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We derive and analyze the properties of Euler—Maclaurin expansions for the
differences [ | x*(log x)" f(x.3) = @51 f]. s » - 1. s" = 0. L. where S denotes either
the simplex J(x.v)x+r <. x20.1 20} or the square {(xv.1)0< v L.
O« y< 1 and Q}|f]| is a combination of one-dimensional generalized trapezoidal
rule approximations.

1. INTRODUCTION

In this work we are interested in deriving Euler—Maclaurin expansions for
the singular double integrals

Ol/1=| | w)fey)drdy. T={(x.pyx+r<lxz0.0200 (L)
Jps

QI/1= | [w)fendedy, T = 0<x < L0y < I (12)

where
w(x) = x"(log x)* . s>—1.s"=0.1, (1.3)

and f(x,y) is as many times differentiable as needed. Specifically we are
looking for asymptotic expansions, as 4 — 0+, for the differences 4,|f| =
OIf | — Qulf ] and 431/ 1= Q'1f] — Q4l/|. where Q,[f] and Q;|/] are
approximations to Q|f| and Q'[f], respectively, obtained as some
combinations of one-dimensional generalized trapezoidal rule approx-
imations with step size A.
We now state some results which bear relevance to our derivation of the
Euler—Maclaurin formulas for Q| /| and Q'|f].
39
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THeEOREM 1.1 (See Steffensen |8, Section 14|). Let the function g(x) be
2m times differentiable on |a.b| and let h = (b — a)/n. where n is a positive
integer. Let € be a fixed constant satisfying 0 ¢ < 1. Then

no1

D(h)_| g(x)d‘cfh ‘\_ gla +jh + ch)

- ‘;]l%m‘“”w);g‘“ (@)
+R,,| g:(a. b)l, (1.4)
where
» B,,|& = (x —a)/h| — B, (¢)

lelg; (a,b)' -:hlm |

120 X Y. l.-
2m)! g7 (x)ydx. (1.5)

Here B, (x) is the Bernoulli polynomial of degree u and B, (x} is the periodic
Bernoulltan Sfunction of order wu.
Since B W{(x) are bounded on (-0, ), it follows that

[Ronl & (@ b)a. b)|| < My, (b—a)h™ max | g™ (x), (1.6)

2m
a<.x< b

where
M,, = max |B,,(e +x)— B,,(¢)/(2m)! (1.7)

Im
LX<

and, therefore, is independent of h. Consequently, if g(x) is infinitely differen-
tiable on |a. b, then D(h) has an asymptotic expansion of the form

‘. B

[g" V@) g™ V) AY ash 20+ (18)

u -l
The following result is due to Navot |4|. See also Navot |5].

THEOREM 1.2. Let the function g(x) be 2m times differentiable on |0, 1|
and let G(x)=x’g(x) for —1 <s<O0. Let h=1/n, where n is a positive
integer. Then for 0 < e < 1,

n—1

D(h)—‘ G(x)dx—h N G(jh + ¢h)

10

___Zm ] B (6) G(u I)(l)huizq‘l C(*S—[u_,él)_

—_— — !
u =1 fu w0 M-

Xg(‘”(o)hut(\*l +p2m‘ (19)



SINGULAR INTEGRALS 41

where [(t,€) is the generalized Riemann zeta function initially defined for
Ret> 1 by {(t,e)=3"7  (k+¢&)', and then continued analytically, and

Py =O0(R™)  as h— O+ (1.10)

Noting that {(—j,e)=—B;, (e)/(j + 1), j=0, L., Navot [4] shows that
(1.9) reduces to (1.4} in the limit s - 0.

Remark. The result of Theorem 1.2 holds also for s > 0 since for this
case the integrand can be written in the form G(x)=x"u(x), where
—1 < r< 0 and u(x) is at least as smooth as g(x) at x =0. Actually r =5 —§
and u(x) = x°g(x), where § is the smallest integer greater than or equal to s.
It is clear that u'”(0) =0, for 0 < i< $ — I, hence the sum that contains the
zeta functions in (1 9) becomes 325 (U(—s —v.e)/v!) g(0) AT
which is simply 327 ' ({(—s — v, &)/v!) g"(0) AT 4 O(h*™) as h - O+.
since the terms with v > 2m —§ in the last summation are O(h*™) as h - 0.
The summation that contains the Bernoulli polynomials stays the same.
Finally, when g(x) is infinitely differentiable on |0, I|, D(h) has the
asymptotic expansion

A & e

D(h):* G(u—l)(l) g(ub(o)huﬂ~l

as h—0+, (1.11)

forall s > —1.
Starting with Theorem 1.2, Navot |5] proves the following:

THEOREM 1.3.  [f in Theorem 1.2 we let G(x)=g(x)x'log x, —1 < s <0,
then

to

m—1 2m -1 2mo

D(h): : auh“ +10gh \° /}uhu+s+l + N yuhu*.\wl
uel “—'—(] u_(l
O(hlm) as h— 0+, (1.12)

and if we let G(x)= g(x)log x, then

2m- 1 2m 1
D(hy= N\ alh* +logh N BLh*T' 4+ 0(h*) ash- 0+, (1.13)

=1 w0

where a,. f8,. v,, a,, Bl are constants independent of h and they depend
solely on g and its derivatives evaluated at x=0 and x=1. (1.12) can be
obtained by formally differentiating both sides of (1.9) with respect 1o s.
(1.13) can be obtained by letting s =0 in (1.12).
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Remark. Like (1.9), (1.12) too can be shown to hold for all s > —1.
Again, when g(x) is infinitely differentiable on |0, 1]. D(k) in (1.12) and
(1.13) have asymptotic expansions as s -» 0+, similar to those given in (1.8)
and (1.11).

Other facts that will be of use in the remainder of this work are

B, =B(0)=-B,()=—14 B, =B,0)=B,(1). u=23.. (l.14)

where B, are the Bernoulli numbers,

B,,. =0, u=1.2... (1.15)
Blu‘](%)::oA u=0,1.., (1.16)

and
Gl 1) = ¢(u), (1.17)

where (/) is the Riemann zeta function.

2. EULER-MACLAURIN EXPANSIONS FOR Q| /|
THE Case s" =0

Tueorem 2.1.  Let f(x.v) be 2m times differentiable on the simplex T
defined in (1.1). i.e., let all partial derivatives of f(x.v) of total order <2m
exist and be continuous on T. Let h = 1/n. where n is a positive integer. and
let ¢ be a fixed constant satisfving 0 <o < V. Let Q|f | be as in (1.1} and
(1.3} with s’ = 0. Define

n | noro |
Qulf1=h N (kY N flihjh o+ ch). (2.1)
il ioh
Then

2o mod

A1 =010 Qulf]= \_ aht + _\_ bt vy, (22)
£

1 k O
where
7., = 0h™") as h—-0+. (2.3)

and the coefficients a,. b, are independent of h. (The expressions for a, . b,
are complicated and will be given in the proof below.)

Proof. We start by writing Q| /| as an iterated integral. If we define
PR AN

Fxy=1 [{x.d (2.4)
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then Q| /| becomes
olf1= ,iAI X'F(x) dx. (2.5)

Since f{x, y) is 2m times differentiable on 7. F(x)} is 2m times differentiabie
on |0, 1|. Therefore, Theorem 1.2 applies to (2.5) and we have (taking £ = 1)

n o1 21

OIS =n \_ XFOl, 4+ _\_ CAhA
P

ko1
2m-1
+ N dkhi\ikél—%plm‘ (26)
k._()
where
B, (1
eo= DR R L k=L
' (2.7)
(=5 —k) (k)
dk:*—k!—F (0), k=0, 1...

and p,,, = 0(h*™) as h— 0+. In the first summation on the right-hand side of
(2.6) the term with i = n is missing since F(nh)= F(1)=0. Also ¢, =0 for
the same reason. In (2.7) we have also used (1.17).

Let us now approximate F(ih) by the generalized trapezoidal rule with
step size h. This is possible since 1 — ik is a multiple of h. From Theorem 1.1
we then have

Sl—ih
F(ih)=|  [f(ih.y)dy
Y
noe |

=h N f(ihjh+ch)

o

2m ;. 1 B €
- “( ) h“"{/u I(Ih) + T2m i (28)
u—l ,U' ’
where
ér o’
l//n(x) = ﬁvpf(x’ .V)‘_\' I—-x _"z‘_{;f(x‘ .‘v)‘y (U p = O' 1 """ (29)
and from (1.6)
| Tami| < Moy (1— i) B™ max | ——f(x.v)! . (2.10)
N (x.wer | ¢y ;

with M,,, as defined in (1.7).

?
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Substituting (2.8) in the first summation on the right-hand side of (2.6).
recalling (2.1), and rearranging, we obtain

nol
h \_ XFX, i
[
’m | B (8) " ‘l

—thflf RN w, (R |+ pye (2.11)

where

Ho

Poam=h N (h) 7., (2.12)
i1
hence, from (2.10).
Ponl <M, max [fffn',ﬂv I [h v : (ihy (1~ ih)
. O(h™™), (2.13)

since

h \ (Ih) (1——zh)‘| x'(1 —x)dx +o(l) as h- 04, (2.14)

l

from Theorem 1.2.

Now ,(x) is 2m — p times differentiable on [0, L] and v, (nh) =y (1) =0
Using this together with the fact that s > —1, and applying Theorem 1.2, this
time to the term inside the square brackets in the summation on the rihgt-
hand side of (2.11), we have

ne

BN () v lik)

L1 2m /‘1 :Bl(l)

= | X'y, (x) dx + L x"' [x"w, o AT
<0 e :
m —1: 1 C g —p)
-+ ‘\_ i,!—) U/;,H (0) h.\ | +/52m,;7- (215)
-0
where
Pamp=0(R""" "y as h-0+. (2.16)

Note that since w,(1)=0. the first summation on the right-hand side of



SINGULAR INTEGRALS 45

(2.15) acually starts with v = 2. Substituting (2.15) and (2.16) in (2.11). we

obtain
n—1
h _\_: X F ()¢ in

i=1

2m— 'VB ( ) [‘ ., l(x)dx} B

=04l f1— —
B u{,l 2m— u [ B (6) B (l) , l(’ b pu
uTI Irl ILI' 1"
2m—12m—u e
- < \w Bu('g) C( S' L) L,.jl(o)hu+l.+\»+l+O(h3m) aSh-‘0+.
T ul V!
(2.17)

u-1 r=0

Finally, substituting (2.17) in (2.6). we obtain (2.2) and (2.3). The coef

ficients a, and b, are now given by
-1
a,=—B,(e)| X'wy(x)d,
-0

Bk(g) "1 x.swk 1(X) dy

a,=—
. B¢ B, | o
v BBy e
u+r—k M- v
>l
B’\' s *k 1)
_'?IX'F(X)I [ k=2 3...2m—1,
by = —{(—s) F(0),
k
bk: C( s — )Flk)(o)
k!
. B —
A ﬂ(,b) = Sv, Dy 0 k=12 2m L (218)
uu>+|'.‘1‘>/k 0 ’

where we have used (1.14) and y,(1)=0. |
The long expressions given in (2.18) can be put in a more compact form

as follows: From (2.9), w,(x) can be expressed as

—x ap+il
4 p=0.1,..

‘ é
Wo(x) = JO Wf()ﬁ y)dy, (2.19)

640:39.1-4
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Let us define v (x) by letting p= —1 in (2.19). It is clear that

W ()= (2.20)
Let us also define
BT z;“‘ Py ltydi=0(x).  p= 10 1. (2.21)
Then we have
O = [xw oY =002 {2.22)

Recalling that B, (x) = B, = . ¢, and b, can now be expressed as

. Hde)y Bl
a, = - }_ e H (1) A 120,
wtro ok D :
wor o (223)
Be) (s v
b, A A S LT S
Wi v!
w20

Remark. When the function f(x.v) is infinitely differentiable on 7. then
the Euler—Maclaurin expansion in {2.2) can be continued indefinitely. and we
have as &> 0+, for all s > L.

i

A0S~ N a kN ph (2.24)
I3 13

i 9

COROLLARY. [f f(x.¥) is a polynomial in x and y of degree q. say. ihen
b,=0 for k>q+2. ie. the series >/ b "' has actually a finite
number of terms.

Proof. 1t is not difficult to show that v (x) is a polynomial in x of degree
at most ¢ — p. for p=--1,0. L....q. Hence y,"(x)=0forv 2 ¢ - p+ . The
result now foliows easily. |

We now go on to investigate the nature of the a, and b,.

A simple analysis shows that for p=0.1....v =0, 1...

e (N ‘o
v, (\‘) = ('l s ) e (-Y~,1')\‘. oy O T (x. '\')\. o (225)

ox v/l ax' oy
so that
: ¢ o e ‘
{_1)’;7”(l): l (,‘ *,f) T P [,f(x-,l‘)l‘l‘ny (22())
axo oy X ey




SINGULAR INTEGRALS 47

Also

syl
B . &

| xu ) dr= | o)

-0 <1

f{x,v)dl. (2.27)

ap

where /" is the polygonal arc joining (0. 1), (1.0). (0.0) in this order and
w(x, 1) = x'/\/2 along the line x +y = 1 and w(x.y)=x" along y = 0. and
dl is the line element along [ Similarly it can be shown that

i

F”\'(l):” \_ ('{;7(') ',( ,'f(-\‘-.")‘tl.m' le.
ko1

v

[

[}

o)
—

Hence we conclude that the contribution to the a, comes from the derivatives
of /'(x,y) at (1,0). i.e.. the corner across he line of singularities, and from
certain integrals of f{x.y) and its derivatives along the two sides of 7" on
which there are no singularities. From (2.25) we have

;. v ap
C I'e ¢
() - -
4 O)‘ (,777—) D X,y
A cx ooy («yﬂj( Peony
(’41' (’]7 )
“ e aprd o (2.29)

Also making the change of variable of integration y= (1 —x)7 in the
integral expression for F(x) given in (2.4), and differentiating X times with
respect to x. we obtain

.1
FOXY =] [(1 =x)D*—kD* | f(x. (1 — x) 1) dr. (2.30)

=0

where we have defined D, = ¢/éx —té/éy. Setting now x =0 in (2.30) we
obtain

FR(0) = t'] (D* — kD* ") fx.v), o dr (2.31)

where D = ¢/éx — yd/dy. Therefore, we conclude that the contribution to the
b, comes from f(x,y) and its derivatives at the points (0,0) and (0. 1) and
their integrals along the line of singularities x = 0.

Some special cases. (a)¢ = 1. Substituting (1.16) in (2.23) it is clear that
a, =0, k=1,3,5..... but none of the b,’s vanish in general.
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(b) &= 1. If we substitute (1.15) in (2.23) we realize that in general
none of the a,'s are zero. However, if Q,| /| in (2.1} is modified to read

n-1 n-f
Oul/1=h* X ih) N "[(ih.jh). (2.32)

i-1 j o

where 3 "Y ga; =Y 'a; + (¢, + ¢y)/2. then using the same techniques as
before, it can be shown that

ol 2m 1
ASI=QU I =QulS 1= X a i+ X b h 4 0™

a1 u 0

as  h -0+, (2.33)

where 4, and b, are as given in (2.23) with & = 1. except that the terms with
u =1 are omitted in both summations.

3. EULER—-MACLAURIN EXPANSIONS FOR Q] /|
THE CASEs’ =1

In this section we state without proof the Euler—Maclaurin expansions for
the case s’ = |. Letting w(x) = x" log x, we now define Q,| /| by

not n o i1
Qulf1=h" N wiih) N\ f(ih.jh+ eh). (3.1)
i

i 0
where h = 1/n, n a positive integer.

THEOREM 3.1. Let f(x,yv) be infinitely differentiable on T and let Q| f |
be as in (1.1) with s' = 1, i.e., w(x)=x*log x. Then as h— 0-+.

QI = Qulf1~ N alh* +logh N bLh*" '+ N ol 1 (3.2)
w1 w 0 w0

where a, . b, . and c,, are constants independent of h.

THEOREM 3.2. Let f(x, ) be infinitely differentiable on T and let Q| f|
be as in (1.1) with s =0, 5" = 1, i.e., w(x)=log x. Then as h— 0+,

QU= QS I~ N ayh* +logh N bih . (3.3)

uo u 0

where a;] and b]] are constants independent of h.
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The proofs of these two theorems are exactly the same as that of
Theorem 2.1, the only difference being that use is made of Theorem 1.3 with
(1.12) and (1.13), respectively, instead of Theorem 1.2, Expressions for a.
b,,c,,a,, and b, can be found in terms of f(x.y) and its derivatives and
their integrals but this will be omitted here.

We shall only state that (3.2) can be formally obtained by differentiating
both sides of (2.24) with respect to s. (3.3) is then obtained by letting s =0
on both sides of (3.2). When f(x, y) is a polynomial in x and y, of degree q.
say, then b, =0, ¢, =0,b=0foru>qg+ 2.

For ¢ =1 and s not an integer it can be shown that a, =0, g == 1. 3.5....,
in (3.2).

For ¢ = 1, if we replace Q,|f] in (3.1) by

n o1 noi
O,/ 1=h N wih) N7 f(ih jh). 3.9
i1 i 0
then for s not an integer

A_h[fI:Qlfl_lelf]'\' _\; a—éuh:u +10gh \_ b_‘/lhuu»l

w1 u 0

+ NG as - 0+, (3.5)

u- 0

4. EXTENSIONS TO ARBITRARY SIMPLICES

So far we have considered the Euler-Maclaurin expansions for the
standard simplex T. The results of Sections 2 and 3 can be extended to
integrals of the form

Olgl=1 | o(&n) g n) ddn, (4.1)

Jr
where T is the triangle with vertices P, = (¢, n;). i=1,2.3, and (& n) =
|AE+Bn + C|* (log|AE+ By +CJ)*, s>-1, s’ O 1, such that

A&+ By + C =9 is the equation of the straight line joining P, and P,, and
(é 1) is mﬁmtely differentiable over 7. Usmg a transformatlon of the form
&= UX + b, where 5—( ). X= (). and b_(,,) and U is a 2 X 2 constant
matrix, T can be mapped onto T with P, - (0,0) and P, - (0, 1). The results
of Sections 2 and 3 can now be applied to the transformed integral.
Bearing the results of the previous paragraph in mind, Euler-Maclaurin
expansions can be derived for an arbitrary quadrilateral domain along one of
whose diagonals the integrand has algebraic and/or logarithmic singularities.
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This can be accomplished by treating the two triangles on both sides of the
diagonal of singularities separately. One such typical integral is I} [} Ix — vi®
(log |x — )" glx.v)dx dy. where s > —1. s’ =0, I, which was the problem
originally solved by the author (see Sidi |7}).

5. EULER-MACLAURIN EXPANSIONS FOR Q'] ']

In this section we state the Euler—Maclaurin expansions to the mtegral
o'1s1-

THEOREM S.1.  Let f(x.v) be infinitely differentiable on 1". Let « and i
be two fixed constants such that O < e < 1,0 <y L Let b= Uin where nis
a positive integer. Define

no1 oo
Oul /ST =0 N wiih v+ yh)y N flh+ phojh + ch). (5.1

i 0 )

(1y Fors =0,

AT~ N A N B as h o0+, (5.2)

u 1 a0

(2) For s =1,

AS T~ N diht wlogh N OBLRY T N Clt

[ u 0 w0
as h 0+ (5.3)

(3) Fors'=1,s=0.

;

A1~ N Ah* vlogh N BIh! as o Ol (3.4
7| Wb
where A,.. B ..... are all independent of h and depend solely on [(x. v) and its

derivatives and their integrals.

Proof.  Since the proofs of (5.2). (5.3). and (5.4) are very similar to those
of Theorems 2.1. 3.1. and 3.2, respectively. we shall be content with a sketch
of the proof of (5.2) only. Defining

1
Fx)=1| /(v de (3.5,
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we can express Q'] f] as

Q' /] :.‘. X*F(x) dx. (5.6)

By Theorem 1.2 we have for any positive integer m

n -1

Q( [f| =h _\__: '\“\P‘(X)i,\ Sih s mh

i

2m . | Bk(’])

I N AN .5 k1) k
/‘f—r| /\' (I F ' |x I)h
’m— /\ ,
-\ C( S/\ 7] F(A (O hlﬂu‘ O(hhm) as h N ()+
ko0 ’
(5.7)

We now approximate F(ih + nh) by the generalized trapezoidal rule. From
Theorem 1.1 we have

F(ih + nh)y=h \_ fih + nh.jh + ch)

i
m ‘l B e
N “(' ) w, (ih+nh)yh™ + 1., ;. (5.8)
= u!
where
(’1l’ n
u/p(\):(l;ypf(\ N 1 —- l,f‘(\ Vi oo p=0.1.. (5.9)
and
|Topil <M, max | f(e )| A (5.10)

(xoyet” | oy

From here on the proof continues exactly as that of Theorem 2.1. In
summary, defining {);,’(,vc) as in Section 2 (with F(x). w,(x) as defined in (5.5)
and (5.9)) we obtain

B.(&) B.(n)

4, =— N L TR (. k=1 2,..
A “T . /J! \,! I l( )
wor 20 (511)
B, (&) ((—s —
Bi=— D “(f) ( ,”]) ). k=01 1
- . v
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Whea f(x, ¥) is a polynomial in x and y of degree g, say, then B, = 0 for
k2q+ 2.

If welet ¢ =#=-1,then 4, =0, k=1, 3.5.....

Ifwelet (a)e=np=1,0r(b)e=4and n=1,0r (c)c=1and n = 1, then
none of the A,’s vanish in general. However, if Q| /] in (5.1) is modified to
read, respectively,

Ol f 1 =h N win) N7 fGihojh). (5.12a)
i1 i
" no1

QulST=h" N "wiih) \' f(ih.jh + h)2). (5.12b)
i i

or

no 1 "

Qi f1=h"N wiih+ h/2) N fGh+ hj2.jh).  (5.12¢)

{0 ;o0
where Y}
it can be shown that

cu;=""""a;+ a,/2, then. using the same techniques as before.

2 i

‘/Il1|f‘l:Q,|j'|7' Qv/,1|/|
= \_ A:“hl“+ l_ B hv ! as  h -0+, (5.13)

ol u 0

Similar analysis can be done for s’ = 1 also. Details will not be given here.

6. CONCLUDING REMARKS

In this work Euler—Maclaurin expansions for the integrals given in
(1.1)}-(1.2) werc derived and their nature was analyzed. These expansions
can now be used to obtain good approximations to the integrals in question
by applying to them a generalization of the Richardson extrapolation process
(see Sidi [6]). A detailed discussion about how this should be done and some
numerical examples can be found in Sidi [7].

Euler-Maclaurin expansions for singular multiple integrals over a
hypercube have been taken up by Lyness |1 |. where the integrand is assumed
to have a singularity at a corner of the hypercube. Lately, Monegato and
Lyness {3| have considered the question of numerically evaluating the
Cauchy principal value of integrals of the form [ {} g(x.y)/(x —»)dx dv.
More recently Lyness and Monegato |2| have given Euler—Maclaurin
expansions for integrals over the hypersimplex, whose integrands have
singularities at the vertices of the hypersimplex. The integrals treated in this
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work, however, are not of either type; they have algebraic and/or logarithmic
singularities over a straight line inside or on the boundary of the domain of
integration.
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