., O)". This is so since the §; are the cofactors of the elements of the

first row of the matrix P (or Q). Combining these facts we can now state the following
useful result:
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THEOREM 2.3 Let rank (U) = N. Then the vector é can be determined uniguely (up to
a multiplicative constant) by solving the system of N+ 1 equations

Vs =e, (2.27)

wheree = (1,0,0,...,0)T and V = (v/U), i.e. v is the first row of V and U is the rest of
V, with v being any (N + 1) dimensional vector such that V' is non-singular

3. Some Properties of d™/(z)

3.1 A Characterization Result for a Class of Infinite Series to which the d-Trans-
formation can be Applied

Let us recall that the derivation of 4"/ in the previous section has been based on
Theorem 2.1 and/or its corollary. The most important condition in Theorem 2.1 is
(2.2), which has been formulated in the form of a linear homogeneous difference
equation in the f,, with the coefficients p,(x) of this equation being in A% k, < k, i,
integers. For the case of power series, i.e. f, = a,z" "1, it-is desirable to have a set of
conditions on the a, (rather than f,) that will guarantee that all the conditions in
Theorem 2.1 and hence (2.6) hold. It turns out that such a set of sufficient conditions
can be formulated and it characterizes a large class of power series

Y
2: arzr—l
r=1

to which Theorem 2.1 applies and consequently for which the approximations d{™¥(z)
are appropriate. This is done in lemma 3.1 below.

LemMa 3.1 Letf,=a,z" ', r=1,2,..., and let the a, satisfy the linear homogeneous
(m+ 1)-term recursion relation
m—1
dyvm = kzo c(P)ay s ks (3.1

where c,(x), as a function of the continuous variable x, belongs to A™ for some integer
e k=0,1,....,m—1. Define c,(r)=—1,ie. u, =0and

i, = max {u,) — max {g,] <0, k=1,2,.. m. (3.2)
<

k<r<m 0<r<m

Then, for general z, the f, satisfy the linear homogeneous difference equation of order m

fr=2 pilr, )AL, (3.3)
k=1

where p,(x, z) are rational functions in z given by

J

pulx,z) =140 k=1, .m, (3.4)
Y elx)zm

=0



RATIONAL APPROXIMATIONS FROM THE ¢-TRANSFORMATION 159

and p,(x, z), as functions of the continuous variable x, belong to AW,
Proof. Let us first express (3.1) in the form

m

Z el )y = 0.

k=0

Using the equality a, = z7""1f, and the relation

k ,
byow=(L+AFD, = Z ( ) (3.5)

we can write this recursion relation as

i cu(ryzr ke i()l\‘fr—o (3.6)

k=0

Multiplying equation (3.6) by z"*™ ! and rearranging we obtain

i [i (é) (r)z"~ "} A'f, = 0. , (3.7)

Finally, (3.3) and (3.4) follow from (3.7). From remark 2.2, the numerator of p,(x, z)
n (3.4), for general z, is in A% but not in 4%V, where
Vi = max {j;
k<rsm

and its denominator, for general z, is in A but not in A1, where

— ISTHR!
= max {4,].
O0<r<m

By remark 2.2 again we conclude that p, € 44~%). But y,—y = i, from (3.2) above,
hence p, € A%. This completes the proof of the lemma. W

Remark 3.1 It seems that the result of lemma 3.1 holds for every z which is not a
point of singularity of the function represented by

@
Z arZr—l’

r=1
although there is no proof of this. yet.
Using lemma 3.1 we can now prove the following useful result:

THEOREM 3.1  Let the sequence {a,};% be as in lemma 3.1 with the sume notation, and
assume further that the series

has a non-zero radius of convergence {. Then, whenever |z| < {, the sequence {f,15%,
where f, = a,z" ", satisfies all the conditions of Theorem 2.1, hence (2.8) holds with
w,<0,0<k<<m—1.

Proof. From lemma 3.1 it follows that (2.2) is satisfied with i, <0, 0 <k <m—1.
Therefore, p, =0, 0 < k < m—1, consequently (2.4) is satisfied. Since p,(x, z), as a
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function of x, is in A% A*p,(r, z) = O(r**) as r — o, hence Ap,(x, z)in is A%~ We
also have that A’f, - 0 as r » co due to the fact that

S
Nf, = Z Os, i Jr+jo
j=o0

and that f, —» 0 as r > co whenever |z| < {. Now ¢(r)f, — 0 as r -0, whenever |z| < (,
if g € A for some y. Combining these results we can see that (2.3) is satisfied too.
Hence, we have shown that all the sufficient conditions in Theorem 2.1 are satisfied.
The rest follows trivially. W

Remark 3.1 From remark 2.3 it is clear that the p, in (2.6) are all zero. Many
examples that we have examined indicate that w, = 0, 0 < k < m—1, although there
is no proof of this so far. For the case m = 1, however, wy = 0 trivially since wy = p,
and p, = 0.

Remark 3.2 Theorem 3.1 characterizes a large class of infinite power series to which
the d-transformation can be successfully applied. This class seems to contain a large
number of power series which, inside their circles of convergence, represent functions
that have a finite number of poles and branch points in the complex z-plane. See the
example in Section 4.

3.2 Some Padé-like Properties of d™(z)

We now turn to the derivation of some properties of the approximations d9(z)
which are similar to those of the Padé approximants. We recall that the (p/q) Padé
approximant R, ,(z) to

r=1
is the rational function

>

o2
U(z) i= '
qu(z)=V(Z): qo » Bo=1
>, Bz
j=0

which satisfies

V@) i 4,7 1~ U(z) = 0(F)

1

asz > 0, where K = p+q+1. As such R, ,(z) can be determined from a,, a,, . . ., ag.
We now show that d¢™J(z) have a similar property. We start with the following
general result.

THeOREM 3.2 Let T(z) = u(z)/v(z), where
u(z) = Z /:i:S7iAj+i—1(Z)

i=0
and

s
=Y Az~
i=0
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where A,(z) are as in (2.18) and /; are constants. Then

[}

wz) Y a7 T —u(z) = 0(zi* Y, (3.8)

‘ i=1
and if iy # O, then (3.8) is equivalent to

o0

Y a2 ' =T(z)=0(" 1) (3.8a)

r=1

Proof. Using the expressions for u(z) and v(z) we have

e8] s a0
v(z) Y ait—u(z) =TTy 4 Y a2 0D
i=1 =0 r=i+j
- (3.9)
=Zj+s*1 Z 8r:r
r=0
where
S
&= Alirjen r=0,1,..., (3.10)
i=0

and this proves (3.8). If we now divide both sides of (3.8) [or (3.9)] by v(z) and make
use of the assumption that A, # 0 (or equivalently v(0) # 0), then (3.8a) follows.
Recalling (2.25) we obtain from Theorem 3.2 the following:

Corollary. Let u(z) and v(z) be the numerator and denominator, respectively, of the
rational approximation di™”. Then Theorem 3.2 applies to d™/}(z) with s = N and
si=0,i=0,1,..,N.

The result stated in this corollary can be sharpened under certain circumstances,
which have been observed to be valid in many cases of interest, and in Theorem 3.3
we actually show that, like the Padé approximants, the d™J(z) too have Maclaurin
series expansions that agree with

through all the terms that go into their construction, provided Jy # 0.
Let us consider again the rational functions T(z) which have been defined in
Theorem 3.2. Let

Z arzr—l
r=1
be the Maclaurin sertes of T(z). From Theorem 3.2 we have 4, =a,,

r=1,...,j+s—1. Let ¥ be such that j+s++ = min {r|a, # a,}. Obviously r' = 0.
Now

© ©
S a7 ' -Te)= Y  (a-a)t,
r=1 r=j+s+r

hence, one measure of the closeness of T(z) to ) a,z"~ ' is the closeness to zero of

r=1
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(a,—a,), r=j+s+r. If we normalize the denominator v(z) of T(z) such that
v(0) = 1, then we can easily see that &, = @, 4, — ;454 With ¢; as defined in
.10). This suggests that another measure of the closeness of T(z) to

©
Z arZr—l
r=1

is the closeness to zero of the ¢; provided we take i, = 1. In Theorem 3.3 we provide
bounds on the ¢; for some cases of interest, which, to a certain extent, suggest that
g—~0asn, -0, 0<k<m—1.

THeoREM 3.3 Let w, =20, 0<k<m—1 in (2.17) and let u(z) and v(z) be the
numerator and denominator of d¥/(z) as given in (2.25). For n, > w, we have

v(z) Y a2 P —u(z) =N g (3.11)
r=1

i=0

where £, = ¢ i=0,1,..., and

m+is

M=

&, =

1
r

0,0i4 54, r=0,1,....

0

Furthermore, when the sequence {g,};%.; is as in lemma 3.1 with the notation therein,
such that u, <0, 0<k<m—1, and the functions ¢,(x) in (3.1) are infinitely
differentiable for j < x < oo, then .

N
2] < (Z
i=0

where i = min (ng, ny, ..., 1, _;).

Remark 33 Ifw,>20,k=0,1,...,m—1 and dy # 0, then (3.11) implies that the
Maclaurin series of di™#(z) agrees with

m—

1
|5iaj+i+k|> o(i”") asfi—oo for allt >0, (3.12)
0

k=

through the terms a,27 !, r=1,2,...,j+N+m—1. On the other hand, from
equations (2.19) that define d{™/(z) we can see that the coefficients a, that determine
dim)(z)area,,r=1,2,...,j+N+m—1.In this respect our rational approximations
d™?(z) resemble the Padé approximants. If w,=0, n,=0, 0<k<m—1,
then d{™7(z) is simply the (j+m—2/m) Padé approximant, R, ,_; (2).

Proof. In order to prove (3.11) all we have to dois show thate, =0,0<r <m—1,in
the corollary to Theorem 3.2. Now

VN

E =

r

0iljrir, = detV,

0

b

where V, is the matrix obtained from P by replacing its first row by the row vector
(@i pr Gjyrsts «o o Qipry), the rest of P staying the same. For n, > w, >0,
0<k<m—1, and 0 <r<m—1, the first row of V, is identical to one of the
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remaining rows as can be seen by analysing the structure of P with the help of (2.21)
and (2.22). Hence ¢, = 0,0 < r < m—1.

In order to prove (3.12) we proceed as follows. Since the elements a,, r =1, 2, . . .,
satisfy (3.1) with u, <0, 0< k <m—1, it can be shown by induction that

m—1 .
ar+m+s = Z C$<S)(r)ar+k’ r 2 0’ (313)
k=0
where
cQ(x) = cilx), 0<k<sm—1 (3.14)
AV = ¢ e D)+ (x+1)ep(x), 0<k<m—1, '

with ¢®,(x) = 0 for all s. Since the functions c,(x) belong to A®) and are infinitely
differentiable for j < x < 00, so are the ¢{)(x).

Let us map the interval j € x <00 to 0 < & < 1 by the transformation £ = j/x and
let

p
R0 = 3 nll

be the best polynomial approximation of degree p to ¢(j/¢) on 0 < ¢ < 1. Since ¢
are infinitely differentiable for j < x < oo, ¢(j/¢) are infinitely differentiable for
0 < & < 1. Therefore,

max [c{’(x)— 7, (j/x)| = o(p™), (3.15)

j€x<w

as p »oo for any f > 0, by a standard result in approximation theory. Now

Eo=det Vi, =) 0i 4 m+stir
i=0

Substituting (3.13) in this expression, with r replaced by j+1i, we obtain

m—1
£y = Z Z O +i)a itk (3.16)
i= k=0

Let W) be the matrix obtained from P by replacing its first row by the row vector

[aj+kj_q’ aj+1+k(j+1)_q’ BN aj+N+k(j+N)7q]’
then

N
det mk = z 0ij1514(j+1)7*=0

i=0
for 0 < g < n, since W/, for 0 < g < ny, has two identical rows, one of them being
the ﬁrst row. Therefore

N m—1
25 Z }f’nk<1 >a1+l+k 0. - (3.17)

Finally, subtracting (3.17) from (3.16) we obtain

N m—1 ]
Z Z ,+,+k[ck’o+l) n;:;k(j )] (3.18)

+1
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Taking absolute values on both sides of (3.18) and using (3.15), (3.12) now
follows. W

The Padé-like properties of di™J#(z) are similar to those of the rational
approximations presented by Brezinski (1979). In both these classes of
approximations one is making use of some extra assumption about the given formal
power series; in Brezinski’s approximations the poles, or some of them, are
predetermined, while in the d" /) approximations we assume that the coefficients of
the power series satisfy a certain type of recursion relation. An example by Brezinski
(1979) shows that the Padé approximants are not always optimal and better rational
approximations can be obtained by a proper choice of the poles. As reported to us by
the referee, numerical tests show that for the example from Brezinski’s paper,
z ' log (1+z), the d™7? approximations perform even better than Brezinski’s
approximations. We are grateful to the referee for carrying out this example.

4. Practical Implementation of d!™/(z) and Numerical Examples

Let

be a series with a non-zero radius of convergence. In Theorem 2.1 we gave a set of
sufficient conditions on the sequence { f, = a,z" "1, that enables us to apply the d-
transformation to this series and obtain good approximations to

@0
Y azh
r=1

The most important condition in this set seems to be (2.2). We note that in order to
apply the d-transformation to

9]
Z arzr—l
r=1

we do not have to know the difference equation in (2.2) explicitly ; mere knowledge of
its existence and of its order m is enough. Even m does not have to be known exactly,
an upper bound for m, if available, can be used instead of m. If no knowledge of m is
available, one can try, instead of m, the values m' = 1,2, ..., until meaningful
(quickly converging) approximations d™”(z) are obtained for some value of m which
is then taken to be the true value of m. Besides m what goes into the d-transformation
is the set of integers {wq, . . ., w,,_; }. Now in order to know what these w, are, one has
to have some knowledge of the difference equation (2.2) as can be seen from (2.9).
Actually, one has to know the i,. Even then (2.9) provides us with upper bounds to
the w, in general. Now it turns out that one does not have to know the w, exactly in
the computation of d?#(z); one can replace w, by w), that satisfies w, < wj, < m—1,
k=0,1,...,m—1. However, for the power series considered in this work it seems
thatw, =0,k =0,1,...,m—11is an appropriate choice. Furthermore, in many cases
of interest w, = 0 for all k.

We now give some useful results that are helpful in determining the value of m.



RATIONAL APPROXIMATIONS FROM THE d-TRANSFORMATION 165

Definition 4.1 A sequence {a,};2,; whose elements satisfy an (m+ 1)-term recursion
relation of the form given in (3.1) with ¢,(x) in A% for some integers p, is said to
belong to G™.

Lemma 4.1 Let {a,)%, and {b,}&, belong to G and G, respectively. Then
{a, +b,,, L and {a, b,,, 1 belong to G("' and G™), respectively, for some m; < m+m’
and m, < mm'.

Lemma 4.2 Let {a,)2, belong to G™. Then {a?}%, belongs to G™ where
m<mm+1)/2.

These lemmas are simple consequences of lemma 3 and its first two corollaries in
Levin & Sidi (1981).

Numerous examples done by the authors suggest that if the sequences {a,}2 ; and
{b,}> 1 considered in the two lemmas above satisfy all the conditions given in
lemma 3.1 (i.e. in addition to being in G™ and G they satisfy the remaining
conditions of lemma 3.1), then so do {a,+b,}2, {a,b,},, and {a?}%, with m
replaced by m,, m,, and m, respectively. Usually, m; = m+m’, m, = mm’, and
m=m(m+1)/2.

LEmMMA 4.3 Let {a,} ;2 satisfy all the conditions given in lemma 3.1 for some m and let
g(x) be in A for some y. Then {g(r)a,} 2 satisfies all the conditions given in lemma 3.1
with the same value of m.

The proof of this lemma is easy and will be omitted.
Example. Consider the function
F(z)y=ztlog(1+z)+(z2+a)”*, “4.1)

which has three branch points atz=—1and z =+ i\/&. F(z) has a Maclaurin series
expansion of the form

Fiz)=) a2~
r=1
where a, = b, +b, with

. _lr—l
b,=(“), r=1,2,...,
¥
_ s - =1yt BB+1)...(B+r—2)
gt _ _
by =0"% by = N ETES r—1)! , r=23,..., 4.2)
52,=0, r=1,2, N
and this series converges for
lz| < ¢ = min (1, /]a]).
It can easily be shown that
r 12,B+r~1_
b, ,=——% d =—— b,.
r+1 r+1 r an br+2 o r+1 r



166 A. SIDI AND D. LEVIN

Hence by definition 4.1 the sequences {b,}2; and {b,,, , are in G and G2,
respectively. By lemma 4.1 the sequence {a,=b,+b,} > isin G, Actually it can be
shown that the sequence {a,}:2, satisfies

rir

Ay i3 = Co(F)a,+cy(F)a, 1 +cy(r)a, 4 2

with ¢o(x), ¢;(x), ¢5(x) being all in 4°. Since

has a non-zero radius of convergence, by Theorem 3.1, (2.8) holds with m = 3 and
w, < 0,k =0, 1, 2. Therefore, the approximations d(**# are appropriate for this case.
In our numerical experiments we took wy = w; = w, = 0 in definition 2.2.

The numerical results given in Levin & Sidi (1981) and the general convergence
theory given in Sidi (1979b) suggest that the sequence of approximations d™(z) with
j=landn={(v,...,v),v=20,1,2,..., have the best convergence properties. We
denote these approximations by d/ . As for the Padé approximants it is well known
that the sequence of diagonal approximants R, ,(z) has the best convergence
properties. Therefore, any comparison between the two methods has to be made
between those d™ '(z) and R, ,(z) which are obtained from approximately the same

number of terms of the series

i.e. for m(v+2) ~ 2k+1.

In Table 1 we give the approximations d$(z) and R, 10(2)
4 at several points in the complex z-plane. Note that
both approximants are obtained from the first 21 terms of the Maclaurin series of

givenin (4.1) witha =1 and f =

F(x).

One of the important applications of rational approximations is to approximate the

to the function F(z)

TasLe 1
z "Ryo,10(2) d$1(z) F(z)
05 1705357407213 1705357407216 1705357407216
1-0 1-40025390 1-400253961753 1-400253961747
20 099648 099651956 0996519739834
50 0-5529 0554489 0554468028983
—-05 22807215514 2:280721552119 2:280721552120
—-09 3298 3-3015 3301722
—095 3-848 3-8737 3-87840
242 07326 073166 0-731645
—0-4064i —0-40665i — 0406695
—02+1i 1-995 198366 198345
+0-656i +0-64811i +0-64816i
0-9i 3-1079 3-10837 3-10839
—0-331i —0-329614i —0-329626i
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TabLE 2
Poles of Ry, 10(2) Poles of d&1(z) Singular points of F(z)
—1-046 —-1-024 ~1
—0-005 +1-016i —0-0002 + 1-0066i +i

location of the singular points of the functions being approximated. It turns out that
some of the poles of the rational approximations d{™/(z) and R, .(z), as v — o0 and
k — o0, tend to the singular points of the function being approximated. Table 2 gives
poles of the approximations d$:1(z) and R, ;4(z) for F(z).

Similar testing was done for several other values of « and f# and the conclusions are
in general as above. Only for integer [ the poles of the Padé approximants
approximate the locations of the poles of F(z) better than those of the d'™J(z)
approximations.

We also computed the first few &, [see (3.11)] both for Ry, 10(z) = U(z)/V(z) and
d3V(z) = u(z)/v(z) with ¥ (0) = 1 and v(0) = 1. The results are as follows:

V(2)F(z)—U(z) = (—0:652 x 107 3)221 4 (0204 x 107 2)z22 4 (= 0223 x 107 2)z23 + . .,
and _
v(Z)F(z)—u(z) = (— 0104 x 107%)z21 4+ (— 0-406 x 107 6)z22 +(0-536 x 107 6)z223 + . ...
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