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ACCELERATION OF CONVERGENCE OF VECTOR SEQUENCES* 

AVRAM SIDIt, WILLIAM F. FORDS A N D  DAVID A. SMITHS 

Abstract. A general approach to the construction of convergence acceleration methods for vector 
sequences is proposed. Using this approach, one can generate some known methods, such as the minimal 
polynomial extrapolation, the reduced rank extrapolation, and the topological epsilon algorithm, and also 
some new ones. Some of the new methods are easier to implement than the known methods and are observed 
to have similar numerical properties. The convergence analysis of these new methods is carried out, and it 
is shown that they are especially suitable for accelerating the convergence of vector sequences that are 
obtained when one solves linear systems of equations iteratively. A stability analysis is also given, and 
numerical examples are provided. The convergence and stability properties of the topological epsilon 
algorithm are likewise given. 

1. Introduction. In a recent work by the present authors [8] a survey of convergence 
acceleration methods for sequences of vectors is given, and five of these methods are 
tested and compared numerically using a process that has been termed cycling: the 
minimal polynomial extrapolation (MPE) of Cabay and Jackson [2], the reduced rank 
extrapolation (RRE) of Eddy [3] and MeSina [4] (the equivalence of the methods 
proposed in [3] and [4] is shown in [8]), the scalar epsilon algorithm (SEA) of Wynn 
[9], the vector epsilon algorithm (VEA) of Wynn [lo], and the topological epsilon 
algorithm (TEA) of Brezinski, see [I, pp. 172-2051. One of the conclusions of this 
survey is that the MPE and RRE have about the same properties, and in general, have 
better convergence than others, in the sense that the MPE and the RRE achieve a 
given level of accuracy with fewer vectors than the SEA, VEA, and TEA. VEA and 
SEA are also similar in performance, except that the latter is more prone to numerical 
instability problems. However, TEA, while interesting from a theoretical point of view, 
appears to be not as effective as either VEA or SEA; see [8] for further details. 

All of the methods above have the following important properties: 
(1) It is observed numerically that in many instances they accelerate the conver- 

gence of a slowly converging vector sequence and they make a diverging sequence 
converge to an "anti-limit" that has an immediate interpretation. 

(2) They depend solely on the given vector sequence whose convergence is being 
accelerated; they do not depend on how the vector sequence is generated. 

(3) Their implementation is straightforward. 
For more details and an extensive bibliography see [8]. 

It turns out that the implementation of the MPE and RRE requires the least-squares 
solution of an overdetermined and in general inconsistent set of linear equations, the 
number of the equations in this set being equal to the dimension of the vectors in the 
given sequence. For many practical problems, the dimension of these vectors may be 
finite but very large; consequently, one may have to store a large rectangular matrix 
in memory, making the MPE and RRE somewhat expensive in both storage and time. 
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Therefore, it would be desirable to have methods as efficient as MPE and RRE but 
less demanding in storage and time. 

In the next section a general framework for deriving convergence acceleration 
methods for vector sequences-vector accelerators for short-is proposed. Within this 
framework one can derive several methods, some old (MPE, RRE, and TEA) and 
some new. It turns out that one of the new methods is very similar to the MPE and 
RRE, but does not require the use of the least-squares method, requires very little 
storage, and, at least numerically, is as efficient as MPE. The convergence analysis of 
this method, which we shall call the modified MPE (MMPE), is carried out in § 3 for 
a class of vector sequences that includes those arising from the iterative solution of 
systems of linear equations. We prove that this method is a bona fide convergence 
acceleration method, and also provide its rate of acceleration. The stability properties 
of this method are taken up in § 4. In § 5 the convergence and stability properties of 
the TEA are analyzed using the techniques of §§ 3 and 4. Finally in § 6 we test the 
MMPE on some examples numerically, and compare it with the MPE. On the basis 
of this comparison one could conclude that the MPE and MMPE have similar 
performances, and this is indeed the case as has been shown by the first author in a 
recent work [7] (this issue, pp. 197-209). 

2. Development of vector accelerators. In this section we shall develop a general 
framework within which one can derive vector accelerators of different kinds. We shall 
motivate this development in the way Shanks [6] motivates his development of the 
ek-transformation for scalar sequences. 

2.1. The Shanks transformation. Shanks starts with a scalar sequence X,, m = 

0,1, . . . ,that has the property 

where S, a ,  and A i  are constants independent of m, Ai # 1, i = 1,2, . . . ,A i  # A, for all 
i #j, and lAll  2 lA21 2.. . . In (2.1) S is lim,,, X, if all [ A i l  <1; otherwise, S is called 
the anti-limit of the sequence X,, m =0,1, . . . .As one way of approximating S, Shanks 
proposes to solve the set of 2k+ 1 nonlinear equations 

for Sn,k, which is taken to be an approximation to S, with i ,  1 ,  i = 1, . . . ,k, being the 
rest of the unknowns. The solution Sn,kturns out to have the following determinant 
representation: 

I Xn+l . . .  

+
AX,xn AXn+] . . . A x n + k  I 


AX, AX,+, . . . A x n + ,  

AXn+k-l AXn+k . . . AXn+2k-1 

where A is the forward difference operator defined by Abi = bi+,-b,  APbi =A(AP-'b,), 
p 2 2, provided the determinant in the denominator of (2.3) is nonzero. 
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Two equivalent formulations follow from (2.3), independent of any reference to 
the nonlinear equations in (2.2). 

(a) With Sn,kas given in (2.3), there are k parameters pi, i = 0, 1, . . . ,k - 1, which 
solve the system of k +  1 linear equations 

as can be verified by solving (2.4) for S,,, by Cramer's rule. By taking the differences 
of the equations in (2.4), we see that the Pi satisfy 

and that, once the pi have been determined from (2.5), S,,, can be computed from 
one of the equations in (2.4), say that for which m = n. 

(b) From (2.4) it follows that Sn,k, along with the parameters yi, i = 0, 1, . . . , k, 
satisfies the system of linear equations 

subject to 

By taking the differences of the equations in (2.6), we see that the yi satisfy 

subject to (2.7), see also [I,  pp. 52-53]. Once the yi have been determined from (2.7) 
and (2.8), Sn,kcan be computed from one of the equations in (2.6). Furthermore, if 
yk# 0, then (2.7) and (2.8) are equivalent to 

where 

provided zlk=, C, # 0. 
It has been proved by Wynn [ l l ]  that S,,, when computed from a sequence 

X,, m = 0,1, . . . , that is of the form given in (2.1), converges to S as n + oo ( k  fixed), 
under certain conditions on the A, faster than X, itself. Wynn actually gives rates of 
convergence for S,,kfor n + oo. 

2.2. Derivation of vector accelerators. Let us now consider a sequence of vectors, 
x,, m = 0, 1, . . . , in a general normed vector space B, satisfying 

where s and vi are vectors in B, and A, are scalars, independent of m, hi # 1, i = 
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1,2, . . . ,A, f A, for all i # j, and lAl l  2 lA21 2 . . . . We also assume that there can be 
only a finite number of A i  having the same modulus. The meaning of (2.11) is that, 
for any integer N >0, there exist a positive constant K and a positive integer mo that 
depend only on N, such that for every m 2 mo 

with I I - I I  being the norm associated with the vector space B. 
A simple example of such a sequence is that produced by a matrix iterative 

technique for solving the linear system of equations 

where A is a nondefective M x M matrix, and b and x are M-dimensional column 
vectors. If s is the solution to (2.12), and for given x,, the vectors xm are generated by 

then 

(2.14) 

where ai are scalars, A i  and vi are the eigenvalues and corresponding eigenvectors of 
the matrix A, and M ' S  M is the number of the distinct eigenvalues. 

The condition stated in (2.11) is analogous to that stated in (2.1) for scalar 
sequences. Since, as shown in [ l l ] ,  the Shanks transformation accelerates the conver- 
gence of scalar sequences satisfying (2.1), we expect that its extensions to vector 
sequences, through the formulations (a) and (b) following (2.3), may also produce 
acceleration of convergence for vector sequences satisfying (2.1 1). The extensions of 
the two formulations can be achieved as follows: 

Approach (a). In equations (2.5) replace X, by xi, and "solve" in some sense the 
resulting overdetermined (and in general inconsistent) system 

k-1 

Ax, = C /3iA2~m+i, n 5 m 5 n +k - 1, 
i =O 

for the p,. Once the pi have been determined, compute the approximation s , ,  to s by 

which is obtained by replacing .Sn,kand Xj in (2.4) by s , ~and xi, respectively, and 
considering m = n. In general m 2 n can be considered. 

Approach (b). In equations (2.9) replace Xj by xj, and "solve" in some sense the 
resulting overdetermined (and in general inconsistent) system 

for the c,. Once the c, i =0, 1, . . .,k - 1, have been determined, set 
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assuming k 
c, Z 0. Finally compute the approximation s , , ~to s by 

which is obtained by replacing Sn,kand X, in (2.6) by s , ,  and xj, respectively, and 
considering m = n. In general m 2 n can be considered. 

We see that for both approaches, we need to "solve" an overdetermined and, in 
general, inconsistent system of equations of the form 

where wj and 6, are vectors in B, and di are unknown scalars. If r, the dimension of 
B, is greater than k, then even one of the equations in (2.20) gives rise to an overdeter- 
mined system of r equations. We can, however, propose various ways for obtaining a 
set of di that solves (2.20) in some sense. In what follows, we give three such methods, 
with the understanding that other methods can also be proposed. 

Method (1). Assuming r > k, consider only one of the equations in (2.20), namely 
that with m = n, and solve for the di that minimize some norm of the vector A =  

diwnti-6,. Depending on the norm being used, different acceleration methods 
will be obtained. For example, if r is finite and the (weighted) I, norms are used with 
p = l , 2 ,  co, then the determination of the di becomes relatively easy. For p =2 the 
solution can be achieved by using any one of the least-squares packages available, and 
for p = 1 and p = co the minimization problems can be solved by using linear program- 
ming techniques; see the review paper by Rabinowitz [ 5 ] .  The 1, norm with equal 
weights gives rise to RRE for Approach (a) and MPE for Approach (b). The rest of 
the acceleration methods have not appeared in the literature before. 

Method (2). Assuming r > k, consider only one of the equations in (2.20), namely 
that with m = n, and obtain the di by solving the system of k equations 

where Q, are linearly independent bounded linear functionals on the space B. When 
B is an inner product space, we can take Q,(y) = (q,, y), where q, are vectors in B and 
( . , a )  is the inner product associated with B. If r is finite, and the vector q, is chosen 
to be the 4th unit vector, that is, (q,, z) = 4th component of z, then the method above 
is equivalent to demanding that only k out of the r equations be satisfied, namely 
those corresponding to the 4th components, j = 1, . . ,k. Obviously such an acceler- 
ation method demands less storage afid time for its implementation than methods like 
the MPE and RRE. It is not difficult to see that Approaches (a) and (b) both give the 
same acceleration method, which has not been given in the literature before. Due to 
its similarity to the MPE, we shall call this method the mod$ed MPE (MMPE). In 
90 3 and 4 we shall analyze the convergence and stability properties of this method in 
detail. 

Method (3). Consider all the equations in (2.20) and obtain the d, by solving the 
system of k equations 

where Q is a bounded linear functional on the space B. In this case Approaches (a) 



ACCELERATION OF CONVERGENCE OF VECTOR SEQUENCES 183 

and (b) give the same method, and this method is nothing but the TEA. In § 5 we 
shall analyze the convergence and stability properties of this method in detail. By 
comparing (2.21) and (2.22), we see that for k = 1 the MMPE and the TEA are identical 
when we choose Q, = Q. 

Finally we note that all of the methods obtained as above are nonlinear in the xi. 

3. Convergence analysis of MMPE. As in § 2.2, we start with a sequence of vectors 
xi, i =0,1, . . .,in a normed vector space B with norm 11 .I[, that has a limit or anti-limit 
s. We write u, =Axi =xi+, -xi, i =0,1, . . . . Then the MMPE, as obtained from 
Approach (a) or (b) in conjunction with Method (2) (see § 2.2), can be summarized 
(and reformulated) as follows: By Approach (b), the approximation s , ,  to s is given 
as 

where yi are obtained from 

When yk #O, equations (3.2) are equivalent to (2.18) and (2.21), in which di = ci, 
w,+~= un+,  0 5 i 5 k -1, and 6, = - u n + ,  as can be verified by inspection. 

We denote the scalars Qj(um) by umj for 1 5  j 5 k and m 2 0, and we define 
D(ao, a , ,  . . . ,a k )  to be the determinant 

when ai are scalars. Let Ni be the cofactor of ai in the first row expansion of this 
determinant. Then 

k 

D(ao, a, ,  . . . ,a k )= C aiNi. 
i = O  

When aiare vectors, we again let D(ao, a , ,  . . . ,a k )  be defined by the determinant in 
(3.3), and take (3.4) as the interpretation of this determinant. Thus D(ao,  a , ,  . . . ,a k )  
is a scalar (or vector) if the aiare scalars (or vectors). 

Solving the system in (3.2) by Cramer's rule, we obtain 

provided D ( l ,  1, . . . , 1 )  # 0; in what follows, we assume that this is so. 
By (3.5), (3.1), and (3.4), we can finally express s , ~as 
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LEMMA3.1. The error in s , ,~can be expressed as 

Proof: (3.7) follows easily from (3.4) to (3.6). 0 
In the sequel we shall assume that the vectors x ,  satisfy (2.11). Without loss of 

generality we shall also assume that hi Z 0 and vi Z 0 for all i 2 1. Then 

where zi = (A ,- l ) q ,  i = 1,2,  . . . . Since A, # 1 and v, Z 0 for all i 2 1, we have zi # 0 
for all i 2 1. In addition, by (2.11), for any operator T in the dual space of B, 

Consequently 

where zi j  = Q j ( z i ) ,  i 2 1 ,  15j 5 k. 
Note that when the sequence x,, m =0 ,  1 ,  . . . ,is generated by the matrix iterative 

method described in § 2.2, the summations over i in (3.8), (3.9), and (3.10) extend as 
far as M', which is a finite number; therefore, (3.9)and hence (3.10)hold automatically 
for this case, and - is replaced by =. 

The following theorem is the main result of this section. 
THEOREM vij, i 2 1 ,  15j 5 k, and let 3.2. De jne  Q , (q )  = 

Assume that the vi are linearly independent, and that the h i  satisfy 

Then, for all suficiently large n, D ( l ,  1, . . ,1 )Z 0;  hence, s,,~,as given in (3.6), exists. 
Furthermore, 

where the vector T ( n )  is nonzero and bounded for all suficiently large n. If, in addition, 
IAk+ll> lAk+21, then 

I V 1  V 2  . . .  vk+l I 

ProoJ: For simplicity of notation we shall sometimes denote G,= 
D ( x ,  - S, . . ,x , + ~- S )  and H, = D ( l ,  . . . , I ) ,  and we shall shorten " a ,  -P ,  as n +m" 
to " a ,  -P,." 
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By (3.3) and (3.10) we have 

We are allowed to write (3.15) since D ( 1 , 1 , .  - - ,I ) ,  being a determinant, is the sum 
of a finite number ( k ! )of products of u , ~ ,and its asymptotic expansion as n +co is 
the sum of the products of the asymptotic expansions of the respective uij. By the 
multilinearity property of determinants, (3.15) is equivalent to 

where V ( t O ,el , - . . ,ek)is the Vandermonde determinant defined by 

Since V ( t O ,- - . ,ek)is odd under an interchange of the indices O,1, - . . ,k, by Lemma 
A.l given in the appendix to this work, (3.16) can be expressed as 

i , Z i , k  " '  Z i , k /  

By (3.12), the most dominant term in the summation on the right side of (3.18) as 
n +co is that for which i, = 1, i2=2, - - - , ik= k, provided that the determinant 

is nonzero. But since zi = (Ai- l ) v ,  i  2 1, we have 

where F is as defined in (3.11).Since F# 0 by assumption, P# 0 too; hence the first 
part of the theorem follows, with 
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For the proof of the second part we proceed similarly. By (2.11), (3.3), and (3.10), 
we have 

Again from the multilinearity property of determinants 

By Lemma A.l given in the appendix to this work, (3.23) can be expressed as 

By the assumptions made following (2.11), there is a finite number of hi with moduli 
equal to IAk+ll. Let IAk+ll  = - = [ A k + ? [> IAk+r+ll. From this and (3.12), it follows that 
the dominant term on the right side of (3.24) is the sum of those terms with indices 
i o = l ,  i l = 2 , . . . , i k - l = k ,  i k = k + l ,  1 = 1 , 2 , - - . , r , t h a t i s ,  

Now the cofactor of v ~ + ~  which is nonzero since in the determinant in (3.25) is 
F # 0. Therefore, for n sufficiently large, the coefficients of v ~ + ~ ,. ,v ~ + ~are nonzero. 
Since we also assumed that the v, are linearly independent, the summation in (3.25) 
is never zero. Combining (3.21) and (3.25) in (3.7) results in (3.13). If IAk+,l > IAk+21, 
then r = 1. In this case (3.14) follows from (3.21), (3.25), and the fact that 

Note. The condition on the determinant given in (3.11) has some interesting 
implications when the normed vector space B is a complete inner product space. In 
this case, for each Qj in the dual space of B, there exists a unique vector q, in B, such 
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that Qj(z) (,,= z) for every z in B, where ( .  ,.) is the inner product associated with 
B. Then (3.11) becomes 

One of the consequences of (3.27) is that both sets of vectors Q~= {ql, . . . ,qk) and 
vk= {vl, . . . ,vk) have to be linearly independent. Another consequence is that the 
intersection of the subspace span Q~ with that orthogonal to span vkmust be (0). 

The asymptotic error analysis of the MMPE as given in Theorem 3.2 leads one 
to the following important conclusions: 

(1) Under the conditions stated in the theorem, the MMPE is a bona fide vector 
accelerator in the sense that 

This means that if x, + s as n +co, that is, [ A l l  < 1, then s,,~+s as n +co,and more 
quickly. Also if lim,,, x, does not exist, that is, [ A l l  2 1, then s,,~+ s as n +a,provided 
that lAk+ll  < 1. The reason that we write x , + ~ + ~in (3.28) is that s , ,  in the MMPE makes 
use of the k +2 vectors x,, x,+,, . . . ,x , + ~ + ~ .  

(2) The result in (3.13) shows that when the MMPE is applied to a vector sequence 
generated by using the matrix iterative method described in 9 2.2, with the notation 
therein, it will be especially effective when the iteration matrix A has a small number 
of large eigenvalues (k -many when s , ,  is being used) that are well separated from 
the small eigenvalues. 

(3) By inspection of T(n) in (3.13) and (3.14), it follows that a loss of accuracy 
will take place in s , ,  when A,, . . - ,A, are close to 1, since ((T(n)(( becomes large in 
this case. When the vector sequence is obtained by solving the linear system of equations 
given in (2.12) by the iterative technique in (2.13), this means that if A has large 
eigenvalues near 1, there will be a loss of accuracy in s,,. In fact eigenvalues near 1 
would cause the system in (2.12) to be nearly singular. 

4. Stability of MMPE. Let us denote the y, of the previous section by ~ j " . ~ ' .  Then 
the propagation of errors introduced in the x, will be controlled, to some extent, by 
zJk=,Ignsk'l; the larger this quantity, the worse the error propagation is expected to be. 
With this in mind, we say that s , ,  is asymptotically stable if 

k 

sup 1 I Yjn,k'l<a.
" j = ,  

k
Since z,=,~ j " , ~ '= 1 by (3.2), then zJk=,~j".~'lI 2 1, so that the most ideal situation is 
that in which yjnsk' 2 0, 0 5j 5 k, for n sufficiently large. The following theorem shows 
that for the type of sequences considered in Theorem 3.2, s,,~as obtained from MMPE 
is asymptotically stable, and that yjnsk'> 0, 0 5j 5 1, for sufficiently large n, whenever 
A ,  15 i 5 k, are real and negative. 

THEOREM Under the conditions stated in Theorem 3.2, s , ,~is asymptotically 4.1. 

stable. 
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Proof: By (3.5), it is sufficient to show that y,!"~~', 0 S j S k, stay bounded for n +co, 
which in turn guarantees (4.1). Now 

Substituting the asymptotic expansions of umj as given in (3.10), and using the 
multilinearity property of determinants, we obtain 

where 

Since Cj(&, . . . ,sk) is odd under an interchange of the indices 1, . . .,k, Lemma A.l 
in the appendix again applies, and we have 

By (3.11), (3.19), (3.20), and (3.12) 

Combining (4.6) and (3.21) in (3.5), and using (3.20), we obtain 

Obviously, (4.7) also implies that I yjn.k'l<co for sufficiently large n. This then proves 
(4.1). 0 

Inspection of (4.4) reveals that Cj(Al, . . ,Ak) is the cofactor of A' in the first row 
of 

that is, 
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Combining (4.7) and (4.9), we obtain the following interesting result: 

Invoking (3.26), (4.10) finally becomes 

Since V(A,  A,, . . . ,Ak) iS a polynomial of degree k in A and vanishes when A =hi, 
l S i S k ,  we have 

Upon expanding the product on the right side of (4.12), and comparing with (4.9),we 
get 

It is obvious from (4.13) that if hi, 1 5  i 5  k, are real and negative, then 
sgn C ~ - ~ ( A , ,  = . . . ,h k )for o5j 5 k, and this implies that y P k )>O,. . . ,A ~ )sgn c~(A, ,  
0 S j 5 k, for n sufficiently large. If hi, 1 5 i 5 k, are real and positive, then (4.13) implies 
that yjnsk)y,!?,k)<0, 0 5j S k -1. 

5. Convergence and stability of TEA. In this section we shall consider the conver- 
gence and stability properties of the TEA, which is obtained from Approach (a) or 
(b) in conjunction with Method ( 3 )of O 2.2. The TEA can be summarized as follows: 
The approximation sRk to s is given by 

where yi are obtained from the equations 

with urn=Ax, =x,+, -x,, m 2 0,as before. When yk # 0,equations (5.2)are equivalent 
to (2.18) and (2.22), in which di = ci, w,+~ = urn+, 0 5  i S k - 1, and Grn= as can 
be verified by inspection. 

We now write the equation in (5.2) in the form 

where this time umj= Q(u,+~-,), m 2 0, 1 S j 5 k Defining D(uo,a,, . . . ,uk)as in 
(3.3) but with the u,. of O 3 replaced by the new umj,we see that s , ~for TEA is given 
exactly by (3.6),as can be verified by Cramer's rule. Let us also define zij = Q(zi)A{-' = 
Q(vi)(Ai- 1)A{-', i 2 1, 1 5j 5 k, where the zi are defined in 9 3. Then under the 
assumptions preceding (3.10), (3.10) holds with the zij of O 3 replaced by the new zij. 
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If one follows the proof of Theorem 3.2, one realizes that (3.18) and (3.24), which 
form the most important parts of it, are consequences of (2.1 1) and (3.10). Consequently 
(3.18) and (3.24) remain true for the TEA provided the ziJ of § 3 are replaced by those 
of the present section. Starting with these observations, we now prove the following 
theorem: 

THEOREM5.1. Assume that 

and that all the conditions of Theorem 3.2 (with the exception of (3.11)) are satisjied. 
k

Then, for all suficiently large n, Cj=, Nj # 0; hence s, ,~as given in (3.6) exists. Furthermore, 

where the vector A(n) is nonzero and bounded for all sujiciently large n. If, in addition, 
lAk+l l  > IAk+2l, then 

Roo$ The proof of this theorem proceeds along the same line as that of Theorem 
3.2, using the additional relation 

Note. When the normed vector space B is a Hilbert space, the condition (5.4) 
has the following implication: Let q be the unique vector in B for which Q(z) = (q, z)  
for every z in B. Then (5.4) implies that q cannot be orthogonal to any of the vectors 
vi, 1 5 i 5 k. 

As a result of the asymptotic error analysis of the TEA given in Theorem 5.1, we 
can draw conclusions that are identical to those about the MMPE given at the end of 
§ 3. We find that (3.28) is replaced by 

since sn,k for TEA is formed by taking into account the 2k+ 1 vectors x,, x,+,, . . . ,x , + ~ ~ ,  
instead of the k + 2  vectors x,, x,+,, ,x , + ~ + ~used to form s, ,~for the MMPE. This 
in turn implies that the MMPE is a more economical vector accelerator than the TEA, 
since it attains the same rate of acceleration as the TEA while using approximately 
half the number of vectors. 

Finally the stability properties of the TEA are very similar to those of the MMPE 
as is stated in the following theorem. 

THEOREM5.2. Under the conditions stated in Theorem 5.1 s , ,~is asymptotically 
stable. Furthermore, (4.7) and (4.11) hold too. 

Roo$ Similar to that of Theorem 4.1. U 
The conclusions that were drawn from the stability analysis of the MMPE in $ 4 ,  

are true for the TEA too, as some analysis reveals. 
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6. Numerical examples. In § 3 we analyzed the convergence properties of s , , ,~for 
the MMPE as n +m, and derived an asymptotic error estimate for it, obtaining at the 
same time its rate of convergence. In this section we apply the MMPE and the MPE 
to three vector sequences obtained as iterative approximations to linear systems of 
equations. The numerical results verify the conclusions of the asymptotic error analysis 
of 9 3. They also indicate that the MMPE and the MPE have very similar performances. 

In all the examples below the MPE is implemented by solving the generally 
overdetermined system 

k-1 

C ciun+i = -un+k, 
i = O  

k
for the ci using the method of least squares and then setting yi = ci /Cj ,o  c,, 0 5 i 5 k, 
with ck = 1, in (2.17). As before uj =xi+,  -xi, j =0, 1, . . . . The MMPE, on the other 
hand, is implemented by solving the linear system of k equations 

where umj denotes the jth component of the vector u,. That is to say, we pick the 
linear functional Qj in (2.17) to be the projection operator onto the subspace spanned

kby the jth unit vector, j = 1, . . .,k. We then set yi = ci /C, , ,  c,, 0 5 i 5 k,with ck = 1, in 
(2.17). 

Example 1. The vectors xi are obtained by setting xo =0 and xi+,=Ax, +b, where 
A is the iteration matrix associated with the Gauss-Seidel method for the system of 
linear equations C x  = d, where 

and d and/or b are determined by requiring that the solution s to C x  =d be the vector 
with all its entries equal to 1. The eigenvalues of A are approximately A, =i2= 
-2.3500 2.0506i, A ,  = -0.0228, and A ,  =0. Therefore, lim,,, xi does not exist. In Table 
1 we give the errors 11 s , ,  -s 11, computed in the I ,  norm for k =2 and 0 5 n 55, both 
for the MMPE and the MPE. 

TABLE1 
I ,  norms of the errors s,, - s for Example 1 ,  
computed using MMPE and MPE, for k =2 
and O S n S 5  

MMPE MPE 

[The numbers have been rounded to one sig-
nificant decimal digit. The base iterations x, 
diverge.] 
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Example 2. The vectors xi are obtained by setting xo= 0 and xi+l= Axi + b, i = 
0 , 1 ,  . . , where 

and b is determined by requiring that the solution s of the system x = Ax+ b be the 
vector with all its entries equal to 1 .  The eigenvalues of A are all real and in (0 ,  I ) ,  
and are approximately A 1  = 0.8965, A, = 0.7318, A, = 0.5297, A,= 0.3600, . . . ,A 1 1  --
0.0313, in decreasing order. Since A ,  < 1, the sequence xi, i = 0 , 1 , 2 ,  . . . , converges. 

-logl0 11 S,, - S?, for MMPE 

0 -logl0 1 S,, - S!,' for MPE 

F I G .  1 .  Results for Example 2 taking k = 1.  
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In Figs. 1 and 2 we give the results of the computations for I I s , ~ -s 11,  using both 
the MMPE and the MPE with k = 1 and k =2, respectively. The figures also include 
llxn+k+l -slim-

A -bl01 Xn+k+l - s!- 0 
-lq101 S,, - 51, for MMPE 

0 -loglOl Sn, - 51, for MPE 0 

0 

0 

0 

n + k + l  

FIG.  2. Results for Example 2 taking k =2. 

Example 3. The vectors x, are obtained by setting x,, =0 and xi+,=Ax, +b, i = 
0,1, ,where 

and b is determined by requiring that the solution s of the system x =Ax+ b be the 
vector with all its entries equal to 1. The eigenvalues of A are all real and are 
approximately A ,  = 1.2892, A, =0.8080, A, =0.4924, A, =0.2785, . . .,A,,  =0.0012, in 
decreasing order. Since A ,  > 1, the sequence xi, i =0,1,2, ,diverges. In Figs. 3 and 
4 we give the results of the computations for IS,,^ -sJJ,  using both the MMPE and 
the MPE, with k =2 and k =3, respectively. 



194 A. SIDI.  W. F. FORD AND D. A. SMITH 

-lq1011 S,, k - SAm for MMPE 

0 -lqlO1S,, - SII, for MPE 

F I G .  3 .  Resultsfor Example 3 taking k = 2 .  The base iterations xi diverge. 

Appendix. 
LEMMAA.1. Let i,, i,, . . . , ik be integers greater than or equal to 1, and assume 

that the scalars v,, ...,ik are odd under an  interchange of any two indices i,, . . . , ik. Let 
ui,i 2 1, be scalars (o r  vectors), and let tiJ, i 2 1, 1 5j 5 k, be scalars. Define 

and 

where the determinant in (A .2 )  is to be interpreted in the same way as D(u , , .  . . ,uk) 
in (3.3). Then 
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lo r 0 

9t  -logl0 1 S,, - 51, for MMPE 

o -logl0 il s,, - SII, for MPE O 

FIG.  4. Results for Exarnpfe 3 taking k =3.  The base iterations x, diverge. 

Proox Let Zk be the set of all permutations r of (0, 1,  . ,k}. Then by the 
definition of determinants 

The notation r ( p ) ,where 0 5p 5 k, designates the image of r as a function operating 
on the index set. Now r-' r (p) =p, 0 5p 5 k, and sgn r-' = sgn r for any permutation 
r EC k. Hence 

By the oddness of v,,..., ik, we have 

Substituting (A.6) in (AS) ,we obtain 
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Since v,, ...,i, is odd under interchange of the indices io,. . . ,ik, it vanishes when any 
two of these indices are equal. Using this fact in (A.l), we see that Ik, is just the sum 
over all permutations of the distinct indices io, . . , ik. The result now follows by 
comparison with (A.7). 

Note that when the oi are scalars, (A.3) remains true also for the case in which 
the v,,..., ik are vectors. When the ui and v,,..., i, are vectors, (A.3) still holds provided 
a, v,, ...,ik is interpreted as a direct (tensor) product. 
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