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CONVERGENCE AND STABILITY PROPERTIES OF MINIMAL 

POLYNOMIAL AND REDUCED RANK 


EXTRAPOLATION ALGORITHMS* 


AVRAM SIDIt 

Abstract. The minimal polynomial and reduced rank extrapolation algorithms are two acceleration of 
convergence methods for sequences of vectors. In a recent survey these methods were tested and compared 
with the scalar, vector, and topological epsilon algorithms, and were observed to be more efficient than the 
latter. It was also observed that the two methods have similar convergence properties. The purpose of the 
present work is to analyze the convergence and stability properties of these methods, and to show that they 
are bona fide acceleration methods when applied to a class of vector sequences that includes those sequences 
obtained from systems of linear equations by using matrix iterative methods. 

1. Introduction. The minimal polynomial extrapolation algorithm (MPE) of 
Cabay and Jackson [2] and the reduced rank extrapolation algorithm (RRE) of Eddy 
[3] and MeSina [4] are two methods that have been devised for accelerating the 
convergence of sequences of vectors. In a recent survey carried out by Smith, Ford, 
and Sidi [6], these two methods were tested and compared with the scalar epsilon 
algorithm of Wynn [7], the vector epsilon algorithm of Wynn [8], and the topological 
epsilon algorithm of Brezinski [I]. It was observed numerically that the MPE and the 
RRE have similar convergence properties, and, in general, are more efficient than the 
three epsilon algorithms. 

In the present work we analyze the convergence and stability properties of the 
MPE and the RRE, and show that they are bona fide convergence acceleration methods 
when applied to a family of sequences that includes those sequences obtained from 
systems of linear equations by using matrix iterative methods. 

In a recent work of Sidi, Ford, and Smith [5] (this issue, pp. 178-196) a general 
framework for deriving convergence acceleration methods for vector sequences has 
been proposed. Within this framework one can derive several methods, some old 
(including the MPE, RRE, and the topological epsilon algorithm), and some new 
(including a method that has been designated the modified MPE). The approach of 
[5] is formulated in general normed linear spaces of finite or infinite dimension. In 
the present work we use the formulations of the MPE and the RRE as they are given 
in [5]. We also make the assumption that the normed linear space in which the vector 
sequence is defined is an inner product space, with the norm being induced by the 
inner product. 

The plan of the present paper is as follows: In 5 2 we specify the vector sequences 
whose convergence we are seeking to accelerate, describe the MPE and the RRE as 
they were formulated in [5], deriving at the same time determinant representations for 
them. We shall use 8 2 to also introduce much of the notation that we use in the 
remainder of this work. In § 3 we analyze the convergence properties of both methods 
and obtain actual rates of acceleration for them. In § 4 we analyze their stability 
properties. The results of §§ 3 and 4 are helpful in explaining some of the numerical 
results obtained from the MPE and the RRE. The techniques used in the present work 
are similar in nature to those developed and used in [5] in the analysis of the modified 
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MPE and the topological epsilon algorithm. The analysis in the present work, however, 
is considerably heavier due to the extreme nonlinearity of the MPE and the RRE. 
Surprisingly, all the conclusions that were drawn for the modified MPE hold for MPE 
and RRE; they are given following Theorem 3.1 and in Theorem 4.1. 

2. Notation and description of algorithms. Let B be an inner product space defined 
over the field of complex numbers. In this work we shall adopt the following convention 
for the homogeneity property of the inner product. For y, z E B and a ,  P complex 
numbers, the inner product (., . )  is d e f i n e d ~ h  that (ay, pz) = @(y, z). The norm 
of a vector x E B will be defined by llxll = J ( x ,  x). 

Let us consider a sequence of vectors xi, i =0,1, . . . ,in B. We shall assume that 

where s and vi, i = 1,2, . . . , are vectors in B, and A, i = 1,2, . . . , are scalars, such 
that A i  # 1, i = 1,2 , .  . . ,A i  # A, if i #j, IAll E IA21 E . . . , and that there can be only a 
finite number of A,  whose moduli are equal. Without loss of generality, we assume in 
(2.1) that vi # 0, A i  # 0 for all i 2 1. The meaning of (2.1) is that for any integer N >0, 
there exist a positive constant K and a positive integer m, that depend only on N, 
such that for every m E m, the vector 

satisfies 

(2.la )  l l ~ ~ ( m ) l l5 K. 

If lA1l <1, then lim,,, x, exists and is simply s. If IAll 2 1, then lim,,, x, does not 
exist, and s is said to be the anti-limit of the sequence x,, m =0,1, . . . . Our problem 
is to find a good approximation to s, whether it be the limit or the anti-limit of the 
sequence, from a relatively small number of the vectors xi, i =0,1, . . . . 

Example. Let A be a nondefective M x M (complex) matrix and 6, an M-
dimensional (complex) vector, and consider the solution of the linear system of 
equations 

Let A,, . . . ,A M  and v,, . . . ,vM be the eigenvalues and corresponding eigenvectors of 
A. Assume also that 1 is not an eigenvalue of A so that (2.2) has a unique solution, 
which we shall denote by s. For a given x,, we generate the sequence xj, j= 1,2, . . . ,by  
the matrix iterative method 

MLet x, -s =1i = l  aivi for some scalars ai.Then 

As is known if a, # 0, which will be the case for the given x, in general, then 
lim,,, x, = s provided IAll <1; otherwise s is the anti-limit. 

Let us denote ui =Axi =xi+, -xi, i =0,1, . . . ,and wi =Au, =A2x, i =0, 1, . . . . 
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The MPE. Let k be an integer less than or equal to the dimension of the space 
B. The approximation s , ,  to s is given by 

k 

(2.5) sn,k = 1 xXn+j,
j = O  

where the y, are obtained from 

Ci
(2.6) j = O , l ; - . , k ,

Y ' = m  

with ck= 1, and co,. ,ck-, being determined as the solution to the minimization 
problem 

k-1 

min 

provided 1:=, ci# 0. 
For the example above, (2.7) is equivalent to the least squares solution of the 

overdetermined system of M equations 

where Un,kis the M x k matrix 

T M -. . ,c ~ - ~ )  = 

y = ( y l ,  . ,Y M ) T  and z = ( z l ,  and y* is the Hermitian conjugate of y. This 
and c is the column vector (co, c,, . . , when ( y ,  z )  y*z = I i z l  y'z', where 

. . ,z ~ ) ~ ,  
is the way the MPE was developed originally in [ 2 ] .  

We shall now give a determinant expression for s , ~that will be of use in the 
remainder of this work. Since 11 yll= for any vector y in B, the ci that solve the 
minimization problem in (2.7)satisfy the normal equations 

Consequently, the yj that are defined by (2.6) satisfy the equations 

provided these equations have a solution. Assuming that the determinant of the matrix 
of equations (2.11) is nonzero, and using Cramer's rule, we can write the solution of 
(2.11) as 

where Nj is the cofactor of a, in the determinant 
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with ui,j = (un+,  u,+~), i, j 2 0. In the first row of the determinant D(uo, . . . ,uk) we 
also allow uo, . . . ,uk to be vectors in B, in which case (2.13) is to be interpreted as 

k 

(2.14) D(u0,. . . ,uk)= 1u f i  
i = O  

Combining (2.5), (2.12), and (2.14), we can now express s , ~as 

. . , . 
The RRE. Let k be an integer less than or equal to the dimension of the space B. 

The approximation s , ~to s is given by 

where the qi are determined as the solution of the minimization problem 

For the example above, (2.17) is equivalent to the least squares solution of the 
overdetermined system of equations 

where WnVk is the M x k matrix 

M -and q is the column vector q = (go, q,, . . . ,qk-l)T, when (y, z) =xi=,yiz, where y and 
z are again y = (y l , .  . . ,y M ) T  and z = ( z l , .  . . ,zM)?  This is the way the RRE was 
developed originally in [3]. 

For this case too s , ,  can be expressed as the d e n t  of two determinants, and 
we turn to this now. Again by the fact that Ily 1 1  = J (y ,  y)  for any vector y in B, the qi 
that solve the minimization problem in (2.17) satisfy the normal equations 

Substituting w,+~= un+j+l-un, on the left-hand side of (2.20), and rearranging, we 
obtain 

Let us define 

(2.22) yo= 1 -qo, yk= qk-l, yj = qjPl-qj, 15j 5 k - 1. 

It is easily verified that 

so that (2.22) and (2.23) establish a one-to-one correspondence between the q ,  O S  i 5 
k - 1, and the yj, O SjS k Consequently, the linear system of equations (2.20) for the 
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q, is equivalent to the linear system 

for the y,, by (2.21), (2.22), and (2.23). Similarly, substituting u,+, = x,+~+]-x,+~ on 
the right-hand side of (2.16), rearranging, and invoking (2.22), we see that s , ,~for 
RRE (as for MPE)  can be expressed in the form (2.5). Assuming now that the 
determinant of the matrix of equations (2.24) is nonzero, and using Cramer's rule, we 
can express the yj that solve (2.24) exactly as in (2.12),where Nj is the cofactor of a, 
in the determinant D(uo, . ,uk)given in (2.13) with ui,j= (w,+, u,+,), i, j Z  0. Again 
when uo,. . ,uk are vectors in B, D(uo,. . ,uk)is to be interpreted as in (2.14). 
Consequently s , ~ ,also for RRE, can be expressed as in (2.15). 

Before closing this section we shall state a result that will be of use in the remainder 
of this work. 

LEMMA2.1. Let io, i,, . ,ik be integers greater than or equal to 1, and assume 
that the scalars v~~, . . . ,~ ,  are odd under an interchange of any two indices io, . ,ik. Let 
ui,i 2 1, be scalars (or vectors) and let tiSj, i 2 1, 1 sj 5 k, be scalars. Define 

and 

where the determinant in (2.26) is to be interpreted in the same way as D(uo ,  . ,uk) 
in (2.13). Then 

For a proof of Lemma 2.1, see [5, Appendix]. 

3. Convergence analysis. We have seen in the previous section that s , ~ ,for both 
the MPE and the RRE, is given. by 

where D(uo,  . ,uk)is defined by (2.13) with uij = (u,+~, u,+~), i,j 2 0, for MPE, and 
uij = (w,+, u,+~),i, j 2 0,  for RRE. Subtracting s from both sides of (3.1),and making 
use of (2.14),we obtain the error formula 
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Under the assumption (2.1), we have 

and consequently, 

From (3.3) and (3.4) we see that 

for MPE, and 

for RRE. (3.5) and (3.6) can be rewritten in the condensed and unified form 

where we have defined 

for MPE, and 

for RRE. 
Note that when the sequence xj, j =0, 1, . . . , is generated by a matrix iterative 

process as described in the example of § 2, then in (3.7) the upper limits on the 
summations on the right-hand side are replaced by M, and - is replaced by =. 

In Lemma 3.1 and Lemma 3.2 below we derive the asymptotic expansions of 
D(xn-S, . . . ,x,+, -S) and D(1;. . ,I),  respectively, for n +co, assuming (2.1). In 
Theorem 3.1 we give the main result of this paper that shows that both the MPE and 
RRE are true acceleration methods when applied to sequences of vectors satisfying 
(2.1), in the sense that limn,, (Isn,,-s ( ( /  ((x,+,+, -s ( (=0. 

In what follows we shall denote asymptotic relations of the form "a, -Pn as 
n +a''by "a, -P," for short. Also we shall let 

and 

for simplicity. 
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LEMMA3.1. Let the sequence of vectors xi, i =0,1,2, , be as described in the 
previous section. For ip, jp positive integers, dejine 

I vjo vj, . Vik I 

where the interpretation of this determinant is like that of D(ao,a,, . ,ak)in (2.13) 
and (2.14). Let V ( t o ,t,, . . ,5 k )  be the Vandermonde determinant 

11 60 tokl0 . . 

Then D(xn  -s, .,xn+,-s )  has the asymptotic expansion given by 

Pro05 Let us denote D(xn  -s, . . ,xn+,-s )  by Pn for short. By (2.13), (2.1), and 
(3.7), we have 

1 vjoAy0+' . . . 1 v ~ ~ A ~ ~ + ~  
JO i o  10 

By the multilinearity property of determinants we can reexpress (3.13) in the form 

By changing the order of summation in (3.14), we have 

(3.15) Pn -1 . .1( fi x1 . - 1 vj0( f i  ziPjp)( fi A;) v(Aj0, A,,, . . . ,A,,).
il it p= l  J O ~ I  j k  P = I  p=O 

Since (ni=oA;) V(Ajo, Ajl, . . ,A,,) is odd under an interchange of any two of the 
indices j,,, Lemma 2.1 can be applied, and we obtain 



204 AVRAM S I D I  

Interchanging the order of the summations in (3.16),we have 

pn - ( Ii A;) ~(hj, , ,A,,, . . A j k )  
l S j O < j l < ~ ~ ~ < j kp=O

(3.17) 

p = l  

i ;..,ik 
J~Let now ~'1," ' . 'kbe the cofactor of vjqin the determinant expression for Rj;,jl,...,jk.Then 

Observing from (3.10) that the N;;,"','k are odd under an interchange of any two of 
the indices i,, . . . , i,, we can apply Lemma 2.1 again to the multiple sum with respect 

I ...,ik
to the indices i,, . . , ik, with Rj;:., replaced by (3.18). The terms that are odd in , jk  

the indices i,, . . , ik now are ( n j . , ' i ; ) ~ ; ; ~ . . ' ~ ' k .  By Lemma 2.1 then 

which, by invoking (3.18), can be reexpressed as (3.12), thus completing the 
proof. 0 

LEMMA3.2. Let the sequence of vectors xi, i = 0 ,  1,2, . . . , be as described in the 
previous section. For i, jp positive integers, define 

Then D ( l ,  . . . , 1 )  has the asymptotic expansion given by 

Proof: Let us denote D ( i ,  . . , 1)  by Q, for short. From (2.13) and (3.7),we have 
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Again by the multilinearity property of determinants 

By changing the order of summation in (3.23) and observing that
(n;=,A;) V ( l ,  A,,, - . . ,A,,) is odd under an interchange of any two of the indices j, 
we can apply Lemma 2.1 to the summation over j,, . . . ,jk. The result is 

Changing the order of summation again, and observing that (n;=,1 ; ) ~ ; :  is odd :: 
under an interchange of any two of the indices i, we can now apply Lemma 2.1 to 
the summation over i,, . ,i, As a result, we obtain (3.21). This completes the 
proof. O 

THEOREM3.1. Let the sequence of vectors x,, i =0,  1,2, . ,be as described in the 
previous section. If, in addition, the v, are linearly independent, and 

then, for all suficiently large n, s , ~exists, and 

(3.26) snVk-s =F(n)A;+,[l+ o ( l ) ]  as n +co, 

where the vector F ( n )  satisjes 1 1  F (n) l lS  k,for some constant k >0 independent of n, 
and for all suficiently large n. If, in addition, 

then 

Proof: From (3.20) and (3.8) (or (3.9)), 

where 
k 

( h i - 1)'(Ai -1) [or RRE 

and G(v , ,  . .,vk)  is the ~ram'determinant of the vectors v,, . . - ,vk, given by 

Since the vi are linearly independent, G(v , ,  . - . ,vk ) is nonzero. Also, since hi # 1 for 
all i, H is nonzero. Consequently, s:;:::;;is nonzero. Next, since hi # A, for i # j, and 
Ai # 1 for all i, V ( h ,  . . . ,h k )and V ( l ,  A,, . - - ,Ak) are nonzero on account of (3.1 1). 
Finally, we observe that, due to (3.25), the dominant term in the multiple sum on the 
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right-hand side of (3.21) in Lemma 3.2 would be that for which ip =p,  jp=p, p = 

1, . . . ,k, provided V(l, A,,  . . . ,Ak) and s:;:::;:are nonzero, which we have already 
proved to be so. Consequently, 

This also implies that, for all sufficiently large n, D ( l ,  . . ,1)# 0; hence s, ,~exists. 
This completes the proof o'f the first part of the theorem. 

To prove (3.26), we should analyze the behavior of D(x, -s, . ,x , + ~-s)  for 
n +oo. By our assumptions made following (2.1), there is only a finite number of A i  
whose moduli are [ A k + , [ .  Let IAk+,l = . . .= lAk+r l  > Ihkfr+,l. From this and (3.25), it 
follows that the dominant term on the right-hand side of (3.12)-provided it is 
nonzero-is the sum of those terms with indices ip =p, p = 1, . . . ,k, jp-,=p, p = 

1 ; . . , k , j k=k+1 ,  l= l ; . . , r ,namely  

From (3.10) and (3.20), 

so that the summation on the right-hand side of (3.32) becomes 

Since ~::::::f:# 0, V(A,, . . ,Ak, Ak+[) # 0, and the vectors uiare linearly independent, 
the second summation in (3.34) is never zero. This proves (3.32). Combining (3.31) 
and (3.32), (3.26) follows. If (3.27) holds, then r = 1. In this case (3.28) follows from 
(3.31), (3.32), and (3.11). This completes the proof of the theorem. O 

The asymptotic error analysis of the MPE and RRE as given in Theorem 3.1, 
leads us to the following important conclusions: 

(1) Under the conditions stated in the theorem, the MPE and RRE are bona fide 
acceleration methods in the sense that 

This means that if x, + s as n + a ,  i.e., IA,l <1, then s,,~+s as n +oo, and more quickly. 
Also if lim,,, x, s as n + a ,  provided that does not exist, i.e., IAll 2 1, then s , ~ +  
lAk+ll  <1. The reason that we write x,+,+, in (3.35) is that s , ,  in both the MPE and 
RRE is computed from x,, x,+,, . . ,~ , + k + ~ .  
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(2) When the MPE and RRE are being applied to a vector sequence generated 
by using a matrix iterative method, they will be especially effective when the iteration 
matrix has a small number of large eigenvalues (k-many when s , ~is being used) that 
are well separated from the small eigenvalues. 

(3) As can be seen from (3.28), a loss of accuracy will take place in s , ,  when 
A,, ,Ak are close to 1. For sequences of vectors obtained from the iterative solution 
of linear systems of equations, this means that the matrix of the system is nearly singular. 

These conclusions are the same as those for the modified MPE, which has been 
defined and analyzed in [5]. 

Finally note that the results of this section (and of Q 4) will not change if the MPE 
and RRE are replaced by any other method giving rise to (3.1), with D(wo, . ,wk) 
defined as in (2.13), as long as the u, in (2.13) satisfy (3.7) with zij= (v, vj)pivj, where 
pi and uj are fixed nonzero constants. 

4. Stability analysis. Let us denote yj in (2.5) by yjn.k' for both MPE and RRE. 
We say that s ~ , ~is asymptotically stable if 

k 

sup C I Yjn,k'l<a. 
n j = O  

Roughly speaking, this means that if errors are introduced in the vectors x,, then the 
error in sn,* stays bounded as n +co. Since yjn*k)= 1, the most ideal situation is 
one in which y,!n.k'L 0, 0 5j 5 k, for all sufficiently large n, so that 

The following theorem gives the stability properties of both the MPE and RRE 
when they are applied to vector sequences satisfying the conditions of Theorem 3.1. 
s , , ~  denotes either that obtained from MPE or RRE. 

THEOREM4.1. For vector sequences satisfying the conditions stated in Theorem 3.1, 
s,,~is asymptotically stable. Actually, the following are true: 

(1) The rPk)satisfy 

where 

thus 

i.e., (4.1) holds. 
(2) If A,, . ,Ak are real and negative, then 

(4.5) rPk)>0, 0 5 q 5 k, for n suficiently large; 
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thus 
k 

(4.6) 1 IYpk'l= 1+ o(1) as n +a. 
q=o  

(3) If A,, . ,Ak are real and positive, then 
ybn,k) ( n k )  <0,(4.7) Y q i l  0 5  q 5k - 1, for n suficiently large; 

thus 

(4) For any A,;. . ,Ak, 

Proof: Since y p k '  is given by (2.12), and we already know the asymptotic behavior 
of D ( l ,  . ,1) from 3.2, it is sufficient to analyze Nq asymptotically. By deleting the 
first row and the (q + 1)st column of the determinant in (3.22), after some manipulation, 
we have 

Observe that (fl;=, A;)Cq(Ajl, ,Ajk) is odd under an interchange of any two of the 
indices j,. Consequently, 

follows from (4.10) in exactly the same way (3.21) follows from (3.23). Invoking (3.25), 

follows from (4.11) in the same way (3.31) follows from (3.21). Combining (4.12) and 
(3.31) in (2.12), (4.2) follows. (4.4) follows directly from (4.2). This proves (1). 

Note that V(A, A,, . . ,Ak) is a polynomial of degree k in A. From (3.11) and 
(4.3) we have 

Since V(A, A,, . ,Ak) has A,, ,Ak as its only zeros, we also have 

If A,, hk are real and negative, then (4.13) and (4.14) imply thata ,  

C4(Al, . . ,Ak), 0 5  q 5k, are all of the same sign. This, along with (4.2), implies (4.5). 
(4.6) is a direct consequence of (4.5) and (2.11). This proves (2). 
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If A,, . , Ak are real and positive, then .(4.13) and (4.14) imply that 
Cq(Al, . , hk) Cq+,(Al, . . , hk) < 0,O 5 q S k - 1. This, along with (4.2), implies (4.7) 
and 

which, by (3.11), reduces to (4.8). This proves (3). 
Multiplying both sides of (4.2) by hq, summing over q from 0 to k, and finally 

making use of (4.13) and (3.11), (4.9) follows, thus proving (4). O 
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