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CONVERGENCE OF 
LINEAR AND NONLINEAR PADE APPROXIMANTS 
FROM SERIES OF ORTHOGONAL POLYNOMIALS 

BY 

D. S. LUBINSKY AND A. SIDI 

ABSTRACT. Analogues of the Nuttall-Pommerenke theorem and Wallin-type theo- 
rems for classical Pade approximants, are proved for linear and nonlinear Pade 
approximants formed from series of orthogonal polynomials, corresponding to a 
distribution da(x) with at most finitely many sign changes. 

1. Introduction. Let a(x) be a real function, defined in the interval I -(a, b), 
(finite or infinite) such that the distribution da(x) has at most finitely many sign 
changes in I-say IL many-and such that a(x) assumes infinitely many values in I. 
We assume there exists a sequence of real polynomials 4j(x), j = 0, 1, 2,.. ., such 
that oj is of degree exactlyj and is normalized so that 

( 1 .1 ) f?Pi(X) ? (x) ) da(x) ={ 1 if 1-1 

A consequence of (1.1) is that for some constants A ijk' we have 

i+ji 

(1.2) oi OZ)= 
- 

Ai1k'k(Z). 
k=1i-j1 

We shall refer to the following lemma in the sequel (compare Cheney [2, p. 110], 
Stahl [21, pp. 134-135]). 

LEMMA 1. 1. Let f(x) be a function integrable in I. If k > ,t and 

(1.3) |(x)(pi(x) da(x) = O, i = O, 1, 2,.. . ,k, 

then f(x) either has at least k - ,t + 1 sign changes in I or has infinitely many zeroes 
in I. 

PROOF. Let (l < 42 < 43 < ... < (H, be those points in I at which da(x) changes 
sign, and define {(x) = fl?I(x - i). Then d:(x) = 4(x)da(x) is a distribution 
having only one sign in I, and :(x) has infinitely many points of change. Suppose 
that for some integer v satisfying 0 - v - k - u + 1, f(x) changes its sign precisely 
at the v points m <I 2 < ... < Xv in I. Define P(x) = HI^(x - q). Then P(x)f(x) 
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is of one sign in I. Further, as the polynomial P(x)4(x) has degree v + y < k, (1.3) 
gives 

0 ff(x)P(x)4(x) da(x) =f(x)P(x) d/(x). 

As f(x)P(x) and d:(x) have one sign in I, it follows that f(x)P(x) must vanish 
almost everywhere with respect to d13(x) and so f(x) has infinitely many zeroes in I. 

COROLLARY. Pk has at least k - jt distinct zeroes in I, for k ?i. 

For more information on 4kI in the case when A > 1, see Stahl [21, pp. 134-136]. 
Of course the case I = 0 is included in our results. 

DEFINITION 1.1. Let f(x) be such that the integrals fj J=f(x)oj(x) da(x), 
j- 0, l,..., all exist. Given nonnegative integers L, M, the linear Pade approximant 
[L/M](z) to f(x) is defined to be a rational function PL(z)/QM(z), where QM(z) 
_ 0 and PL(z) are polynomials of degrees at most M and L respectively, such that 

(1.4) f(QM(x)f(x) -PL(x))?l(x) da(x) = 0, i = 0,1,...,L + M, 

that is QMf - PL is orthogonal to all polynomials of degree at most L + M. The 
nonlinear Pade approximant (L/M )(z) to f(x) is defined to be a rational function 

PL*(z)/QM(z) where QM(z) # 0 in I and PL(z) are polynomials of degrees at most 
M and L respectively, such that 

(1.5) |(f(x) -(L1M)(x))0j(x) dax(x) = O, i = 0, 1,. . .,L + M, 

that is, f - (L/M) is orthogonal to all polynomials of degree at most L + M. 
REMARKS. (a) Using (1.2), it is not difficult to see that (1.4) gives rise to 

L + M + 1 linear equations in the L + M + 2 parameters of [L/M](z), and that 
only f o, < j s L + 2M, enter these equations. Similarly it can be seen that (1.5) 
gives rise to L + M + 1 nonlinear equations in the L + M + 2 parameters of 

( L/M )(z) and that only fj, 0 <j < L + M, enter these equations. Furthermore, as 
stated in Cheney [2, pp. 178-179], the linear Pade approximants always exist. But it 
is not true that the nonlinear Pade approximants always exist. As for uniqueness, 
[L/M] or (L/M) are not known to be unique in general. When a'(x) > 0 almost 

everywhere in I and f(x) is real in I, uniqueness of ( L/M)(z) was proved by Sidi 
[20]. 

(b) We note that the linear Pade approximants were introduced by Maehly [16] for 
the caseoj = Tj where (TjI are the Chebyshev polynomials. Subsequently Cheney [2] 
defined linear Pade approximants from series of general orthogonal polynomials and 
Holdeman [11] considered more general approximations. Fleischer [5] applied the 
linear Pade approximants from Legendre polynomial series to some scattering 
problems in nuclear physics. Later Fleischer [6] introduced the nonlinear Pade 

approximants from Legendre polynomial series and gave a method for constructing 
them, which makes use of the fact that orthogonal polynomials satisfy the relations 
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in (1.2). Clenshaw and Lord [4] introduced the nonlinear Pade approximants from 
Chebyshev series (Chebyshev-Pade table) and gave a recursive method for comput- 
ing them. Sidi [19] gave another recursive method for computing these approxi- 
mants, which complements the method of Clenshaw and Lord [4]. Later Gragg [9] 
considered some convergence properties of the Chebyshev-Pade table. Recently 
Chisholm and Common [3] have considered Pade-type approximations from 
Chebyshev series. Suetin [22] was the first to prove a general convergence 
theorem-namely an analogue of the de Montessus de Ballore theorem, as well as 
convergence in capacity of general nondiagonal Pade approximations under the 
assumption a'(x) > 0 almost everywhere in I. However the authors have been 
informed by the referee that Suetin's proofs are incomplete as they are based on 
incorrect results of Rahmanov. Here the authors prove analogues of the Nuttall- 
Pommerenke theorem and Wallin-type theorems under weaker assumptions on a. 
They also prove a de Montessus de Ballore type theorem under weaker assumptions 
on a, but with more restrictions on the functions involved. 

DEFINITION 1.2. For each n > 1, let Pn denote the class of polynomials of degree 
n, leading coefficient 1. For a compact set E C C, we define its logarithmic capacity 
cap(E) by 

(1.6) cap(E) n lim mmi max I P(z)l)"E 
n-~oo PEEP1 zEE 

and extend the definition to noncompact F by 

cap(F) = sup{cap(E) E C F, E compact). 

See for example Hille [10, Chapter 16] for logarithmic capacity. 
DEFINITION 1.3. Given m > 1, E > 0, we use f&(m, E) to denote a lemniscate of the 

form zi I IP(z) I<e) where 1 n ? m and P E Pn. If m= 0 or 0, E(m, E) 
denotes the empty set. Given lemniscates E(mk, Ck), k = 0, 1, 2,..., we set 

(1.7) limsup(Mk, Ek) =n u (mk, ek), 
k n=1 k=n 

that is, limk sup P(mk, ck) is the set of points which belong to infinitely many of the 
f(mk, Ek)J 

Note that cap(E(m, E)) = E (Hille [10]). See [14] for a study of sets of the form 
(1.6). __ 

DEFINITION 1.4. For any complex function f(z), we define f(z) = 1(z), where, if 
f(z) is analytic at z0 with Taylor series :' Oa (z-zO)n then f(z) is analytic at FO 
with Taylor series 2?=a (z -)n 

Of course, if f(z) is real in R, thenf(z) _f(z). 
DEFINITION 1.5. Given the formal orthogonal polynomial series U(z)= 

E? oajoj(z) and integers 0 s m s n s x, we set 

n 
n 

ajA 
j=m 
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When m (respectively n) is omitted, the lower (respectively upper) limit is taken to 
be 0 (respectively ox). For negative m, we set [U]n = [U]O. 

See for example Wallin [24, Lemma 2] for a proof of the following useful lemma. 

LEMMA 1.2. Let Q(z) E 0 be a polynomial of degree less than or equal to M. Then, 

for I z I R, 
sup {I Q(t)/Q(z) I} S (3RO)M'/I Q*(z) I 
It!< R 

where R = max{1, R} and Q*(z) = [in I(z - zi) and where z, zn are the zeroes 

of Q(z) in {zI I zI 2R}. 

2. Error formulae. The following is the analogue of the well-known contour 
integral error formula for classical Pade approximants. 

THEOREM 2.1. Let C be the boundary of a connected open set D, and assume the 
finite interval I is contained in D. Let f(z) be analytic in I, and let f(z) and f(z) be 
meromorphic in D. Let L, M be nonnegative integers such that M > ,i. Let S E Pp, for 
some p < M - ,u be such that both S(z)f(z) and S(z)f(z) are analytic in D and on C. 

(a) For all z E D, 

(2.1) f(z) - [L/M](z) 

= I | ( f(t)QM(t%t(t, Z) + A0tQ'M(t%t(t, Z))S(t)ld 

2qTi c (QM(z)S(z)(t - z)) } 

Here 

(2.2) k(t, z) = (RI(z)/R1(t) + (_1)k 1R2(z)/R2(t))/2, 

for k = 1, 2, and RI(z) and R2(z) belong to PL+Mm+ I, with all their zeroes in I. 
(b) Iff(z) is real in I, then for all z E D, 

(2.3) f(z) - (L/M)(z) 

= 2~i ff(t)Q*(t)S(t)R(z)/ (Q*(z)S(z)R(t)(t - z)) dt, 

where R E PL+M+I_, and has all its zeroes in I. 
(c) If f(z) is not necessarily real in I, but if f(z) and f(z) are analytic in D, then for 

all z E D, 

(2.4) f(z) - (L/M)(z) 

= 2 i f(f(t)QM*(t)%3(t, z) + f(t)Q (t)M4(t, z))/ (QM(z)(t - z)) dt. 

Here, 

(2.5) k(t, z) = (R3(z)/R3(t) + (_1)k 1R4(z)/R4(t))/2, 

for k = 3, 4, and R3(z) and R4(z) belong to PL+ I-H with all their zeroes in I. 

PROOF. (a) Set L(z) = QM(z)f(z) - PL(z). As the 4j(z) are real on I, (1.4) in 
Definition 1.1 implies that both A(z) and A(z) are orthogonal to 4j(z), 0 ?j < L + 
M. Then for k = 1,2, 2 k(Z) = (AW(Z) + ( A)k1I(Z))/ikI is real and analytic in I, 
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and orthogonal to ck(z) for 0 s j s L + M. By Lemma 1.1, there exist polynomials 
Rk, k = 1, 2, in PL+M+ 1-,, with all their zeroes in I such that 6k(z)/Rk(z) is analytic 
in I, k = 1,2. Further we see S(z)8k(Z) is analytic in D, k = 1,2. Then Cauchy's 
integral formula gives, for all z E D and k = 1, 2, 

(2.6) S(Z)8k(z)/Rk(z) = 2i S(t)8k(t)/ (Rk(t)(t -z)) dt 

= 2'i JS(t){ f(t)QM(t) + (_I)k j(t) M(t)}/(ikRk(t)(t-z)) dt. 

Here we have used the fact that S(t)PL(t)/(Rk(t)(t- z)) is analytic as a function of 
t outside D, and is 0(1 t 1-2) as I t I- oo, since its numerator has degree s p + L < L 
+ M - ,u while the denominator has degree exactly L + M + 2 - ,. Solving for 

8k(Z) from (2.6) and using A(z) = [81(z) + i82(z)]/2, gives (2.1) and (2.2). 
(b) Heref, <L/M) are real in I, so by (1.4) and Lemma 1.1,f- <L/M) has at 

least L + M + 1 - M zeroes in I. The result follows as before. 
(c) Here we again define A(z) = Q(z)f(z) - PL*(z) and see that A(z) and A(z) 

are orthogonal to 4i,(z), 0 < j L. The proof is completed as in (a). D 
The following is the analogue of formulae developed by Nuttall [17] and Wallin 

[23] for classical Pade approximants. 

THEOREM 2.2. Let f(x) be such that all the moments fj = f1f(x)oj(x) da(x), 
j0=O, 1, 2,. . ., exist. LetH(w,z)= m (w)j(Z) for O < m n < ox. Let S E 
P and let the nonnegative integers L, M satisfy M > 2p. 

(a) For [L/M](z) = PL(z)/QM(z), 
(2.7) 

e[L/M; z] [Sf ]L+2M-P(z)/S(z) - [L/M](z) 

FL?p2M L+3M-p 
=L[Sf ]L-p+1 QM] L+M+ i-P(z)/ (S(Z)QM(Z)) 

f[SfI]LIp+2M(X)QM(X)HLL++3? 
M 

-pP(x, z) da(x)/(S(z)QM(z)). 

(b) For <L/M)(z) = PL*(Z)/QM(Z), 

(2.8) e (L/M; z) = [ f ] L+M(Z) - L/M)(z) 

- [[fiL] 
2 

[[f]L-M+ 1QM*]L+ 1 (Z )/Q* ( Z ) 

PROOF. (a) We have 

(2.9) V= [Sf L+2 MPQM- SP 

= S(fQM - pL) + ([Sf ]L2Mp Sf )QM. 

Now by Definition 1.1, fQM - PL is orthogonal to kk 0 < k < L + M, so 

S(fQM - PL) is orthogonal to Pk, 0 ? k < L + M - p. Similarly [Sf ] P - Sf 
is orthogonal to 4k, 0 < k < L + 2M - p, so ([Sf ]L+2Mp - Sf )QM is orthogonal 
to 4k' 0 < k < L + M - p. Hence Vis orthogonal to 'kk' 0 k < L + M - p, so 

V= [VIL+ M-p+ = [[Sf ] L+2MpQ I L+Mp 
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(as SPL has degree at most L + p < L + M - p, and by (2.9)) 

(2.10) = [S[S 1 Q M] I- 

(as [Sf ]L-PQm has degree at most L + M - p and [Sf ]L+2M-PQM has degree at 
most L + 3M - p). The first part of (2.7) follows easily upon dividing by SQM(z) 
in (2.10). The second part of (2.7) follows by substitution for HL4+3Mp TP(X, Z). 

(b) is very similar to (a). D 

3. Convergence of diagonal sequences. The following is the analogue of the 
Nuttall-Pommerenke Theorem for classical Pade approximants [17, 18]. 

THEOREM 3.1. Let f(z) and f(z) be analytic in C\ E where cap(E) = 0. We assume 
I C C\ E. If I is unbounded, then we require first E to be bounded, secondly I to be 
only semi-infinite, thirdly f(z) to have at most a pole of finite order at infinity, and 
fourthly all moments off to exist. Let {[Lk/mk]} be a given sequence of linear Pade 
approximants to f such that, for some X > 1, 

(3.1) 1/A X Mk/LkS VX allka1, 

and limk - 00 Lk = o. Then 
(a) Given r, E, 8 all positive, there exists ko such that, for all k k, 

(3.2) If(z) - [Lk/MkI(Z) I< ,Lk+Mk 

for I z ? r except on a set Ek such that cap(Ek) < 8. If G is a compact subset of C\ E 
containing no limit points of poles of {[Lk/MkI}, then (3.2) holds uniformly in G for 
large k, that is G n Ek = 'pfor large k. 

(b) There exists a subsequence {[ Ll/Mk]} of ([Lk/MkL } such that 

(3.3) lim If- [L'k/Mk] (z)1/(Lk+Mk) 0, 
k- oo 

all z E C\F where cap(F) = 0. 
(c) Any pole of f of order n is the limit of at least n poles of [Lk/Mk] counting 

multiplicities, as k -x oc. Any nonisolated singularity or isolated essential singularity is 
the limit of poles of [Lk/Mk] whose total multiplicity -x oc as k -x oo. 

PROOF. (a) This follows using equations (2.1) and (2.2). Following, we provide the 
details. 

Case 1. E, I bounded. Choose r > 1 such that E, I C {z l I z 1 < r}. Choose 0 < -1 
< 1 such that dist(E, I) > 371, where dist(E, I) is the distance between E, I. Let 
0 < y < -1 be given. Since cap(E) = 0, we can choose an integer I a 1 and T E PI 
such that 
(3.4) E C {z I I T(z) I< y'} = Ej(l, y). 

Using y < 71, it is easy to see that we can assume all T's zeroes lie at most -1 from E, 
and hence lie at a distance of at least 2-1 from I. Define C = Cl U C2 where 

(3.5) Cl = {tI I T(t) = y'}; C2 = {t I tI= R}, 

with R > r + -q. Since t E Cl implies t is at most a distance y from one of T's 
zeroes, we see 

(3.6) dist(C, I) a 71 
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From here on, we shall drop the subscripts k from Lk and Mk. From (2.1), (2.2) 
and from (3.5), (3.6), we have for i = 1, 2, 

max I tj (t, z) Is ((c + r )/q) L+ M+' 
I 

all yz Is r| 
(37) tEC1 C 

max I Dj (t, z) I< ((c + r)/ (R -c))L+M+1-1 all I z I< r 

where I = (a, b) and c = max{IaI ,IbI}. Next choose X > X. Choose S - T' 
where n is the greatest integer s (M - )/( ). Then for M large enough, S has 
degree p = nl, where 

(3.8) M/(2X) < p < (M-M)/@ < M- 

Let 1 > 6 > -y be given. Then P_ I(l, 6) contains C I(l, y) in its interior, hence there 
exists positive A such that z X f (l, 6) implies I t - z I> A for all t E C,. Next, 
Lemma 1.2 shows that there exists a lemniscate E2(M, 6) with foci at the zeroes of 
QM in {zz I|Zl| 2R} such that 

(3.9) sup I QM(t)/QM(z) I <(3RI/m) all I z I< R, z 4 E2(M,6 ). 
ItL<R 

Obviously, we can replace QM(t) by QM(t) in the left-hand side of (3.9). Lemma 1.2 
also shows 

(3.10) sup I S(t)/S(z) I< (3R/6) all I z Is R, z M _I1(l, 6) 
tlR 

where again S(t) may be replaced by S(t). Further 

(3.11) sup I S(t)/S(z) I< (y/y)P all z - f1(l, 6). 
tEFC1 

We now use (3.5) to (3.11) to bound the right-hand side of (2.1). For all z < r, 
such that 

z eEMz {fE(lI ) U E2(M,6)} n {zIIz Ir}, 

we obtain 

If -[L/M] I (z) < K{((c + r)/q)L+M+ '-(3R/6)M( y/6)P 

+ ((c + r)/ (R _ 
C))L+M+ I _(3R/O)M(3RO)P}, 

(where K is a constant depending only on f, f, Cl, C2, y and 6) 

(3.12) s K'{TM + T2M 

where 

T- = ((c + r)1a)'+'(3R10)(7y0) /(2 

and 

T2- ((c + r)/ (R-c)) + /x(3R/- 
1 + 

and K' depends only onf, f, Cl, C2, -, r, 6, X, R. We have used (3.1) and (3.8) here. 
Next, using cap(E(-, 6)) < 6 and the well-known inequality cap(F1 U F2) < 

(d(F1 U F2) maxicap(Fi))1/2, we see cap(EM) < ((2r)6)1/2 < 8 if 6 is chosen small 
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enough, 0 being independent of M. Having chosen 0, and noting that c, r, X, o, 1 
were chosen in advance, we can choose R so large that the term T2 is less than 
(c/2)1?x (possible as the power of R in T2 is -1/X + 1/w < 0). Having chosen R, we 
can choose y so small that y < min{0, 71} and so that the term T, is less than 
(c/2)1'x. The estimate (3.2) then follows from (3.12). 

Case 2. Either E or I is unbounded. Using a device due to Wallin [24, Theorem 4, p. 
444] this problem may be reduced to a case very similar to Case 1. Let r, E, 8, all 
positive, be given, and choose d E R\(I U E) such that I d I>> r. Consider the 
bilinear transformation w = l/(z - d) z = l/w + d. I and E in the z-plane are 
mapped to I and E in the w-plane such that: 

(1) E is compact and I is a finite real interval. 
(2) I nE = 0 since only one of I and E is unbounded. 
(3) cap(E) = 0 (see Wallin [24, Lemma 3b, p. 442]). 

Further, if I is unbounded, then w = 0 E I and f(z) has at most a pole of 
finite-order-say order v-at z = o. If I is bounded, define v = 0. Then in either 
case f(w) = wpf(I/w + d) is analytic in C\ E. Let N = max{L, M} and PL(w) = 

wN?PL(1/w + d) and QM(w) = wNQM(1/w + d). Then /v(w) =WyQM(W) - 

PL(W) = WN+VA(1/W + d) where /(z) = f(z)QM(z) - PL(z). Since Re(A(z)) and 
Im(A(z)) have at least L + M = - ji zeroes in I, it follows that Re(A(w)) and 
Im(a(w)) have at least L + M + 1 - M zeroes in I, since w is real when z is real. 
With this observation, we can derive formulas for f(w) - PL(w)/QM(w) as in 
Theorem 2.1, with the following differences: Note that the degree of PL(w) is at 
most N + V and degree of QM(w) is at most N and L + M > (1 + 1/X)N, which 
follows from (3.1). Then in (2.1), R1, i = 1,2, are chosen to be in Ps, where 
s = greatest integer < (1 + 1/X)N + l-Mi. Further we choose S E Pp where p 
N/X - M. As for the convergence proof, we proceed as in Case 1, but choose 
S(w) = Tn(w) where n = greatest integer < (N/X - /(ol). See Theorem 1 in 
[15] for the modifications in a similar situation. For (b) and (c), see the proof of 
Theorem 1 in [15]. D 

REMARKS. (a) When f is nonreal in R, the linear (and nonlinear) Pade approxi- 
mants do not interpolate to f, so Theorem 3.1(a) is not contained in Theorem 4 of 
Wallin [24]. 

(b) It is no restriction to assume both f and f are analytic outside E. If f has 
singularities El of capacity zero, then f and f are analytic outside E = El U El and 
cap(E) = 0. 

(c) As in Karlsson [12], Theorem 3.1 holds for a slightly larger class of functions. 

THEOREM 3.2. Let f(z), f(z), I and E be as in Theorem 3.1 and assume (3.1) holds. 
If f is nonreal in I, we require E = 0 and lim infk. Lk/Mk > 1. Then the results 
stated in parts (a), (b), (c) of Theorem 3.1 hold with [L/M] replaced by (L/M). 

PROOF. This follows from Theorem 2.1(b),(c) in much that same way Theorem 3.1 
follows from Theorem 2.1(a). 0 

4. Convergence of nondiagonal sequences. Suetin [22] stated a de Montessus de 
Ballore type theorem for linear Pade approximants, as well as convergence in 
capacity of general nondiagonal sequences of linear Pade approximants, provided 
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a'(x) is positive almost everywhere in the finite interval 1.2 The contour integrals 
(2.1), (2.3), (2.4) enable one to prove convergence in capacity of nondiagonal 
sequences without such a restriction on a, but only in a much smaller region than the 
ellipse considered by Suetin (cf. Theorem 3, 4 in [15]). For simplicity we restrict 
ourselves in this section to functions meromorphic in C. 

THEOREM 4.1. Let I be a bounded real interval. Let f be meromorphic in C with poles 
of total multiplicity q (O < q < oo). Let {Lk} and {Mk} satisfy limk Oo(Mk + l)/Lk 
=0. Further let limk Mk = oo ifq = x; but let liminfk-,Mk :p' +? jifq <00, 

where p' (< 2q) is the smallest integer such that for some SI E Pp both Sl(z)f(z) and 

SI(z)f(z) are entire. For the nonlinear Pade approximants, we place the additional 
restrictions that either f be real in I or q = 0. 

Let Uk(z) denote either [Lk/MkI(z) or KLk/Mk)(z). Then: 
(a) Given r, e, 8 all positive, there exists k0 such that, for k > k 

(4.1) If(z) - Uk(Z) I< _Lk all I z I< r, z 4 Fk = P(2Mk k/Mk) 

so that limk 00 cap(Fk) = 0. 

If G is a compact subset of C containing no poles off, or limit points of poles of {Uk}, 

then the estimate in (4.1) holds uniformly in G for large k, that is, G n Fk = 0 for 
large k. 

(b) 

(4.2) lim If(z) - Uk(Z) 1/Lk = 0 allz e C\E 
k - oo 

where 

(4.3) E C limsupP&(2Mk, SLk/Mk) and lim Sk = 0 
k k -oo 

(c) If zo is a pole of f of order n, then zo is the limit of at least n poles counting 
multiplicity of {Uk(z)} as k -x 00. 

(d) If ,u = 0 andp' = q < oo and Mk = q for large k, then {Uk} converges uniformly 
and geometrically to f in compact subsets of C containing no poles of f. 

PROOF. (a) Consider the linear Pade approximants first. Let C {t I I t I R} 
where R > r. Choose the smallest integer p such that for some S e Pp both S(z)f(z) 
and S(z)f(z) are analytic in I z I < R. Let us drop the subscripts k in Lk and Mk. 

Then (2.1) and (2.2) hold. For i = 1, 2, we see 

max I tj (t, z) I< ((r + c)/ (R- C))L+M+I-i all I z I< r 
tEC 

where I = (a, b) and c = max{I a I, I b 1). Then we obtain, using (2.1) and Lemma 
1.2, 

If- [L/M] I (z) < K((r + c)/ (R - C))L+ m(3R/3L/M)M+P 

all I z I< r, z < &(M + p, SL/M) where K is a constant independent of L, M, z and 
the lemniscate 1, has foci at the zeroes of SQM in {z I I z I < 2R}. The result follows if 
we choose R large relative to r + c and to 1/d, and as M + p < M + p' < 2M for 

2However the referee has informed the authors that his proofs are incomplete. 
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large M. The proof for the nonlinear Pade approximants follows similarly from 
Theorems 2.1 (b), (c). 

(b) follows from (a). 
(c) follows from (a)-see [15, Theorems 3,4]. 
(d) follows from (a), (b), (c) and the restrictions on M, p'. D 
REMARKS. (a) Although sets of the form (4.3) may seem unaesthetic, there is no 

simpler way of writing the exceptional set in the general case. See [14] for a study of 
such sets. It is well known that when limk. M, log k/Lk = 0, ? satisfying (4.3) has 
Hausdorff dimension zero, and when Ek(Mk + l)/Lk < X, E satisfying (4.3) has 
logarithmic capacity zero. 

(b) One consequence of Theorem 4.1(d) is that if da(x) is of one sign in I, even if 
it vanishes identically in some subinterval of I, then the orthogonal expansions to 
entire functions f converge uniformly to f in compact subsets of C. A similar result 
holds for functions analytic in certain finite domains containing I (cf. Theorems 3,4 
in [15]). A second consequence of Theorem 4.1 (d) is that if f has poles of finite total 
multiplicity p in C and if the poles are symmetric with respect to the real axis (true 
for example if f is real in R) then [L/p] -- f(z) as L -x o except at f 's poles, 
provided only da(x) is of one sign in I. 

5. Wallin-type theorems. In this section, we prove results analogous to those of 
Wallin [23], using Theorem 2.2. In addition to (1.1), we assume that 

(5.1) j(Z) j< (F(Z))n, 

in C, where P(z) > 1, is uniformly bounded in compact subsets of C, and is 
independent of n. In particular, when I is bounded and a'(x) is positive almost 
everywhere in I, it follows from Theorem 3.7.4 in Freud [7, p. 123] and the maximum 
modulus principle, that (5.1) holds. 

THEOREM 5.1. Let f(x) be as in Theorem 2.2 with the notation therein. Let S E Pp 
and define bj = fJf(x)S(x)oj(x) da(x), j = 0, 1, 2.... Let {[LkjMk]} be such that 
lim infk - oo Mk > 2p and define 

F max{Mk, Lk} allkk 1 if limsupLk/Mk = 00, 

(5.2) Nk =-o k Mk all k a I if limsupLk/Mk < 00. 
k-oo 

Set 

(5.3) Pk - max(I bj I Lk-p <j -< Lk + 2Mk p} all k 

and assume 

(5.4) lim Pk = 0. 
k - oo 

(a) Given r > 1, 0 < - < 1, ? > 0, there exists a positive integer ko such that, for 
k > ko 

(5.5) | e[Lk/Mk; Z] 1 I P(k B)Nk, 
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all Iz 1 r, z ( Fk = P-(Mk + p, e) so cap(Fk) E e. Here e[L/M; z] is defined by 
(2.7). 

(b) If a monotone increasing sequence {Ck) satisfies 

(5.6) lim Ck = oo but lrm PkCk = 0, 
koo k- oo 

then 

(5.7) lim I e[Lk/Mk; z] II/(Lk?Mk) = 0 all z E C\E, 
k-.oo 

where 

(5.8) E C limsup &(Mk, CkPk). 
k -oo 

In particular, when limk oo[Sf ]k(Z) = (Sf )(Z) in D C C (where f(z) continues 
f(x) analytically from I to D) then limk -oo[Lk/Mk](Z) = f(z) all z e D\E. 

PROOF. (a) We shall drop the subscripts k from Lk' Mk, and so on. Using the 
second part of (2.7), the definition of Hmn(x, z), using Definition 1.5 and (5.1), (5.3), 
we see 
(5.9) 

| e[L/M; z] I< 4(fdl a 1 (x))M2(FF,(z))5(LM)pN sup QM(t)/QM(Z) 1/1 S(Z) I 
teI 

where r1 = sup{TF(t) I t E I). Now Lemma 1.2 shows that 

(5.10) sup I QM(t)/QM(z) |/| S(z) | S (3r)m/r?M+P, 
tel 

all I z I < r, z 4 F = E(M + p, e), this lemniscate having foci at the zeroes of 
SQM(z) in I z I < 2r. Finally, we note that (5.2) implies that there exists X > 0 such 
that N X L, while N ? M. The result now follows from (5.4), (5.9), (5.10) and the 
uniform boundedness of F(z) in compact subsets of C. 

(b) Let {rk) be an increasing sequence of positive numbers such that limk - . rk = 
x0 and let Fk =sup{F(z) lIz lI rk, all k> 1. Then (5.9) and Lemma 1.2 give for 
some constant d independent of k, and for all I z I S rk, z 4 &(M, ck pk), 

I e[L/M; z] j< (dFk )5(L M)p (3rk/ (Ckpk))Mj/ S(z) I 

< { (d 'k )5(1 x)3rk/Ck }/ I S(z)I 

(since N : M and N X AL and rk/(ckpk) > 1 for large k, by (5.6)). If we choose rk 
to tend to oo sufficiently slowly with k, we obtain (5.7) and (5.8) as limkoo ck - 00. 

The finitely many zeroes of S(z) can be included in the lim sup in (5.8) by changing 
some sparse subsequence of foci of the lemniscates in (5.8). 0 

THEOREM 5.2. Let f be as in Theorem 2.2 with the notation therein. Let { < Lk/Mk)) 
be given and let {Nk} be defined by (5.2). Further let 

Pk max{lJ I maxLk -Mk + 1,0}) I Lk + Mk} all k I 

and assume (5.4) holds. Then (a), (b) in Theorem 5.1 hold, if we replace e[LjM; z] by 
e<L/M; z) and set p = 0, S = 1. 
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PROOF. The proof is similar to Theorem 5.1, but uses Theorem 2.2(b). D 

COROLLARY 5.3. Assume I = [-1, 1] and that a'(x) is positive almost everywhere in 
I. Let f(z) be analytic on I, and let & be the largest ellipse with foci at -1, 1 and major 
and minor axes respectively on the real and imaginary axes, such that f has poles of 
finite total multiplicity p inside S. Let {Lk}, {Mk}, {Pk}, {ck} be as in Theorem 5. 1. 
Let 2r be the sum of S's major and minor axes. Let D(z) = z + (z2 - 1)1/2, the 
branch of (z2 - 1)1/2 being chosen to be real and positive for real z > 1. Then 

lim sup If- [Lk/Mk] I (Z)1/(LkA?k) -I D(z) l/r, 

all z inside 6, z 4 E where E satisfies (5.8). A similar result holds for nonlinear Pade 
approximants and the case p = 0. 

PROOF. Choose S e Pp such that (fS )( z) is analytic inside S. Then 

limsup I (fS)(z) - [fS] (z) Il/k -I D(z) l/r 
k-)oo 

inside &. 
See Freud [7, Theorem 3.7.4]. D 

COROLLARY 5.4. Let f, {Lk}, {Mk}, {Nk}, (Pk} be as in Theorem 5.1 or Theorem 
5.2. 

(a) If for some a > 0, 2kP'1 < xo, then E in (5.7) and (5.8) has a-dimensional 
Hausdorff measure zero, that is ta - m(E) = 0. 

(b) If for some y > 1, 2k(log l/Pk)-Y < c, then E in (5.7) and (5.8) has Hausdorff 
(log I/t)- - m(E) = 0. 

(c) If 2k(log 1/Pk)-1 < xo, then E in (5.7) and (5.8) has cap(E) = 0. 

PROOF. (a) One can choose monotone increasing {Ck} satisfying (5.6) and 
Yk(ckpk)' <oo. Then the a-dimensional form of Cartan's lemma [1, p. 194] shows 
that E has a-dimensional Hausdorff measure zero. 

(b), (c) are similar to (a). O 
When da(x) is of one sign in I, the theorems of this section hold for unbounded 

intervals without further restrictions. This may be seen by modifying (5.9). 
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