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ON THE ZEROS OF SOME POLYNOMIALS THAT ARISE IN 
NUMERICAL QUADRATURE AND CONVERGENCE ACCELERATION* 

AVRAM SIDIt AND DORON S. LUBINSKYS 

Abstract. In this work the zeros of a sequence of polynomials that arise in convergence acceleration 
and some new numerical quadrature formulas are studied. In particular, it is proved that those polynomials 
that arise in numerical quadrature have all their zeros on [0, 11and that they are simple, and a characterization 
theorem for these polynomials is also provided. Furthermore, the zeros are shown to have an interlacing 
property. 

1. Introduction. In a recent work, Sidi (1980a), new numerical quadrature for- 
mulas Ik[f] for integrals I[f], where 

1 

(1.1) I [ ~ ] =I (1-x)mx8(-logx)uf(x) dx, P >-I ,  a + u  >-I ,  
0 


and 

have been introduced. The abscissas xk,i and the weights Ak,i in these formulas are 
the poles and residues of a sequence of rational functions Hk(z ) ;  i.e., 

which are approximations to the function 

(1 -x)*xP(-log x)" 
dx, 

in the complex z-plane cut along the real interval [0, 11. The approximations Hk(z) 
are obtained by applying a modification of the Levin (1973) T-transformation to the 
moment series of H ( z ) .  For a motivation and details of this approach the reader is 
referred to Sidi (1980a). 

The abscissas xkSi above are the zeros of the polynomial D ~ , I , ~ + ~ + ~ ( X ) ,  where 

hence they are independent of P and dependent only on a +u. In Sidi (1980a) it is 
shown that when m and n are integers such that m 2 0  and n 2 1, the polynomial 
D k , n , m ( ~ )has all its zeros in [0, 11, x =0 and x = 1being zeros of multiplicity n -1 
and max (k -m, 0) respectively, and the rest being simple zeros in (0 , l ) .  It is shown 
furthermore that when m 2 2 ,  the simple zeros of D k , n , m ( ~ )  on (0, 1)andDk-l,n,rn-l(~) 
interlace. An immediate consequence of these results is that for a + v =0 ,1 ,2 ,  , 
the abscissas ~ k in (1.2) are simple and lie in (0, I),  and { x ~ , ~ }  , ~ and { x ~ - ~ , ~ }  interlace. 
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The purpose of the present work is to extend these results to the case in which 
a + v, and therefore m ,  are not integers; and we shall also relax the requirement that 
n be an integer. In the course of development we shall also prove a characterization 
theorem for Dk,n,m( x )when m >k - 1. 

Finally, we note that, for n a positive integer, the polynomials Dk,n ,k+e(~) ,for all 
F ,  come up as the denominators of the rational approximations obtained by applying 
a modification of the Levin (1973) T-transformation to the infinite series I:=, ar /xr ,  
with a,  = r-l-"w(r), where w ( p ) , as a function of the continuous variable p,  has a 
PoincarC-type asymptotic expansion of the form 

00 

w(p) - I w i lp i  asp  +co. 
i=O 

For details see Sidi (1980b). 

2. Theory. In what follows we assume that D k , n , m ( ~ )is as given in (1.5)and that 
m and n are real numbers satisfying m > -1 and n >0. Write m = y +p, where 
-1 <y 50 ,  and p 2 0 is an integer. Obviously y and p are uniquely determined by 
these conditions. 

LEMMA2.1. 

Proof. Follows easily from (1.5). U 
LEMMA2.2. When m is not an integer or when m is an integer Z k ,  

(2.2) sgn Dk,n,m(1 )= (-l)min( p ~ k ) ., 

otherwise Dk,n,m(l) = 0. 
Proof. We start by expressing D k , n , m ( ~ )as 

where A is the forward difference operator operating on n. Setting x = 1 in (2.3),and 
using the fact that 

whenever u (u)is k times differentiable on (n,  n +k ) ,we obtain 

(2.5) Dk,.,,(l) = (-l)'[*fI1 ( m  - i )  I ern-' for some 6 s (n,  n +k ) .  
i=o 

The result now follows easily. U 
THEOREM2.1. Define 

and, for p 2 1, define 

Then 
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Proof. Substituting (1.5) in (2.6), and using the result 

we obtain 

where A is the forward difference operator operating on n. From (2.7) and the fact 
that y > -1, it is clear that ti >-1 for all i 20. Furthermore, m -ti -1= s - i, i = 

0, 1, . . . ,s, so that r(ti) = (- l )kt i !~k(n"i) ,  i =0, 1, ,s. This, together with s Sk -1 
and 

(2.11) Ak(nb)=O, b = O , l , . . . , k - 1 ,  

results in (2.8). O 
THEOREM 2.2. he polynomialfi, (x)=x l - " ~ ~ , , , ,(x) has exactly min (p, k )  zeros 

on (0, 1)and they are all simple. Furthermore, the zeros of D,-l(x) on (0, 1) interlace 
those of fi,(x) there, such that the smallest positive zero of fi,(x) is less than the smallest 
positive zero of fip-l(x). 

Note. For y =0 this theorem has been proved in Sidi (1980a). Therefore, in the 
proof below, we shall take y # 0. This is necessary especially at those places in the 
proof where we make use of Lemma 2.2. 

Proof. We start by proving that d ,(x)  has at least min (p, k )  sign changes in (0, 1). 
Since this is trivially so for p =0, we take p 2 1. Making the change of integration 
variable x = e-' in (2.6), (2.8) can be expressed as 

where S = y +max (0, p -k)  >-1. Taking appropriate linear combinations of the 
equalities in (2.12), we have 

where L; ' ' (~)  are the generalized Laguerre polynomials that form an orthogonal set 
of polynomials with respect to the weight function y s  e-' on [O, a ) .  Therefore, 
Dk,,,(e-') has at least s + 1sign changes on (0, a ) ;  see Cheney (1966, p. 110). This 
implies that d , (x)  has at least s + 1=min (p, k )  sign changes on (0, 1). 

Now for p 2k, the number of sign changes of fi,(x) on (0, 1) is at least k. But 
fi,(x) is a polynomial of degree exactly k. Therefore, it follows that when p 2 k, fi,(x) 
has exactly k zeros on ( 0 , l )  which are all simple. 

For p <k, we next show that d , (x)  has exactly p sign changes on (0, 1). For this 
we shall make use of Lemmas 2.1 and 2.2. Suppose that fi,(x) changes its sign at 
exactly p +q points on (0, 1) with q 2 1, and denote these points by xi, i = 

1,2 ,  ,p +q, such that 0 <xl  <x2 <x,,, <1.Now from (1.5) and the fact that a a a 

n >0, it follows that xDk,",,(x) =0 at x =0. Again from (1.5) we have that, for x >0 
but sufficiently close to zero, Dk,n,m(~)>O.Consequently, for xi <x  <xi+l,  we have 
( - l ) i~k , , ,m(x )  0 ,1 ,  S x  52 0, i = ,p +q, where we have also set xo= 0. But for x,,, 
1we should have (-l)PDk,n,m(x) 2 0 ,  according to Lemma 2.2. This implies that q is 
an even integer, hence q 2 2. By applying Rolle's theorem to (d/dx)[xDk,,,,(x)], and 
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using Lemma 2.1, we have that Dk ,n ,m+l (~ )  has an odd number of sign changes in 
each of the subintervals (x,, x , + ~ ) ,  i =0, 1, ,p + q  - 1, which implies that Dk,n ,m+l(~)  
has at least p +q 2 p  + 2  sign changes on (0 , l ) .  But from above we know that 
D k , n , m + l ( ~ )has at least p +1 sign changes on (0, I ) ,  and if it has more, they should 
be p +1+q'  in number, where q ' 2 2  is an even integer. Consequently, Dk,n ,m+l(~)  
must have at least p +3 sign changes on (0, 1). If p +1=k, this leads to a contradiction, 
as we have already shown that Dk,n,v+k(~)has exactly k simple zeros on ( 0 , l ) ;  hence 
Dk+?+k-l(x) has exactly k -1sign changes on (0, 1). If p +1= k - 1, then this implies 
that Dk,n,v+k-l(~)  has at least k +1sign changes on (0, I),  and this is a contradiction, 
since we have already shown that Dk ,n ,v+k- l (~ )  1sign changes on (0, 1). has exactly k -
The proof can now be completed by letting p = k -3, ,1,O, in this order. 

We finally show that, for p <k, d , (x )  has exactly p zeros on (0, I ) ,  and they are 
all simple. As above, also here we shall make use of Lemma 2.1 and Rolle's theorem. 
So far we have shown that D,(x) has at least p zeros on (0, I ) ,  with exactly p of them, 
say x l <  x2 < <x,, having odd multiplicities. Assume now that the total multiplicity a a 

of the zeros of 6,(x)  on ( 0 , l )  is greater than p. Then there are two possibilities: 
1) At  least one of the xi, say x,, has multiplicity 2 3 .  Using Lemma 2.1, we see 

that 6p+ l (x )  has a zero of even multiplicity 2 2  at x,, in addition to the p +1points 
at which it changes sign. Now Lemma 2.1 and Rolle's theorem imply that dp+2(~) 
should have p + 3  points of sign changes on (0, I),  one of these points being x,. But 
this contradicts the fact that d p + Z ( ~ )  has exactly min (p  +2, k )  sign changes on (0, 1). 

2) d p ( x )  has at least one zero of even multiplicity 2 2 ,  say z. As above, this 
implies that 6p+ l (x )  should have at least p + 2  sign changes on (0, I),  one of them 
being at z, and this is a contradiction, since 6p+ l (x )  has exactly p +1sign changes on 
(031). 

The last part of the theorem, on the interlacing property of the zeros of 6 , (x)  
and fiPpl(x), is a consequence of Lemma 2.1 and Rolle's theorem. This completes 
the proof of the theorem. O 

THEOREM 2.3. Let us denote the zeros of D k , n , m ( ~ )  (0, 1) by xFm, such that on 

k,m<k2kvm< Then f o r m 2 2  
. . a .X 1 

Proof. Making use of Theorem 3.2 in Sidi (1982), we have 

The rest of the proof now is exactly the same as that of Theorem 4.3 in Sidi (1980a). 0 
An immediate consequence of this is that for any a + v  > -1, x ~ , ~in (1.2) are 

simple and lie in ( 0 , l )  and { x ~ , ~ }  interlace.and { x ~ - ~ , ~ )  
LEMMA 2.3. Let m =k + E ,  xkVk+€, 1 ,2 ,  ,k, denote such that E is fixed. ~ e t  i = a 

all the zeros (real or otherwise) of x'-"~k,, , ,k+~ (x). Then 

Proof. (2.16) follows easily from the fact that 

which follows from (1.5). 0 
From this result and the fact that e-I <$,we can see that the k real zeros of 

DkTnTk+ € (x)for E >-1 are not symmetrical with respect to x = and it can be argued :, 
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that they tend to cluster in (0, i).This statement is made more rigorous in the following 
theorem. 

THEOREM 2.4. Let m = k + e, e > -1fixed. Then for any fixed i 

where 0 <x!,~'" < x ? ~ + '< . . <xivk+€< 1. 
Proof. Let zl,  , zk be the zeros of the polynomial P (z )  = 

k 
Ajzi, A k  = 1. 

T h e n , f o r O S i S k - 1 ,  

with one of the terms in this multiple sum being zi+lzi+2 . . . zk. Since all the zeros of 
Dk ,n ,k+E(~)are positive, we have from (2.19) and (1.5) 

Since x;,~'" are in ascending order, (2.20) can be replaced by 

Therefore, 

Now (:) is a polynomial in k of degree i. Hence (:)l"k-i' = O(1) as k +a.Consequently, 

(2.23) xf$;E = o ( k - l )  as k + a .  

This completes the proof of the theorem, providing at the same time an upper bound 
for the rate at which the xfSk+" tend to zero as k +a. 0 

THEOREM 2.5. Let m = k + e, e > -1 fixed. Then for u fixed and 0 < u < 4, 
k k + &  u(2.24) lim sup x l;k~ S-

k +ao 1- u 9  

where [A] denotes the greatest integer S A .  
Proof. We start with (2.20). Since uk -1< [uk] 5uk, we see that for k sufficiently 

large, 

the last part following from Stirling's formula. Similarly, for k sufficiently large, 

where B is a constant independent of k. Combining (2.25) and (2.26) in (2.21) with 
i = [uk], we obtain after some simple manipulations, 

where C is a constant independent of k. (2.24) now follows easily. 0 
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3. A characterization theorem. Making use of (2.8), we now prove a characteri- 
zation theorem for Dk ,n ,y+p(~ )  for p 2 k. 

THEOREM 3.1. Let S >-1 and n >0. Then there exists a unique (up to a constant 
multiplicative factor) polynomial f i ( x )  +O from the set of polynomials of degree S k ,  
satisfying 

1 

S + i  n-1 -


(3.1) (-logx) x D ( x ) ~ x = o ,  i = O , 1 ; . . , k - l Y  

and this polynomial is x '-"D~,,,,s+~(x). 
Proof. That X ~ - " D ~ , , , , ~ + ~ ( X )  satisfies (3.1) follows from (2.8), (2.7), and (2.6), 

together with S = y + p  -k, -1 <y S0, and p 2 0 an integer, which imply that p 2 k. 
Let us now prove that there does not exist a polynomial of degree less than k satisfying 
(3.1). Suppose that f i l (x)  were such a polynomial. Then making the change of variable 
x =ePY, and following the steps that lead from (2.8) to (2.13), we would have from (3.1). 

This now implies that e'l-n'yfil(e-Y) hence f i l (ePY) have k sign changes on (0, a )  or 
that fil(e-') vanishes identically on [0, m). Since E l ( x )  is a polynomial of degree less 
than k, this implies that f i l (x)  =0 on [0, I]. As for the uniqueness of f i (x )  we proceed 
as follows. Let f i (x )  and 6 ( x )  be two polynomials of degree exactly k, having equal 
leading coefficients, and satisfying (3.1). Then fil(x) =fi(x)-6 (x) is a polynomial 
of degree less than k, satisfying (3.1). But we proved above that f i l (x)  = O  on [0, I], 
which implies fi (x) =6 (x). This completes the proof. O 
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