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ASYMPTOTIC EXPANSIONS OF MELLIN TRANSFORMS
AND ANALOGUES OF WATSON’S LEMMA*

AVRAM SIDIf

Abstract. In this paper the asymptotic behavior of the Mellin transformf(x)=f if(t) dt of f(t), for
x--, + , is analyzed. In particular, it is shown for certain classes of functions uk(t), k=0,1,. -, that form
asymptotic sequences for t +o, that if f(t)---Ek=oA,uk(t) as t +o, then f(x)-E=oA(x) as
x---, + o. In this sense the results of this paper are analogues of Watson’s lemma for Laplace integrals.
Several illustrative examples involving summation of everywhere divergent moment series and special func-
tions are appended.

1. Introduction. Let f(t) be a function that is locally integrable for 0 < < +
such that, for some real constant o, t-lf(t) is absolutely integrable in any finite
interval of the form [0,a], and

(1.1) f(t)=O(t-’) ast +, any/>0.

Then the Mellin transform/(x) off(t), defined by

(1.2) f(x)=fotX-lf(t)dt,
exists for all sufficiently large x.

The purpose of this work is to give an asymptotic analysis of f(x) for x + .
Surprisingly, this problem does not seem to have received much attention. Doetsch [2,
Vol. 2, Chap. 5] has considered the problem of analytic continuation of the Mellin
transform beyond the strip in which its integral representation converges, and has
obtained results on the singularity structure of it. Riekstin [8] has considered the
asymptotic expansion of the inverse Mellin transform. Wagner [11] has obtained some
Tauberian theorems for Mellin transforms. Handlesman and Lew [3], [4], [5] have used
techniques involving the Mellin transform for obtaining asymptotic expansions for
other integral transforms.

The results of this work can be summarized in an informal way as follows.
Consider the sequence of functions { Uo(t),u(t),... } and the sequence of the corre-
sponding Mellin transforms { ft0(x), ftl(X), }. Assume that

Uq(t)(1.3) lim -0 q>k k=0 1

and

(1.4) lim q
=0 q>k k=0 1
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i.e., that (Uo(t),ul(t),... } and (/0(X),/I(X),""") are asymptotic sequences as t
+ and x --* + oe respectively. If the function f(t) has an asymptotic expansion of the
form

(1.5) f(t)--, E Akuk(t) as t- +m,
k=0

then, for some choices of the u(t),f(x) has the asymptotic expansion

(1.6) f(x)-- E A,ft,(x) asx + ,
k=0

i.e., the asymptotic expansion of f(x) is that obtained by taking the Mellin transform
of the right-hand side of (1.5) term by term.

In the sense of (1.5) and (1.6) the results of the present work are analogues of
Watson’s lemma for Laplace transforms. Recall that essentially Watson’s lemma con-
cerns sequences (Wo(t),w(t),... }, where w(t)=t k, k=0,1,..., and -1 <Re3,0<
Re3,1 <’", and states that if the function g(t) has an asymptotic expansion of the
form g(t)-- Ek__oBkwk(t) as --+ 0 +, then the Laplace transform g(s)= f e-Stg(t)dt of
g(t) has the asymptotic expansion g,(s)--E__oBk(s) as s--, +m. For Watson’s
lemma and its generalizations see Olver [7].

The use of the asymptotic expansion of f(t) as --, + oo to obtain that of f(x) as
x --, + oo can be heuristically justified as follows. Consider the integral

(1.7) I(b;x)=fo’tx-lf(t)dt, 0<b< + o.

Making the change of variable of integration = log(b/t), (1.7) becomes

(1.8) I( b; x)= bXfoe-Xf(be-) d.
Now the asymptotic expansion of I(b;x) for x---, + oo can be obtained by expanding
f(be-f) asymptotically for ---, 0 + and applying Watson’s lemma or its generalizations.
But expandingf(be-) for ---, 0 + is equivalent to expandingf(t) for t---, b-. This and
the fact that f(x) I( + m; x) suggest that one should consider expanding f(t) for
--+ + m in order to analyze the asymptotic behavior off(x) for x --, + m.

Finally note that by making the change of variable of integration t=e -n, (1.2)
becomes

(1.9) f(x)= e-Xnf(e-n)dn,

which is a two-sided Laplace transform. Hence, our results carry over to such trans-
forms naturally. This point has been noted by various authors.

The main results of this work are given in the next section. These results are
illustrated in {}3 with examples that involve the summation of everywhere divergent
moment series and some special functions.

2. Main results. Let the function f(t) be as in the first paragraph of {}1., In
Theorems 2.1 and 2.2 of the present section we show that for some choices of the
functions u(t), k=0,1,..., the sequences {uo(t),u(t),... } and {ft0(x),ftl(X), }
are asymptotic sequences as + oe and x + oe respectively, and that (1.5) implies
(1.6). In the proofs of our results we make use of the following simple observations.
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LEMMA 2.1. For any fixed T> 0

(2.1) t-tf(t)dt=O(T) asx +m.

Proof. (2.1) is a consequence of the assumption that, for some real constant ,
if(t) is absolutely integrable in any finite interval of the form [0, a]. c3

LEMMA 2.2. Assume (Uo(t),u(t),... ) is an asymptotic sequence as t + z and
f ) has the asymptotic expansion in (1.5). Set

n-1

(2.2) r,(t)=f(t)- Y’ AkUk(t ), n= 1,2,’’’.
k=0

Then for each positive integer n, there exist positive constants K and T that depend only on
n, such that

(2.3) Ir,(t)[<K[u,(t)[, t> Z.

Proof. (2.3) follows from the fact that limt__, +[r,(t)/Un(t)]=A, which in turn is
a consequenceofr(t)=A,u,(t)+O(u,+(t))ast + and (1.3). rq

TI-IF.OM 2.1. Let

(2.4) uk(t)=t-Xexp(--akt#), k=0,1,.-.,

where

(2.5) ,kreal, Reak>O, k=O,1,..., 0<0<__1<__2<__

when k < q, flk flq implies either one of the four combinations (a and c),
(a and d), (b and c), and (b and d), with

(2.6) a) Reak< Reaq, b) Reak=Reaq and Xk <,q,
c) Ictgl<lCql, d) lakl--laql and Xg <q,

and no restrictions are imposed on h k and ak when flk < flq" Then ( Uo (t), Ul(t), } and
( ho(X),(x),... } are asymptotic sequences as + and x + respectively. If,
for any nonnegative integer n, there exists an integer N> n, such that

either a) fin < fin
(2.7) or b) ft,=fiN and la,l< ReaN,

or c) n=N Ia,l=ReaNandX,ZXu

then (1.5) implies (1.6).
Proof. The first part of the theorem is a direct consequence of (2.4)-(2.6),

(2.8) k(x)=fla(x-X)/Br( X--k )
and Stirling’s formula for the gamma function.

For the second part of the theorem it is sufficient to show that, for each positive
integer n,

(2.9) ,(x)=O(,(x)) asx +,

where r,(t) has been defined in (2.2). For a given positive integer n, let N be as in the
statement of the theorem. Then by Lemma 2.2 there exist positive constants K and T
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that depend only on N, hence only on n, for which IrN(t)l<_KlUN(t)l when t> T. Now
for sufficiently large x

N-1

(2.10) N(X) x-lf(t)dt- , A/ tx-lu/(t)dt+ tX-lru(t)dt.
k=0

Each one of the integrals ftx-f(t)dt and ftX-uk(t)dt, k=0,1,...,N- 1, is O(T)
as x + , by Lemma 2.1. Furthermore,

(2.11) f:tx-’r(t)dtf:tx-’lr(t)]dtKf:t-’]u(t)ldt
<r t-lus(t)ldt=Kfl(Reas)-(x-x)/aF X--XN

N
Invoking now (2.7), (2.11) can be replaced by

(2.a2) f:t-ru(t)t o(.(x)) as x + .
Thus (2.10) becomes

+

by (2.8) and Stirling’s formula. But

N-1

(2.14) ,(X)=N(X)+ A(x),
kn

and (x)=O(,(x)) as x+ for each kn since (o(X),(x),...) is an
asymptotic sequence as x + . Combining this and (2.13) in (2.14), (2.9) follows.
This completes the proof of the theorem.

The special case of (1.5) with u(t) as given by (2.4) in Theorem 2.1, such that
ak= ak+ and k +a for all k =0,1,. ., is of importance, and we turn to this case
in Theorems 2.2 and 2.3 below. We first note that for this special case u(t) is of the
form

(2.15) uk(t)=t-Xkexp(-ata), k=0,1,...,

and, consequently

-X)(2.16) a(x)=B-l-(-x)/aF fl
k-0,1,..-

THEOREM 2.2. Let u,(t) and ft,(x) be as in (2.15) and (2.16), where a, fl and are
all real, and

(2.17) a>0,fl>0, 0<x<?2<....
Then (Uo(t),ul(t),... ) and ( fto(X),f(x),... } are asymptotic sequences as t + c
and x + respectively, and (1.5) implies (1.6).

Proof. We observe that, with the present u(t), all the conditions of Theorem 2.1
are satisfied with ak =a, flk =/3, k =0,1,. ., and with N= n + 1 for each nonnegative
integer n. Therefore, Theorem 2.1 holds. This proves the theorem. D
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If a in Theorem 2.2 is not real, then the proof of this theorem is no longer valid
since (2.7) is not satisfied for any N> n. However, different arguments establish
essentially the same result when a is complex with positive real part if f(t) satisfies
further conditions in the complex t-plane. This is given in Theorem 2.3 below.

THEOREM 2.3. Let Uk(t ) and k(x) be as in (2.15) and (2.16), where is now
complex, and

(2.18) Rea > 0, >0, Xo<X <X2<....
Then (Uo(t),Ux(t),... } and (0(x),x(x),... } are asymptotic sequences as too
(along any path in the complex t-plane possibly cut along the negative real axis) and
x + oo respectively. Denote 0 arg t, 0 arg a, 01 min(0, o/fl), and 02 max(0,
w/fl). Assume that for some To> 0 and > 0 the function f(t) is analytic in the set
D { :It[ > To, 0 S }, where S (01 , 02 + ), and that

(2.19) f(t)-- AkUk(t ) as toO, OS.
k--0

If, in addition, for sufficiently large x

(2.20) lim [ tx-lf(t)dt=O,
R- aL(R)

where L(O)- { oe i, 0 goes from 0 to o/fl }, then (1.6) holds.
Proof. As in Theorem 2.1, the first part of the present theorem is a direct conse-

quence of (2.15), (2.16), (2.18), and Stirling’s formula.
To prove that (1.6) holds we proceed as follows. Since f(t) is analytic in D and

satisfies (2.20), we can write

(2.21) f(x) (for+ fL(ro fc))+ tx-Xf(t) dt,

where C= { t: oe-0/t, O goes from To to + oe ). By Lemma 2.1

(2.22) frtx-Xf(t)dt=O(r) asx + oo.
a0

Similarly, by analyticity properties of f(t),

(2.23) fg
(To)tx-lf(t)dt]---( 01max_<0_<02 If(Tei)[) T"

Now the integral along C can be reexpressed as

(2.24) tx- Xf ) dt= e-i’x/B ox- Xf ( oe-i’o/B ) do,
ro

and the function F(o)=f(pe-/) satisfies

(2.25) F(p)---exp(-[alO) , Akexp,
k=0

as p oe
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by (2.19). Thus the function FI(p)=H(p- To)F(p ), where H(y) is the Heaviside unit
function, satisfies all the requirements of Theorem 2.2. Consequently

(2.26)

asx

where

(2.27) bk(X)=g_llal-(x-X,)/tF(X_--X,)g k=01"",

Combining (2.22)-(2.27) in (2.21), (1.6) follows. D
Remark. In Theorem 2.3, if we assume that (2.19) holds uniformly for 0 S, then

(2.20) is automatically satisfied. To see this observe that, under this condition, there
exist positive constants K and T> To independent of t, such that

(2.28) If(t)l<Kluo(t)l, t> T, OS.

Thus, for R > T,

(2.29) fL tx-lf(t)dt
(R)

KRX-xofexp[- lalRcos(o + BO)] dO.
’01

But for 0[01,02] we have Ito+flOl<lol<r/2, thus cos(o+fl0)>cosco>0. Conse-
quently

(2.30) ft.(R)tX-f(t)dtl<-K Rx-xexp(- la[Rcs)’

and (2.20) follows by letting R ---, oe.
The corollary below gives a reformulation or rearrangement of the asymptotic

expansion in (1.6) when uk(t ) are as in Theorem 2.2 or Theorem 2.3 and (Xk+ 1--Xk)/fl
is a fixed rational number for all k= 0,1,.-.. The form of the asymptotic expansion
that is given by this corollary is more familiar and revealing than (1.6) itself, and we
make extensive use of it in Examples 2-5.

COROLLARY. Let p and q be two positive relatively prime integers, and let

P(2.31) tk+ )tk -/ k=0,1,.-.,

in Theorem 2.2 or Theorem 2.3. Then there exist constants Bj, j=0,1,..-, such that, for
any positive integer n,

fl j=o
x--q + 0 asx-+oe,

with Bo Aofl- laXlB.
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Proof. Starting with (2.9), we have, for any positive integer n,

(2.33) f(x)=fo(X) Ak fo(X------ Uo(X)
asx + m.

Making use of (2.31) and the formula (see [1, formula 6.1.47, p. 257])

(2.34) zb-a F(z+a)"l+ E c asz--*o,
r(z+b) j= z

where cj are constants independent of z, we have from (2.16)

(2.35) r((x-
 o(X)

X kp/q E dk___
j=0

xg
as x ---) +00,

where dkj are constants independent of x. From (2.35) it also follows that

(2.36) lo(X) O(x-np/q) as x

Combining (2.35) and (2.36) in (2.33), (2.32) follows, t
Finally we can introduce integral powers of logt in the functions u(t) and still

retain Theorems 2.1-2.3. The only additional results that one needs for proving this are

(2.37) tx-(lgt)mexp(-at#)dt= -x
and the asymptotic behavior of the psi function and its derivatives (see [1, formulas
6.3.18, 6.4.11, pp. 259-260]). We shall not pursue this further, as the results and the
techniques for proving them are now obvious.

Note also that all the results of this section hold true if the integral f tx-lf(t)dt
is replaced by fa tx-lf(t)dt for any a>0, as the proofs depend solely on the asymp-
totic behavior of f(t) for + or 0 in a sector in the complex t-plane. We have
already used this in the proof of Theorem 2.3, and shall use it in some of the examples
in the next section.

3. Examples. We shall illustrate the results of the previous section by several
examples. The first example is a straightforward application of Theorem 2.1. The
second example arises in applying the T-transformation of Levin [6] to the partial sums
of the everywhere divergent moment series

(3.1) H(z).-- _, .__! aszo,
i=1 z

where

(3.2) H(z)= fo w(t)
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and

(3.3) li w( t)ti- dt, i=1,2,....

Ultimately, one is interested in the asymptotic behavior of the partial sum r-i/zii-- as
r . It is easy to show that

r-lX/;=H(z)-lfoW(t)tr-1(3.4) - -f/- d
i= Zt zr

The integral on the right is simply a Mellin transform, and the problem is to find its
asymptotic expansion as r--, m. This integral is actually related to the converging factor
for the series in (3.1). In [10] the cases w(t)= tVe -t, 7 > 1, and w(t)= tVEm(t), T > 1,
7 + rn >0, where Em(t is the exponential integral, were considered. The results of [10]
were used in [9] in the derivation of new numerical quadrature formulas for infinite
range integrals with w(x) above as the weight functions. For further details see [9], [10].
Finally, the rest of the examples deal with some special functions when their orders
tend to infinity.

Example 1.

le- ct

dt, Rec>0.(3.5) I(X)-- -1- ze_
Here f(t)= e-Ct/(l ze -t) satisfies all the requirements of Theorem 2.1 with Ak= z k,
k=0, ak=c+k, ilk =1, k=0,1,.... Hence

zk
(3.6) I(x)-- r(x)

=o

It is worth noting that for Iz[ < 1 this series converges and can be replaced by =. For
Izl> 1, however, the series diverges, but by Theorem 2.1, it represents I(x) asymptoti-
cally as x . A special case of this example is I(x)= F(x)’(x), where ’(x) is the
Riemann Zeta function, and is obtained by setting c 1, z 1.

Example 2.

(3.7) I(x)=f0 tX-lw(t)
dt zi [0 )

z-t

We assume that

Ck(3.8) w(t)--e-’ E k+o
ast+.

k=O

Therefore,
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where Ak(z) are polynomials in z. Thus f(t) satisfies all the conditions of Theorem 2.2
and the corollary, with a 1, fl 1, X k k + o + 1, k 0,1, . Hence

(3.10) I(x) F(x o 1)E
Bj(z)

asx +,
j=o xJ

where Bj(z) are polynomials in z, and are independent of x. The B(z) can be
determined in terms of the ck and z, but we shall not go into this. Furthermore, this
expansion is valid for all z ff [0, m).

For the cases (a) w(t)= tVe -t, and (b) w(t)= tVEm(t), where Era(t)= f e-ty/ymdy
is the exponential integral, (3.8) holds. For (a) (3.8) holds with o=-7 and Co= 1,
c,=0, k>l. For (b) (3.8) holds with o=-7+1 and Ck--(--1)k(m)k, k=0,1,.-.,
where (m)k is the Pochhamer symbol, see [1, formula 5.1.51, p. 231]. Using entirely
different techniques, in [10], (3.10) was shown to be valid for all z ff [0, m) for case (a)
and for z with Rez <0 for case (b). It is now obvious that (3.10) is valid for all
z [0, m) as long as w(t) satisfies (3.8).

Example 3. Asymptotic expansion of K(z) as , + m.
Here Rez>0 and K(z) is the modified Bessel function of the second kind of

order , and has the integral representation, see [1, formula 9.6.23, p. 376],

(3.11) 7/’1/2(Z/2)" fm -zt 2

?(;;-1-- e (t 1) -1/2dt.

Making the change of variable or integration 2-1 2, we have

(3.12) G(z) e-Zt(t 2-1)"-l/2dt

=Lexp[-z(1 +a)l/21

Now

(3.13)
exp[-z(l+2)1/2]

(lq-2)1/2

It is not difficult to see that the term inside the curly brackets has a convergent
expansion of the form

exp(z [f- (1 + f2)1/2]) A(_iz)(3.14) q(f; z)
(1 + 1/2)1/2

k=0
f> 1

with A(z) being polynomials in z and A0(z)= 1. Therefore, the integrand of (3.12)
satisfies all the conditions of Theorem 2.3 and the corollary, with x 2u, a= z,/3 1,
k k, k 0,1, . Consequently

(3.15) q,(z) z-Z:’F(2,) B(z)
as p + m,

,j=O PJ
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where the Bj(z) are polynomials in z and B0(z)=l. By (3.15) and the duplication
formula for the gamma function, see [1, formula 6.1.18, p. 256], we obtain

1 2 r(,) 1 +
B.(z)(3.16) K,(z)..--

j=x 9J
as 9 + ,

which, for integer 9, has also been derived in [12] by analyzing the power series of

K(z) for small z.
Example 4. Asymptotic expansion of Y,(z) as u + .
Here Re z > 0 and Y(z) is the Bessel function of the second kind of order 9 and

has the integral representation, see [1, formula 9.1.22, p. 360],

1 sin(zsinO_vO)do_l (eVt+e_Vtcos(v)}e_zsinhtdt"(3.17) Y(z) =g r

Integrating by parts once, we see that the first integral is 0(9 -1) as 9 + m. In the
second integral we have two contributions:

(3.18)
11 --rl forete sinh dt

-vt-z sinht12
1 cos( 9r ) e dt

Using Watson’s lemma, we can show that I2-..cos(9qr)Ej__lbj(z)/9j as 9 + m, with

hi(z) being independent of 9. In I we make the change of variable of integration et=,
and obtain

(3.19) it 1,,
We can now apply Theorem 2.3 and the corollary, and obtain

g - 9) 1+ as9+m

where the cj(z) are independent of 9. Consequently

(3.21) Y.(z).-- 1__ 2 F(v)[a + O(u-1)l as 9-, + m.

Example 5. Asymptotic expansion of H,(z)- Y,(z) as v + m.
Here Re z > 0 and H,(z) is the Struve function of order 9. We have, see [1, formula

12.1.18, p. 496],

2(z/2)" fo zt(1 2(3.22) H,(z)- Y,(z)=r/ZF-(;--l-/2)
e- +t ) /2dt.

Making the change of variable of integration 1 + 2.._ 2, we have

(3.23) q(z)=foe-Zt(1 + t2)-l/2dt= flmexp[-z(2-1)1/:z]



906 AVRAM SIDI

As in Example 3,

(3.24)
exp[-z(2 1)1/2] -’

(2__ 1)1/2 f k=0

where the Ak(z ) are polynomials in z and A0(z)= 1. Following Example 3, we obtain

(3.25) H,(z)-Y,(z) --1 2 F(u)[l+O(b,-1)] as , +
’/7" Z
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