
Convergence of Exponential Interpolation 
for Completely Bounded Functions 

1. ih.TIWI~I:CTlON 

tn ]5 1. Kammler investigated interpolation hy exponential sums to 
functions J’(l) completeI>, monotone on 10. cc ]. that is. functions,/‘(/) ha\ ing 
a representation 

where (x(s) is real valued, monotone increasing and lim, , , U(S) = 
(I( CC) < cx), We can assume cr(O) = 0. In Theorem 3 of /5 1. Kammlcr proved 
uniform convergence of the interpolating sums in 10. CQ j for quite general 
choices of interpolation points. 

The question arises: To what extent can the positivity of the distributi(~n 
ricl(.~) be relaxed? In this note, the authors show that &x(x) may be replaced 
by a signed or complex distribution @(.ci(-u). provided the exponen’ts of the 
exponential sums are chosen in a certain way. and provided one interpolates 
at a smaller number of points. 

A second question arises: Do the exponential sums converge in the right 
half plane. in view of the analyticity of Lapiace transforms in a half plane? 



In fact. it fofkws from the ~Iliforrn b~~~ndedl~~~~ of the e~p~Jlle~it~~~! hums :!I 
Theorem 3 in 15 / that they converge uniformly in compact subsets of ttlc 
right half plane. Here we prove uniform convergence in unbounded sectors. 

under more general conditions. Further. for certain choices of the inter 

polation points, we establish rates of convergence. 

(ii) /i(.u) is right continuous in jU, rx, ). 

(iii) (1(O) = 0. 

(iv) p(o3) -7 lim, . Ir /i(.u) is a finite complex number. 

We use /Y i.Y). /I’ (.Y). ii’ i.Y)./i, (-1) I.0 denote, rcspecti5~!~. the rc:ii and 
imaginary upper and lower variations of /i(.:-). so that :hc? are nlonotonc 
increasing and right continuous in 10. x ) and 

We assume the four functions are rl~~rrnalize~~ to have the value zero ;tt v  L 0. 

The total variation function of /I(X) is /i!(s) --/I“ (.Y) t ii’ (Y) , ‘if-(.Y; . 
pi (.u). .Y E 10, cr3 1. 

Throughout CA(.V) will denote a functmn of hounded variation III iif. J., , 

that is also reai valued and monotone increasing there. 

DEFINITION 2.2. A function (i(s) of bounded variatton in 10. CC j is said 
to be absolutely continuous with respect to U(X) if there is a (complex 
valued) function ~~~~~(.~), defined for almost all s in 10. FCC ) such that 

except possibly at discontinuities of II( and such that 
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DEFINITION 2.3. We shall denote the Laplace-Stieltjes transform by 1 
More precisely. 

i /da](t) = 1” e ” da(s), Re(r) 3 0. 
0 

is a function completely monotone in 10, co I. while if /I(.u) is of bounded 
variation in 10. GO 1, then we shall say that 

i IdPI = 1-l e ” d/l(s). 
0 

Re(t) 2 0, 

is a function completely bounded in IO. co I. 

D~~t~lNIlrlON 2.4. For II = I. 2. 3 . . . let positive integers /n(n) and inter 
polation points 0 & 1,,, < l,?: K .. < [,r,,i,,i, < cc be given. WC shall say’ I[,,,;,,,, 
is a uniqueness set if there exist numbers iA -) rh \ 0. I, : 1. 2. 3... such that 

(i) the intervals (TV ri. rA + rk). I, = 1. 2. 3..... are all disjoint: 

(ii) if I, = lim inf,, . , i (rh rh. i, + ri) ‘\I It,,, . I,;, I ,:!,,,,,, / . x z 
I. 2. 3 ..,.. then 

c lh(rh ~ ,‘,,)I{ I 1 (Th i r.J’i = 02;. (2.2) h-l 
Here denotes the cardinality of a set. so that I, is an asymptotic lower 
bound for the number of interpolation points in (r,, - rA. TV $ ri). When some 
Ii =: co. the series in (2.2) is interpreted as co. 

!n Theorem 3 of 15 /, Kammler used a restricted form of the above 
uniqueness condition: he assumed all ri = 0 and all I, = I. in effect. The 
tnotivation for the term “uniqueness set” will become clearer in 
Corollary 3.2. For the moment we note: 

LI:MMA 2.5. Let j”(z) he hounded and analj*fic it7 (2: Re(;) :> 01 lt.itlt 
.:croes TV. I, = I, 2. 3.... repeated accorditlg to multiplicit~~. [f 

rhrt7J‘(:) = 0 in (z: Re(z) > O}. 

P my/: See Hille 13. Theorem 19.2.6 I. 1 
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It is easy to see that the following choices of interpolation points all yic!d 
uniqueness sets: 

The last two sets of interpolation pomts do not satisl? the conditions I:! 
Theorem 3 of j 5 j. 

Given 0 c O,, I_ ;T. the sector with Veriex at I). angle ?O,.. tliat I\ s\ mmeti.lC 
with respect to the positive real axis is 

while gi\,en 1. ‘,) 0. we let 

Finall). given a function c:(.Y) defined on j0. I /. tvc UY 

and 

whenever this is defined and finite. 

We first establish a convergence result for Laplace-Stleltje\ transforms 
which is possibly of independent interest. 

THEOREM 3.1. Suppose p(s). /II,,( n == 1. 2.... are comp1e.u reglued 
functions of bounded variation in 10, CC I. Denote their total l,ariation 
functions bl, opt, Gus.. I? = 1. 2.... Assume that 
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for almost all s E 10, co). and 

,fi~ IPI,, = iM(d. (3.IB) 

Let.f(f) = J I@](t) and,f,,(t) = / Id/l,,/(t), Re(t) > 0 and n = 1. 2.... Then 

lim J;,(t) =f(r). 
I, . I 

Re( t) > 0. (3.2) 

and the convergence is uniform in 1 (tl,,) for any 0 < 8,, ( ~t/2. If only (3. IA) 
holds,for almost all x E 10, co). and sup,, ~~~,,(a~) < so. then 

ii: S,,(t) =A[). Re(t) > 0. 

and the convergence is uniform in / (fl,,. t:) for at?>- 0 < 8,, < x/2 a& c > 0. 

Pro@: The convergence (3.2) is an immediate consequence of Helly’s 
Convergence Theorem (Freud 12, p. 56 I), of (3. IB). and of the uniform 
boundedness of e ” for Re(t) 3 0 and s > 0. Assuming (3. IA. B) we shall 
prove uniform convergence in 1 (N,,) for fixed 0 < H,, < n/2. Let q > 0. 
Firsti!,. we can choose 0 < S < T < cc: such that (3. IA) holds for .Y = S. 7‘ 
and 

I-’ d(~Pl(s) + i/L,,(s), < q-/2. Iz > 3%‘. (3.3A) 
0 

.I;’ 4Pl(-u) + lBl,,(.u,) < q/2, ,I > &‘. (3.3B) 

Here ,Y is a positive integer and we have used (3. IA, B). Then we see by 
(3.3A. B). 

..\ 
I e ‘\ d/l(x) -- 1.’ 2 ‘-’ d/l,,(x) 1 
0 0 

., 
f ( 

.I 
e ” dKB(.u) ~~ 1. ’ e ” d/l,,(s) ~ < rl. 

. I 

Re(t) >, 0. (3.4) 

Next for t E / (0,,) and .Y E IS, TI, we see 

/ le ‘.‘I < sec(O,,) Re(t) e ‘I”‘) ’ 

< sec(0,) max(ue I’.’ : u > O} 

= sec(Q,,)(ex) ‘. 
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Then integrating by parts, WC have. for all I E ’ (H,,). 

< #YT) -- P,(T)1 + @@I -. fl,,iSi 

Jr sec(H,,) 1” (es) ’ l/l(x) /l,,(x), ds. 
.S 

(3.5) 

The right member of (3.5) is independent of f and converges to 0 as II 3 ‘X 
by Lebesgue’s Dominated Convergence Theorem and our assumptions on S 
and T. Then by (3.4) and (3.5), we obtain for all large enough II. and for ail 

f E ’ (4,). 

if(f) -J;,(fji = / jj( t .i/ -t-j’ ’ j c ” d(~~(.sj - /Y,,(.s)f / 
8, \ i 

This completes the first part of the theorem. 

Remark. When (3.1A) holds for almost all .Y E 10, cc) but (3.1B) does 
not. then there is no longer necessarily uniform convergence in / (H,,) nor 
even convergence for Rr{f) = 0. as shown by the following example: Let 
d/In(s) be a Dirac delta of unit mass at x = II, II = I. 2.... and II =: 0. 
s E 10. co 1. Then f,(f) = ;/ I@,,l(t) == t7 ‘I’ and j;,( I/n) = P ’ and S,,(O) = I. 
fz = 1. 2.... whileJ(r) = 0 soJ,,(t) does not converge uniformly in ’ (H,,) and 
f,(O) does not converge to.f(O). 

Finally. suppose (3. IA) holds with sup,! [jY,,(a, ) < co. and lix 
0 < N,, < 7r/2 and c > 0. We write 

l./‘(f) -J;,(f) = j 1.1;: + 1;’ / e ” d(p(.s) .- /i,,(x)) j 

and use (3.3A) to estimate ,ii 
integration by parts to deduce 

. . . as before. For the second integral we use an 



191 EXPONENTIAL INTERPOLATION 

Further. we use the estimate 

I te I/ < sec((gJ Re([) e- Rc(rl 1 ?e IlC(ll \ ? 

< 2 sec(B,,)(ex) ‘. f E f (H,,. r:). 

and the result follows as before. I 

The following corollary generalizes and strengthens Theorem 3 in 
Kammler 15 1, 

COROLLARY 3.2. Let f(t) = 2 [da i(t). Re(r) >, 0, I;‘ot II = 1. Z... kr 212 
iriterpolat~o~l points 0 < I,,, < tnz < ... < trr.?,, he gicerr and assume if,,, j,,,, is 
a uniqueness set. Let f,(t) be the real exponentiai sum inpolt>ing II exponetlts 
such that f,,(t,,i) =f(t,;), j = 1. 2... 2~: tl = 1. 2 . . . . The,? 

Iim f,,(t) =.f(fL I2 . I Re(r ) 2 0. 

and the comergence is ut~~@mn in the unbounded sector f (tl,,) jbr auj> 
0 < H,, < 7112. 

ProoJ in Lemmas 4 and 5 in 141, Kammler shows that J,,(r) = 
J lda,/(r). n = 1, 2. 3..., where u,,(s) is of bounded variation in 10. co 1 and 
is. further, real valued and monotone increasing with 

am,, < dco). r1 =- I, 2.... (3.6) 

(His notation is different.) By Helly’s Selection Theorem (Freud 12. p. 56 I). 
we can find a sequence of integers i and a monotone increasing function 
j(s). also of bounded variation in 10. co 1, such that 

for almost all .Y E IO. 03 ). 

Then by Theorem 3.1, 

lim f,,(t) = I/ IdTl(t) = g(t) 
,I-+ I 
,IF I 

uniformly in / (e,,. F). (3.7) 

any I: > 0. 0 < B. < X,/Z. Now let /7ki and {rkj be as in De~n~tion 2.4. Fix a 
positive integer k. By hypothesis f(l) -.f,,(t) has at least I, zeroes in 
(rh - rk, rk t rk) for large II. Then by Hurwitz’ Theorem. .f’(r) -- g(t) has at 
least I, zeroes. counting multiplicity, in (2: /z - rI, / ,< r,}. in view of (3.7). 
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These zeroes have real parts &r, ~ rk. and moduli <r, + ri,. Thus if z,. 2 ,.., 
are the zeroes off‘(r) g(r). 

by (2.2). By Lemma 2.5. 

A’ Id(tr -~ Al(r) =.f’(f) ~~ ,$!(I) 0. Re(r ) /; 0. 

and by Theorem 19.4.2 in Hille 13 I. u(.Y) = ;y(.\-). Since the same argument 
applies to all subsequences of ( I. 2. 3... 1 we have shown 

Finally. for almost all .V \ 0. (3.6) yields 

(I( co ) 3 lim sup (I,,( cc ) 3 lim 111f (I,,( m ) 4 lim n),(.~) --~ (I(.\.). 
I, i ,I r 9 ,, I 

and letting .Y + co. we obtain 

Thus (3.1 A. B) hold for /I = (1. ii,, ::- (I,,. 17 =- I. 2.... and the result I’ollo~vs 
from Theorem 3.1. I 

4. COMPLE:I-I:I.Y BOUNI)I:I) FUN<‘ I IONS 

First we establish the existence of exponential sums invoiv ~ng /i exponents. 
which interpolate to completely bounded functions i Icl,fjl at 17 points. and 
for which the sum of the moduli of the “weights” is bounded independent of 
II. It is interesting to note that both the exponents and interpolation points do 
not depend on the distribution @(x). 

T~MIREM 4. I. Let /l(x) be oJ‘ bourded ruritrtinf7 irf /O. m  / trd 

absolute!\, continuous with respect to a(x). Let 
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fn;=l,t’ + (j- I)h,,. j = 1. 2... 17. (4.1) 

Let 0 < u,,, <U,,? < ... < u ,,,, < 1 be the abscissas in the Gauss-Jacobi 
quadrature qf order n for dy,,(u) and let 

,P,,; = - (log a,,j)/h,, * j = 1. 2... I?. (4.3 1 

m,,,) =A(,,,). j = 1. 2..* I?. (4.5) 

Ulld 

Proof: Firstly 

(4.71 
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and where we have used (4.2). Note that 

(4.8 I 

Now as -3 
abscissas T’. kch that 

u 1s monotone increasing, there are positive weights A,,, and 

11, 

whenever P(o) is a polynomial of degree at most 2n ~~~ I. Further. ;.I,,(u) 
generates a sequence of orthonormal polynomials and N(a) has an (formal) 
orthonormal series expansion in these polynomials in view of (4.8). Let s(a) 
denote the partial sum of the first II terms of this expansion. so that s(d) is a 
polynomial of degree at most 12 I. Let 

II’,,, -- i ‘,,, s(u,,,) e”tlm’tJ’. .j = 1. 2... tl 

Then ifJ;,(O is given by (4.4). 

(by (4.3)) 

=- 1” s(a) (7’ ’ d;~,,(cJ) 

(by (4.9) and as s(u)u’ ’ has degree $2~ 2) 

(as N(a) ~~ s(a) is orthogonal to 1, O, O’ . ci” ’ ) 

-f(l,,,). j = I. L... I?. 

by (4.7), so establishing (4.5). Next we prove (4.6). By the Cauchy-Schwarr 
inequality 
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by (4.3). (4.9) and as Is(a = s(a)c((a) is a polynomial of degree at most 
217 - 2. Next, the function g(a) = u *‘~~I’~~ has all its even order derivatives 
non-negative in (0, 11. By an inequality of Shohat (Freud 12. Lemma 1.5. 
p. 92 1). 

by (4.2). Further. by Bessel’s inequality (Hille 13, pp. 328-329 I). 

Finally. (4.8), (4.10). (4.11). and (4.12) yield (4.6). 1 

Note that having fixed the exponents ,u,,~, the existence and uniqueness of 
J,,(t) satisfying (4.4) and (4.5) follow from the fact that {e ‘“nll,.... e “‘,1~~) is a 
Chebyshev system. However, the essential feature of the above theorem is 
that the bound in (4.6) is independent of n and the interpolation points. The 
above result is connected to the theory of “product integration” rules (Sloan 
and Smith 181) but we shall not expand on this. 

THEOREM 4.2. For each positive integer II, let non-negative t,,, and 
positive h,, be given and define t,,, . j = 1, 2... II, bjs (4.1 ). Assume It,,, iii,, is u 
uniqueness set. Further, let f(t),f,,(t) be as in Theorem 4.1 so that (4.5) 
holds. n = 1. 2.... Then 

p+y f,,(t) =.f(t). Re(t) > 0. 

and the convergence is uniform in the unbounded sector / (0,). c) ,for arq- 
0 c 8,, < n/2 and t‘ > 0. 

Proof: Let /I,(x) = x:,,,,, ,. M’,,~, .Y E 10, co I, n = 1. 2 . . . . so that 
f,(t) = 1 Id/l,,](t), n = 1. 2 . . . . Let /I:,’ (x), pi; (s). /I:,’ (s). /I:, (s) denote. 
respectively. the real and imaginary upper and lower variations of /i,,(s). so 
that. for example, 

p;‘(x) = \‘ Re(w,;). x E IO. co I, n = 1, 2 . . . . 

as in Definition 2.1. Then if ip~,,(.x 
see 

) is the total variation function of p,,(s). we 

llm(w,j)l) G d2 ;‘- / Il.,,jl < J2 r. -, 
I 
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II = I. 2. 3... by (4.6). By Helly’s Selection Theorem. we can extract a subse 
quence of integers I and monotone increasing functions ;I” (s). ;I’ (.Y). 
;ji ’ (s). )ri (I) which are. respectively, the limits of PA’ (s). /I:, (s). /i:,’ i.\-). 
pi, (.u) for almost all x E (0, co) as II ~+ co. II E. f This defines a function 
;*(s). and its total variation function )‘~ as in Definition 2. I. Let 
g(f) = 1 Id;*](t). Re(t) 3 0. As 

lim p,,(x) : ;ti$~). lim I[) ,,(s) = 1 ;I (.\ J 
,, 1 , ,I f I 
,ic I !,. I 

for almost all .Y E 10. 00). Theorem 3. I shows 

lim ./At) = g(f). ,I . , 
,,t 1 

Re(f) > 0, 

the convergence being uniform in / (H,,. t:) for any 0 < H,, K n/2 and L ,\ 0. 
As in Corollary 3.2. we deduce g(f) -.f(r) and II(S) -D(.u). and the proof is 
completed as in Corollary 3.2. 1 

Theorems 4.1 and 4.2 show that ifj‘(t) is completely bounded in 10. CL i. 
then it is the limit in (0. cu) of a sequence of exponential sums 

J;,(f) = ;‘- ,(‘,,, e ‘I,,,’ : <. -, 1 lb‘,,,1 $. I’. /I = I. 2.... (4.131 
-1 i I 

Conversely. if j’(1): 10. co) + is the limit of ii sequence of sums ,/i,(i) 
satisfying (4.13). then it is easily seen using Helly’s Theorem that ,/‘(f J ii 
completely bounded in IO. co I. 

Nira Dyn of Tel Aviv Universit!, has informed the authors (oral 
communication) that provided d/I(x) is real. it is possible to obtain 
convergent exponential interpolation for other choices of exponents and 
interpolation points. 

5. RATES OF CONVEKG~,NCI: 

When the interpolation points are equidistant and satisf!, certain 
asymptotic assumptions, one can establish rates of convergence of I,,(() to 
J’(r) using standard theorems on the degree of approximation by polynomials. 
It is also possible to establish convergence rates using complex anai!,sia 
methods from the theory of rational approximation. However. for simplicity. 
we omit the latter. Our analysis is based upon: 
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f(f) = / IdpI( g(f) = Y (dy](t), Re(r) > 0. Lef a, h > 0 and /I be a pusifil~ 
integer. Let fi = a + (.j - 1) h.j= I. 2... II. Assume ,T(r,) = g(l,). j = I. 2... I?. 
Therl 

(i) !f(O -s(f)1 < (IPI + lgl(oo)) ilo” I” h - P(a)ll, . Re(r) 2 a. 
rilhenez,er P(o) is a po!lwornial of degree at mosl II - 1: 

(ii) If(t)-g(t)! ,< (ED] + IT~(~I))I~-u~ h “1.” “’ h ’ ~ Q(a)i’,. 

RI:(~) > CI. 

whenecer Q(u) is a pobnomial of degree at most II -~ 2. 

Proq/!f: 

,f(f) -g(t) = 1.’ (e ‘?‘)I’ “’ ’ e “’ d(/l -- ;J(s) 
. 0 

= 1” 0” I’) ‘I dA(rr). 

A(~) = 1.’ e “‘d(j3 --- ;q)(s). u E 10. 1 I. 
(loeul h 

in particular. 

0 =.f‘(fi) ~ g(fi) = 1” d ’ dA(a). j = I, 2... 17 
0 

Then if P(u) is a polynomial of degree at most II ~ I. 

If‘(r) ~~ g(f)1 = .I:; (a” “’ ” ~ P(u)) dA(u) j 

(5.1) 

< /lo ” (” ” ~ P(u)l, , ~A ~( 1 ). 

Hut (A (1)G.I‘; e “-‘d(jpi + Iyi)(x) < I/II(a) + ;ll(no) and (i) follows. To 
obtain (ii). we integrate (5.1) by parts: 

I.f’(r)-s(t)l<ll pp(I)I lP(l): 

+ .I:: I (f -- a) h ’ cr” ‘r”h ’ ~ P’(u)1 id(u)1 da. 

Given any polynomial Q(u) of degree at most II ~ 2, let 
f(u) = (t ~ a) h ‘{;I Q(u) du + C. where C is chosen so that P( 1) = I. Then 
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we obtain if(t)-g(t)/Qr -aih ’ iili(f)j’:,ldr “)” ’ Q(c)~du and (ii) 
follows. I 

First we obtain rates of convergence for interpolation at equally spaced 
points with fixed stepsize. 

THEOREM 5.2. Let ,6(x) he qf bourlded t*ar-iation i/l 10. m 1 atrtr’ 
absolutel~~ cor?tinztous trlith respect to a(.~). Let J’(t) = J ld/.fl(t). Re(t) gz 0. 
Fix positire h and norrnegatiw a. Lrr t,,, -= a 1 (i I rh. j :~~ I. 2.. 11: 
n =~ 1 7 . -.... Let./;,(t) be gicetl bj, (4.4) so that (4.5) holds. II :. I. 2.... Thrn i/ 
y = (Re(f) a)//? ? 0. 

*J(f) -‘,f;,(t)i -O(n “1 as I? +a. 

Prooj: Let z = (I - a)ih so that q -- Kc(;). Let 1 be the largest integer +ri 
and let ?/ -- ; 1. By Lemma 5. I (i ) and Theorem 4. I. we ha\ e 

Now d’/du’ ‘,a- / = z(z 1 ) 1.’ 1: / ! I ) 0;” 1s bounded 111 IO. I / and I’urthcr 
belongs to Lip(y -~ /) in 10. 1). For. if 0 c: n C, CC c 1 and o’ ;; 1.5~. then 

and the result cow follows from (5.2) and (5.3). 1 

In the same way. one obtains: 
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Let .f,,(t) be the exponential sum inzwlcing n exponents that interpolates to 
,f(t) at t = tni. j = I, 2... 2n. n = I, 2 . . . . Then if q = (Re(t) - a)/h > 0. 
I./It) -f,(t)1 = O(n -“) as II -3 co. 

LEkwr\ 5.4. Let 2 E :I satisfy Re(z) > 0. Let d be reaf and a 
nonnegatice integer k be given. Then if 

iim sup eiT ” <p(z) = exp i 1.’ tog 
II t I 1. 0 

il+rh equalit!. [j” Im(z) # 0 or Re(z) > 1 

Pm$ It is easy to modify the ar~umerits in Cheney / 1. pp. 194 -- 196 j 
from the real to the complex case to show that for complex 11. such that 
Re(r.) b -- I /2, 

,,$J$,, l/u -- P(a)ll, = (2Re(4 + 1) ’ ’ ]“I 
L>-.j 

, (, / I’ +.j -; 1 : . 

Hence 

c,, = (20 Re(z) + 2ti +- 1) ’ ? 

Thus 

I? ’ log err = ---(2/I) ’ log(2n Re(i) + 2d + I ) 

t tl I( log j IZZ t di - log ; LIZ + d + it - k + ! f 
h z - (j - d),‘n i 

tog -y-! 
I / z + (J + d)/n / . 

(5.5) 

If Im(z) # 0 or Rejz) > I, the sum in (5.5) has the nature of a Riemann sum 
of a fuI?~tion continuous in 10. 11 and in such a case. we see 
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If Im(z) = 0 and 0 < z < 1, all terms in the sum in (5.5) are nonpositive and 
we deduce that for any 11 > 0, 

as II + co. Using Lebesgue‘s Dominated Convergence Theorem. \cr: can let 
,I+ 0. to deduce 

and the result follows. 1 

Different results concerning r,, . when z is real. may be t’ound in j h j_ The 
following theorem gives rates of convergence for equidistant interpolation in 
a fixed interval. 

i,,i : LI t (j 1 ) b/n. ,; 1. 2.. n: I? 1. 2 

lim sup if‘(f)-f;,(r),’ ” <p(z) \ I. 
,I ‘I 

wAere z = (t ~ a)/b and p(z) is ginw Hal (5.4). 

ProoJ By Lemma 5.1 (ii) and Theorem 4. I. 

If we use monotonicity of 11. in,, in p. and Lemma 5.4. the result follows. m 

For completely monotone functions. we have similarly: 
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THEOREM 5.6. Let f(t) = Y’Ida](t), Re(t)> 0. Fix posit& h and 
~o~~~~~gati~~ a. Let 

r,,j = a + (j- 1) P!?/(2n), j = 1, 2... 2~; n = 1, 2 ,.... 

Let f,,(t) be the exponential sum involuing n exporzents that interpolates to 
S,,(t) at I = trli, j = 1, 2... 2n: II .= 1, 2 .._. Then gicsen t slrch that Kc(t) > a. n,e 
har>e 

where z = (t - a)/b and p(z) is giuen by (5.4). 

The above convergence rates improve those of Kammter 15. p. 565 / for 
individual 1. 
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