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Abstract: In a recent work by the author an extrapolation method, the W-transformation, was developed, by which 
a large class of oscillatory infinite integrals can be computed very efficiently. The results of this work are extended 
to a class of divergent oscillatory infinite integrals in the present paper. It is shown in particular that these divergent 
integrals exist in the sense of Abel summability and that the W-transformation can be applied to them without any 
modifications. Convergence results are stated and numerical examples given. 

1. Introduction 

In some problems in physics and engineering one encounters oscillatory infinite integrals 
that do not exist in the ordinary sense due to their integrands’ not being integrable at infinity. 
These integrals may, however, exist in the summability sense and represent physical quan- 
tities, and one would like to know their numerical values. One such integral was given in [3], 
and it is 

i 

a 

0 
xcP1y-’ exp(-y sin (Y)[~(c* + x2)J0(x cos (Y) - 2x set aJ,(x cos CX)] dx , 

where 

y=(~*+iR~)l’~, c=Ry+&R* 

and R is a positive constant, with (Y = 0. This integral arises in fluid mechanics in the study of 
particle interaction in a slow viscous flow. The angle (Y relates the particle position to the flow 
direction and R is the Reynolds number. See the references in [3]. 

When (Y = 0 the integrand in the integral above belongs to the set B,, a general family of 
oscillatory functions, which we define precisely in Section 2. The set B, is closely related (and 
complementary) to another set of functions that we shall term B, that was considered in a 
recent work [7]. The difference between the two sets is that functions in B, are integrable at 
infinity, whereas those in B, are not. In fact if f(x) is in B,, then f(x) lxp, for some positive 

0377-0427/87/$3.50 0 1987, Elsevier Science Publishers B.V. (North-Holland) 



106 A. Sidi I Divergent oscillatory infinite integral 

integer p, is in B,. (For (Y f 0, the integrand above is in B,). In [7] we developed an 
extrapolation procedure, the W-transformation, for numerically evaluating the infinite integr- 
als s,” f(t) dt, a 2 0, f E B,. In the present work we consider the problem of numerically 
evaluating the divergent integrals s,” f(t) dt, a 3 0, f E B,, that are defined in the sense of 
Abel summability. We show that the W-transformation of [7] can be used in evaluating these 
integrals efficiently. 

To give an idea about the kind of integrands we shall consider, we end this section with a 
description of the subset Bd of the set B,. 
/j(Y) 

We start this with the following definition of the set 

Definition 1.1. We say that a function (Y(X), defined for x > a 2 0, belongs to A('), if it is 
infinitely differentiable for all x > a, and if, as x+ 03, it has a Poincare-type asymptotic 
expansion of the form 

a 
a(x) - xy 2 ffilxi 7 

and all its derivatives, as x+ ~0, have Poincare-type asymptotic expansions, which are 
obtained by differentiating the right hand side of (1 .l) term by term. 

(1.1) 

As consequences of Definition 1.1, we have 
(1) A(Y) > A(Y-‘) > A(y-*) >. . . . 

(2) If (Y E A(') and p E A('), then (rp E A('+'), and if, in addition PgAcaml), then 
Q/BE A('-'). 

(‘) (3) If (YE A , t hen (Y is infinitely differentiable for all x > a up to and including x = ~0, 
although not necessarily analytic at x = ~0. 

Definition 1.2. The subset fid of B, is the collection of all functions f(x) that are defined for 
x > a 3 0 and are expressible in the form 

where 

f(x) = exp(ifi(x))Mx) , (14 

(1) 6(x) is a real function in A'"', m being a positive integer, 
(2) h(x) is a (complex) function in A(') for some y 3 m - 1. 

We require y 3 m - 1 so that f(x) is not integrable at x = ~0. (For y < m - 1, f(x) is integrable 
at infinity and belongs to B,.) 

Example. f(x) = exp[i(x” + q x4 + 2x3 + x)1(x + 21m)7’3. Here m = 3 and y = 5. 

Let us also define 
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for all functions f(x) in the set Z?, , ._ which we define precisely in the 

asymptotic expansion, we devise an extrapolation method for 
method turns out to be the W-transformation of [7]. We recall 
produces approximations to Z[f] by using a small number of 
1= O,l, . . . ) for some carefully selected values of x~. In Section 
examples to illustrate the use of the extrapolation procedure. A 
given. 

and 

tfl = l f(t) dt. (1.4) 

In the next section we show that Z[f] exists in the Abel summability sense, and we derive an 

asymptotic expansion for its ‘tail’ ],” ,f(t) dt as x + ~0. This asymptotic expansion is valid also 
next section. Based on this 
computing Z[f], and this 
that the W-transformation 
the finite integrals F(x)), 
3 we give some numerical 
convergence result is also 

2. Theory 

Let f(x) be in Bd. Then f(x) is expressible as 

f(x) = cxp(i+))%4 , (2.1) 
where 6(x) is real and belongs to A’“’ for some positive integer m, and h E A(‘) for some 
yam-l. Define 

f,(X)=e-‘*f(x), E>O, (2.2) 

and let 

Fe(x) = 

and consider 

(2.3) 

Z[f,l = l f,(t) dt 3 (2.4) 

which exists in the ordinary sense. 
It can be shown that f,(x) satisfies the homogeneous linear first order differential equation 

f,(x) = 4x)fXx) 7 (2.5) 

with 

l/s(x) = is’(x) - E + h’(x)lh(x) . (2.6) 

Since h’lh E A(-‘) 6’ E Acmpl) , m 2 1, and 6(x) and E are real, we see that l/s E A@-‘) and 
l/&A (m-2) for ill E including E = 0. Thus s E Acpm+‘) 

Substituting (2.5) in the integral 
for all E 2 0. 

WJ - WI = l- f,(t) dt 7 (2.7) 
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and integrating by parts once, we obtain 

I 

m 

x f,(t) dt = -+)f,(x) - [ s’(0.M) dt . P-8) 

Next defining 

s&) = s(x) 7 s~(x)=s(x)s;_~(x), k=2,3 ,..., (2.9) 

substituting (2.5) in the integral on the right hand side of (2.8), and integrating by parts N - 1 
times, we obtain 

lrn f,(f) dt = [ k$l (-l)k%(+‘(x) + (-l)N lrn $,@)f,(t) dt . (2.10) 

Now s, = s E A(-+') implies that s, = SS’ E A(-2m+1), and, in general, sk E Acpkm+‘) for all 
E 2 0. The integrand sxt)f,(t) of the integral on the right hand side of (2.10) is of the form 
exp(-•Ef + i6(t))h”(t), where h(t) = h(t)sxt) and h^ E AcypNm) for all E 2 0. Therefore, the 
integral ],” sxt)f,(t) dt exists in the ordinary sense when E = 0 provided y - Nm < m - 1, or 
N > -1 + (y + 1)/m = V. In addition, this integral is absolutely convergent when E = 0 
providedy-Nm<-lorN>v+l.AlsoforO<e<e,, from some fixed E,,, and x sufficiently 
large, we can show that there exists a function M(t) that is independent of E, and is in AcyeNm), 
such that ]Zz(t)l d M(t) f or all t k X. Let N > Y + 1. Then all the conditions of Theorem 25.14 
in [2, p. 3521 are satisfied, and consequently 

I 

m 
lim 

E-O+ * 
s#)f, (t) dt = 

I Xm Vi?+ ?xolfw dt * (2.11) 

Combining (2.7), (2.10), and (2.11), we finally have 

jiF+ z[f,l= F(x) + [ k$l (-ljk j&y+ s,(x)]!-(x) + (-ljN L- [jiy+ s$)]f(t) dt , 
(2.12) 

thus proving that Z[f] is defined in the Abel summability sense. 
Let us denote lim,,,, sk(x) = qk(x). As mentioned in the previous paragraph qk E Acekm+‘! 

We now reexpress (2.12) in the form 

)iy+ z[f,l = F(X) + [ k$l (-l)*qk@)] f@> + (-ljN i- g(f) dt , (2.13) 

where g E B, and is of the form 

g(x) = exp(iG(x))r(x) , r E AcyeNm) . (2.14) 

From Theorem 2.2 in [7] 

I Xm g(t) dt = &P(x) 9 
A E A(-m+l) , 

=f(x)pN(x) , pN E A(-Nm--m+l) . (2.15) 
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Thus, (2.13) becomes 

Jly+ KfJ = w + [ k$I WhM + Wh~4]f(4 * (2.16) 

It is easy to see that the expression inside the square brackets is in ACPm+‘! With this 
observation we now state the main result of this section. 

Theorem 2.1. Let f E Bd be expressible as in the first paragraph of this section. Then J,” f(t) dt, 
a 3 0, is defined in the sense of Abel summability, and for x > a, there exists a function p(x) in 
A(‘) such that 

Jil+ Z[f,] = F(x) + x-“+‘p(x)f(x) . (2.17) 

Remark 1. Surprisingly, the result in (2.17) is identical to the one that was obtained for f E B, 
with y < m - 1, see Theorem 2.2 in [7]. Thus for all y we have 

Z[ f] = F(x) + x -“+‘p(x)f(x) , p E A(‘) , (2.18) 

where Z[ f] is t-o be interpreted as the value of J,” f(t) dt in the sense of Abel summability 
whenever f E B,. 

From this point on we follow closely the treatment given in [7] 6 E A’“’ implies 

6(x) - xm L$o fii/x’ as x + 03 . (2.19) 

We can then express 6(x) in the form 6(x) = 6(x) + A(x), where 
m-1 

6(x) = c I$x~-~ , A(x) - 2 fim+Jxi asx*m. (2.20) 
i=O i=O 

Notice that 6(x) is a polynomial of degree m, and elACx) is in A(‘) since A E A(‘). Thus (2.18) 
can be re-expressed in the form 

Z[ f] = F(x) + xyPm+’ ei8(X)p*(x) , p* E A(‘) , (2.21) 

where p*(x) = xPYh(x)p(x) eiACx). 
We now define the set B,. 

Definition 2.1. B, is the set of all functions f(x) that can be expressed in the form 

f(x) = ,; f.(x) > (2.22) 

where each fi(x) is of the form 

fi(x) = ui(~(x))hj(x) 9 (2.23) 

such that 
(1) uj(z) is either eiz or e-” or any linear combination of these (like cos z or sin z); 
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(2) 19~ E A’“’ for all j, and I$~(.x) = fj.(x) = 6(x) for j #jr; 
(3) hj E A’?’ such that yj - y,, = integer for j # j’ (hence hj E A(‘) for all j, where 

y=max{yl,...,y,}), and yam-l. (If y<m-1, thenfEZ?,.) 
Comparing with B, (see Lemma 2.1 in [7]), we see that B, U B, is simply B, with no 

restrictions on the yj. 
The result in (2.21) can now be extended to functions in B,. 

Theorem 2.2. Let .f E B, with the notation of Definition 2.1. Then Z[ f ] is defined in the sense of 
A be1 surnrnability ,- and 

X Y-m+1[cos(8(x))bI(~) + sin(&(x))b,(x)] , (2.24) Z[fl = m) + 
where b, , b, E A(O). 

Remark 2. Theorem 2.2 is an extension of Lemma 2.1 in [7] in the sense that Theorem 2.1 is 
an extension of Theorem 2.2 in [7]. Thus, (2.24) is valid for all yi provided Z[ f] is interpreted 
as ],” f(t) dt in the sense of Abel summability. The W-transformation of [7] is based solely on 
(2.24), thus it can be used for all functions f(x), whether in B, or in B,. 

For the sake of completeness, we shall briefly recall the main points of the W-transfor- 
mation. 

Let x0 be the smallest zero of sin@(x)) greater than a so that x0 is a root of the equation 
6(x) = 4~ for some integer 9. Then determine x,, <x1 <x2 < * - * , where xI is root of 

6(x) = (q + I)?% (I n a similar manner, we can reverse the roles of sin and cos, starting with x0 

as the root of COS(I?(X)) = 0 or 6(x) = (q + i )7~.) Set 

$(x,) = (-1)/x;-“” ) 1= 0, 1, . . . ) (2.25) 

and solve the system of linear equations 

(2.26) 

for WY’, the approximation to Z[ f]. The WY’ can be computed very efficiently in a recursive 
manner by the IV-algorithm of [8], which is summaried below: Let 

MY’, = F(x,) l$(x,) ) NY!‘, = 1 l(cr(xJ ) s=O,l,. . . . (2.27) 

Compute for s = 0, 1, . . . , and k = 0, 1, . . . , 

My = (Mp, - Mf::‘)l(x,’ - x,-:,+,) ) 

Nf’ = (A$‘, - Np)l(x,’ - X;+Tktl) ) (2.28) 

I@’ = M’“‘/N’“’ 
k k k * 

We finally state convergence results on the W, (j) for two types of limiting processes that have 

been designated Process I and Process II in [6] and [7]. In Process I n is fixed and j+ ~0, while 
in Process II j is fixed and n -+ ~0. 
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Theorem 2.3. For Process I 

1[f] - WY) = O(x;-m-n) = O( j(y-m-n)‘m) as j+ w ) (2.29) 

while for Process II 

I[f]-W~‘=O(n-@) as n-co, any p>O. (2.30) 

The proof of this theorem is very similar to those of Theorems 4 and 5 and their corollary in 
[6], the only additional factors being that for f E B, 

Formula (2.29) implies that Process I converges provided y1> y - m, while (2.30) implies 
that Process II always converges and much more quickly than Process I. 

3. Numerical examples 

In this section we apply the W-transformation to several integrals whose integrands are in 
B,. The transformation is implemented using the W-algorithm. Only the approximations IV:) 
are tabulated. The computations for these examples were done in double precision arithmetic 
on the IMB-370 computers at Technion, Haifa and NASA Lewis Research Center, Cleveland, 
Ohio. 

Example 3.1. 

I = Oz exp[i6(x)]6(x)G’(x) dx = exp[iG(O)][-1 + is(O)] . 
I 

For 6 E A’“‘, m > 0 an integer, the integrand f(x) = exp[i6(x)] 6(x)6 ‘(x) is in Bd. Numerical 

results were obtained for the choice 6(x) = x2 - 2 + 2m so that 6(O) = 0 and I = -1. 
For this choice of 6(x) we have m = 2, 6(x) = x2 + 2x, and y = 3. The xI are taken to be 
consecutive zeros of sin(&x)). Hence x[ = - 1 + vl + (1 + 1)~ and $(x,) = (-l)‘xF, 1= 
0, 1,2, . . . . The W-transformation with these x1’s and I,!J(x,)‘s is applied to the real and 
imaginary parts of this integral, namely to the integrals I, = s,” f,(x) dx and I, = j,” f,(x) dx 
respectively, where fi (x) = cos( 6(x)) 6(x) 6 ‘(x) and f*(x) = sin(s(x)) 6(x)6’(x). Note that 
application of the W-algorithm to the original (complex) integral Z = ],” f(x) dx produces 
exactly the same approximations for I, and Z2. That is to say, if we denote the approximations 
to the integrals I, I,, and Z, obtained by using the W-transformation by I%‘:‘[ f], Wp’[ f,], and 
W~‘[f,] respectively, then W~‘[f] = Wy’[f,] + iWy’[ f,]. The numerical results for I, and I2 
are given in Table 1. 

Before giving Examples 3.2 and 3.3 we would like to recall that for any v and for 6 E A’“‘, 

m > 0 an integer, the Bessel functions J,(G(x)) and Yy (S(T)) are expressible in the form 

ql(x) cos(&(x)) + n2(x) sin(&(x)), where TV, q2 E Acpm”) and 6(x) is as defined in (2.20). (See 
the example following Lemma 2.1 in [7].) 
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Table 1 
WY) for the real and imaginary parts I, = - 1 and I, = 0 in Example 3.1 

n WYfll W’[f*l 
0 -0.1374706860366143 DO1 
1 -0.1094314526324539 DO1 
2 -0.9968903998998289 DO0 
3 -0.1000203035968197 DO1 
4 -0.9999952144834945 DO0 
5 -0.9999997183890984 DO0 
6 -0.1000000030821927 DO1 
7 -0.9999999987003277 DO0 
8 -0.1000000000020748 DO1 
9 -0.1000000000000778 DO1 

10 -0.1000000000000004 DO1 
11 -0.1000000000000069 DO1 
12 -0.1000000000000071 DO1 

0.6388917964269695 DO0 
0.1413054892128269 D-02 

-0.1720446087780822 D-02 
0.2569127360275714 D-03 

-0.1952371029084969 D-04 
0.8446174719796831 D-06 

-0.1454733791697413 D-07 
-0.6274491325060319 D-09 

0.5386569040970118 D-10 
-0.1691551103268190 D-11 

0.5829608211821276 D-13 
0.4664849221110266 D-13 
0.4023335702912757 D-13 

Example 3.2. 

I 

cc 

$ = o x*~J,(x) dx . 

Ejy what has been said in the previous paragraph, for p 3 $, f(x) = x2”J0(x) is in B, with m = 1, 
6(x) = x and y = 2p - $. The x1 are chosen to be consecutive zeros of sin x. Thus, x1 = 
(1+ ~)IT and I,!J(x,) = (- l)‘xyP1”, I = 0, 1, . . . . Zp was computed using the W-transformation 
for p = 1 and p = 2, for which, I, = -1 and Z, = 9. The results of the computations for I, and Z, 
are given in Table 2. 

Table 2 
WY’ for the integrals I, and I, in Example 3.2 

n W(O) for I n 1 WC”) for I n 2 

0 -0.1653236227584530 DO1 
1 -0.1029587932399560 DO1 
2 -0.9999473138596609 DO0 
3 -0.9999657260248673 DO0 
4 -0.1000002112607400 DO1 
5 -0.9999999817655246 DO0 
6 -0.9999999943779554 DO0 
7 -0.1000000000379949 DO1 
8 -0.9999999999961305 DO0 
9 -0.9999999999991695 DO0 

10 -0.1000000000000193 DO1 
11 -0.1000000000000113 DO1 
12 -0.1000000000000101 DO1 

-0.1260894930754135 DO2 
0.9420238026602777 DO1 
0.1057006408650254 DO2 
0.9046401056465052 DO1 
0.8999889833220464 DO1 
0.8999976953565624 DO1 
0.9000001410221530 DO1 
0.8999999969624580 DO1 
0.8999999997889087 DO1 
0.9000000000180987 DO1 
0.8999999999963019 DO1 
0.8999999999981573 DO1 
0.9000000000001093 DO1 
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Table 3 
WY’ for R = 0.1, 1, 10 for the integral in Example 3.3 

n IV(“) for R = 0.1 n IV(‘) for R = 1 n IV(“) for R = 10 n 

0 
1 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

-0.2236867216169354 DO2 -0.1477911294169409 DO1 
-0.1992978697914259 DO2 -0.1205852663700003 DO1 
-0.1996627934186043 DO2 -0.1213270089319083 DO1 
-0.1996634143370108 DO2 -0.1213056953892470 DO1 
-0.1996631270004846 DO2 -0.1213061138406477 DO1 
-0.1996631330075435 DO2 -0.1213061347309263 DO1 
-0.1996631331740060 DO2 -0.1213061318078334 DO1 
-0.1996631331628912 DO2 -0.1213061319419371 DO1 
-0.1996631331629833 DO2 -0.1213061319430080 DO1 
-0.1996631331629941 DO2 -0.1213061319424945 DO1 
-0.1996631331629937 DO2 -0.1213061319425223 DO1 
-0.1996631331629936 DO2 -0.1213061319425223 DO1 
-0.1996631331629936 DO2 -0.1213d61319425221 DO1 
-0.1996631331629935 DO2 -0.1213061319425220 DO1 
-0.1996631331629934 DO2 -0.1213061319425219 DO1 
-0.1996631331629934 DO2 -0.1213061319425220 DO1 

0.2607119122278270 DO1 
-0.2679131159825249 DO0 

0.7335054996255592 DO0 
0.6760342012727790 DO0 
0.6642368870807564 DO0 
0.6656988431306132 DO0 
0.6657192260583116 DO0 
0.6657087863481486 DO0 
0.6657091362908930 DO0 
0.6657091660364351 DO0 
0.6657091634853331 DO0 
0.6657091635030230 DO0 
0.6657091635098611 DO0 
0.6657091635094694 DO0 
0.6657091635094813 DO0 
0.6657091635094880 DO0 

Example 3.3. The integral in the first paragraph of Section 1 with CY = 0, namely 

z= I m 2x 
- 

0 cy’( c2 + x’).Zo(x) - x.Z,(x)] dx . 

Here, c, y E A(‘), and, by what has been said prior to Example 3.2, (c” + x’)J,(x) - x.Z,(x) is 

of the form q(x) cos x + wz(x) sin x with w,, co2 E A(3’2) so that m = 1 and 6(x) = x. As in 

Example 3.2, x1 = (I + l)~, thus 9(x,) = (-l)‘x:“, 1= 0, 1, . . . . Table 3 contains the numeri- 
cal results obtained for Z with R = 0.1, 1, and 10. For the sake of completeness we mention 
that, for (Y # 0, the integrand of this integral is in B, with 6(x) = x cos (Y. The W-transforma- 
tion can be applied to it with x, = (1 + 1)~ set (Y and $(x,) = (-1)‘~:” exp(-x, sin a), 1= 
0, 1, . . . , see [7]. 

4. Concluding remarks 

In this work we have shown that divergent infinite oscillatory integrals of functions in the set 
B, can be computed very efficiently by using the W-transformation. The W-transformation was 
originally designed to accelerate the convergence of a class of convergent infinite oscillatory 
integrals of functions in the set B,. The sets B, and B, are complementary in the sense that if a 
function f(x) is in B,, then f(x) lx’, for some positive integer p, is in B,. 

The subject of computation of divergent integrals does not seem to have received much 
attention with the exception of a few recent works like [l] and [3]. In both of these works, 

based on numerical testing, it is concluded that if the oscillatory integral J,” f(x) dx is 
expressed as an infinite series CTzo uj, where uj = J,“I+l f(x) dx, and x0 = a and xi, Z = 
1, 2, . . . ) are the consecutive zeros of f(x) greater than a, then application of convergence 
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acceleration methods to CTzO ui may produce good results for s,” f(x) dx even when this is a 
divergent integral defined in the Abel summability sense. In fact [l] demonstrates the use of 
the Euler and iterated Shanks [5] transformations like e, , ef , e:, etc., and [3] demonstrates the 
use of the higher order Shanks transformations (or the E-algorithm [9]) and the Levin [4] 
transformations. All the integrals, convergent or divergent, dealt with in both [l] and [3] have 
integrands in B, or B,. 
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