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BOREL SUMMABILITY AND CONVERGING FACTORS FOR SOME
EVERYWHERE DIVERGENT SERIES*

AVRAM SIDI

Abstract. In this work we deal with the problem of interpretation of certain classes of everywhere
divergent power series within the framework of Borel summability, and derive asymptotic expansions for
their partial sums and/or their converging factors when the number of terms in the partial sums goes to
infinity.
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1. Introduction. Consider the formal power series F()"= Er__ ar whose terms
are of the form

(1.1) ar=rPw(r)(r!) m,
where p >= 0 and m >= 1 are integers, and w(r) is such that

(1.2) w(r) 0 _w_ as r for some o > 0,
i= Fi+

with w being some constants independent of r. Obviously F() does not converge for
any value of ’. In this work we shall be concerned with the interpretation of the "sum"
of F(’), and with the asymptotics of the converging factor of the partial sum A(’)=
E’__la’ in the limit n , for ’ fixed. This problem arises when one tries to apply the
or u transformation of Levin [4] to the sequence Aj.(), j=1,2,..., to obtain an

approximation to the "sum" of F(’), or to the anti-limit of the sequence (A(’)).
The and u transformations are nonlinear methods for accelerating the conver-

gence of a slowly converging sequence to its limit, or for effecting convergence of a
diverging sequence to its anti-limit. There is ample numerical evidence (see the numeri-
cal examples given in [10]) that suggests that in order for the (or u) transformation to
be efficient on a sequence Bi, 1, 2,..., Bi has to be of the form

(1.3) Br_l=B+Rrf(r),

where B is the limit or anti-limit of ( B }, and f(r) should be such that

(1.4) f(r)-- _, ft.__! as r oo
i--0 rt

and R rbr, where b B, br= Br- Br_ 1, r >= 2, and X 0 for the transformation
(or ? 1 for the u transformation). From the conjectured behavior of B in (1.3) and
(1.4), it follows that

(1.5) br+l=c(r)br,
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where

o as r-(1.6) c(r)=(r+l)Xf(r+l) i= ri-V

with q being an integer. The solution of (1.5) and (1.6) is known to be, see [3, p. 70], of
the form b,=xrv(r)(rV) q, with v(r) being such that v(r)---E. vi/ri+ as r m for0

some a, cf. (1.1) and (1.2). With the help of [7, Thm. 6.1], it has been proved in [8, Thm.
2.2] that when q=0, and limi_B exists, i.e. Ixl> 1, the Bi satisfy (1.3) and (1.4).
When limi__, B does not exist, i.e., Ixl > 1 or Ixl>= 1, it is not known, in general,
whether (1.3) and (1.4) still hold, although, under certain circumstances, the techniques
of the present work can be used to show that they do. This will be indicated at the end
of 2. Using the technique of the proof of [8, Thm. 2.2], (1.3) and (1.4) can be shown to
hold for all integers q_< -1 and for all x, since for this case limi_B exists for all x.
For q > 0, in which case lim_, B does not exist for any x, no result like (1.3) and
(1.4) is known in general, and precisely this is the subject of the present work. For
q= 1, (1.3) and (1.4) have been shown to hold for two special cases, see [9].

In the present work we actually show that under certain conditions, A(’) is of the
form

(1.7) hr_l()=h()+arrg(r,),

where A(’) is the Borel-type sum of F(’) (to be defined later), and the converging
factor g(r, ’) has an asymptotic expansion of the form

(1 8) g(r,)-- E g’(’), as r,
=o r

with gg(’) being polynomials in -1. We also note that all of the numerical examples of
everywhere divergent series considered in [11, Tables A3 and A4] are of the form above
with q > 0, and for these examples Levin’s transformations produce accurate approxi-
mations to their Borel-type sums.

A similar but less general approach to the interpretation of divergent series has
been introduced by Dingle in a series of papers, and this approach is summarized in his
book [2, Chaps. XXI and XXII]. Dingle is concerned with summing the remainder
series Y’=rai for fixed r, whereas our main concern is with the asymptotics of it as
r . Olver’s book [6, Chap. 14] contains another approach to the estimation of
Ei=aii that was introduced by Stieltjes, and developed further by Airy and J. C. P.
Miller; see [6] for further references. Again our problem is different than that consid-
ered in Olver’s book.

2. Theory.
LEMMA 2.1. Define

(2.1)

Then

d), zQk(r,z) Zz l--Z-z.

(2.2) Q,(r,z)= 2Log,,i(r)z "+i

(l--Z) k+l



1224 nVM SIDI

where gk, i(r) are polynomials of degree k in r, satisfying

(2.3) gk’(r) r’ g’(r) (1-r)’
gk.i(r)=(r+i)g_l,i(r)+(k-r-i+l)g_x,i_l(r), i=1,-.-,k-1.

Proof. Equation (2.3) follows easily by induction on k, starting with k=0 and
go, o(r)= 1.

TH.OREM 2.2. Let a be expressible in theform
m

(2.4) ar=rPw(r) il-[ (ir+ ,i)!,

where we assume that p >= 0 is an integer,

r>__l,

for some function (t)such that f e-’l(t)ldt < , and p.i and , satisfy

(2.4b) i>O, i+,i>-l, i=l,...,m.

Obviously the power series F() := Y’. a diverges for all O. For 0 < 0o < r define
the bounded sectors S(O, 0o) in the -plane by

(2.5) S(0,0o) {-I’le" Iffl__<0, Oo<=O<=2r-Oo}.
Then F( ) is the asymptotic expansion of its Borel-type sum

as 0, uniformly in S(O, Oo), for each finite O, where =(tO, tl,---, t), and

i--1 i--1

II Cr,.
i-----1

The function o’() is analytic in the -plane cut along [0, m).
Remarks. (1) If qg(t) i__oqgit as 0 +, with o > 0, the application of

Watson’s lemma, see [6, p. 71], yields w(r)--F.i%oqi(i+o-1)!/ri+ as r, and this
is exactly of the form given in (1.2) with Wi--qgi(i +O--1)!, i--0,1, Furthermore, if
we take i= 1, ,;= 0, i= 1,. -, m, then we are back at (1.1) and (1.2).

(2) There is no loss of generality in assuming +,>-1 in (2.4b). For, if
/ti+,>-1 is not satisfied for all i, we can consider the series F’(’)’= E%a’r",
where a’= a+,, with k being chosen such that /+(k/+ ,)>-1, 1 _<i<m._ Note
that F(’)= A,()+*F’().

(3) The Borel-type sum (’) given in (2.6) is obtained by substituting (2.9) (see
proof below) in E%tar", interchanging the summation with all the integrations, and
then summing the geometric-type series M(z)=,=xrPz to obtain M(z)=
(zd/dz)P(z/(1-z)). It can be shown that the Borel sum of F(’), namely
fe !) [3, p.(E__latrr/r dt, see 78], is its Borel-type sum when m= 1 /-1 1 and
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(4) If in (2.4) rPw(r)=Crp’, where C is a constant and p’=p-l>=0, then the
Borel-type sum in (2.6) reduces to that obtained from (2.6) by omitting the integration
with respect to to after q(t0) in q(t-) has been replaced by C, p has been replaced by
p’, and the factor e-to has been deleted from z. This can be shown by observing that
actually w(r)=C/r, thus qO(to)=C, and performing the integral with respect to o,

reducing (2.6) to an m-dimensional integral.
Proof. Using the fact that

Z 2
Z q- Z 2 "Jt- "}" zr-1-]"

1(2.7) 1 -z -z

we have

r-1

(2.8) Zzz 1-z
j=l

Letting z be as in (2.6b), and substituting (2.8) in (2.6), and using the fact that

we obtain

(2.10)
where

(2.11)

From Lemma 2.1

oo {}
m

U(’)=fo ""fo +({)QP(r’z)il-Iodti"

(2.12) Qe(r,z)=

It is easy to see that

Y’.iP__ogp, ( r ) z +

(1 -z) p+I

(2.13) [1-zl>=sin0o, all S(p,Oo), all p>0.

Substituting (2.12) in (2.11), taking the modulus of both sides, and using (2.13), we
obtain

P

(2.14) IUr() l<= (sinOo)-P- 2 ]gp,g(r) ]lr+
i=0

x

which, for all f S(o, Oo), becomes

(2.15)
with K being independent of . This proves the first part of the theorem. The second
part of the theorem is obvious.

We now go on to analyze the "remainder" term U(f) in the limit r
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THEOREM 2.3. Assume that all the conditions of Theorem 2.2 are satisfied, and, in
addition, p(t) is continuous in a neighborhood of 0 except possibly at O, and satisfies

(2.16) q(t)--%ta-1 ast-oO +, forsomeo>O.
Then, for any integer k >= 0,

k-1

r-l-k-p) as r o(2.17) Ur(’)=- E ar-l-j 1-J+O(ar-l-,
j=0

uniformly in for S(p, 0o), for each finite p.

Proof. Expressing Qe(r,z) (see (2.1)) in the form

d) p z r-1
(2.18) Qp(r,z)= z-z 1-1/z’

and making use of (2.7) with z replaced by l/z, we have, for any integers k >= 1 and
N>_k,

N-1

(2.19) Qp(r,z)= E (r- 1 -j)pzr-l-J-Jr Qp(r-N,z).
j=0

Substituting (2.19) in (2.11), and invoking (2.9), we obtain

N-1

(2.20) Ur(’) E ar-l-jr-x-j’[- Ur-N()"
j--- 0

Now Ur_N() satisfies (2.14)with r replaced by r-N. By (2.16), we conclude that

rtp 1) /r as r- oo,e (t)dt--.epo(O-
(2.21)

fO e-rt[ep(t)[dt" !%1(o- 1)!/r as r-o ,
see [6, p. 81]. Also, gp,i(r)=O(rp) as roo, by Lemma 2.1. Consequently, for
s(o, Oo)

(2.22) Igr_N() I__<0 rP-[l
r-N I-[ [l(r-N+p)+va]! as r

j=

uniformly in ’. Similarly
m

(2.23) ar_N+p"-fpOrp- II [t,(r-N+p)+v]! as r

Comparing (2.22) and (2.23), we obtain

(2.24) [Ur_u(’) t<0(a -N+pllr-N) as r--

uniformly in " for all ’ S(p, 0o).
Finally, by choosing N k +p + 1, and recalling that (see (2.23) above)

ar-j
lim =0, j=l,2,.. -,(2.25)
r- a

(2.17) follows.
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COROLLARY 2.4. If Elm=lit i--it, where tt is a positive integer, and if q(t) also
satisfies

(2.26) p(t)’- E %ti+-I as tO+, for some o>0,
i=0

then U () is of the form

a(2.27) Ur()" r as r
i=0 ri+tt

with fli() being polynomials in -1. Furthermore (2.27) is uniformly valid in for
T=S(p, Oo)\(: I1<), for any e>0.
Proof. As mentioned in the remark following the statement of Theorem 2.1, (2.4)

and (2.26) imply that w(r)--Eio%(i+o-1)!/r+ as r . This, together with the
result

ci being some constants independent of x (see [1, p. 257, formula 6.1.47]), give

(2.29) a__
r-"(+ 1 + -- as r m,ar i--1

where d,. are constants independent of r. Upon substituting (2.29) in (2.17), we
obtain

(2.30) Ur ( ) a E fl ( --) + 0 as r c
i=0 ri+ /.g(k+ 1)

with B;(’) being given by

J
(2.31) fla,+i(’)=- E d(J-l)l’-J+l-1

lg+i b 0=<i__<it- 1, j=0,1,"
/=0

where d0(J)=l, j=0,1,...; hence fl0(’) _.-1. This completes the proof of the
corollary. D

Remark. Under the conditions stated in the corollary above, we have actually
shown that the partial sums of the everywhere divergent series F(’):= E a=1 r" are of
the form given in (1.7) and (1.8), with A(’)=o’(’), the Borel-type sum of F(’), and
g(’) 0, 0=<i=<it- 1.

As an example, consider one of the series given in [11, Table A3], namely
=(-1) -c/x, with c=2 and G=G_(2r-)2 r>2. Therefore, ( 1) -Cr/X

ar, with ’=-4/x and a=-[(r- /2)!]2/(2r), r>= 1. That is to say, Itl=it2=l,
t’ r2-- 3/2, and r(r)= Cr’’ with C= 1/(2r) and p’=p- 1 =0 in Remark (4)
following (2.6b). Consequently,

e (q+t2)(tlt2) 1/2

(’) 2r 1-tit2
dtldt2"
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By making the transformation of variables cos)0, 2 sin2 0, and perform-
ing the integral with respect to 0, we obtain

2 fo -to(’) --’-x e
(1 q-t211/2

[H0 (v/-ff) Y0 (v%-)],

where H,(z) is the Struve function of order , [1, p. 496, formula 12.1.8]. The numerical
result given in [11] for x=4 is another indication that the u-transformation produces
approximations to o(’).

Finally, we note that when/i=,i=0, 1 <i<m, in Theorem 2.2, o(’) converges
for I’]< 1 and diverges for 1’1> 1. Thus, (’) represents an analytic function u(’)
within the unit circle. Equation (2.6) now becomes

fo d P z
dt, z e-t.(2.32t o-(’) q)(t) Zzz 1-z

Since this time o(’) is analytic in the ’-plane cut along [1, oe), it represents the
analytic continuation of u(’) outside the unit circle. Furthermore, (2.10) holds with
(2.11) replaced by

(2.33) Ur(’) q)(t)Qp(r,z)dt.

Let us now assume that q)(t) satisfies (2.26). Then substituting (2.12) in (2.33), and
applying Watson’s lemma for r--, oe, after some manipulation of the asymptotic expan-
sions that arise, we obtain (2.27) with tt=0 there. Of course, in this case the fli() are
not necessarily polynomials in .-1. In addition, (2.27) with/z=0 holds for all
for which F(’) converges or diverges. The details are left to the interested reader.

3. Further developments. The results of the previous section have been based
mainly on the assumptions of Theorem 2.2, namely (2.4) to (2.4b). It is these assump-
tions that enable one to express the Borel-type sum o-(’) of F(’) as in (2.6) to (2.6b).
One important feature of (2.6) is the function Qp(1,z)=(zd/dz)P(z/(1-z)), which is
very easy to handle. Actually this function has simple expansions about z =0 and
z oe, and it is these expansions that lead to the results of Theorem 2.2, Theorem 2.3,
and Corollary 2.4. In this section we seek to generalize the conditions of Theorem 2.2 in
a way that will enable us to retain the function Qp(1,z). We note that the developments
of this section can readily be applied to generalized hypergeometric functions.

THEOREM 3.1. Let a be expressible in the form

(3.11 ar=rPw(r) i1-I1 (txir+ ’i)! B(jr+)tj+ 1,jr+tj+ 1),
"= j=l

where p, w(r), txi, and ’i are exactly as in Theorem 2.2,

and B( b, c) is the beta function defined by

(3.1b) B(b,c)=fol "rb-l(1-,r)C-ld= (b-1)!(c-1)!(b+c_l)! Reb>0, Rec>0.
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It is clear that the power series F(’) := Er=lar diverges for all q=O. Define S(p, Oo)
again as in Theorem 2.2. Then F() is the asymptotic expansion of its Borel-type sum

m n

fo fo fo fo iI-[o j1-I1(3.2) o’(’)
o /(’,)Qp(1,z) dt

"_

m + 1 times n times

as 0, uniformly in S(p, Oo), for each finite p, where/’=(t0,q,..-, tin), ’=(’1,"" ",

and

(3.2a) ({,’)=exp(--i=1 ti)(i=lt’)(t)(J=l [’x(I--’)X])
(3.2b) Z=ff-t(iit)(jX [J(1--’)])
with Ne integrals over t, 0 N N m being from 0 to m and those over 5, 1 Nj N n, from 0
to 1. The Nnction (f) is analytic in the f-plane cut along [0,

Proof. Similar to that of Theorem 2.2.
Remark. If in (3.1) rw(r) OF, where C is a constant and p’=p-1 0, then

the Borel-type sum of (f) in (3.2) reduces to that obtained from (3.2) by omitting the
integration with respect to 0 after (t0) in (f) has been replaced by C, and p by
p’, and the factor e-0 has been deleted from z. (cf. Remark (4) following statement
Theorem 2.2.)
ToN 3.2. Assume that all the conditions of Theorem 3.1 are satisfied, and, in

addition, (t) is as in Theorem 2.3. Then, for any integer kO,

(3.31
k-1

Ur()=()-Ar-l() E ar-l-jr-X-JWO(ar-X-kr-x-k-p) asr,
j=0

uniformly in for S(O, 0o) for each finite O.
Proof. Similar to that of Theorem 2.3.
COrOLLarY 3.3. If Eixi , where is an integer, and if (t) is as in Corollary

2.4, then U() is of the form gioen in (2.27), with i() beingpolynomials in -1 again.
(2.27) is uniformly oalid in for T.

Proof. Using Stirling’s formula, it can be shown that for r

e if>0, if>0,
i=o r

(3.4) B(xr+X,r+X)- (x+ + +/

e if>0, if=0,
i=0

where e and e are constants independent of r. With the help of (3.4), the proof of this
corollary can now be accomplished as that of Corollary 2.4. q

Note. The results above are applicable to series F(’) for which

(3.5) ar= rlw( r) -I-Iim’--l(eir + i)
I-Iin’= (iPnt-i)



1230 AVRAM SIDI

with p and w(r) as before, ei>0, ei+Si>-1, i>8, l<_i<n, >n. This is so since
a can be expressed as in (3.1), due to the fact that

(3.6) (er+3). =B(er+3+ l,-3)
(er+)! (-8-I)!

There is no loss of generality in assuming that a > i, 1 __< =< n’, for if ai__< a_ for some i,
say i=q, then (egrq-aq)! and rp in (3.5) can be replaced by [eqr+(keq+3q)]! and the
polynomial rPI-I=l(eor +jeo+) respectively, such that q= keq+ q> 3q. In general,
we can express a as a= Y’.-lh.h), where

1-I im__’ l(eir +
lNj<k,aJ)=rP+Jw(r)

i-i,f__(eir+i)
with i > , 1 < < n’. Now we apply Theorem 3.1, Theorem 3.2 and Corollary 3.3 to
each of the series ET=th.a) and add the results. The overall result is that Theorem
3.1, Theorem 3.2 and Corollary 3.3 hold for the series F(’)’= ErGar"r, even though
3; > is not satisfied for all 1 < < n’. Thus our results can be applied to the generalized
hypergeometric functions p Fq, where

pgq Pl,"’, [q VI l(Ph) k!k=0 k

with (c)k=F(c+k)/F(c), k=0,1,. ., see [5, p. 155], when p>q+l.
Note also that the representation given in (3.2) is somewhat related to the beta

transform described in [5, p. 160].
As an example, we consider the asymptotic series EaA" with

ar=(Ot)r_l(1 +ot--fl)r_/(n--1)! and ’= -1/x.

That is to say, a is expressible as

ar
(r+a- fl-1)!B(r+a- l,l-a)

(-a)!(a-1)!(a-fl)!

By the remark above, -(’) can be expressed as a double integral that can be reduced
to a one-dimensional integral, which, by using some relations among the confluent
hypergeometric functions of different parameters, can be shown to be -x IU(a, fl, x).
Again [11, Table A3] contains numerical results for different values of a, fl, and x, that
indicate that the u-transformation produces approximations to (’).

4. Concluding remarks. We have shown that under the conditions stated in
Corollary 2.4 and Corollary 3.3, the partial sums Ar_()=Erila of the everywhere

odivergent series F(’):= F.i__xai are of the form (1.7) and (1.8), where A(’) is the
Borel-type sum of F(’). As mentioned in the introduction to this work, most of the
examples of everywhere divergent series considered in [11] satisfy the requirements of
Corollary 2.4 and Corollary 3.3; furthermore, after some tedious calculations, involving
manipulation of (2.6) and (3.2), one observes for all these examples, that the numbers
obtained by applying Levin’s or u transformation to A(’), are approximations to the
Borel-type sum of F(’). In view of this observation, we conjecture that for the kind of
series considered in Corollary 2.4 and Corollary 3.3, Levin’s and u transformations
produce approximations that converge to the Borel-type sums of these series.
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