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PREDICTION PROPERTIES OF THE r-TRANSFORMATION* 

AVRAM SIDI: AND DAVID LEVIN$ 

Abstract. Some prediction properties of the t-transformation of Levin are analyzed for two kinds of 
limiting processes. It is shown under certain circumstances that when the t-transformation is applied to a 
power series, the coefficients of the Maclaurin series of the rational approximation obtained approximate 
those of the given series with increasing accuracy. Theoretical and numerical examples are appended. 

1. Introduction. Let 

be a formal power series, and 

its partial sums. Define the rational approximation Tk,,,(z) to F ( z )  by 

where n and k are positive integers, and A;~," '  are constants which may depend on 
n, k and a,, but are independent of z. As expressed by (1.3), T k , n ( ~ )  is a weighted 
average of Ar(z),  n -15 r 5 n + k -1. The Pad6 approximants and the recent d 
approximations of the authors [7] are of the form (1.3). 

Let T k , n ( ~ )  have the Maclaurin series expansion 

Let us now assume that the formal power series in (1.1)represents the function 
F(z )  asymptotically and that a, = F"-"(0)/(r - I)!, r = 1,2,  . . Since Tk,,,(z) is con- 
structed using information about F ( z )  at z = 0, we would expect it to approximate 
F(z )  better in a neighborhood of z = 0 than elsewhere, and would therefore expect 
the derivatives of Tk,n (2) at z = 0 to approximate the corresponding derivatives of 
F ( z )  at z = 0. We have the following simple result [7], which will be of use in the 
remainder of this work: 

THEOREM1.1. Let F(z) ,  Ai(z) and Tk,n(z) be as in (1.1), (1.2) and (1.3) respec- 
tively. Then 

where 
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hence 
a0 


(1 .7)  F ( Z )-Tk,"(z )= C (a ,  -a lk ,") )zr - l  = o ( z " + ~ - ' ) .  
r = n + k  

Let r' = min {rlslk,"' # 0). Then 

Although ajk'"' = a ,  for r  5 n  + k +r ' -  1, this does not necessarily mean that 
Tk,"(z )is a good approximation to F ( z )for z not too small, if the Aik,"' are assigned 
arbitrarily. As a matter of fact, one can fix the hlk'"' in such a way that a?,"' can 
take on any preassigned values for some r2 n + k, having nothing to do with the actual 
a,. We therefore argue that if Tk,"/7)is to be a good approximation to F ( z ) ,then it 
should be such that: ( 1 )  a lk'"' is a good approximation to or reproduces a ,  for r S K ; 
( 2 )alk."'predicts a ,  closely for r 2 K + 1, where K is the number of terms of the series 
F ( z )that are used in constructing Tk,"(z).It has been observed numerically that both 
the Pad6 and the d approximations, which are effective means for producing accurate 
rational approximations, have these properties. 

In [ 7 ] some theoretical bounds on l ~ t ~ ' " ' lhave been provided for the general d 
approximations. In the present work we shall restrict ourselves to a special case of 
the d approximations, namely the t approximations of Levin [3 ] ,and prove conver- 
gence results for E j k , " )  and atk,"'for two kinds of limiting processes considered in [5 ]  
and [ 6 ] .We shall do this by deriving actual rates of convergence. Our results show 
that as more terms of the series F ( z )are given, the t approximations predict the next 
unknown terms with increasing accuracy. Finally, we shall illustrate the results by 
theoretical and numerical examples. 

2. Preliminary results for t approximations. The t approximations of Levin [3 ]  
for the power series F ( z )in (1 .1)are defined as in (1 .3)with 

provided none of the a,  is zero. Obviously ALk'"' = 1. (In [3 ]  A ,+ , - , ( z )  in (1 .3) is 
replaced by A , + / ( z ) ,but it is not difficult to show that the two forms are equivalent.) 

Substituting (2 .1 )in (1 .6) ,we have 

where A is the forward difference operator operating on the index n. Using the facts 
that h k p ( n )= 0 whenever p(n)  is a polynomial in n of degree at most k - 1 and that 
Ap(n) = p ( n  + 1 ) - p ( n ) , we can see immediately that sbk'"'= 0;  hence (1 .5)and (1 .7 )  
become respectively 

where 2 lk'"' -- E ( k,+';', r = 0,1 ,  . , and 

00 

(2.4) F ( z ) -  Tk ,"(z )  = C (a ,  -ajk,"')zr-I = O ( z n t k ) .  
r = n + k + l  
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Defining 

and using (2.3), (2.4) becomes 

which provides the following recursion relation for blk'"' 

In the sequal we shall assume that the a, satisfy the following condition: 
DEFINITION2.1. The sequence a,, r = l , 2 ,  . . . , is said to satisfy Condition A if 

where c (x), as a function of the continuous variable x, has a PoincarC-type asymptotic 
expansion of the form 

for some integer p. 
Remark 2.1. It has been observed numerically that in order for the t approxima- 

tions to be effective, the sequence a,, r = 1,2,  . . . , should satisfy Condition A. 
Condition A is satisfied by sequences for which 

where (Y and 5 are constants, and w(x), as a function of the continuous variable x, 
has a PoincarC-type asymptotic expansion of the form 

and vice versa; see [2, p. 701. For p a negative integer, F ( z )  is a divergent asymptotic 
series. For p =0, F ( z )  has a finite nonzero radius of convergence. The convergence 
analysis of the T-transformation (of which the t-transformation is a special case) for 
such series has been taken up in [6]. For p a positive integer, F ( z )  has an infinite 
radius of convergence, hence is an entire function of order p. 

As a consequence of Condition A we have the following results: 
LEMMA2.1. The terms a,+, and a, are related by 

where 

hence c")(x), as a function of the continuous variable x, has a Poincar6-type asymptotic 
expansion of the form 
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LEMMA2.2. &lk3") can be expressed as 

Proof. The proof of (2.12) and (2.13) in Lemma 2.1 follows directly from (2.8), 
and the proof of (2.14) follows from (2.13) and (2.9).The proof of Lemma 2.2 is 
achieved by substituting (2.12) in (2.2). 0 

3. Convergence properties of elk'"', alk'"'. In this section we shall investigate the 
convergence properties of &fk."'and alk."' (r 2 1)  for two kinds of limiting processes 
that were considered in [5]and [6] :  

( 1 )  Process I :  k is fixed, n + co; 
( 2 )  Process 11: n is fixed, k + co. 

Process I. 

THEOREM3.1. Let k be fixed. Then 


where 

i f p < 0 ,  
k + max ( k ,  pr) if p 2 0.  

Proof. We start with (2.15).Using (2.14)we have 

where h l ( n )= 
k-PF-1  ci( r )n k -pr - i - 1  is a polynomial in n of degree k -pr - 1 S k - 1 

and h2 (n )= ~ ( n - ' )as n +a.Now h k h l ( n )= 0 and h k h 2 ( n )  as n +a.= ~ ( n - ~ - ' )  
Consequently hk(nk- ' c (" (n) )= 0 ( n P k - ' )as n +a. 

For p < 0 ,  or p 2 0 and pr 2 k ,  we have h k ( n  k - l ~ ( r ) ( n ) )  as n +a.= ~ ( n - ~ ~ - ' )  

Combining these with (2.15),we find that (3.1)and (3.2)follow. 0 

COROLLARY
3.1. Let a ,  be as in Remark 2.1. Then (1 )  when p > 0 ,  or ( 2 )  when 

p = 0 ,  151< 1,  or ( 3 )  p = 0 ,  151= 1 and 2k >a,  then sfk'"' + 0 as n + a.When p < 0 ,  
8 + co as n + a. 

Proof. The proof follows by substituting (2.10)in (3.1). 0 

THEOREM3.2. Let k be fixed. Then 


where qr is as defined in (3.2). 
Proof. We shall prove (3.5) by induction. (3.5) is true for s = 0 ,  since bbk'"'= 

- ( k , n )
E O  = E \ ~ , ~ )= an+kO(n-ql)as n +a.From (2.7),  
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By (2.1)and Lemma 2.1 we have 

Using the induction hypothesis that (3.5) is true for s S r  - 1, and substituting (3.1),  
(3.5)and (3.7)in (3.6),the result follows. 0 

COROLLARY or (2 )when3.2. Let a,  be as in Remark 2.1. Then (1 )when p > O ,  
p = 0 and 151 <1, or ( 3 )when p = 0 ,  I f  1 = 1 and 2k >a,then by'"' +0 as n +a. When 
p<0,  bbk,"'+oo asn+oo.  

COROLLARY3.3. The relative error in a Lk~"k'+,+lsatisfies 
ik,"' 

--0( n( s + l ) ~ - q . + ~) = ~ ( n - ~ )(3.8) asn+oo. 
an+kts+i 

Proof. The proof of Corollary 3.2 is identical to that of Corollary 3.1 of Theorem 
3.1. The proof of Corollary 3.3 follows from (3.5)and the fact that an+k/an+k+s+l= 

~ / c ( ~ + l ' ( n  = as n +a. 0+k )  ~ ( n ' " ' " ~ )  
Process 11. We now assume that c" ' (x) ,  in addition to being as in (2.14),are of 

the form 

where 

is the Laplace transform. We also assume that the functions 4 " ' ( t )  are infinitely 
differentiable for 0 S t <oo. 

Using Watson's lemma [4,p. 711 we have 

hence we identify ( d ' / d t i ) 4 " ' ( t ) l I = ~  ( i )as c i  . 

LEMMA3.1. E lk,"' can be expressed as 


where 

( O  
i f p  2 0 ,  

Proof. Similar to that of [6,Thm. 4.11. 0. 

THEOREM3.3. Let 4 " ' ( t ) satisfy 


where M >0 ,  y >0 and S are constants that depend on j only. Then, for n fixed and 
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( k , n )  -- ~ ( k - ~ - ~ - ~ + ~) i f p 2 0 ,r a n + k { o ( k - 2 r p - l / 2  Y a s k + a .  
e P k )  i f p  <0 ,  

Proof. By (3.14)we have 

= I [ T d ( i ) ( t ) ;
d i  

n ]  S M ~ ' J  
00 

e- 'n+S"(~ e(3.16) I , , ~  3 (e- ' - 1 ) ~  / - -')*dt.
dt 0 

Now 
m 

e-(n+6)f(e- f- I ) *  dt = A*(J e 
0 

Combining (3.16) and (3.17),we have 

Substituting (3.18) in (3.12),and using Stirling's formula, the result follows for 
p 2 0.  For p <0 we have to analyze Q k ( n )for k +a.We know that 

whenever f ( x )  is k times differentiable on (n ,n +k ) .  Using this and (3.14) in (3.13), 
we have 

Hence lQk(n)ldominates Ik-rp,rin (3.12).The result now follows easily. 0 

COROLLARY3.4. Let a,  be as in Remark 2.1. Then for p 2 0 ,  ~ j ~ , " '+0 as k +a. 
Proof. The proof follows by substituting (2.10) in (3.15). U 
THEOREM3.4. Let n be fixed and n +S >0.  Then, as k +a, 

Proof. We shall prove (3.21)by induction. (3.21)is true for s = 0 by bbk."' = dbk'"' --
E ik,")and Theorem 3.3. Now for r fixed and k sufficiently large, (3.6)becomes 

Whenever j is fixed, 
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Hence, for r fixed and 0 5 s  S r  - 1, 

Combining (3.15), (3.24) and the induction hypothesis that (3.21) is true for s 5 r - 1 
in (3.22),the result follows. U 

COROLLARY3.5. When a ,  are as in Remark 2.1, bjk."' +0 for p 2 0.  
COROLLARY3.6. The relative error in u:~:\)+;+~,as k +a,satisfies 

O ( k - k - n - 6 + ( s + l ) p + l  
y k )  i fp>O

bik'"' =1O ( k - k - n - s + s + i  L I(3.25) Y )  i f p  =O = o ( l ) .
an+k+~+i o ( k - ( S + P - l / 2  e - k )  iifp<O 

Proof. Similar to that of Corollary 3.3 of Theorem 3.2. O 
Remark 3.1. From Corollary 3.3 to Theorem 3.2, it is seen that the relative error 

in a ( k . n )n+k+s+l,as n +a,behaves like n-*& at best. Corollary 3.6 to Theorem 3.4, on 
the other hand, tells us that the relative error in a:k:\)+s+l, as k +a,behaves essentially 
like e-k  at worst. This comparison again brings out the fact that Process I1 is a much 
better acceleration method than Process I. 

The assumptions (3.9)and (3.14)on c" ' (x )  that were used in obtaining our results 
for Process I1 may seem artificial at first. However, as we shall show in the next 
section, they are natural at least for a large class of series of the form (2.10)-(2.11). 

In summary, our results for both Processes I and I1 show under the conditions 
stated above that, as more terms of the series F ( z ) are given, the t approximations 
can predict the next unknown terms with increasing accuracy. 

4. Examples. In this section we shall illustrate some of the results of 0 3 with 
examples. In the first two examples we shall show that the conditions in (3.9) and 
(3.14) are satisfied by some series of interest. In the third example we shall give some 
numerical results for Process 11. 

Example 1. We take a,  as in (2.10) with a being an integer and w ( r )being a 
rational function of r. Then the a, are of the form 

with P ( r )and Q(r ) being polynomials of degrees dl  and d 2 respectively. Then 

( j )  ar+j P ( r+ j )Q( r )  1 c (r)=-= 
a ,  Q(r  +j )P(r)  [(r + 1) . . . (r+j ) l P '  

Therefore, $"'(x)  is a rational function having the partial fraction decomposition 

~ h e r e C ~ = , ~ ~ = d ~ + d ~ + j l p I + l .From (4.3)we have 



596 AVRAM SIDI AND DAVID LEVIN 

Now 

After some tedious manipulations it can be shown that 

for any 6> a ,  any j >max (JuJ,1) and some B >0 independent of k. Combining (4.6) 
with (4.4),we have 

for any 8 >max {S1, . . ,a,}, any y >max (1811,. . ,IS,I, 11,andsome M >O indepen-
dent of k. 

When $"'(x) has simple poles only, i.e., 

we can start with (3.12) and prove that, for p = 0 ,  

in the same way that Theorem 3.3 was proved. 
Example 2. a,  =Jr. For this case 

The inverse transform c$"'(t) is then given by 

[ I ,  p. 1024, formulas 29.3.49 and 29.3.511. From 

[ I ,  p. 376, formula 9.6.161, for real z we have 

(4.13) I 0 ( z ) I ( z )  forallk. 

Also I l ( z )= (d /dz ) Io(z ) .Combining these results with those of Example 1, we can 
show after some manipulation that ~$"'( t )satisfies the conditions of Theorem 3.3. 

Example 3. In this example we give numerical results for A, = I(a, -alk3"')/a,l for 
the two sequences a,  = l l r ,  r = 1 ,2 , .  . . ,and a,  = l / ( r- I ) ! ,  r = 1,2 ,  . Tables 4.1 
and 4.2 contain the results for Process I1 with n = 1, 1 5  k 5 10. Note that for both 
examples A, = 0 for 15 r 5 n +k as implied by (2.4).For a,  = l / ( r- I ) ! ,  however, we 
also have = 0 , which follows from (2.2). 
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TABLE 4.1. 
Relative errors in ajk."', k +2 S r 5 k +6 ,  for n = 1, 1 5 k 5 10, when a,  = l / r ,  r = l , 2 ,  . . . . 

ajk."' = a ,  for 1 S r  5 k + 1. A, stands for I(a, -a!k,"))/a,I. 

k Ak+2 &kt3 Ak +4 Ak+s Ak+6 

TABLE 4.2. 
Relative errors in ajk."', k +3 5 r 5 k + 7 ,  for n = 1, 1 5  k 5 10, when a,  = l / ( r- I ) ! ,  r = 

1 , 2 , .  . . . ajk."' = a ,  for 1 5 r 5 k  +2 ,  k 2 2 .  A,stands for I(a,-ajk."')/a,l. 

Acknowledgment. The computations for this paper were done on the IBM-370 
computer at Lewis Research Center. 

Note. Rational approximations of the form (1.3) are referred to as PadC-type 
approximations in C. Brezinski's book, Pad&-Type Approximation and General 
Orthogonal Polynomials (Birkhauser Verlag, Basel, 1980). The idea of using the 
Maclaurin series coefficients of Pad6 approximants for predicting numerically the next 
unknown coefficients can also be found in J. Gilewicz's book, Approximants de Pad6 
(Springer-Verlag, Berlin, 1978, pp. 424-439). The authors would like to thank one 
of the referees for drawing their attention to these references. 
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