
Euler-Maclaurin Expansions for Integrals over Triangles 
and Squares of Functions Having Algebraic/Logarithmic 

Singularities along an Edge 

AVRAM SIDI 

We derwe and analyze the properties of Euler-Maclaurin expansions for the 
differences / ~ / s‘(log.~)“/(.~. v) -- Q.ii./i. s :, I. A’ = 0. 1. where S denotes (either 
the simplex {(.Y.J~)/.Y + .I‘ & 1. .Y > O.J, Sz O} or the square {(.U.j.)iO .<.r: s, 1. 
0 Q:J’ & I ). and Qilfj is a combination of one-dimensional generalized trapezoidal 
rule approximations. 

1. ~NlKOL)UC110N 

In this work we are intcrcstcd in deriving Euler-Maclaurin expansions for 
the singular double integrals 

where 

W(X) = x’(Iog x)’ . s > -l.s’=O. 1. (1.3) 

and f(.~,~l) is as many times differentiable as needed. Specifically we are 
looking for asymptotic expansions. as h + O+, for the differences d,,lf’I = 

QISI ~ Q,lfl and di,lfl = Q'IJI - QAl./"l. where Q,,lfl and Q61fl are 
approximations to QlSl and Q’\f\, respectively, obtained as some 
combinations of one-dimensional generalized trapezoidal rule approx- 
imations with step size h. 

We now state some results which bear relevance to our derivation of the 
Euler-Maclaurin formulas for Q/f I and (2’ [ .f 1. 
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THEOREM 1.1 (See Steffensen 18. Section 14 I). Ler the Jtnction g(s) be 
2m times differentiable on [a, b 1 and let h = (b ~ a)/n, ,c-here n is a positilv 
integer. Let E be a fixed constant satisJ$*ing 0 < c < 1. Then 

.I1 li I 

D(h) = j g(x) d,v ~ h “ g(a +jh + t:h 
” (I ,? 

2m I 
\- B,(c) 

~ I Lt” 
-1 P! 

‘j(b) -~ g’” 
u 

“(a)] h” 

t R2,,l g; (a, b)l. (1.4) 

rrhere 

R2,nl g: (a, b)j = h’“’ ) 
J’ iizlnlc -- (s -- a)/h I ~ B,,,,(E) 

. l, (2m)! 
g’*““(s) ~1s. (1.5) 

Here B,(x) is the Bernoulli po&nomial of degree ,u and B,,(x) is the periodit 
Bernoullian function of order ,u. 

Since B,(x) are bounded on (-00. co), it folloprs that 

where 

Mzrn = max ff2,,l(c t .u) - B2,,,(r-:)l/(2m)! (1.7) 
*. I, 

and, therefore. is independent of h. Consequentlll, ifg(x) is infinitely dtxferett- 
riable on (a. b), then D(h) has an asymptofic expansion of (he form 

‘7 B,(c) D(h) - \ ~, I g“’ “(a) -g’” l’(b)] h” ash 30-c. (1.8) 
L(I . 

The following result is due to Navot 14 I. See also Navot 1.5 1. 

THEOREM 1.2. Let the finclion g(x) be 2m times differentiable on 10, I I 
and let G(x) = x’g(x) for -1 < s < 0. Let h = l/n, where n is a positice 
integer. Then for 0 < c < 1, 

,P I 
D(h) = 1.’ G(x) dx - h \‘ G(jh + Fh) 

-0 ,71 

‘“\, ’ B (F) 2 “1 ’ <(-s - ,u, 1;) 
- *G 
u-1 P. 

(u-‘)(,),L \‘ ~L1! - 
L, 0 

xg’U’(0)h”+“’ +pzm. (1.0) 
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where [(t, F) is the generalized Riemann zeta function initially defined for 
Re t > 1 by <(t, 6) = CF10 (k + c)-‘, and then continued ana~vtical!)~, and 

PI* = O(hzm) as h-b O+. (1.10) 

Noting that [(-j, e) = -Bj+ ,(~)/(j + l), j = 0, l..... Navot 14 1 shows that 
(1.9) reduces to (1.4) in the limit s --t 0. 

Remark. The result of Theorem 1.2 holds also for s > 0 since for this 
case the integrand can be written in the form G(x) = Yu(x). where 
-1 < r < 0 and U(X) is at least as smooth as g(x) at x = 0. Actually ,r = s - S 
and U(X) = x”g(x), where S is the smallest integer greater than or equal to s. 
It is clear that u”‘(0) = 0, for 0 < i < S - I, hence the sum that contains the 
zeta functions in (1.9) becomes s;‘!‘;‘- ’ ([(-s - 1’. c)/v!) g”“(O) h” * ” ’ 
which is simply xz!?,, ’ (((-s ~ I’, 6)/v!) g”“(O) h“+‘+’ + O(h’“) as h + Of. 
since the terms with v > 2m ~ S in the last summation are O(h’“‘) SE+ h --) 0. 
The summation that contains the Bernoulli polynomials stays the same. 
Finally, when g(-r) is infinitely differentiable on (0. 1 1, D(h) has the 
asymptotic expansion 

as h-O+, (1.11) 

for all s > -1. 
Starting with Theorem 1.2, Navot 15 1 proves the’following: 

THEOREM 1.3. Zf irt Theorem 1.2 M’e let G(x) = g(x) x’ log s, -1 < s < 0, 
then 

Zm-I 2m 1 2ni / 

D(h)= \‘ a,hV +logh ux,, &h”+“’ + \‘ ;,Uh”-“’ 
U~l u 0 

+ O(h”“) as h+O+, 

and if we let G(x) = g(x) log x, then 

(1.12) 

2,n I 2 ,,I I 

D(h)= \‘ a: h” + log h ,;,, PI h ut’ +O(h”“) ash---O+, (1.13) 
L, I 

where CL,, /I,, y,. u;,,Q are constants independent of h and thejl depend 
solely on g and its derivatives evaluated at .Y = 0 and .Y = 1. (1.12) can be 
obtained b.v formally differentiating both sides of (1.9) with respect to s. 
( 1.13) can be obtained bl* letting s = 0 in ( 1.12). 
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Remark. Like (1.9), (1.12) too can be shown to hold for all s > ~~ I. 
Again, when g(x) is infinitely differentiable on 10, I I. D(h) in (1.12) and 
(1.13) have asymptotic expansions as h + Oi. similar to those given in (I .8) 
and (I. 1 I ). 

Other facts that will be of use in the remainder of this sork arc 

B,=B,(O)=-R,(l)=~-& B,,=B,,(O)-=B,,(l). ,u=2.3 .,... (1.14) 

where 13, are the Bernoulli numbers, 

B -- 0. ?u I- ,u = I. 2 . . . . . (1.15) 

B ‘,, ,(i, := 0. ,u = 0. I . . . . . ( I. 16) 

and 

Qr. 1 ) = i(r 1. (1.17) 

where i(r) is the Riemann zeta function. 

TII~~OREM 2. I. Let J’(s.>~) he 2~1 times di#erentiahle utt the simple.\ 7‘ 
de$ned in ( I. I ). i.e., let all partial deri~~atil~es of’,f (.y. .I’) qf‘ total order .+2m 
exist and be continuous otz 7‘. Let h = I jn. Lr,here n is a positir,e itrreger. mrtd 
let t: be a fixed constatz~ satisJjing 0 < 1: < I. Let Q\J‘ ( hc 0s it? ( I. I ) ntzd 
(1.3) rvirh s’ = 0. Define 

‘Vi I ‘rri I 

if,,l.f’) =Ql.f’I -~ Q,,IfI = ” a,@ + ” b,h‘ ” + ci:,,,. (2.7) 
h-l h-7 

bt,here 

o?ili 
_. ()(h‘“‘) as h-0-t. (2.3 ) 

atrd the coeJFcients aA. b, are independent oJ h. (The espressiotrs for lti. h, 
are cotnplicated and w,ill he given in the proqf beloir,.) 

Pro@ We start by writing Qlf‘l as an iterated integral. If we define 

F(s) = 1” ’ ./‘(I. J) ((1.. (2.4) (/ 
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then Q1.f 1 becomes 

Q[fl = .I;; s‘F(x) d.u. (2.5) 

Since f(x, ~7) is 2m times differentiable on T. F(x) is 2m times differentiable 
on 10, 1 1. Therefore, Theorem 1.2 applies to (2.5) and we have (taking t = I ) 

I;.’ ?,n I 

Qlfl ==h _ x’F(x)l, ,h + \’ c,h“ 
i I h I 

(2.6) 

where 

k = 1. 2..... 

d, = ~ CC-s - k) 
k! 

F’h’(O), k = 0, I,.... 

(2.71 

and pZnr = O(h?‘“) as h + O+. In the first summation on the right-hand side of 
(2.6) the term with i = tz is missing since F(nh) = F( 1) = 0. Also c, = 0 for 
the same reason. In (2.7) we have also used (1.17). 

Let us now approximate F(ih) by the generalized trapezoidal rule with 
step size h. This is possible since 1 - ih is a multiple of h. From Theorem 1. I 
we then have 

= h ‘I \‘- ’ f(ih. jh + ch) - 
i (1 

(2.8) 

where 

and from (1.6) 

(2.10) 

with MZn, as defined in (1.7). 
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Substituting (2.8) in the first summation on the right-hand side of (2.6). 
recalling (2.1). and rearranging. we obtain 

?m I 

= Qhlfl~ \‘ ,tir B,(c) h” h ‘k’ (ih)‘ v/,, ,(ih) t Pzrri, 
I 

(2.11) 
UI . I 

where 

(2.12) 

hence. from (2.10). 

z O(h2”‘). (2.13) 

since 

h ‘i’ (ih)” (1 -- ih) = 1.’ x”( 1 -- s) d,~ + o( 1 ) as h-O+, (2.14) 
I. I 7’ 0 

from Theorem 1.2. 
Now v,(x) is 2m -p times differentiable on [0, I 1 and y/,(nh) = y,,( 1) = 0. 

Using this together with the fact that s > -I, and applying Theorem 1.2. this 
time to the term inside the square brackets in the summation on the rihgt- 
hand side of (2.11) we have 

h ‘!I (ih)‘ y&h) 
I 

where 

I& ,n,,, = 0(h2"' " ') as h-+0$. (2.16) 

Note that since w,,(l) = 0. the first summation on the right-hand side of 
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(2.15) acually starts with v = 2. Substituting (2.15) and (2.16) in (2.1 I), we 
obtain 

x’v/, I(X)~X h“ 1 

Finally, substituting (2.17) in (2.6). we obtain (2.2) and (2.3). The coef- 
ficients ak and b, are now given by 

a, = -B,(E) 1.’ x’y,(x) dx, 
. 0 

=Q;, XSlyh ,(x) dx 'h=- k! 

k = 2, 3 . . . . . 2nr ~ 1, 

4, = 4-s) F(O), 

k = 1. 2. . . . . 2m ~~ 1. (2.18) 

where we have used (1.14) and v/,(1)=0. 1 

The long expressions given in (2.18) can be put in a more compact form 
as follows: From (2.9), V,(X) can be expressed as 

v,(x) = 1. 
I-X ?P’l 

pTf(x, I’) dq’. p = 0. l,.... (2.19) 
-0 _ 
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Let us define w ,(.Y) by letting p = ~~ 1 in (2.19). It is clear that 

G/ ,(.Y, I-- k(.Y). 

Let us also define 

(2.20) 

/s‘lf/,,(s) 1’ ” = 1” f)!/,,(I) dr = qs). p :- 1.i). I ..,. (?.‘I) 
. 0 

‘Then we have 

Hylx) = /.\.‘W,,(X)/‘~ I’. j :~ 0. I ‘I . b... (2.22 1 

Recalling that B,,(.u) =- H,, I. 11~ and h, can now be cxprcsscd as 

,i J 1. X-~ J j . i....q 

il.,’ ,o (2.23) 

\. I‘) 

-h 

-~~ I&’ i ,(O). x = 0. I... 
ii 1 I /I ! I’! 

‘l.2 IO 

Remark. When the function ,/‘(.Y..I’) is infinitely differenttable on T’. then 
the Euler-Maclaurin expansion in (2.2) can be continued indefinitely. and we 
have as h P Or. for all s ‘1, I. 

COKOLIAKY. !f’,f’(.u. j,) is a polynomial i/r .v urld j‘ y/‘degrrc y, SUJ’. Ihefl 
h, = 0 for I\ > q + 2. i.e., the series \‘; ,, b,h’ ’ ’ has acluall!~ 0 ./it7ite 

tlumber of terms. 

Proq/!J: It is not difficult to show that w,,(.u) is a polynomial in .Y of degree 
at most y p. for p = 1. 0, I . .._. q. Hence I,/;,’ ‘(s) = 0 for t* 2 y ~~ 17 + I. The 
result now follows easily. fl 

We now go on to investigate the nature of the a, and b,. 
A simple analysis shows that for p z 0. I . . . . . r = 0. I . . . . . 

so that 

(2.26 
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Also 

where i‘ is the polygonal arc joining (0. 1). ( 1.0). (0. 0) in this order and 
H(.u. .I’) = .~‘/d’2 along the line s + j’ = 1 and H’(.u. .I*) = .r’ along .t’ = 0, and 
(11 is the line element along I‘. Similarly it can be shown that 

Hence we conclude that the contribution to the ah comes from the derivativles 
ofJ’(.v,~,) at (I, 0). i.e.. the corner across he line of singularities. and from 
certain integrals of f(s,,ts) and its deriv:atives along the two sides of 7‘ on 
which there are no singularities. From (2.25) we have 

Also making the change of varrable of integration J’= (1 ~ s) T in the 
integral expression for F(s) given in (2.4). and differentiating k tim’zs with 
respect to s. we obtain 

f+‘(x) = 1” I( I ~ .y) D”, -- ,kD: ’ I.f(.Y. (1 - s) r) dr. (2.30) . 0 
where we have defined DT = i’/?s - ri’j?~,. Setting now .Y = 0 in (2.30) we 
obtain 

I 

Ph’(0) = 1. (Dk - kDh ’ )f‘(s. >,)I., ,) 41’. (2.31) . 0 

where D = i:/i-‘x - vi’/Zy. Therefore, we conclude that the contribution to the 
b, comes from f(.i.~,) and its derivatives at the points (0,O) and (0, 1) and 
their integrals along the line of singularities x = 0. 

Some special cases. (a) c = i. Substituting (1.16) in (2.23) it is clear that 
cli = 0, li = 1. 3, 5 ,.... but none of the b,‘s vanish in general. 
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(b) I: = I. If we substitute (1.15) in (2.23) we realize that in general 
none of the uk’s are zero. However. if f&/f] in (2.1) is modified to read 

Qhlfl = h’ ‘\” (ih)’ 
I, i 
\“‘f(ih,jh). (2.32) 

1-1 ;-(I 

where 2”) 0 cti = x:;“- ,’ L(/ + (u,, + u,)/2. then using the same techniques as 
before, it can be shown that 

,,I I ?,,I I 

d,[fl=Q[f-&If]= \‘ az,h’“+ \‘ b,,ll”“” iO(h2”‘) 

u I u 0 

as h +O+. (2.33) 

where Ezu and bk are as given in (2.23) with E = 1. except that the terms with 
,u = 1 are omitted in both summations. 

3. EULER-MACLAURIN EXPANSIONS FOR Q/f’I: 

THE CASE s’ = I 

In this section we state without proof the Euler-Maclaurin expansions for 
the case S’ = 1. Letting H,(X) =x5 log .Y, we now define Q,,I.fI bq 

‘$ 
I I 

Qhlfl = A’ hfih) “,i,) ,f(ih.jh + ch). (3.1) 
I 

where h = I/n, II a positive integer. 

THEOREM 3.1. Let f (x, .I,) be infiniteiJ% differentiable on T and let QI f‘ I 
be as in (1.1) Edith s’ = 1, i.e.. KI(S) = x’ log x. Then as h + 0-t. 

Qlfl - Q,l.f - 2 a; h” + log h ,$,, b;, h” ’ ’ ’ ’ + $ c;, h” ’ ‘. (3.2 
u I it 0 

where ah, b,!, . and CL are constants independent oJ’ h. 

THEOREM 3.2. Let f(.x,y) be infinitei!, differentiable on T and let Qlf 
be as in (1.1) with s = 0. s’ = 1. i.e.. w(x) = log x. Then as h + O+. 

I 
QlfI - Q,,lfl - \’ a$h” + log h ux,, bib“ ‘. 

&I I 
(3.3) 

where al and bi are constants independent of h. 
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The proofs of these two theorems are exactly the same as that of 
Theorem 2.1, the only difference being that use is made of Theorem 1.3 with 
(1.12) and (1.13), respectively, instead of Theorem 1.2. Expressions for a:. 
6;. CL. a;, and b:’ can be found in terms off(x,~~) and its derivatives and 
their integrals but this will be omitted here. 

We shall only state that (3.2) can be formally obtained by differentiating 
both sides of (2.24) with respect to s. (3.3) is then obtained by letting s = 0 
on both sides of (3.2). Whenf(.u,j,) is a polynomial in x and ~3. of degree 9. 
say, then b: = 0, CL = 0, bi = 0 for p > 4 + 2. 

For t: = 4 and s not an integer it can be shown that u: = 0, p == I. 3. 5...., 
in (3.2). 

For I: = 1, if we replace Q,,lf ] in (3.1) by 

then for s not an integer 

+ \‘ o”+‘+’ as h -+ Of. (3.5) 
-0 ” 

4. EXTENSIONS TO ARBITRARY SIMPLICES 

So far we have considered the Euler-Maclaurin expansions for the 
standard simplex T. The results of Sections 2 and 3 can be extended to 
integrals of the form 

where r is the triangle with vertices Pi = (&, vi), i = 1, 2. 3, and s(<. ye) = 
I.45 + f3~ + Cl’ (log jAc+ L?q + Cl)“, s > -1. s’ = 0, 1. such that 
A< + Btl + C = 0 is the equation of the straight line joining P, and PI, and 
~((5, q) is i_ntinitely differentiable over r. Using a transformation of the form 
( = CT + b, where < = (“,), x’= (c). and b = (ii), and U is a 2 x 2 constant 
matrix. r can be mapped onto T with P, + (0, b) and P, + (0, 1). The results 
of Sections 2 and 3 can now be applied to the transformed integral. 

Bearing the results of the previous paragraph in mind. Euler-Maclaurin 
expansions can be derived for an arbitrary quadrilateral domain along one of 
whose diagonals the integrand has algebraic and/or logarithmic singularities. 



This can be accomplished by treating the two triangles on both side!; of the 
diagonal of singularities separately. One such typical integral is ,I.,\ I‘,‘~ 1.~ ~~ J.:’ 
(log 1s ~ .I’)‘ g(x. .I’) dx d.1.. where s :> 1. s’ -- 0. I. which was the problem 
originally solved by the author (see Sidi 17 1). 

In this section we state the Euler-Maclaurin expansion\ to the Integrai 

Q'IJ‘I. 

(I) Fo~s’=o, 

rchere A,, . B, . . . . . arr all indepetzdettl vj’h utld depend .sok!\~ ott ,/‘(.Y. _I’ ) uttd its 

derivatives atid their integrals. 

Prooj: Since the proofs of (5.2). (5.3). and (5.3) are very similar to those 
of Theorems 2. I. 3. I. and 3.2. respectively. we shall be content with a sketch 
of the proof of (5.2) only. Defining 
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we can express Q’ If 1 as 

(5.6) 

By Theorem 1.2 we have for any positive integer tn 

We now approximate F(ih + qh) by the generalized trapezoidal rule. From 
Theorem I. 1 we have 

F(ih + t/h) = h ‘;‘I f(ih i t~h.jh t ch) - 
i 0 
?,I! I 

\‘ 
B (t:) 

- u w, 
u ! 

,(ifz + $7) h” t T, ,,,,,. (5.8) 
,I I 

where 

and 

(5.10) 

From here on the proof continues exactly as that of Theorem 2.1. In 
summary, defining f);,‘(x) as in Section 2 (with F(.u). IJ/,,(s) as defined in (5.5) 
and (5.0)) we obtain 
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\?‘~uI j”(.~. jl) is a polynomial in x and J of degree q. say. then B, = 0 for 

k$zzq+2. 
If we let t: = ‘1 : 4, then A, = 0, k = 1, 3.5 . . . . . 
If we let (a) c = 11 = 1. or (b) t: = 4 and rl= I, or (c) I: = I and q = 1. then 

none of the A A‘s vanish in general. However, if Qh[f 1 in (5.1) is modified to 
read. respectively. 

!I 

-I Q,,lfI = h’ 1“ ii, - 2 yqih.jh ). (5.12a) 
/ I I 0 

or 
I 

Q;,lfl= h? ‘$, w(ih + h/2) $(il7 f !l/Z.jh). (5.12c) 
/ i (1 

where r’> , ui = x> ,’ (x, + ~,/2, then. using the same techniques as before. 
it can be shown that 

= ;’ ,ifw/72” + \‘ B,},” ’ ’ as h * o+. (5.13) 
-1 - 1, (1 0 

Similar analysis can be done for s’ = I also. Details will not be given here. 

6. CONCLUDING REMARKS 

In this work Euler-Maclaurin expansions for the integrals given in 
(I. 1 t( 1.2) were derived and their nature was analyzed. These expansions 
can now be used to obtain good approximations to the integrals in question 
by applying to them a generalization of the Richardson extrapolation process 
(see Sidi 16 I). A detailed d’ lscussion about how this should be done and some 
numerical examples can be found in Sidi 17 1. 

Euler-Maclaurin expansions for singular multiple integrals over a 
hypercube have been taken up by Lyness / I I. where the integrand is assumed 
to have a singularity at a comer of the hypercube. Lately. Monegato and 
Lyness 13 I have considered the question of numerically evaluating the 
Cauchy principal value of integrals of the form ,I‘,‘, A‘:, g(x. J~)/(.Y ~-J’) d.r ([I’. 
More recently Lyness and Monegato 12 1 have given Euler-Maclaurin 
expansions for integrals over the hypersimplex. whose integrands have 
singularities at the vertices of the hypersimplex. The integrals treated in this 
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work. however, are not of either type; they have algebraic and/or logarithmic 
singularities over a straight line inside or on the boundary of the domain of 
integration. 
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