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Abstract. We consider the Cauchy problem for the generalized Korteweg-de Vries equation 

~,u + O~(-O~)~u + a~( u----A ) = O 

where ~ is a positive real and it an integer larger than 1. We obtain the detailed large distance 
behaviour of the fundamental solution of the linear problem and show that for ot/>12 and it > 
a + ~ + (a2+ 3a + 4~) 1/2, solutions of the nonlinear equation with small initial conditions are smooth in 
the large and asymptotic when t---~ ± oo to solutions of the linear problem. 
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1 .  I n t r o d u c t i o n  

In this paper we consider the Cauchy problem for the equation 

a,, a a 
- -  + - -  u = 0 ( 1 . 1 )  
at 0x~,S: ~\ ax2) 

which describes the propagation of nonlinear waves in a dispersion medium. In 
Equation (1.1) A is a positive integer larger than 1 and a a positive real number. 
For a = 1 and A = 2, Equation (1.1) reduces to the celebrated Korteweg--de 
Vries (KdV) equation which arises in various physical contexts ([1] and 
references therein). For example, it describes in the continuous limit, the prop- 
agation of right going waves in a one-dimensional lattice of masses each 
connected to the next by nonlinear springs which when compressed or extended, 
exert a force which is represented by the sum of a term proportional to the 
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deformation and a quadratic term. If, more generally, the nonlinear correction is 
a positive integer power ,k > 0 of the deformation, we get Equation (1.1) with 
a = 1 and a nonlinearity of the order A [2]. For A = 3, we obtain the 'modified 
Korteweg-de Vries equation' (MKdV) which has the property that its solution u3 
is related to a solution u2 of the usual KdV equation by a Riccati-type relation [3] 

fl2 = u~ + iV~ au3. (1.2) 
ax 

The KdV and MKdV equations possess the remarkable property of having an 
infinite number of invariants [4]. This is related to the fact that these equations 
are integrable by the inverse scattering method [5], which makes the behaviour 
of the solution very specific. 

Another example where Equation (1.1) is obtained occurs in the propagation 
of waves in a one-dimensional stratified fluid in two limiting cases. In the shallow 
water limit, the propagation reduces to the KdV equation (A = 2, a = 1), while in 
the deep water limit, it reduces to the Benjamin-Ono (BO) equation which 
corresponds to A = 2 and a = 1. This equation has also been shown to possess an 
infinity of invariants [6, 7], and to be integrable by inverse scattering [8]. 

For all other values of a and A, Equation (1.1) is not integrable by the inverse 
scattering method. For A = 2, a = 2 (a situation which arises when, under certain 
critical initial conditions, the fifth-order spatial differentiation turns out to be the 
dominant dispersive effects), numerical integration shows chaotic dynamics [9]. 
Indeed, when the special cases of KdV, MKdV, and BO equations are excepted, 
Equation (1.1) has only three invariant quantities 

11 = I u dx, (1.3a) 

12 = I u2 dx, (1.3b) 

dx+ I dx I3 = + 

The third invariant is obtained by multiplying Equation (1.1) by (uX/A)+ (-a2)"u 
and integrating on the whole space. Equations (1.3b)-(1.3c) and the Sobolev 
space embedding property 

leads to the following a-priori estimate [10] 

lr  _t_ f ~ r A + l - - ( ( a - - 1 ) / 2 a )  (A--1)/2a (1.5) l u l#  . 3 -  ,-.,= ,1,-,o 

under the condition A <~ (1 + 2o0/(1 - 2a) if a < ½ (no condition otherwise). 
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2. Existence and Regularity Properties 

Several papers have been devoted to the existence and regularity of solutions of 
the KdV equation. The existence and uniqueness of a global solution has been 
proved in L®(0, Qo, H 2) [11]. Existence without uniqueness in L®(0, ~, H 1) was 
proved in [12]. Cohen-Murray [13] used an analysis based on the inverse 
scattering method to establish a relationship between the regularity of the 
solution for t > 0 and the decay at infinity of the initial conditions. He proved the 
existence of solutions when the initial conditions are piecewise of Class C 4 and 
decay, together with the first four derivatives at an algebraic rate. The faster the 
decay of the initial condition, the smoother the solution will be for t > 0. In 
particular, if the initial condition and its four first derivatives decay faster than 
Ixl -N for all N, the solution will be infinitely differentiable for t > 0. 

Existence of the solution to Equation (1.1) with a = 1 and arbitrary ;t > 0 was 
considered by Kato [14]. Existence of the weak solution in L~(0, oo, H 1) results 
from Equation (1.5). Existence of classical solutions in L°~(0, o0, H 2) was shown as 
follows: differentiation of Equation (1.1) with a = 1 twice in space, multiplication 
by 0 2 and integration on the whole space lead to 

d 
d~t f 1°2ul2 d x - 1  f a''(u)(°xu)5 d x - 1 0  f a(u)(Oxx,~u)(Ox~u)dx=0, (2.1) 

where a(u) = u x-1 and the primes denote derivatives with respect to u. Equation 
(1.1) is then used to eliminate the third derivative which appears in Equation 
(2.1). After some computations, the following equality is obtained: 

d,{f 
= r~ a"(u)(O~u) 5 dx + a(u)a'(u)(a~u) 3 dx. (2.2) 

Using the inequalities 

f ~ 7/2 42 3/2 10xul 5 dx ~< oxu t.~ o , , u  L~ , 

f 5/2 2 1/2 10xul 3 dx <~ Oxu L2 O,u L2 

and the uniform boundedness of lu(t)ln, which results from Equation (1.5), 
Equation (2.2) ensures that [u(01n2 does not grow faster than exponentially in 
time. 

Equation (1.1) with more general a and A was considered in [10]. Estimate 
(1.5) ensures the existence of a weak solution in L=(R +, H"(R)) with no 
additional requirement when A < 4 a  + 1 and under the condition that the L 2- 
norm of the initial data luolL= be small enough when ;t = 4 a  + 1 [10]. For smooth 
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initial conditions, the above solutions are classical when a > ~. For A > 4a  + 1, 
the same estimate also insures the existence of solutions (weak solutions for cz < 3 
or classical solutions for a > ~) when the H"-norm of the initial condition is 
sufficiently small. 

In the next section, using a different approach we show that a more precise 
result can be obtained in the case of strong nonlinearity 

(A > Ot +3+(Ot2+30t +5) 1/2, where a~>½). , ;  

In this case, if the initial conditions are 'sufficiently small', there exist global 
classical solutions of Equation (1.1) which are asymptotics when t-+m to solu- 
tions of the linear equation 

- -  + - -  - u = 0.  (2 .3 )  
at Ox 

This extends the result of Strauss [15, 16] given in the case of a = 1. The method 
is based on the fact that when a >/½, the Green function of Equation (2.3) decays 
in time. This dispersive effect insures the decay in time of the LP(p > 2)-norms of 
the solutions of the linear problem. For the nonlinear problem, the idea is to 
rewrite Equation (1.1) in an integral form and to compensate the nonlinearities 
by the dispersion. This method has been used for other dispersive equations like 
the nonlinear wave equation, the nonlinear Klein-Gordon equation, the non- 
linear Schrtdinger equation, and an hydrodynamic equation for classical spins 
[17-20]. More recently, a similar approach has been used for incompressible 
magnetohydrodynamics when dispersion is replaced by differential transport [21]. 

3 .  T h e  L i n e a r  P r o b l e m  

Let us consider the linear equation 

o,u+ox(-~)°u =o, u(x, O) = uo(x). 

The solution reads 

2 
/J(X, I")'~--- l l l ( 2 a + l  ) ,,--oo ~tl/(2~+l) ] Uo(X')dx' 

with 

(3.1) 

(3.2) 

provided a > 0. This condition guarantees the existence of the integral in (3.3). 
When a = 1, g(x) = 3-merAi(3-1/3x), where Ai(z) is the well-known Airy func- 
tion. Thus, g(x)= O(x -u4) as x--~-oo and g(x) decreases exponentially as 
x---~ +oo. The asymptotic behaviour of g(x) for x--~-oo and x--* +oo for any 

> 0 is given in Theorem 3.1 below. 

g(X)  ~---- COS(~ 2a+l + X~) d E (3.3) 
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Let lS -- 2 a  + l and a > 0 .  Then THEOREM 3.1. 

(1) as x ~ -  ~: 

g(x)~ ~(/321) (~)(1~--2)/2(~--1) 
cos[(1 - -'/Ixlkm(a-1)/3) ~-~-) +~_]+ 7r 

39 

+ (3.4) 

(2) as  x ~ + oo 

(a) if~3 = 2 n  (n = 1,2 . . . .  ) 

g(x) - (-)"+1 ~ (_)k [2n(2k + 1)]! 
k=o (2k+l)!x2.(2k+1)+l, /3=2n,  n = 1 , 2  . . . . .  (3.5) 

(b) i f / 3 = 2 n + l  ( n = l , 2  . . . .  ) 

(2n + 1) -1/4 X_((2n_l)/4n) X 
g(x) ~ Ir 2nl/2 

~ { 2n 1)_(1/Z,)x 1+(1/2,) × x exp - -  (2 n + 
j=l 2 n + l  

× [ i ( 2 j - 1 )  q_~ ( 2 ] - 1 ) r r - 4  } (3.6) 
exp[ 2 n  4n 

(c) i f  [3 is not an integer 

/3! cos(/3¢r/2) (3.7) g(X) XO+I 
A s  a result of (3.4)-(3.7), g(x) belongs to L~(R)  for ot >i 1. 
Proof. We start by writing (3.3) in the form 

I; g(x) = Re exp[i(x~ + ~o) d~]. (3.8) 

1. Behaviour of g(x) for x ~ - ~. Defining 

s \--~-I 

and making the change of the variable of integration 6 = (1 + ~')s l/t3, Formula 
(3.8) becomes 

g(x) = s ln3 Re G(s), (3.9) 

where 

f G(s) = exp[isp(~')] d~', (3.10) 
1 
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with 

p(r) = (1 + ~)~ - /3(1 + ~). (3.11) 

We now write G(s) = Gl(s)+ G2(s), where 

f Gl(s) = exp[isp('r)] dr, 

(3.12) 

I2 G2(s) = exp[isp(1")] d~'. 
1 

We first treat Gl(s). By (3.11) it can be verified that all the conditions of 
Theorem 13.1 in Olver [22], p. 101, for applicability of the stationary phase 
method are satisfied. (The parameters a, p(a), P, I~, O and A in the above- 
mentioned theorem take on the values 0, 1 - / 3 ,  /3(/3- 1)/2, 2, 1, and 1, respec- 
tively.) Consequently 

exp is(1 -/3) _}.0(S_1/2) aSS-->+ °° (3.13) GI(s )  = 1F(½) ei~r/4 [(1/3(/3 _ 1))s]1/2 

For G2(s) we make the transformation of the variable of integration z = - z' in 
(3.12). Also in this case, Theorem 13.1 in [22] can be applied. The result is 
G2(s) = Gl(S)+O(S -1/2) as s---~+oo. Thus, G ( s ) = 2 G l ( s ) + o ( s  -l/z) as s---~+~. 

Invoking now the definition of s, (3.4) follows 
2. Behaviour of g(x) when x ~ + ~. Defining s = x ~/(~-1) and making a change 

of the variable of integration ~ = ~-s 1/~, (3.8) becomes 

g(x) = s 1/t3 Re G(s), (3.14) 

where 

G(s) = exp[isp('r)] (3.15) 

with 

p(~') = ~-+ "r e. (3.16) 

We observe that p(~') is a monotonically increasing function of -r on [0, ~) and 
maps the interval [0, ~) in a one-to-one manner onto itself. Thus, the inverse 
function of p(~') exists and we call it h(tr), i.e., 1- = h(tr). Since /3 > 1, p'(~-) exists 
for all r in [0, oo) and p'(~-) ~ 0 there. This guarantees the existence of h'(o-) for all 
or in [0, ~). Thus, making a change of the variable of integration or = p(r), (3.15) 
becomes 

I; G(s) = exp[iso.]h'(o.) do'. (3.17) 

In the sequel we make use of the following result: 
Let the function v(O be m - 1  times continuously ditIerentiable over [0, ~) 
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such that  lime_.~ 1)(k)(~) ~" O, 0 ~ k <~ m - 1. Then,  for  r real,  

I f  '~-1 v ( k ) ( o ) I o  exp[ir~] exp[ir~]v(O d~ = k=OZ (_ir)k+~ ~- (_ir)m vt")(~) d~, (3.18) 

p rov ided  the integral  on  the r igh t -hand  side exists. Also, if $ 'lv<m)(01 
then  the integral  on  the r ight -hand side of (3.18) is O(r -m) as r---)~. If, in 

addit ion,  m = ~,  then  

Io e x p [ i r ~ ] v ( 0 d ~ -  = (_jr)k+1 as r--->o¢. (3.19) 

Now the funct ion  h(tr) is infinitely different iable  for  all tr • (0, 0~) as p ( r )  is for  
all r • (0, ~). Fur the rmore ,  limo.__,~ htk)(tr) = 0, k = 1, 2 . . . . .  T o  see this observe  

that  

/ 1 d ~ k - 1  1 
h(k)(°) = \ p - - ~ r ) ~ ]  p'(1-)' k = 1, 2 , . . . ,  (3.20) 

and that  p'(~-) = O( 'r  t3-1) as z - - ) %  s ince /3  > 1. 

Le t  us assume tha t /3  is an in teger  g rea te r  than  1. T h e n  h(k)(0), k = 1, 2 . . . . .  all 

exist, and by (3.19) 

O(s) ~ ~=o 
h(k+l)(0) 

= (__is)k+l as s--->~. (3.21) 

Since only Re  G(s) contr ibutes  to g(x), we have  (s = x ma-1) 
a o  h(2k)(0) 

g(x) - s ' ~  =1 (-is) 2k as x---)+o:.  (3.22) 

W h e n / 3  = 2 n, n = 1, 2 . . . . .  using the L a g r a n g e - B i i r m a n n  formula,  we have  

(2nj)! 0 "j(2n-1)+l 
h(cr) = ~ (-)~ j ~ -  1) + (3.23) 

j=o [ j (2n  - 1]! 

Combin ing  (3.22) with (3.23), (3.6) follows. 
W h e n / 3  = 2n  + 1, n = 1, 2 , . . . ,  h(cr) is an odd  funct ion  of a ,  then  h(2k)(0) = 0, 

k = 1, 2 . . . . .  therefore ,  the summat ion  on  the r ight -hand side of (3.22) disap- 
pears,  indicat ing that  g(x)  = o(x -~) for  any / ~ > 0 .  T h e  exact  asymptot ic  
behav iour  of g(x) for  x --~ + oo can be ob ta ined  by the me thod  of s teepest  descent .  
For  this case g(x) can  be reexpressed  as 

g(x)  = ½slinG(s), (3.24) 

where  

V G(s) = exp[isp(.r)] d~-, (3.25) 

where  s and ~ are still as def ined pr ior  to (3.14), and p(1") is as in (3.16). First we 
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note that in the upper half of the z-plane exp[isp(~')] tends to zero exponentially 
as ~---~ oo along the rays 

a r g ~ ' = 0 k = ( 4 k + l ) ¢ r / ( 4 n + 2 ) ,  k = 0 , 1 , . . . , n .  

The  saddle points of p(~-) are the roots of the equation 

p'('r) = 1 + (2n + 1 ) ~ "  = O, 

and the ones in the upper half of the ~--plane are 

r* = (2n + 1) -1/(2n) exp[i0*] with 0* = ( 2 j -  1)~r/(2n). 

Notice that 

0 < 0o < 0* < 01 < O* < "  • < 0* < 0, < 7r. (3.26) 

We can now deform the contour  of integration such that G(s) can be expressed 
as 

E exptisp(,)]d , (3.27) 
k = l  k 

where Fk is the steepest descent contour that passes through ~-* and approaches 
the rays arg -r= 0k-1 and arg "r= Ok asymptotically as ,r--~oo; its direction being 
such that the two rays are to its right. For the case n -- 5, see Figure 1. Using the 

facts that 

_ 2n 2n ~., and p " ( ~ ' * ) = - - -  k = l ,  , n ,  
P(~'*) = 2n + 1 r~ . . . .  

ArgT=~5  

\ 
\ 
\ 
\ 

.., A , g v = O C - - ~ r 5  \ 

Fig. 1. 

Arg't "= ~2 
I 

m'C / 
/ 
/ 

/ 

' 5, 

R e T  
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this results in 

/ ~ & * l ~  1/2 r . /  2 n  , , 0* 
G(s) - (3.28) k=l ~--~-S ] exp[ t  ~- -~- -~ -~ ' k s . -~ -4]  j as $ --.~ oo 

from which we can easily obtain the asymptotic behaviour of g(x) as x--~ + oo. 
We finally assume that /3 is not an integer and that /3 = m +  1 -  8, m = 

1, 2 . . . . .  and 0 < 8 < 1. Therefore,  p(~-) is m times continuously differentiable on 
[0, oo) implying that h'(cr) is m -  1 times continuously differentiable on [0, oo). 
Also, 

p'(~') = 1 +/3~.a-1 and p"('r) =/3( /3  -- 1)1" a-2  

imply that h'(0) = 1, and, for m I> 2, h(k>(0) -- 0, 2 ~< k ~< m. Thus invoking (3.18), 
we have 

I o  exp[ iscr G ( s ) =  1 + h(m+l)(cr)dcr. (3.29) 
- is ( -  is)  " 

By (3.20) it can be shown that for k i> 2, 

h(k)(or) -- --/3(/3 -- 1 ) ' ' -  (/3 -- k + 1)or ~-k as or---> 0, 

which implies that the conditions of Theorem 13.1 in [22] are satisfied by the 
integrand on the right-hand side of (3.24). Consequently 

G(s) 1 exp[iTr(/3 - m)/2] as s-~o~. 
- i s  (is)" /3(/3 - 1 ) - - -  (/3 - m) F(/3s ~-"- m) 

(3.30) 

Substituting (3.30) in (3.14), (3.7) follows. Note that when/3  is an even integer, 
the right-hand side of (3.7) is identical to the leading term of the asymptotic 
series in (3.6), as expected. 

C O R O L L A R Y  3.1. For initial data uo in LP(R) f) H i ( R ) ,  the solution of Equa- 
tion (3.1) with a >>- ½ satisfies 

{U(t){Lq ~ C(1 + t) 1/(2a+l)(1--(2]q))(] UOIL p + I/,,/4)1/./1 ) (3.31) 

where 

1 1 
- + - = 1  and l ~ p ~ 2 .  
P q 

Proof. Using Theorem 3.1, we have for t > 0 

lu(OlLo ~< Ct-"/2"+l~luolL,.  

Furthermore, one easily checks that 

lu(t)lL~ = luolL~. 

Interpolation between L 2 and L ® ([23], p. 179) then leads to Equation (3.31). []  
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4. A-Priori Estimates for the Nonlinear Problem 

It is well known that for initial data uo~ HS(R), s >3,  there exists a time T such 
that Equation (1.1) has a unique solution in L~([0, T], HS(R)) [10]. 

PROPOSITION 4.1. For initial condition Uo c H3(R), the above solution satisfies 

A--I 
lu(t)ln~<lUotmexp C [u(~')[w~.2~d'r , A > 0  (4.1) 

Proof. We start with 

I / 3  3 x - ~  1 d Io~ulZdx+ O,,uOx(u O~u)dx=O. (4.2) 
2 d t  

When the second term in the left-hand side of Equation (4.2) is developed, four 
terms are obtained which may be estimated as follows: 

A~I 2 
~< Clulw~,lulw (q>l ) ,  (4.3) 

(ii) lul,.~10xul~:~t0~ul~, (4.4) 

by H61der inequalities. Furthermore, 

1O~ut~. ~ 1o~ulw (x > 1) (4.5) 

which leads to 

I h--2 2 2 3 A--1 2 u (~u)  (0~u) dx <~ ClU[w~.2~[uIH.~. (4.6) 

(iii) II uX-a(O,:u)2 O2uO:udxl 

3 2 2a 2 h --3 ~< cla~ul~qa~,t~ la~,l~:qul~,  (4.7) 

[I O~u uX-4(Oxu)4 dxl < " 3 x-4 4 .  (iv) cta~ut~tul~ta~.l~:~ (4.8) 

This leads to the estimate 

h - 1  
d lul-~ ~< Clulw=,=~lulH3. (4.9) 
dt 

PROPOSITION 2. For a >! ½ and )t > ot + ~ + (t~ z + 3or + 5)1/2, there exists a con- 
stant 8 > 0 such that for initial conditions 

2A 
Uo E W2"p(R) ('] H3(R) with p = 2A - 1' 
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satisfying the conditions lUol w2.p f~ luoln3 < 8, the solution u of (1.1) is such that 

M(t )=  sup (l+s)(H/~)/(2~+l)lu(s)lw~.,, (4.10) 
O<~s~t 

is bounded for all t ~ [0, T], independently of T. 
Proof. Equation (1.1) is rewritten 

u(x, t)= G(t)Uo(X)+ G(t-s)Ox (x, s)ds (4.11) 

where the operator G(t) denotes the convolution in space by the function 

1 
tw2~+I g 

Then, using (3.31), we have 

lu(t)l w,. 2, ~< C ( l  + t)-<'-~/*)/<2"+')(luoIm + IuoI w,.~,,, . . . .  >) + 

Io' + ( t -  S)--(1--1/A)/(2a+I)[uA--1 axial  W . . . .  l(2x-t) ds. (4.12) 

By the H61der inequalities we have 
k 

lu ~ - '  oxul~2~., ,~.  , , ~  c l u l ~ . ~ H u l . ~ .  (4.13) 

We now use (4.9) to estimate [u[~ in terms of lul w .... and get 

ios lU(S)[H~ <~ lUo[H~ exp f(r)M(7) "-1 d¢ (4.14) 

with 

f(s) = (1 "4- T) -(A-1)2/A(2a+I) dr. (4.15) 

Substituting (4.13) and (4.14) in (4.12), we obtain 

M(t) <~ C(luo l .~  + luol w=.2~,,2~-,,) + 

+ C[uolr-I 3 exp[f(t)M(t)a-1]M(t)x-x h(t) 

where 

h(t) = I j  (1 + t) (I-wa)/(2'~+1) S)_(a_ l )2 /A(2a+l  ) 
( t -  $)(1-1lX)/(Za+l) (1 + ds. 

Under the condition 

(a - 1) 2 
>1,  

A(2~ + 1) 

(4.16) 

(4.17) 
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the functions [ and h are uniformly bounded and (4.16) is rewritten 

M(t) <~ C 6{1 + CIM(t )  x-1 exp[ CzM(t)x-1]} 

with 

A. SIDI ET AL. 

(4.18) 

p = 2 X / ( 2 X - 1 )  and luolw2p+luolH3< , 
there exists a unique solution u of (1.1) in L~(R +, H3(R)) which satisfies 

I u(t)l ~< c(1 + t) -(1-1/)Ql(2ct+l). (4.20) 

Moreover, the problem is asymptotically free in the sense that there exist solutions us 
to the linear problem (3.1) such that 

l u ( t ) -  u±(t)ln~---~O when t--,±oo. 

Proof. The existence generally of a solution of Equation (1.1) results from the 
following estimates, valid for all t e [0, T] 

lu(t)l,3 ~< ClUolH3 exp[CM(Z)]  <<- Cluoln~ exp[CMo] ~< K. (4.21) 

Asymptotic freedom is proved as in [17-19]. One defines 

u+(t) = u(t) + O(t  s)Ox \--~ (s) ds. (4.22) 

The integral in the left-hand side of (4.22) exists since 

o ( t -  s) (s) ds C lu(s)t ,Llu(s)l,.,  ds 
H 2 

~ CKM~ -1 (1 + s) -(("-u2)/("(2~+1)) ds. 

~ ( t )  are thus well defined and l u ( t ) - u ± ( t ) [ H ~ O  when t ~ + ~ .  One easily 
checks that u± satisfy the linear equation. [] 

with 

Consider now the function 

q~(m) = c(1 + cl m ~-1 exp[czmX-1]) - m. (4.19) 

If 8 is sufficiently small, q~ has a positive zero ml. If, moreover,  8 < ml, then 
M ( 0 )  < ml  and consequently, M(t )<-ml  for all t. This completes the proof of 
Proposition 4.2. []  

T H E O R E M  4.1. I[ a >tl and A > a + 3 + ( a 2 +  30t +5)1/2 there exists a constant 

> 0 such that if the initial condition Uo belongs to 

Uo e wE'p(R) f-) Ha(R),  
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REMARK. Theorem 4.1 is easily extended to a more general class of equations 
where the nonlinear term is a polynomial of degree A in u and O~u that does not 
ensure conservation of the L2-norm of the solution [18, 19]. 
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