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CONVERGENCE AND STABILITY PROPERTIES OF MINIMAL
POLYNOMIAL AND REDUCED RANK
EXTRAPOLATION ALGORITHMS*

AVRAM SIDIt

Abstract. The minimal polynomial and reduced rank extrapolation algorithms are two acceleration of
convergence methods for sequences of vectors. In a recent survey these methods were tested and compared
with the scalar, vector, and topological epsilon algorithms, and were observed to be more efficient than the
latter. It was also observed that the two methods have similar convergence properties. The purpose of the
present work is to analyze the convergence and stability properties of these methods, and to show that they
are bona fide acceleration methods when applied to a class of vector sequences that includes those sequences
obtained from systems of linear equations by using matrix iterative methods.

1. Introduction. The minimal polynomial extrapolation algorithm (MPE) of
Cabay and Jackson [2] and the reduced rank extrapolation algorithm (RRE) of Eddy
[3] and MeSina [4] are two methods that have been devised for accelerating the
convergence of sequences of vectors. In a recent survey carried out by Smith, Ford,
and Sidi [6], these two methods were tested and compared with the scalar epsilon
algorithm of Wynn [7], the vector epsilon algorithm of Wynn [8], and the topological
epsilon algorithm of Brezinski [1]. It was observed numerically that the MPE and the
RRE have similar convergence properties, and, in general, are more efficient than the
three epsilon algorithms.

In the present work we analyze the convergence and stability properties of the
MPE and the RRE, and show that they are bona fide convergence acceleration methods
when applied to a family of sequences that includes those sequences obtained from
systems of linear equations by using matrix iterative methods.

In a recent work of Sidi, Ford, and Smith [5] (this issue, pp. 178-196) a general
framework for deriving convergence acceleration methods for vector sequences has
been proposed. Within this framework one can derive several methods, some old
(including the MPE, RRE, and the topological epsilon algorithm), and some new
(including a method that has been designated the modified MPE). The approach of
[5] is formulated in general normed linear spaces of finite or infinite dimension. In
the present work we use the formulations of the MPE and the RRE as they are given
in [5]. We also make the assumption that the normed linear space in which the vector
sequence is defined is an inner product space, with the norm being induced by the
inner product.

The plan of the present paper is as follows: In § 2 we specify the vector sequences
whose convergence we are seeking to accelerate, describe the MPE and the RRE as
they were formulated in [5], deriving at the same time determinant representations for
them. We shall use § 2 to also introduce much of the notation that we use in the
remainder of this work. In § 3 we analyze the convergence properties of both methods
and obtain actual rates of acceleration for them. In § 4 we analyze their stability
properties. The results of §§ 3 and 4 are helpful in explaining some of the numerical
results obtained from the MPE and the RRE. The techniques used in the present work
are similar in nature to those developed and used in [5] in the analysis of the modified
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MPE and the topological epsilon algorithm. The analysis in the present work, however,
is considerably heavier due to the extreme nonlinearity of the MPE and the RRE.
Surprisingly, all the conclusions that were drawn for the modified MPE hold for MPE
and RRE; they are given following Theorem 3.1 and in Theorem 4.1.

2. Notation and description of algorithms. Let B be an inner product space defined
over the field of complex numbers. In this work we shall adopt the following convention
for the homogeneity property of the inner product. For y,ze B and «a, 8 complex
numbers, the inner product (-, -) is defined such that (ay, Bz) = @B(y, z). The norm
of a vector x € B will be defined by | x| =v(x, x).

Let us consider a sequence of vectors x;, i=0,1,-- -, in B. We shall assume that

e o)
(2.1) Xp,~s+ Y v; AT as m-> o,

i=1
where s and v, i=1,2,---, are vectors in B, and A, i=1,2,- - -, are scalars, such
that A;#1, i=1,2,---,A;#A; if i#j, |A}|=|A,/=- - -, and that there can be only a

finite number of A; whose moduli are equal. Without loss of generality, we assume in
(2.1) that v; #0, A; # 0 for all i= 1. The meaning of (2.1) is that for any integer N >0,
there exist a positive constant K and a positive integer m, that depend only on N,
such that for every m = m, the vector

N-1
6N(m)=(xm_s_ ) Ui)‘:")/)")'\ll
i=1

(2.12) 5w (m)|| = K.

satisfies

If |A,| <1, then lim,,_ X,, exists and is simply s. If |A,| =1, then lim,,_ X,, does not
exist, and s is said to be the anti-limit of the sequence x,,, m=0, 1, - - - . Our problem
is to find a good approximation to s, whether it be the limit or the anti-limit of the
sequence, from a relatively small number of the vectors x;, i=0,1,- - -.

Example. Let A be a nondefective M XM (complex) matrix and b, an M-
dimensional (complex) vector, and consider the solution of the linear system of
equations

(2.2) x=Ax+b.

Let A,,- -+, Ay and vy, - - -, vy be the eigenvalues and corresponding eigenvectors of
A. Assume also that 1 is not an eigenvalue of A so that (2.2) has a unique solution,
which we shall denote by s. For a given x,, we generate the sequence x;, j=1,2,- - -, by
the matrix iterative method

(2.3) Xj+1=AXj+b, j=0, 1,' c
Let xo—s = Z?:, a;v; for some scalars a; Then

M
(2.4) xm=s+ Z a,'v,'A;", m=0, 1,"'
i=1
As is known if a,#0, which will be the case for the given X, in general, then
lim,, o0 X, = s provided |A,| <1; otherwise s is the anti-limit.
Let us denote u; = Ax; =X, —X;, i=0,1,+--,and w;=Au;=A%x;, i=0,1,---.
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The MPE. Let k be an integer less than or equal to the dimension of the space

B. The approximation s, to s is given by
k

(25) sn,k = Z ‘y;’xn+j9

j=0
where the y; are obtained from
G

(2'6) ‘YJ=Zk j=0,1’..'sk)

i0 G
with ¢, =1, and ¢, - - -, ¢, being determined as the solution to the minimization
problem

k—1

x Cilhytj+ Uyt

2.7 min

€0y "5 Ck—1

b

provided Zf=0 ¢ #0.
For the example above, (2.7) is equivalent to the least squares solution of the
overdetermined system of M equations

(2.8) Un,kc = ~Untks
where U, is the M X k matrix
(29) Un,k = (um Up+1s° " " un+k—l)9

and c is the column vector (co, ¢y, -, c_y)”, when (y,z)=y*z=Y " 5'z', where
y=0" -, yMTand z=(z',- - -, z™)7, and y* is the Hermitian conjugate of y. This
is the way the MPE was developed originally in [2].

We shall now give a determinant expression for s,, that will be of use in the
remainder of this work. Since | y|| =+v/(y, y) for any vector y in B, the ¢; that solve the
minimization problem in (2.7) satisfy the normal equations

k—1
(2.10) Y (Untiy Un) G = —(Unys, Unik), 0=si=k-1

Jj=0

Consequently, the v; that are defined by (2.6) satisfy the equations

k
L=,
(2.11) ’k
Y (Upris un+j)‘)’j=0, O=si=k-1,

j=0
provided these equations have a solution. Assuming that the determinant of the matrix
of equations (2.11) is nonzero, and using Cramer’s rule, we can write the solution of
(2.11) as .

(2.12) Y= :‘:jMzD(l,{\?-,l)’ 0=j=k,
where N; is the cofactor of o; in the determinant
o, o, s o
Uo 0 Uy g
(2.13) D(oo,* -+, 00) = U0 Uttt Mk

Ug—10 Uk—10 " Uk—1k
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with u; ;= (U4 Uns;), §,j Z0. In the first row of the determinant D(oy, - - -, 0%) we
also allow oy, - - -, 0% to be vectors in B, in which case (2.13) is to be interpreted as

(2.14) D(oy,- -+, 00 = 3 oN,

Combining (2.5), (2.12), and (2.14), we can now express s, as

D(xm ST, xn+k)
2.15 k=
@15) D, 1)
The RRE. Let k be an integer less than or equal to the dimension of the space B.
The approximation s, to s is given by

k-1

(2.16) sn,k = Xn + Z qilln+i,

i=0
where the g; are determined as the solution of the minimization problem

k—1
u, + Z ql'wn+i
i=0

(2.17) min

905" ">9k—1

For the example above, (2.17) is equivalent to the least squares solution of the
overdetermined system of equations

(218) Wn,kq =—"Up,
where W, , is the M X k matrix
(219) Wn,k = (W,,, Wnit, " wn+k—l),

and g is the column vector ¢=(qo, g1, * * * » gx—1) ', When (y, z) =ZZ1 y:z;, where y and
z are again y=(y',- -+, y™)T and z=(z',- - -, z™)". This is the way the RRE was
developed originally in [3].
For this case too s,, can be expressed as the quotient of two determinants, and

we turn to this now. Again by the fact that ||y|| =+(y, y) for any vector y in B, the g;
that solve the minimization problem in (2.17) satisfy the normal equations

k—1
(2'20) Z (wn+i, Wn+j)qj= _(wn+i, un)’ 0§l§k—1'

j=0
Substituting W,.; = U,++1— U,+; on the left-hand side of (2.20), and rearranging, we
obtain

k—1

(2.21) (Wnss u)(1—qo) + X (Wnsiy Uns)(@j—1— 4) + Wiy Unsi) 1 =0, 05 i = k—-1.
j=1

Let us define

(2.22) Yo=1-Go, %=qk-1, Y% =94j1—9q, 1=5j=k-1

It is easily verified that

(2.23) v =1,

g

J
so that (2.22) and (2.23) establish a one-to-one correspondence between the g, 0=i=
k—1, and the y,, 0=j = k. Consequently, the linear system of equations (2.20) for the
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q; is equivalent to the linear system

k .
X y=1
Jj=0
(2.24) .
Y (Wnais Unsj)y; =0, 0=si=k—1,
Jj=0
for the v, by (2.21), (2.22), and (2.23). Similarly, substituting ., = Xp+i+1 — Xp+; OD
the right-hand side of (2.16), rearranging, and invoking (2.22), we see that s, for
RRE (as for MPE) can be expressed in the form (2.5). Assuming now that the
determinant of the matrix of equations (2.24) is nonzero, and using Cramer’s rule, we
can express the y; that solve (2.24) exactly as in (2.12), where N; is the cofactor of g;
in the determinant D(oy, - - -, 0%) given in (2.13) with u; ;= (W,1;, U,+;), i, j =0. Again
when o, - - -, oy are vectors in B, D(oy, * -+, 0%) is to be interpreted as in (2.14).
Consequently s,;, also for RRE, can be expressed as in (2.15).
Before closing this section we shall state a result that will be of use in the remainder
of this work.
LEMMA 2.1. Let iy, iy, - -, ix be integers greater than or equal to 1, and assume
that the scalars v, ..., are odd under an interchange of any two indices iy, - - - , i;. Let
o, i=1, be scalars (or vectors) and let t, ;, i=1, 1=j =k, be scalars. Define

N N k
(2.25) Ln=Y - X ool Il tip)0i-i
ig=1 k=1 p=1
and
0',-0 0',-l o-ik
ta Lia c 0 L
(2.26) Jun = )2 Loz b2 " L2} Ui
1Sip<ig<-<igtr=N
Lok ik "o ik

where the determinant in (2.26) is to be interpreted in the same way as D(o, " - -, 0%)
in (2.13). Then

(2.27) Ik,N = Jk,N~
For a proof of Lemma 2.1, see [5, Appendix].

3. Convergence analysis. We have seen in the previous section that s, , for both
the MPE and the RRE, is given. by

. _D(xn, te ,xn+k)
(31) sn,k_ D(l, . ’1) B}

where D(oy, - - -, 0%) is defined by (2.13) with u; ; = (4p+s Una;), i j 20, for MPE, and
U; j = (Wnsi Unsj), i, j =0, for RRE. Subtracting s from both sides of (3.1), and making
use of (2.14), we obtain the error formula

D(xn_sa' ) ',xn+k_s)
D(l’. . ’1)

(32) s,,,k—s =
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Under the assumption (2.1), we have

(3.3) Upy ~ i_o:l vi(A;—1)AT asm- 0,
and consequently,

(3.4) W, ~ i v;(A;—1)’AT asm-oco.
From (3.3) and (3.4) we see that

(3'5) up,q=(un+p’ un+q)~ Z z (vi’ vj)(xi—l)(Aj—l)X;H-pA;H-q as n—)w,
i=1j=1

for MPE, and

(3:6)  Upg=(Wnip tnsg) ~ L T (0, )i =1)’(A,—1DAI™PAJ*  as n—>oo,
i=1j=1

for RRE. (3.5) and (3.6) can be rewritten in the condensed and unified form

[ oI o

(3.7) Up g~ Zl ‘ZI Z;ATTPATT? asn-oo,
i=1j=

where we have defined

(3.8) 2= (v, U)X = 1)(A; - 1), Lj=1,

for MPE, and

(3.9) z;=(v, (A, —1)*(N—1),  ij=1,

for RRE.

Note that when the sequence x;, j=0,1,- - -, is generated by a matrix iterative
process as described in the example of §2, then in (3.7) the upper limits on the
summations on the right-hand side are replaced by M, and ~ is replaced by =.

In Lemma 3.1 and Lemma 3.2 below we derive the asymptotic expansions of
D(x,—s,* -+, x,x—s) and D(1,- - -, 1), respectively, for n—> o, assuming (2.1). In
Theorem 3.1 we give the main result of this paper that shows that both the MPE and
RRE are true acceleration methods when applied to sequences of vectors satisfying
(2.1), in the sense that lim,, ||Snx =S|I/ | %p+k41— 5] = 0.

In what follows we shall denote asymptotic relations of the form
n->” by “a,~ B,” for short. Also we shall let

3

‘an~ Bn as

e o) s o) e o)
Y=y, X=X,
i i=1 ij  i=1j=1
and
(e o) s o) s o)
) =y X - X ,
1Si<ip<-<ip  i1=1 ip=i;+1 i=ix_1+1

for simplicity.
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LEMMA 3.1. Let the sequence of vectors x;, i=0,1,2,-- -, be as described in the
previous section. For i,, j, positive integers, define

Vo Uy " Yy
. . Ziy jo Zijy T Ziggy
Lty —_ o e ..
(310) Josdis sk — | Zigdo Ziyjy z'z!j ’
Zijo Zwir T Zigie

where the interpretation of this determinant is like that of D(o,, oy, - - -, o%) in (2.13)
and (2.14). Let V(&, &, - - -, &) be the Vandermonde determinant

1 & - (’)‘
!
(3.11) V(éo, &1, -, &) = | - f:l §
LG e

Then D(x,—s, - - -, X,+x —S) has the asymptotic expansion given by

= H (5} - f:)

O=si<jsk

D(xn_sa' : '3xn+k_s)

(312) -~ z ( ﬁ A;:,) V(Ajo’ Ajp T, /\jk)

1=jo<ji<-<jk
k : i
-n T .7 i,y
. Z . l-[ Aip V(/\"l’ ’Aik)RjO’jl»""jk.
1=i<ip<---<ip \p=1

Proof. Let us denote D(x,—s, - * *, X,+x — ) by P, for short. By (2.13), (2.1), and
(3.7), we have

n n+1 n+k
L vAj, 2 DAj, L vAj,
Jo Jo Jo
In,n ynyntl Inyntk
z z"U'lA"l/\jl z zille'.lA'jl Z Zilleil/\jl
i1 i1 inLJ1
_~ yn+lyn Jn+l, n+l ... Jn+l,y n+k
(3.13) P, .Z. ZiAiy AJ, ,Z. ZypAG, Aj, X Ziphi A
i2,)2 i2,J2 iz, )2
yn+k—1yn Fn+k—1, n+1 yn+k—1, n+k
L zig AL A, 2z A A, L zigAi, A
ik Jk i Jk o Jk

By the multilinearity property of determinants we can reexpress (3.13) in the form

_ koo
(3.14) P~y Y -+ ¥ vj;,/\}:,(p];[l z, A0T l/\jp) V(Ais Ajis 5 Aj)-

Jo i1 i Jk
By changing the order of summation in (3.14), we have
i Jo J1 Jk

(315) P~E---3 (pf:[l x,f;fP-I) DNEED) z>,.0(p1";[l z,.pjp)(plilo ,\;.;) Vi Ay -5 Ay).

Since (]_[";=0 A V(A Ay, - <+, A;,) is odd under an interchange of any two of the
indices j,, Lemma 2.1 can be applied, and we obtain

k = n+p— ioeeed k n
(3.16) Pn ~Z AR z ( H A,'p+p l) Z R.Itl):h:k,jk( HO /\jp) V(/\Jo’ Ajl’ tt Ajk)’
p=

i ik \p=1 1=jo<ji<'<Jjk
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Interchanging the order of the summations in (3.16), we have

2 (A7) VO n,

1=jo<j1<-<Jk

sop(f (e

Let now N "% be the cofactor of v;, in the determinant expression for R} ,l"' . Then

(3.17)

(3.18) RJ“) ,'l"i Z quj.‘lI"""k

Observing from (3.10) that the N};"""k are odd under an interchange of any two of
the indices iy, - - -, iy, we can apply Lemma 2.1 again to the multiple sum with respect
to the indices i, - - -, iy, with R}’ l"' J replaced by (3.18). The terms that are odd in
the indices i,, - - -, ik now are ([[,_, A{) Nj"* By Lemma 2.1 then

Pn~ Z (HAJP)V( jp""Ajk)

15jo<j1<-'-<jk

(3.19)

k k

' Z Uiq Z ( n X:;)N;«:’-..’ik V(X"I’ T Xik)’
q=0 1=i<ip<--<i, \p=1

which, by invoking (3.18), can be reexpressed as (3.12), thus completing the

proof. 0

LEMMA 3.2. Let the sequence of vectors x;, i=0,1,2, - -, be as described in the
previous section. For i,, j, positive integers, define

) Zijy  Zig, T Zik
. . Z. Zo. e Z..
[ IVCETIN A nh RJ2 R2Jk
(3.20) Si = |79 T 2|
Zij  Zikjz Ziji

Then D(1, - - -, 1) has the asymptotic expansion given by

D, -+, 1)~ > (lE[AZ,)V(l A5 A

1=j1<j2<"<Jk \P=1

s (15) Ve RS

1=i<ip<---<ip \p=1

(3.21)

Proof. Let us denote D(1, - - -, 1) by Q, for short. From (2.13) and (3.7), we have

‘ynyn Tnyntl .. n+k
Z ZilleilAjl Z z'.lleilAjl Z Z‘l,llA A
it i i
n+l,n n+1 n+1 e n+1, n+k
(322) Qn -~ Z z'z,lzA A z z'z]z)‘ 2 Jz z z'z.lzA A
i2,J2 iz, )2 i2,)2
n+k 1 n+k 1y, n+1 . n+k 1, n+k
Z z'k]k A z Zlk]k A z z'k!k ik A
ikodic i Jkc ik Jk
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Again by the multilinearity property of determinants

k

(3°23) Qn ~ Z e Z ( ].-[ Zipij::,+p_lAj":,) V(I’ Ajl, T, Ajk)'
i1 ijk \p=1

By changing the order of summation in (3.23) and observing that

(H o1 ALY V(L Ay, -+, A;) is odd under an interchange of any two of the indices jj,

we can apply Lemma 2.1 to the summation over j,, - - -, ji. The result is

-1+ £ age)

(3.24) .
2 s Va0
1= <G <---<Ji =
Changing the order of summation again, and observing that (]'[ )S 'k is odd
under an interchange of any two of the indices i,, we can now apply Lemma 2.1to
the summation over i, ---,i. As a result, we obtain (3.21). This completes the
proof. 0O

THEOREM 3.1. Let the sequence of vectors x;, i =0,1,2,- - -, be as described in the
previous section. If, in addition, the v; are linearly independent, and

(3.25) |A1|§‘ . 'gll\k|>lAk+1|§|/\k+2|§. RN
then, for all sufficiently large n, s, exists, and
(3.26) Spx—S=F(n)Aka[1+0(1)] asn->o0,

where the vector F(n) satisfies | F(n)| = K, for some constant K >0 independent of n,
and for all sufficiently large n. If, in addition,

(3.27) |Ak+1]> |Ak+2l,
then
_ RPN Ak+1
(3.28) F(n)= H [1+o(1)] as n- oo,
Sl,'", i=1 Ai
Proof. From (3.20) and (3.8) (or (3.9)),
(3.29) S}i:£= HG(vh Y vk),
where
k 2 ko
=TI (A;=1) for MPE (orH= IT (X;=1)*(A;—1) for RRE),
i=1 i=1
and G(v,, - - -, vy) is the Gram determinant of the vectors vy, - - - , vy, given by
(v, 1) (v, 02) -+ (v, 00)
(3.30) Glvy, -+, v0) = (Uz,: v) (v,0) -0 (05 00) .
(v v1) (V6 02) -+ (V6 )
Since the v; are linearly independent, G(v,, -, Ux) is nonzero. Also, since A; # 1 for
all i, H is nonzero. Consequently, Sy k is nonzero. Next, since A; # A; for i # j, and
A;#1 forall i, V(A,---,Xs) and V(l Ay, ¢t +, Ak) are nonzero on account of (3.11).

Finally, we observe that, due to (3.25), the dominant term in the multiple sum on the 4
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right-hand side of (3.21) in Lemma 3.2 would be that for which i,=p, j,=p, p=
1,- -+, k, provided V(1,A,,---,A;) and S};'.'.'.;ﬁ are nonzero, which we have already
proved to be so. Consequently,

2

D(l,.'.9l)= V(19Ab...,/\k)v(xl,..',xk)

k
Hl Ap
p=
(3.31)
- SPK[1+0(1)] asn->co,

This also implies that, for all sufficiently large n, D(1,- - -,1)# 0; hence s, , exists.
This completes the proof of the first part of the theorem.

To prove (3.26), we should analyze the behavior of D(x,—s,- -, X+, —s) for
n- 0. By our assumptions made following (2.1), there is only a finite number of A;
whose moduli are |Ai4q|. Let |Artq| ="+ =|Aksr|>|Aksr+1/- From this and (3.25), it
follows that the dominant term on the right-hand side of (3.12)—provided it is
nonzero—is the sum of those terms with indices i,=p, p=1,---,k, j,-1=p, p=
1,---,k jx=k+1L 1=1,---, r, namely

D(xn_s" ) "xn+k_s)
2

V(Xl’ Y xk)

(3.32) =

7:l>r

Ap
1
: El Akt V(Ay, o0 A Ak+l)R:’,--:’,’ICgk+1[1 +0(1)] asn->co.
From (3.10) and (3.20),
k
(3.33) Ry kiert= T Buvi+ (=1) St kv,
i=1

so that the summation on the right-hand side of (3.32) becomes

v.-[IZ At VA, w05 Ay Ak+1)ﬂu]
1 =1 .

M =

1

(3.34)
DS L ALV, bo M) D
=1

Since S};III;f #0, V(Ay, ***, A Axsr) #0, and the vectors vu; are linearly independent,
the second summation in (3.34) is never zero. This proves (3.32). Combining (3.31)
and (3.32), (3.26) follows. If (3.27) holds, then r =1. In this case (3.28) follows from
(3.31), (3.32), and (3.11). This completes the proof of the theorem. [

The asymptotic error analysis of the MPE and RRE as given in Theorem 3.1,
leads us to the following important conclusions:

(1) Under the conditions stated in the theorem, the MPE and RRE are bona fide
acceleration methods in the sense that

(3'35) “s'l,k —S” = 0[(Ak+l) ] as n—-> o,

1 %n+s41= 5| Ay

This means that if x,, > s as n > o, i.e., |A,| <1, then s,, - s as n > o, and more quickly.
Also if lim,, x,, does not exist, i.e., |A,|=1, then s,, > s as n-> oo, provided that
|Ak+1| <1. The reason that we write X,.x+; in (3.35) is that s, in both the MPE and
RRE is computed from Xx,, X,+1,* * * » Xn+k+1-
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(2) When the MPE and RRE are being applied to a vector sequence generated
by using a matrix iterative method, they will be especially effective when the iteration
matrix has a small number of large eigenvalues (k-many when s, is being used) that
are well separated from the small eigenvalues.

(3) As can be seen from (3.28), a loss of accuracy will take place in s,;, when
A1, - * -, Ak are close to 1. For sequences of vectors obtained from the iterative solution
of linear systems of equations, this means that the matrix of the system is nearly singular.

These conclusions are the same as those for the modified MPE, which has been
defined and analyzed in [5].

Finally note that the results of this section (and of § 4) will not change if the MPE
and RRE are replaced by any other method giving rise to (3.1), with D(oy, - - -, o%)
defined as in (2.13), as long as the u; ; in (2.13) satisfy (3.7) with z; = (v, v;) u;»;, where
u; and v; are fixed nonzero constants.

4. Stability analysis. Let us denote ¥, in (2.5) by y{™* for both MPE and RRE.
We say that s, is asymptotically stable if

k
(4.1) sup ¥ |vj™] <co.
n j=0
Roughly speaking, this means that if errors are introduced in the vectors x,,, then the
error in s, stays bounded as n-oo. Since ¥ _, y{* =1, the most ideal situation is

'J
one in which y{**20, 0=j =Kk, for all sufficiently large n, so that

 yf= £ 4 =1
j=o ' j=o "’

The following theorem gives the stability properties of both the MPE and RRE
when they are applied to vector sequences satisfying the conditions of Theorem 3.1.
s« denotes either that obtained from MPE or RRE.

THEOREM 4.1. For vector sequences satisfying the conditions stated in Theorem 3.1,
Snx is asymptotically stable. Actually, the following are true:

(1) The yf,""‘) satisfy

(nk) _ Cq(Ala T, )‘k)

(4.2) Ya V(l,Al,-u,Ak)”(l) asn- o,
where

1 & - &V
(4.3) Cq(fla"',§k)=(—.l)"¥ f:z gg:—l g.+1 .f;

1 & oo &gt . g
thus

k

“4 qz::() ™) =ZT:/O(L?;(ITf’....’.):k);f)l [1+0(1)] asn->oo,

i.e., (4.1) holds.
(2) If Ay, - - -, A, are real and negative, then

(4.5) Yy >0, 0=q=k, forn sufficiently large,
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thus
(4.6) Z lYy*®)|=1+0(1) asn->oco.
(3) If Ay, - -+, A are real and positive, then
4.7) Yy <0,  0=g=k-1, for n sufficiently large;
thus
(438) ZI%“’-‘Q(?&q)h1+oUH as n—>oo,
(4) Forany Ay, -+ -, Ay
(4.9) '1'1_{{}0 Z yooAT = l'l;ll (t—:?)

Proof Since y{*¥ is given by (2.12), and we already know the asymptotic behavior
of D(1,- - -,1) from 3.2, it is sufficient to analyze N, asymptotically. By deleting the
first row and the (g +1)st column of the determinant in (3.22), after some manipulation,
we have

(4-10) Nq~ Z o Z ( H zl,,j,, :;+p—lA1p>C ( s T Ajk)'

i1 ik Jk

Observe that (]'[";=l A7)Co(Ay, - - -, ;) is odd under an interchange of any two of the
indices j,. Consequently,

k
Ny~ % A(HAJCQW~3MJ
151 <j2<-<Jk =1

(4.11)
(v, mosg
1=i<ip<--<ix \p=1
follows from (4.10) in exactly the same way (3.21) follows from (3.23). Invoking (3.25),

2

(4.12) Nq = V(Xl, . Ak)Sl k[C (Ala crty, Ak)+ 0(1)] as n-> oo,

k
Il A;
p=1

follows from (4.11) in the same way (3.31) follows from (3.21). Combining (4.12) and
(3.31) in (2.12), (4.2) follows. (4.4) follows directly from (4.2). This proves (1).

Note that V(A, Ay, - -, Ay) is a polynomial of degree k in A. From (3.11) and
(4.3) we have

(4.13) VLA, A= i Co(Ay, v oo, AN

q=0

Since V(A, Ay, - -+, Ag) has Ay, - - -, A, as its only zeros, we also have
k
(4'14) V(A,Al" : .’Ak)=ck(Al,. : ’aAk) l_l (A_Al)'
i=1
If A,--:,A are real and negative, then (4.13) and (4.14) imply that

Cy(Ay,+ 5 M), 0= g =k, are all of the same sign. This, along with (4.2), implies (4.5).
(4.6) is a direct consequence of (4.5) and (2.11). This proves (2).
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If Ay,---,A, are real and positive, then (4.13) and (4.14) imply that
Co(Ay, e+, M) Cin(Ay, -+ -, A) <0, 0= g = k— 1. This, along with (4.2), implies (4.7)
and

s gm0 (“1)*Cy(As, -~ -, A
(mh)| = 12920 2oL Tkl 1+0(1)] asn->o
qgol‘yq I |V(1s Als' : "Ak)l [ ( ]
_ V(_la Al, T, Ak)
V(la Al’ T, Ak)
which, by (3.11), reduces to (4.8). This proves (3).

Multiplying both sides of (4.2) by A9 summing over q from 0 to k, and finally

making use of (4.13) and (3.11), (4.9) follows, thus proving (4). O

(4.15)

[1+0(1)] asn-oo,
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