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The anthors study convergence of certain exponential sums that interpolate to
functions which are the Laplace-Stieltjes transform of a signed or complex
distribution. They prove uniform convergence in unbounded sectors of the right half
plane and establish rates of convergence in certain cases. For the special case where
the function is completely monotone, the results generalize and improve theorems of
D. W, Kammler [J. Math. Anal. 4ppl. 57 (1977). 560-3701.

1. INTRODUCTION

In [&]. Kammler investigated interpolation by exponeuntial sums to
functions f(f) completely monotone on [0, oo |. that is. functions f(¢) having
a representation

o

S =1 e "dalx). €10, ;.

ARt

where «(x) is real valued, monotone increasing and lim,  , a(y)=
a{oe) < oo. We can assume ¢{0) = 0. In Theorem 3 of |3]. Kammler proved
uniform convergence of the interpolating sums in [0, oo for quite general
choices of interpolation points.

The question arises: To what extent can the positivity of the distribution
da{x) be relaxed? In this note, the authors show that dua{x) may be replaced
by a signed or complex distribution dfi(x). provided the exponents of the
exponential sums are chosen in a certain way, and provided one interpolates
at a smaller number of points.

A second question arises: Do the exponential sums converge in the right
half plane. in view of the analyticity of Laplace transforms in a half plane?
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186 SIDI AND LUBINSKY

In fact. 1t follows from the uniform boundedness of the exponential sums in
Theorem 3 in [5] that they converge uniformly in compact subsets of the
right half plane. Here we prove uniform convergence in unbounded sectors.
under more general conditions. Further, for certain choices of the inter
polation points, we establish rates of convergence.

2. NOTATION

DerFINiTION 2.1, A function f(x): [0, oo | 1 is said 1o be of bounded

variation in [0, co ] if

(1) plx) is of bounded variation in cach compact subinterval of
[0. o).

(it} p(x) is right continuous in {0, o).

(i) B0y = 0.

{iv} Pleo)y=hm,_ flx)is afinite complex number.
We use 7 (x) 7 (). 7 i (30 1o denotel respectiveiy. the real and
imaginary upper and lower variations of f{vh so that they are monotons
increasing and right continuous in [0, o¢} and

Blxcy= (" (x) - 07w+ B () - B ve [0 oo

We assume the four functions are normalized 1o have the value zero at x = 0,
The total variation function of f{x) is fixy=f""(xV 487 (v 57 (xy -
B e |0, w )

Throughout «(xv) will denote a function of bounded variation w {0, oo
that is also real valued and monotone increasing there.

DeErNITION 2.2, A function f(x) of bounded variation in [0, oc | is said
to be absolutely continuous with respect to «a(x) if there is a {complex
valued) function df/da(x). defined for almost all x in {0. oo} such that

PR

daf
Blx)=| l {uYdalu). Y10 ol
Co o du

except possibly at discontinuities of «{x). and such that

/) : ‘
oy @ (1) 1 dutu) < 0. (2.1
o da i
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DerINITION 2.3, We shall denote the Laplace-Stieltjes transform by .
More precisely.

dal(ty = IJ e "“da(x), Re(r) > 0,

<0

is a function completely monotone in |0, co|. while if f(x) is of bounded
variation in |0. oo |, then we shall say that

-

Zlapin =1 e " dp(x. Re(r)

S0

0.

A\

is a function completely bounded in |0. oo |.

DeriNnimioNn 2.4, For n= 1. 2. 3... let positive integers m(n) and inter
polation points 0 <7, <1, < -+ <1, < oo be given. We shall say 17,.},
is a4 uniqueness set if there exist numbers 7, > r, > 0. k= 1. 2. 3... such that

(1) the intervals (v, — r .t +r,). k=1, 2, 3..... are all digjoint:

(i) if L= liminl, | [(t, — T F PO e L ko=
1. 2.3..... then
N hln )AL () = (2.2)
A1

Here .| denotes the cardinality of a set, so that [, is an asymptotic lower
bound for the number of interpolation points in (z, — r,. 7, + 7). When some
/. = oo. the series in (2.2) is interpreted as oc.

In Theorem 3 of |S|, Kammler used a restricted form of the above
uniqueness condition: he assumed all r, =0 and all /, = 1. in effect. The
motivation for the term “uniqueness set” will become clearer in
Corollary 3.2. For the moment we note:

Lemma 2,50 Let f(z) be bounded and analvtic in {z: Re(z) > 0} with
zeroes z,. k=1, 2, 3.... repeated according to multiplicity. If

N Re(z /(1 +]z,]%) = oo
ko

then f(z)=0in |z: Re(z) > 0}.
Proof.  See Hille |3. Theorem 19.2.6|. |
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It is easy to see that the following choices of interpolation points all vield
uniqueness sets:
1, =/ =l 20 mn= 1200
f,, =14+~ D/n, Joe L2 o= 1200
Ly L (- B/ log n. Geod 2o =120,
L= V=12 mn=1.2..
The last two sets of interpolation points do not satisty the conditions

Theorem 3 of [5].

Given O < #, < 7. the sector with vertex at 0. angle 26,,. that 1s symmetric

with respect to the positive real axis is
() =z et B <
while given ¢ > 0. we let
s lye)y=lz=re o0 > 0and A < H,
Finally. given a function g{x) defined on {0. 1. we set
dgl, = supl gl cve OO

and

N b
hgl, = (i g} dx ) . 0<p< o,

whenever this is defined and finite.

3. UNIFORM CONVERGENCE

We first establish a convergence result for Laplace-Stielgjes transforms
which is possibly of independent interest.

THEOREM 3.1. Suppose p(x), f(x). n=12.... are complex ralued

Sfunctions of bounded variation in |0, 00|. Denote their total variation
Sfunctions by |Bl(x), |B],(x). n=1.2.... Assume that

lim f,(x) = fi(x): lim . f,,(x) = (filx) (3.1A)
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Jor almost all x € |0, ), and
lim [4],(c0) = |l(c0). (3.1B)
Let f(t1)= 7'|dB|(t) and f,(t) = 7 |dB,|(1). Re(t) >0 and n = 1.2.... Then
lim f(y=/(0). Re(t)>0. (3.2)

and the convergence is uniform in .7 (8,) for any 0 < 8, < z/2. If only (3.1A)
holds for almost all x € |0, 00). and sup, |f],(c0) < 00, then

lim f()=/().  Re(r)> 0.

novus

and the convergence is uniform in ./ (8,.¢) for any 0 < 8, < z/2 and ¢ > 0.

Proof.  The convergence (3.2) is an immediate consequence of Helly's
Convergence Theorem (Freud |2,p.56]), of (3.1B). and of the uniform
boundedness of e for Re(s) > 0 and x > 0. Assuming (3.1A. B) we shall
prove uniform convergence in .~ (f,) for fixed 0 <8, <a/2. Let 5> 0.
Firstly. we can choose 0 < § < T < oo such that (3.1A) holds for x=8. 7T
and

BN

| d(Bl(x)+|B,(x)) < n/2. n> N, (3.3A)

Y

‘J d(|Bl(x) + [B],x)) < n/2, n>N. (3.3B)

T

Here N is a positive integer and we have used (3.1A, B). Then we see by
(3.3A.B).

Y

[, e ap) ';" o dﬂ,,(x)J

[ 4 -t

| e ™ dB(x)— ‘

+ | e d/f,,(-\‘)‘ <,
i 1

Re(/)>0.  (3.4)
Next for t € .7 (§,) and x € |S. T|, we see
fte "] < sec(f,) Re(r)e Rt~
< sec(f,) maxiue " u > 0}

= sec(f,)(ex) .

6401392 7
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Then integrating by parts, we have. for all 1€ ¥ (6,

-4
-8 Y

E{Je Sy | e d[)’,,(.x);

o

1 ‘ ‘
- \{e ) = BNy S| te B — B ) dx !
-8 i

(OS]
w
—

T
+ SCC(GO) ’ ) (6’.\') l 1/))('\’) o ﬁn(x); dx. ( .

The right member of (3.5) is independent of f and converges to 0 as n » «
by Lebesgue’s Dominated Convergence Theorem and our assumptions on S
and 7. Then by (3.4} and (3.5}, we obtain for all large enough n. and for all
L€/ (8y).

1

Y N

S0~ f0) = m I 10 () - 0]

o 4y

< 2n.

This completes the first part of the theorem.

Remark. When (3.1A) holds for almost all x € |0, oc) but (3.1B) does
not. then there is no longer necessarily uniform convergence in ~ (f,) nor
even convergence for Re{r) = 0. as shown by the following example: Let
df,(x) be a Dirac delta of unit mass at x=n, n=1, 2.. and fi(x)=0.
x €10, 0| Then [ (1) = |dB,|(1)=e " and f(1/n)=¢ ' and f,(0)= 1.
n =1, 2... while f{1)= 0 so /() does not converge uniformly in ./ (#,) and
(0} does not converge to f(0).

Finally. suppose (3.1A) holds with sup,|fi ()« cc. and fix
0 <@, <n/2 and ¢ > 0. We write

i) L) = ‘[:

-

sy |
£ l e " dB) - 03]
IR 5

and use (3.3A) to estimate |} --- as before. For the second integral we use an

integration by parts to deduce

| e e — 001 | < IBS) - BSI | e 1B Behd.

A Y
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Further, we use the estimate

tx

{te ‘ SCC(@U) Re(l) e Redf) x ze Re(t) x:2

<
< 2 sec(f ) ex) 1€ (B,

and the result follows as before. B

The following corollary generalizes and strengthens Theorem 3 in
Kammler |5].

CoROLLARY 3.2. Let f(t)= ¥ |da|(t). Re(t) 2 0. For n= 1, 2. let 2n
interpolation points 0 1, <t,, < - <t,,, be given and assume {ata,is
a uniqueness set. Let f,(t) be the real exponential sum involving n exponents
such that f(t,)=f(t,,),j=1,2..2n:n=1.2.. Then

Lm f,(1)=/(t).  Re{t)>0.

and the convergence is uniform in the unbounded sector - (8,) for any
0<8,<n/2

Proof. In Lemmas 4 and 5 in |4| Kammler shows that [ (/)=
7 da,|(t).n= 1,2, 3..., where «,(x) is of bounded variation in |0. 00| and
is. further, real valued and monotone increasing with

a,(o0) < alo). n=1,2.. (3.6)

(His notation is different.) By Helly's Selection Theorem (Freud |2.p. 56]).
we can find a sequence of integers ./ and a monotone increasing function
y(x). also of bounded variation in [0. oc|. such that

im a,(x) = y(x) for almost all x € |0, o).

(L
ne f

Then by Theorem 3.1,

lim f (1) = «|dy[(t) = g(D) uniformly in .7 (f,. &) (3.7)
LEE 8

ne.t

any ¢ > 0. 0 <#, <n/2. Now let {r,} and {r,} be as in Definition 2.4, Fix a
positive integer k. By hypothesis f(¢)—f,(r) has at least /, zeroes in
(ty = res 7, + 1) for large n. Then by Hurwitz" Theorem, f(t) — g(¢) has at
least /, zeroes. counting multiplicity, in |z:{z — .| < r, . in view of (3.7).
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These zeroes have real parts >, — r,. and moduli <7, 4+ r,. Thus if z,.z,...
are the zeroes of f(r) — g(1),

v Re(z) O Llne o) ]

by (2.2). By Lemma 2.5.
Lldla — )y =F(1) - g} = 0. Re(r) = 0.

and by Theorem 19.4.2 in Hille |3]. «(x)= y(x). Since the same argument
applies to all subsequences of |1, 2,3...; we have shown

m o« (x) = alx). almost all x € 0. o).

Finally. for almost all v > 0. (3.6) yields

a(oo) 2 lim sup ¢, (oc) 2 liminfa,(co) = lim a,(v) = af{v).

n o Hor

and letting x -» oo, we obtain

lm (o0} = a{oo).

noe

Thus (3.1A.B) hold for ff=«. f§, =«,.n=1.2... and the result follows
from Theorem 3.1. N

4, COMPLETELY BOUNDED FUNCTIONS

First we establish the existence of exponential sums invoiving # exponents.
which interpolate to completely bounded functions /[df| at n points. and
for which the sum of the moduli of the “weights™ is bounded independent of
a. It is interesting to note that both the exponents and interpolation points do
not depend on the distribution df{x).

THEOREM 4.1. Let f(x) be of bounded variation in |0, 0| and
absolutely continuous with respect to u(x). Let

f)y=1dB|(1). Re(1) =2 0.



EXPONENTIAL INTERPOLATION 193

Let n be a positive integer and let nonnegative t,, and positive h, be given.
Let

o=ty + (= Dh,. j=L12..n (4.1)

ni
and

Palo) = ‘f e Y da(x). o€ 0,1} (4.2)

Y- (logoyihy,

Let 0<o, <0,<-<0,, <1 be the abscissas in the Gauss—Jacobi
quadrature of order n for dy, (o) and let

Uy =~ (log o, Yh,. J=12.n (4.3)
Then there is an exponential sum
f;,{!) = l: 1w, e iy (4.4)
satisfving P
Sl =100 J=L2.n (4.5)
and
" ¢ s dﬁ M f il
N e <= L] dax)! '
<=l g @] datay (4.6)

Proof. Firstly

-7

Sl =1 et Y gph(x)

&

T R
=Tt R e o e du
-1
=) o 'Hoydyfe).  j=12.n (4.7)
A
where 0 = ¢ "% and
dp |
H = (X Ly
(O-) d(;( (\)e
dp

o (—lloga)h,)o it e 0,11,
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and where we have used (4.2). Note that

! : cordp
| H©) dyyo)= | |

| {x): l da{x) < oo. (4.8)
A Jeo 1 da ;

Now as 7,(0) is monotone increasing, there are positive weights 4,, and
abscissas ¢, such that

N APla) = | Plo)dy,(o) (4.9}
i 20
whenever P(o) is a polynomial of degree at most 2n— 1. Further. 3,(0)
generates a sequence of orthonormal polynomiais and H(o} has an (formal)
orthonormal series expansion in these polynomials in view of (4.8). Let s(¢)
denote the partial sum of the first # terms of this expansion, so that s(c) is a
polynomial of degree at most n — 1. Let

Wyl

il — ° .\ B i c_ ,)
" nji /.”/.S(O’"I.) [N J= l. Lo N

Then if £,(¢) is given by (4.4).

n

- [ N oy U DA,
/n(’nj) . " nk € " o
At

"

_ T . Jo
- \,_ /“HA S(Oz:A)Uuk

(by (4.3))

(by (4.9) and as s(o) o’ ' has degree <2n - 2)
A ,
=| Hlo)o' 'dylo)
=0

"

(as H(o) — s(g) is orthogonal to 1,0.6° --- " ")
=/, =12

by (4.7), so establishing (4.5). Next we prove (4.6). By the Cauchy-Schwarz
inequality

n s n / i f‘
,\_ }Wn,l" = )\ ;tn/ebu'”(”l — /"1/ S(O‘”j) A\
i i n
. Cr i
_ 3‘\_ )L”,-O',”-:"” h,,E 3 ‘ ‘S(O’)}' d«,vn(g)( (4.10)
Yo
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by (4.3). (4.9) and as |s(0)|* = s(6)$(0) is a polynomial of degree at most
2n — 2. Next, the function g(g) =0 /"= has all its even order derivatives
non-negative in (0, 1|. By an inequality of Shohat (Freud [2.Lemma 1.5.
p. 921).

n
.
— njTnj

N\
i1

-1
PO = Uyl < . o 2/ hy d})n(g) — (1((1)) (4] 1 )
<0

by (4.2). Further, by Bessel’s inequality (Hille [3. pp. 328-329]),
-1 b
| s(0)|* dy,(0) < | |H(0)|* dy,(0). (4.12)
i 0

Finally. (4.8), (4.10). (4.11). and (4.12) yield (4.6). 11

Note that having fixed the exponents u,,, the existence and uniqueness of
/(1) satisfying (4.4) and (4.5) follow from the fact that {e” "“m.....e ™ is a
Chebyshev system. However, the essential feature of the above theorem is
that the bound in (4.6) is independent of n and the interpolation points. The
above result is connected to the theory of “product integration™ rules (Sloan
and Smith |8]) but we shall not expand on this.

THEOREM 4.2, For each positive integer n, let non-negative t,, and
positive h, be given and define t,,. j=1,2...n, by (4.1). Assume 1.}, is a
unigueness set. Further, let f(t),f,(t) be as in Theorem 4.1 so that (4.5)
holds. n=1,2.... Then

lim f()=f(1).  Re(r)> 0,

and the convergence Is uniform in the unbounded sector .~ (8,.¢) for any
0<6,<n/2and > 0.

Proof. Let  f(x)=3,  .w,; x€[0, ] n=12., so that
SAt)y=21dB,|(t),n=1.2.... Let B.'(x), B, (x).5 (x).f" (x) denote,

respectively, the real and imaginary upper and lower variations of f§,(x). so
that, for example,

B (x)= N Re(w,). x€E|[0.c],n=1,2..
u,,js:.\‘
Re(w,) >0
as in Definition 2.1. Then if | #],(x) is the total variation function of f,(x), we
see
n
= \‘

=1

Bla(o0)= X" (IRe(w,)| +[Im(w,)) <2 N |, [ < V2T
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n=1.2,3.. by (4.6). By Helly’s Selection Theorem. we can extract a subse-
quence of integers ./ and monotone increasing functions "' (x) =" (x).
771 (x). 7' (x) which are, respectively, the limits of 7' (x). f, (x). 7 (x).
~(x) for almost all x € |0, o) as n— oo. n €./ . This defines a function
»(x). and its total wvariation function ! as in Definition 2.1. Let
g(t)= 7|dy|(1). Re(t) = 0. As

lim 8 (x)=y(x). lim [ (x)=]7.(x)

for almost all x € |0. o). Theorem 3.1 shows

lim f(1)=g(t).  Re(r)> 0.

ne. 1

the convergence being uniform in 7 (f,.¢) for am’ 0< H(, < 7m/2 and ¢ > 0.
As in Corollary 3.2, we deduce g(r) = /() and y(x)= p(x). and the proof is
completed as in Corollary 3.2. 1

Theorems 4.1 and 4.2 show that if /(1) is completely bounded in [0. o |.
then it is the limit in (0. oo) of a sequence of exponential sums

P< I n=1.2.. (4.13)

/N\

Conversely. if f(#):]0.00) -~ is the limit of a sequence of sums [, (1)
satisfying (4.13). then it is easily seen using Helly's Theorem that /{7) is
completely bounded in |0. oo .

Nira Dyn of Tel Aviv University has informed the authors (oral
communication) that provided df(x) is real, it is possible to obtain
convergent exponential interpolation for other choices of exponents and
interpolation points.

5. RATES oF CONVERGENCE

When the interpolation points are equidistant and satisfyv  certain
asymptotic assumptions, one can establish rates of convergence of /(1) to
S(1) using standard theorems on the degree of approximation by polvnomials.
It is also possible to establish convergence rates using complex analysis
methods from the theory of rational approximation. However. for simplicity.
we omit the latter. Our analysis is based upon:

LEmMMA S.1. Ler f(x). ) be of bounded variation in |0. 0| and let
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L(y=|dB(e) gt) = «|dy|(t), Re(t} 2 0. Let a.h > 0 and n be a positive
integer. Let t;=a+ (j— 1)h.j=1.2..n Assume [(1)=g(i;). j=1.2..n.
Then

(i) 1/() — g <(Bl(w) +[7l()]lo" "~ P(a)|l,. Re(t)>a.
whenever P(c) is a polyvnomial of degree at most n — 1:

(i) /() =g < (BN0) + |yt [t —alh e " T — Qo).

Re(r) > a,
whenever Q(o) is a polynomial of degree at most n — 2.
Proof.
S =gy =] (e ") e d( - i)
A
o
— ‘ o' ayih dA(O').
h
where ¢ = ¢ " and
AMo)=| e d(f - x). o€ |0.1].
S o(logoyh
In particular.
A
0=/(t;)—glt)=| o 'dd(o). j=1.2..n
)
Then if P(o) is a polynomial of degree at most n — 1.
. .1 |
S g0 = || (0" " — P(o)) dA(o) ]
o !
(5.1)

< HO“ arvh P(U)‘\/ iéﬂ(l)

But [4i(1)< [y e “d(Bl+[7D(x) <|Bl(o0) + 7](o0) and (i) follows. To
obtain (ii), we integrate (5.1) by parts:

S =g = PD]4(1)

+,|;,1 (t—a)h "o " ' — P'(0)] |d(0)| do.

Given any polynomial Qo) of degree at most n—2. let
P(o)=(t —a)h~'[5 Q(u) du + C, where C is chosen so that P(1) = 1. Then

640392 R
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we obtain | £(1) = g(0)| <[t —alh " 14[(1) [} " '~ Q(0)ldo and (ii)
follows.

First we obtain rates of convergence for interpolation at equally spaced
points with fixed stepsize.

THEOREM 5.2, Let f(x) be of bounded rariation in |0.o| and
absolutely continuous with respect to «(x). Let f(t)= 2/ |df|(1). Re(r) = 0.
Fix positive h and nonnegative a. Ler t,,=a +(j  Uvh j=12.n
n=1.2... Let [,{t) be given by (4.4) so that (4.5) holds. n = 1.2.... Then if
g = {(Re{t) - a)h >0,

S =LA =0 as n o> oo,

Proof.  Let z = (t -~ a)/h so that g = Re(z}. Let [ be the largest integer =g
and let # = z -- /. By Lemma 35.1(i) and Theorem 4.1. we have

A
Pt

A=< floo) \;'2 Y omin e Ploll, . (3.

dvgepy om0

Now d'/do' jo-{ = z(z - 1)+ (z =/ + 1)o" is bounded in |0, 1| and further
belongs to Lip(g — /) in |0. 1]. For. f 0 < o < ¢’ < | and ¢’ > 1.5¢. then

‘O” o O’”’ ;_/ o - 0;;:; fé ’I . (U;(J’i'}“} f’&;'vii B {(7;;{;;}4@ s§
Q‘ z»'?i ‘2/3)“ i}‘
while if 0 < o <" <1 and 6" < 1.50. then 0'/o = | + a, where 0 <« 5 < 1.2
and
A A LR A AR BN NI AN AL
w 0K ' T KL

where K=/ [(7)][2' ' and as ¢ - I< 1. Thus d'/do’ 67y € Liplg — 1)
By standard results (Riviin |7. pp. 22-231).

(s
8

min  jjo" - Plo)}., =0(n ) as Herw {3.3)
degM e n

and the result now follows from (5.2) and (5.3). 1§

In the same way. one obtains:

TueorREM 5.3, Let f{ty= r {dal(t). Re(r)20. Fix positive h and
nonnegative a and let

ty=a+ (— 1h J= L2 2ni = 1020
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Let [,(1) be the exponential sum involving n exponents that interpolates to
Sy at t=1,;, j=12.2n n=1,2 Then if g=(Re(t)—a)h>0
H—f0]=0n"9) as n— w.
LemMma 5.4, Let ze€ U satisfy Re(z)>0. Let d be real and a
nonnegative integer k be given. Then if
= min J“O.n: bd __ P(O‘);{,
deg(Prsn A -
: lz—x!
! Cdy! (5.4)
lZ 4+ X \

hm supeI "<pz)=exp || log
iR

It is easy to modify the arguments in Cheney |1.pp. 194 -- 196]

with equality i Im(z) # 0 or Re(z)
from the real to the Complexu case to show that for complex v. such that

Proof.
Re(r) > —1/2
min  Jlo" — P(o)]|, = (2Re(r) b ] !
degiPyen o U 1",’ “+ ]
Hence
, [ nz+d—j |
e, ={2nRe(z)+2d+ 1) ! H " S|
H :I?"¥d+f+§
Thus
n 'loge,=—(2n) ‘log(2n Re(z)+ 2d + 1)
(0g§rzz+d}~ oginz+d+n—k+1)
Din || (5.5)

4+t

ek
[N
b z+(J+d/n

+n
If Im{z) # 0 or Re{z) > 1. the sum in (5.5) has the nature of a Riemann sum

of a function continuous in 0. 1] and in such a case, we see
|z —x
— | dx.
zZ4+x

lim »n 'log e,,~] log

n—y
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If Im(z) =0 and 0 < z < 1, all terms in the sum in (5.5) are nonpositive and
we deduce that for any » > 0,

i |
n loge,<n ! N log | %=
i i \
bz vt oo
i ‘ - X
+ i log | e dx

ez onoz i | ItX

as n— oo. Using Lebesgue's Dominated Convergence Theorem. we can let
n — 0. to deduce

B
limsupn 'loge, < | log

"o S0

RY N
_ ‘ d_\-_ 0 < - = I.

A

I‘r]

r

and the result foliows. |

Different results concerning ¢,. when z is real. may be found in |6]. The
following theorem gives rates of convergence for equidistant interpelation in
a fixed interval.

THEOREM 5.5. Let f(x) be of bounded variation in |0.x| and
absolutely continuous with respect to a{x). Let f(1)= 7 |df|(1). Re(t) > 0.
Fix positive b and nonnegative a. Let

8]

Ly=at (j—1)b/n. Joe L 2o 100

Let f,(t) be given by (4.4) so that (3.5) holds. n = 1. 2.... Then given i such
that Re(t) > a. we have

limsup | f(£)— /(1) "< plz) < L

where z = (t — a)/b and p(z) is given by (5.4}
Proof. By Lemma 5.1(ii) and Theorem 4.1.

S — S0
<UBN0) + /2 M)t —a)ynb™ ' min || T Qo).

degt@Qys.n- 2

If we use monotonicity of |||, in p, and Lemma 5.4. the result follows. |

For completely monotone functions. we have similarly:
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THEOREM 5.6, Let f(t)=|dal(t), Re(t)>0. Fix positive b and
nonnegative a. Let

ty=a+(j—1yb/(2n). Jj=L2.2mn=112..

Let f,(t) be the exponential sum involving n exponents that interpolates 1o

have

3

lim sup |/ (1) =/, (1)} pi(a)

where z = (t — a)/b and p(z) is given by (5.4).

The above convergence rates improve those of Kammler |5.p. 565] for
individual 1.
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