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The details of the computation of,a quantity that arises in the analysis of the coupling 
between an external disturbance and an instability wave on a free shear layer that eminates 
from a smooth surface are given. This quantity entails a Cauchy principal value integral 
whose integrand is itself given in terms of Cauchy principal value integrals. 0 1985 Academic 

Press, Inc. 

1. INTRODUCTION 

The purpose of this article is to present the details of the computation of the 
quantity 

E=X,(l)[~f~(l+t:X+(t)~- ] 1 -;, 

where 5 denotes Cauchy principal value and 

with 

and 
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s(r) = fum 1% (&) 5. 
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The value of E turns out to be 

E= - 1.30656296... + iO.541196100 . . . . 

This quantity arises in Cl, 23 in the analysis of the coupling between an external 
disturbance and an instability wave on a free shear layer that eminates from a 
smooth surface. The disturbance is taken to have harmonic time dependence and to 
be of small amplitude, and only spatially growing instability waves are considered. 

Neglecting viscous effects in the flow, and treating the unsteady motion as a 
linear perturbation, one obtains an inhomogeneous linear boundary value problem, 
the inhomogeneity being the result of the imposed disturbance. This problem has an 
infinite number of solutions of the form cc/ = $P + Ceh, where ICI, is a particular 
solution that does not involve the instability wave, eh is an eigensolution of the 
homogeneous problem (obtained by deleting the imposed disturbance) that 
involves the instability wave, and C is an arbitrary constant. It is shown in [l, 21 
that both eP and ij,, are singular along the separation line (of the unperturbed 
flow) and that their singularities are of exactly the same nature. Viscous effects are 
important only along the separation line and they act in such a way as to choose 
that one solution $ that has no singularities along the separation line. For this 
solution the constant C turns out to be 

(1.6) 

Here 6 is a parameter related to the mean flow velocity, frequency of the distur- 
bance, and a characteristic length of the body, and depends on the nature of the 
separation. A is the amplitude of the pressure gradient along the airfoil that would 
exist at the separation line if there were no separation in the flow. Finally 1 is a 
constant that is determined by the behavior of the undisturbed flow at its 
separation line, and depends on the shape of the body and on the viscosity relative 
to the dimensions of the body. For more details see Cl, 21. 

2. COMPUTATION OFJ(~) 

For t > 0 let us make the change of variable of integration x = ty in (1.4). We 
obtain 

l/r log( ty ) /w=;F, yJyY 

= (log 2) fd”$ + J-i”% &, (2-l) 
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the second integral on the right-hand side being 
facts that 

an ordinary integral. Using the 

and 

(2.1) becomes 

forallcE(-a, co), 

f(t)=log tlog /q/ +$D (i), 

(2.2) 

(2.3) 

(2.4) 

where D(z) = --jr [logy/( y - l)] dy is the Dilogarithm as defined in [3, p. 1004, 
formula 27.7.11. The Dilogarithm, defined in slightly different forms in various 
sources, is a well-studied function, see [4], and very efficient algorithms for its com- 
putation are available; see e.g., [S, p. 310; 63. 

Using some of the properties of D(z), f(t) can be expressed in terms of the 
function p(s) = C,“= r sn/n2 that is analytic in the complex s-plane cut along the line 
[ 1, ‘x)). Thus by [3: formula 27.7.2 J, we have 

f(t)=logt/q+&(l-f), f<t<ic. (2.5) 

Using first [3, formula 27.7.51, then [3, formula 27.7.31, and finally [3, formula 
27.7.23, in (2.5), we also have 

f(t)= -f (log t)2+ ;--p(f), o<t<1. V-6) 

Finally, by substituting (x - t))’ = -C,“=, YP ‘t-n, 0 <x d 1, t > 1, in (1.4), and 
integrating term by term, we obtain 

f(t) =p (i), t> 1. (2.7) 

We note that (2.5)-(2.7) will be used in the analysis of the integrand of (1.1). 
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3. COMPUTATION OF g(t) 

Making the change of variable of integration y = x/(1 +x) and defining 
u=r/(l+t), (1.5) becomes 

dY 
g(t)=(l-u)f:logY(l_y)(y-u). 

Substituting the partial fraction decomposition 

in (3.1), and invoking (2.3) and (1.4), (3.1) becomes 

g(t)= -G+f ( 1 & ; 

(3.1) 

(3.2) 

(3.3) 

thus the computation of g(c) can be accomplished trivially once we know how to 
compute f(t). 

4. COMPUTATION OF E 

As can be seen from (l.l), the difftcult part of the computation of E entails the 
numerical evaluation of the Cauchy principal value integral 

1 dt 
H=fom (1 + t) X+(t)77 (4.1) 

Here we have to make sure that the integrand is such that the principal value is 
well defined, we should also locate the singular points of the integrand on [0, co) if 
there are any, and know their exact nature. 

As is clear from (4.1), apart from the pole at t = 1, the other singularities, if there 
are any, are introduced by X+(t), and it is this function that we analyze below. 

From (1.2) and (1.3), X+(t) can be expressed as 

where 
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t-l 4(t) =f(t) +g(t) - 1% f log 7 I I 
=f(t)+f 

( ) 
& -;-log t*og 1+1, 

the second equality being a consequence of (3.3). 
On the interval [$, co)f(t) is given by (2.5). Substituting (2.5) in (4.3), we obtain 

(4.4) 

Our first observation from (4.2) and (4.4) is that X+(t) is analytic on [t, co), since 
both j(t/( 1 + t)) and p( 1 - l/t) are. Thus X+(t) is analytic also in every 
neighborhood of t = 1, and X+( 1) #O, so that the Cauchy principal value across 
t = 1 in (4.1) is well defined. The value of X, (1) can be computed easily from (4.4) 
as follows: By (2.5) 

1 

f0 2 =%-p(-l)=%+(l-z”)r(z)=~, 

where i(s) is the Riemann Zeta function, see [3, p. 8073. Also p(O) = 0. Thus 

X+(l)=$exp( --ii). 

(4.5) 

(4.6) 

By (2.6) f(t) is analytic on (0, l), thus f(t/( 1 + t)) is analytic there, too. Con- 
sequently Q(t) and hence X+(t) are analytic on (0, 1). Since X+(t) is also analytic 
on [i, co) from the previous paragraph, X+(t) is therefore analytic on (0, co) by 
analytic continuation. 

Finally, we have to analyze the behavior of X+(t) for t -+ 0+ and t --) + co. 
For t + 0 + f(t) is given by (2.6), and f( f/( 1 + t)) is given by (2.6) with t there 

replaced by r/( 1 + t). Thus 

ti(t)=logtlog 2 + 
( ) 

;-; [log(l + t)-J’-p(t)--p & 
( ) 

) (4.7) 

from which we deduce that 4(t) = x2/2 + o( 1) as t + 0 + . This shows that X+(t) 
does not oscillate as t --* 0+ , although it has a branch point at t = 0. 

For t + + co, f(t) is given by (2.7). Since t/(1 + t) + l- as t --, + co, 
4 c t/(1 + t) < 1 for t sufliciently large. Thus f(t/(l + t)) is given by (2.5), with t 
there replaced by t/( 1 + t). Therefore 

W=logrlog(~)+P(f)-P( - i), (4.8) 
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from which we deduce that 4(t) = o( 1) as c + + co. This shows that X, (t) does not 
oscillate as t + + co, although it has a branch point at t = co. 

In summary we have shown that #(t) hence X+(t) are analytic in every closed 
interval in (0, co) and that the Cauchy principal value is well defined. 

We now write (4.1) as 

(4.9) 

Using an idea due to Longman [7], every principal value integral of the form 

can be expressed as an ordinary integral as 

(4.10) 

(4.11) 

If we now apply a Gauss-Legendre quadrature formula with an euen number of 
abscissas, see [8, 91, then Z can bc evaluated without having to compute F’(O), 
because 0 is not an abscissa for such a quadrature formula. Since this formula is of 
the form 

I 
u h(x) dx- f A/&), 
--a j=l 

(4.12) 

with -a<x,<x,< .** <x2n<a,andxi=-x,,_i+1, Aj=A2n-j+,,j=1,...,n, the 
application of (4.12) to (4.11) results in 

(4.13) 

If F(x) is analytic over [-a, a], then [F(x) -F’( -x)1/x is analytic over [-a, a], 
hence the error in the Gauss-Legendre quadrature formula (4.13) tends to zero like 
e -“‘, where tl > 0 depends on the location of the singularities of [F(x) - I;( -x)1/x 
nearest [-a, a]. The integral 

(4.14) 

was computed using a Gauss-Legendre quadrature formula with 12 abscissas. 
(Note that t = 1 is the midpoint of the interval [t, 31 and this interval can be map- 
ped to [ -1, $1 by a shift in the variable t.) 
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As for the integral 

s w 1 dt 
I 

112 
H,= -= 

0 (1+1)X+(1)1-1 G(t) dt 
0 

(4.15) 

it is clear that the singularity of X+(t) at t = 0 makes the accurate evaluation of H, 
very difficult. To cope with this difficulty we make the change of variable t = ehp 
thus mapping t = 0 to p = + co. H, now becomes 

HI = iI G(eCP) ecp dp, (4.16) 

the integrand being analytic for log 2<p < co, and G(ePP) edp = O(ePpi2) as 
p-, +co. Thus for c>O 

4 -c/2 G(eeP)ewPdp <-e . 
1 -e-’ 

If we choose c large enough and approximate HI as 

H,- c 5 G(eeP) eep dp, 
log 2 

the error in this approximation will be bounded by E~ = 4e-c’2/(1 - eec). 
Finaly, the integral 

1 dt 
-= 

(1 + t) x+(t) t- 1 
G(t) dt 

(4.17) 

(4.18) 

(4.19) 

converges very slowly since G(t) = O(tr ‘) as t + + co. Using the transformation of 
variable t = ep, (4.19) becomes 

H3=lm G(eP) ep dp. 
lw(3/2) 

(4.20) 

The integrand is again analytic for log $<p < 00 and G(eP) eP = O(eeP) as 
p+ +oo. Thus for d>O 

G(eP) ep dp C&&eeda 

Choosing d large enough we approximate H3 as 

G(P) ep dp, (4.22) 

the error in the approximation being bounded by ~~ = 2ewd/( 1 - eed). 



A CAUCHY PRINCIPAL VALUE INTEGRAL 395 

We now choose c and d such that e, GE and ~~ d E, where E is a given level of 
accuracy. Then we compute the integrals given in (4.18) and (4.22) with a 
maximum error E’ GE. Our computation of these integrals was performed by using 
the adaptive quadrature routine DCADRE from the IMSL Library. Specifically, we 
chose c=80, d=40, so that E,N~O-~~ and E~N~O-‘~, and &‘=lO-I*. 

ACKNOWLEDGMENTS 

The author thanks Dr. M. E. Goldstein of NASA-Lewis Research Center for suggesting the problem 
and for his help in the preparation of this note, and Dr. J. A. Pennline and Dr. J. D. Guptill, for their 
assistance in checking the analysis and computations of this paper. Thanks are also due to the two 
anonymous referees for pointing out the connection with the Dilogarithm. The computations for this 
paper were done in double precision on the IBM-370 at NASA-Lewis Research Center. 

REFERENCES 

1. M. E. GOLDSTEIN, “The Generation of Instability Waves at Smooth Separations,” NASA-Lewis 
Research Center Report. 

2. M. E. GOLDSTEIN, “The Generation of Instability Waves at Smooth Separations,” Part II, “Brillouin 
Point Separation,” NASA-Lewis Research Center Report. 

3. M. ABRAMOWITZ AND I. A. STEGUN, “Handbook of Mathematical Functions,” National Bureau of 
Standards, Applied Mathematics Series, No. 55, Govt. Printing Office, Washington, D.C., 1964. 

4. L. LEWIN, “Dilogarithms and Associated Functions,” MacDonald, London, 1958. 
5. Y. L. LUKE, “The Special Functions and Their Approximations,” Vol. 2, Academic Press, New York, 

1969. 
6. R. MORIUS, Math. Comput. 33 (1979), 778-787. 
7. I. M. LONGMAN, MTAC 12 (1958), 205-207. 
8. R. l%$.SENS, BIT 10 (1970), 47ti80. 
9. D. B. HUNTER, Numer. Math. 19 (1972), 419424. 


