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EXTRAPOLATION METHODS FOR VECTOR SEQUENCES*

DAVID A. SMITH, WILLIAM F. FORD* AND AVRAM SIDI

Abstract. This is an expository paper that describes and compares five methods for extrapolating to the
limit (or anti-limit) of a vector sequence without explicit knowledge of the sequence generator. The methods
are the minimal polynomial extrapolation (MPE) studied by Cabay and Jackson, Megina, and Skelboe; the
reduced rank extrapolation (RRE) of Eddy (which we show to be equivalent to Megina’s version of MPE);
the vector and scalar versions of the epsilon algorithm (VEA, SEA) introduced by Wynn and extended by
Brezinski and Gekeler; and the topological epsilon algorithm (TEA) of Brezinski. We cover the derivation
and error analysis of iterated versions of the algorithms, as applied to both linear and nonlinear problems,
and we show why these versions tend to converge quadratically. We also present samples from extensive
numerical testing that has led us to the following conclusions: (a) TEA, in spite of its role as a theoretical link
between the polynomial-type and the epsilon-type methods, has no practical application; (b) MPE is at least
as good as RRE, and VEA at least as good as SEA, in almost all situations; (c) there are circumstances in
which either MPE or VEA is superior to the other.

Key words, minimal polynomial extrapolation, reduced rank extrapolation, vector epsilon algorithm,
scalar epsilon algorithm, topological epsilon algorithm, iterative methods, quadratic convergence
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1. Introduction. The purpose of this paper is to derive, describe, and compare five
extrapolation methods for accelerating convergence of vector sequences or transform-
ing divergent vector sequences to convergent ones. These methods have in common the
property that they require no explicit knowledge of the "sequence generator" but are
computed directly from the terms of the sequence. (In particular, if x+ =F(x), no
derivatives of F are computed.) Furthermore, when applied iteratively to a sequence
generated nonlinearly, they tend to converge quadratically.

The methods studied belong to two families: polynomial methods and epsilon
algorithms. The epsilon algorithms are old enough to be called "classical" in this field,
dating to the mid-1950’s for scalar sequences and to the early 1960’s for vector
sequences. We consider the scalar epsilon algorithm (SEA) and vector epsilon algorithm
(VEA) introduced by Wynn [36] and the more recent topological epsilon algorithm
(TEA) of Brezinski [8]. Polynomial extrapolation methods that are linear in the terms of
the sequence, such as Chebyshev acceleration, have at least as long a history, but we
consider only methods that are nonlinear, in that the coefficients of the extrapolating
polynomials are functions of the terms of the sequence. The minimal polynomial ex-
trapolation (MPE) and reduced rank extrapolation (RRE) are adapted from the works
of Cabay and Jackson [12], Eddy [13], [14], Medina [26], and Skelboe [31].

All five methods are based on the idea of exact solution for a fixed point in the
case of a linear generator F, but without the equivalent of solving a system of equations
in dimension N, the dimension of the vector space. The epsilon algorithms are com-
puted recursively with a triangular array (of vectors) in which each entry is computed
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from three earlier ones by simple arithmetic (no matrix inversions), and the exact
solution is found as the leading entry in the 2kth column, where k is the "essential
degree" of the problem. We always have k =< N, and sometimes k is much smaller than
N. The polynomial algorithms find the exact solution as a weighted average of k + 1
terms of the sequence (same k), where the k independent weights are found by solving
a linear system of that size.

In practice k is not known, but all of the methods may be applied with a possibly
much smaller "effective degree," which is essentially the number of "dominant" eigen-
values of the sequence generator. Thus, even in the linear case the extrapolations are
approximate, which leads to the need for iteration ("cycling"). If the sequence genera-
tor F is not linear, but has a Taylor expansion in which the linear part dominates (in a
suitably small neighborhood of a fixed point), then the methods may still be applied.
The transformed sequence obtained by cycling tends to converge quadratically, because
small deviations from linearity in the initial data (given sequence) are transmitted
linearly through the extrapolation.

In the next two sections, we derive MPE and RRE and prove that they give the
exact solution for the right degree k. In 4, we present Brezinski’s generalization [8] of
the Shanks-Schmidt transform. The original transform led from systems of equations
to Wynn’s formulation [35] of the epsilon algorithm for scalar sequences. The gener-
alized transform leads from systems of equations to TEA, and from there we make the
necessary connections with SEA and VEA in 5. The exactness result for TEA is a
consequence of the derivation (an intricate computation with determinants). For VEA
it is a difficult theorem of McLeod [25], which has an extra hypothesis that remained a
challenging puzzle until just recently, when Graves-Morris [19] approached the problem
from a fresh point of view and gave the first satisfactory proof.

In 6, 7, and 8 we extend the algorithms to the nonlinear case by cycling, sketch
the error analysis for MPE and VEA (along the lines of Skelboe [31]), and discuss the
theoretical support for quadratic convergence. Section 9 treats strategies for practical
implementation of the methods. So far as we can tell, there is no practical implementa-
tion for TEA; its primary role seems to be as a theoretical "bridge" between the two
families of methods. Section 10 explores alternate interpretations of these methods,
additional relationships they have to each other and to other vector extrapolation
methods (including Chebyshev and conjugate gradient), and further historical and
bibliographical details. The paper closes with some numerical examples that illustrate
the relative merits of the methods in various circumstances.

This paper is expository in nature. Our contribution to this subject consists of the
analysis and synthesis of the work of others. Elsewhere [30] we present original work
that includes introduction of a more general family of methods and a complete error
analysis of these methods for linear problems without cycling, i.e. successive application
of the extrapolation along the base sequence.

While this paper was in the refereeing process we learned of the work of Professor
Jean Beuneu [2]. His work provides another way of studying in a unified context the
methods discussed here.

2. Minimal polynomial extrapolation. Suppose a sequence of vectors in real or
complex N-space is generated linearly from a starting point x 0

(2.1) Xj+x=Axj+b j=0,1,2,. -,

where A is a fixed matrix and b is a fixed vector. We do not assume that either A or b is
known; only the sequence (xy) or a means of generating it is given. We do assume that
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1 is not an eigenvalue of A, so the iteration (2.1) has a unique fixed point

s=As+b,

namely,

(2.2) s= (I-A)-lb.
If IXI < 1 for every eigenvalue ) of A, then

s= lim xj;
joo

if the sequence diverges, s is called the anti-limit, and we may still expect to determine s
from a finite number of the terms of the sequence. Our objective is to do that from as
few terms as possible, without requiring any additional information about A, and
without inverting an N N matrix. We will derive, study, and compare several related
methods that satisfy those criteria. In a typical application, N may be quite large
relative to the number of eigenvalues ) with IXI near I (causing slow convergence) or
greater than 1 (usually causing divergence). If the vectors are, say, successive discrete
approximations to the solution of a partial differential equation by a finite difference
scheme, then the sequence generator may be known to be linear (or approximately so),
but A itself is likely to be unknown and expensive to compute. (The vector b can
always be computed by starting the iteration at x0=0.) Furthermore, even when
convergent, such schemes often require many thousands of iterations for suitable
accuracy, and the individual terms xj may themselves be expensive to compute.

The extrapolation methods to be derived are all based on differences, and it will be
convenient to have abbreviated notation for first and second differences of the vectors

xj. We write

(2.3) uy= Axy= xy+t- xy,
(2.4) vy A2xj Auy uj.+ u.
For a fixed integer k (to be determined), we define N k matrices whose columns are
the vectors of differences

(2.5) U=Uk=[Uo,U,...,Uk_],
v=

Note that

(2.7) uj.+ Auj=A+lU 0

and

(2.8) v= (A I)uj.

for each j.
The first method to be considered calculates s as a weighted average of the x’s,

with weights determined by the coefficients of the minimal polynomial P() of A with
respect to u 0, i.e. the unique monic polynomial of least degree such that

(2.9) P(A)uo=0.
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For the present, we take k to be the degree of P. Then k _< N, and it may happen that k
is much smaller than N. We write

k

P(,)= ] elM, ck=l.
j--O

Then it follows from (2.7) and (2.9) that

k

(2.10) ] CiUl= 0,
j---0

so the vector e=(Co, Cl,-..,ck_) of unknown coefficients of P is a solution of the
system of equations

If k < N, the system (2.11) has more equations than unknowns, but consistency has just
been demonstrated, and the unique solution may be written as

(2.12) e= U+u,,
where U/ is the pseudoinverse (or Moore-Penrose generalized inverse) of U (see [23]
or [32]). In principle, computation of U/ calls for inversion of a k k matrix; we will
discuss practical computation of c later.

Before stating the extrapolation formula for obtaining s from the xj’s, we observe
that e gives us the coefficients for the minimal polynomials of A with respect to all of
the vectors ui, and also with respect to all the error vectors xi-s. We write P(h)=
rQ(,), where r is the multiplicity of h as a factor of P. Thus, c0=c c,_ =0,
and

k

a())= ] CjXj-r, Cr:#O c=l.

Since P is a factor of the characteristic polynomial of A, r is =< the multiplicity of 0 as
an eigenvalue. Often r will be 0, of course., for example, if A is nonsingular.

LEMMA 1. The minimal polynomial P(X) of A with respect to ui is hr-JQ(,) for
j=0,1,..., r, and is Q(X) forj> r. The minimalpolynomial ofA with respect to xi-s is
the same as that for ui, for everyj.

Proof. For j =< r,

Ar-Ja(A)uj A’-iQ(A)Aiuo P(A)uo 0,

so Ps.(,) divides ,’-Q(X). On the other hand,

O Pj (A)ui=AiPj(A)uo,

so P(X)=rQ(h) divides MPI(). It follows that PI(,)=X-Q(,), since both poly-
nomials are monic.

For j > r, a similar computation shows that P1 divides Q, and Q divides M-rP1
Since , is not a factor of Q, it follows that Pj.= Q.

To prove the second assertion, we observe that

(2.13) (A-Z)(xj-s)=ui,
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which follows immediately from the definitions. Since A- I is assumed to be invertible
and commutes with polynomials in A, it follows that the minimal polynomials with
respect to uj and xj-s must be the same. t

THEOREM 1. For any k + 1 consecutive terms of the sequence, say
Xm,Xm+l," ",Xm+k, we have

(2.14) E CjXm+j--’ Cj $.

j----0 j ----0

Proof. We first solve the recursion (2.1) explicitly to express x
using (2.2)

Xm+j=AJxm+(I+A + +AJ-1)b

=AJxm + ( I-AJ)(I-A)-tb
=AJxm+(I-AJ)s

=AJ(xm-$)+s.
From Lemma 1, we have

k

O= E cjAJ(xm -S)
j=o

k

E Cj(Xm+j--$)
j=0

E CjXm+j-- Cj
j=-0 j=0

m+j in terms of Xm,

Note that s may be computed exactly from (9), since Ec=P(1)#:0, because we
assumed that 1 is not an eigenvalue of A. Note also that if P(0)=0, r terms on each
side of (2.14) are zero, where r is the multiplicity of 0 as a root of P. If r is known or
suspected to be positive, there is some advantage in starting the extrapolation process
at xm for m > 0, preferably m r, since each step away from x 0 reduces the size of the
matrix to be inverted in (2.12) by one. For simplicity, we will continue to refer to the
starting point for this extrapolation (and the others to be derived) as x 0, but it is to be
understood that each extrapolation may be applied after some number of steps with the
sequence generator. Finally, note that the determination of s from (2.14) actually
requires k + 2 terms of the sequence, since k + 1 differences uj are needed to find c. We
summarize the algorithm as follows:

Minimal Polynomial Extrapolation (MPE). Given a sequence generator of the form
(2.1) and a starting point x 0,

(a) generate xt, x2,...,xk+;
(b) compute U, u as in (2.3) and (2.5);
(c) compute c as in (2.11), (2.12), and set c,= 1;
(d) compute s from (2.14).
The form of MPE just stated is somewhat simpler than that given by Cabay and

Jackson [12]. We now derive their formulas to establish a connection with the method
to be considered in the next section.

s. D
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Define a polynomial R(X) by

(2.15)
j---O i=j+l j=O

Then

k+l k

(1-XIR(,)= E E ci(xj-’j+x)
j----O i=j+l

k i-1

E E c,(X -x
i=I j=O

k

E ci(1-hi)
i----1

=P(1)-P(X).

Thus

(I-A)R(A)uo= [P(I)-P(A)luo=P(1)Uo.

From (2.13), we have

k-1

S-Xo= (I-A)-tu =P(1)-iR -o (A)uo P(1) _bjuj.
j--0

Thus formula (2.14) in MPE may be replaced by

(2.16)  =Xo-
j----0 j=0

where the coefficients by are defined by (2.15).

3. Reduced rank extrapolation. If k is taken to be N in (2.5) and (2.6), and if V is
invertible, then it follows from (2.8) that

(I-A)- UV-,
and hence from (2.13) that

(3.1) s Xj-- UV- luj

for any j, in particular for j=0. This is a "full rank extrapolation"; it requires
inversion of a rank N matrix, and its only advantage over (2.2) is that A and b still
need not be known explicitly.

However, (3.1) may be rewritten as a pair of equations

(3.2) s x o+ U,
(3.3) O= uo + V.
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Now we may ask if there is a simultaneous solution of (3.2) and (3.3) when U and V
have k columns, where k may be less than N. The answer is "yes," and for k degP
as in the previous section. In fact, if we set

I[,j= bj/P(1), O <=j <=k-1,

then it follows from (2.16) that satisfies (3.2), and from (2.8) and (2.13) we have

VI= (A I ) UI= (A I)(s- x0) -u0,

so (3.3) is also satisfied.
Now / may be computed directly from (3.3), consistency having been demon-

strated, and the result substituted in (3.2) to get the "reduced rank" equivalent of (3.1)

(3.4) s x0- UV/u0

Note that this requires the equivalent of an inversion of a kk matrix, but not the
same one that appears in MPE. We summarize the algorithm as follows:

Reduced Rank Extrapolation (RRE). Given a sequence generator of the form (2.1)
and a starting vector x 0,

(a) generate Xl, XE,...,Xk+l;
(b) compute U, Uk as in (2.3) and (2.5);
(c) compute V as in (2.4) and (2.6);
(d) compute the generalized inverse V+;
(e) compute s from (3.4).
Note that exactly the same iterates are required for RRE and for MPE, in spite of

the second differences used for the former; vk is not used, so xk+ 2 is not needed. One
might expect that second differences of a slowly convergent sequence would cause more
numerical problems than first differences, and this is sometimes the case, as we shall
see. Apart from these exceptional cases, however, MPE and RRE are quite similar in
their numerical performance.

If we write AX for U and A2X for V (where X is a matrix whose columns are the
iterates xy, and A is applied to columns), then (3.4) becomes

s=x0- AX(AX)+Ax0

In this form it is dear that RRE is a natural extension of Aitken’s A2 method [1] to
vector problems.

4. The generalized Shanks-Schmidt transform. We see from Theorem 1 that the
fixed point s can be expressed as a weighted average of any k + 1 consecutive terms of
the sequence (xy), where k is the degree of the minimal polynomial P of A with
respect to xo-s

k

(4.1) E "jXm+j=$, m=0,1,2,. .,
j--0

k

(4.2) E = 1.
j=0
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(Here 3,j cj/P(1).) This does not mean that the extrapolation to s from (x. } is being
computed linearly, however, because of the implicit matrix inversion required for the
computation of the cj (hence also the yj), where the matrix entries are linear combina-
tions of the components of the x. All of the methods discussed here require nonlinear
combinations of the vectors in the given sequence.

Each equation of the form (4.1) is equivalent to N scalar equations in the un-
knowns { 3’ ) and the components of s, and there are perhaps an infinite number of
different equations. We know that the entire system is consistent when the "fight" k is
used, but in practice we cannot expect to have a priori knowledge of k, so we can only
hope to find approximate values of k, { 3’ }, and therefore s, from our extrapolations,
whether by MPE, RRE, or the methods to be described in this section and the next.
Thus, we are often dealing with a selection of an appropriate number of linear equa-
tions taken from (or derived from) a large, inconsistent set. We consider now another
way to solve the system (4.1)-(4.2), which will be exact for k= degP.

Take k + 1 consecutive equations of the form (4.1), say with n =< m =< n + k, and
eliminate s from these equations by taking differences (second equation minus first,
etc.)

k

(4.3) E yu,+ 0,
j--0

m=n,n+l,...,n+k-1.

Now let y be an arbitrary nonzero vector in N-space, and consider the scalar equations
obtained by taking the inner product of y with each of the vectors in (4.3)

k

(4.4) E y(y u,,,+./) O,
j=O

m=n,n+l,...,n+k-1.

The system consisting of (4.2) and (4.4) constitutes k + 1 linear equations in the k + 1
unknowns { 3’j }, which will have a unique solution if the appropriate determinant is
nonzero, a modest restriction on the arbitrariness of y. If we abbreviate y’llm+j by
z,, +j, that determinant is

1 1 1
Zn Zn+l Zn+ k

Zn+l Zn+2 Zn+k+
Zn+k "n+k Zn+2k

By subtracting adjacent columns (first from second, second from third, etc.) and
expanding on the first row, we find that the determinant (4.5) of order k + 1 is equal to
the k th order determinant

(4.6)
AZ Azn+ AZn+k_
Az.+ hz.+ /z.+

which is the (classical) Hankel determinant H,t")(Az,), starting at the nth term of the
scalar sequence ( A z, ) {y.v, }.
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Following Brezinski [9], we define a generalized Hankel determinant for an arbi-
trary vector sequence {wn } with respect to a vector y

Wn Wn+l Wn+ k

y. Aw y. Aw+ y. Aw+
y. Aw,+ y. Aw+ 2 y.Aw++

Y" AWn+k_ y" aW+k y. Aw/2_

where the interpretation of "determinant" with a row of vector entries is the linear
combination of that row formed by the usual expansion formula, with (scalar) coeffi-
cients that are ordinary kth order determinants. The inner product y.Ok(_)t(Wn) is an
ordinary determinant, and by successively adding each row to the next, we may see it is
a Hankel determinant. In fact,

(4.7) y-k(_)l(W,)= Hk("+)l(y. w,).
Furthermore, in the scalar case (dimension N= 1) (4.7) reduces to

kl_l(n)(4.8) r-.Tt (,,) (w,) =y (w,)’k+l "tak+l

which shows that /(") is a proper generalization to vector sequences of the Hankelk+l
determinant for scalar sequences.

Now if one solves (4.2), (4.4) for the 39’s by Cramer’s Rule and substitutes the
result in (4.1), the solution for s may be written as

(4.9) s=() (x )/Hk(n) (y A2x )"’k+l n

Since k will usually not be known, we consider the right-hand members of (4.9) to be a
double sequence of approximations to s and write

(4.10) ek (x n ) =/-irk(n+) (X )/H(kn) (y" A2Xn ).
For historical reasons, we will call the sequence transformation defined by (4.10) the
generalized Shanks-Schmidt (GSS) transform. In the scalar (N= 1) case, we see from
(4.8) with y 1 and the equivalence of (4.5) and (4.6) that (4.10) reduces to

(4.11) ek ( Xn) H(kn+)l ( Xn)/H(kn)( A2Xn )
Xn Xn+l Xn+ k

AX hXn+ Axn+ k

,,x,,+,, x;,i_;+_,,
1 1 1
hxn hXn+ hXn+ k

which is the (classical) e-transform studied independently by Shanks [29] and Schmidt
[281.

The e-transform (4.11) is known to give the exact limit or anti-limit s for any
scalar sequence { x. } whose errors satisfy

k

(4.12) x+-s= ., a,,’,
i=1
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and it has been found to give useful approximations to s if the true expression for the
errors involves an infinite sum, i.e. infinitely many "transients" . If k= 1 in (4.11),
the e-transform reduces to Aitken’s A2 extrapolation, which is exact on geometric series,
the case of k 1 in (4.12). Thus, like RRE, GSS is a natural generalization of Aitken’s
A2 to vector sequences.

The vector analogue of condition (4.12) is

k

(4.13) x-s= E ai.,
i--1

where the a are fixed vectors and the fixed scalars. The subspace generated by
x o s (i.e. spanned by x0 s, A(x0- s), A2(x0- s),...) has dimension k degP. Every
error vector x-s is in that subspace (see the proof of Theorem 1), and if A is
nondefective on that subspace, then we have a decomposition of the form (4.13) by
taking the , to be eigenvalues of A and a to be the corresponding eigenvectors in a
decomposition of x0-s. In the defective case, the representation of x-s in terms of
generalized eigenvectors is more complicated, but we. still know that GSS gives the
exact result (4.9) if k degP.

The GSS, as given by (4.10), would be of little value for approximating the fixed
point s if it had to be evaluated by forming a linear combination of the x’s whose
coefficients are computed as ratios of (large) determinants. Indeed, even in the scalar
case, the. e-transform would have found little practical application if it were not for the
recursive evaluation scheme, discovered by Wynn [35], called the epsilon algorithm, to
which we now turn our attention.

5. The epsilon algorithm. With a remarkable burst of insight, Wynn [35] dis-
covered, very soon after Shanks [29] published his paper on the sequence transforma-
tion (4.11), that the required ratio of determinants could be evaluated recursively for
increasing k and n, without the use of determinants or matrix inversion. The result is
the (scalar) epsilon algorithm, which is given by the formulas

(5.1) e(__n 0, En)=Xn, n=0,1,2,. .,
(5.2) E(221_.En_-1)q_ [En+l)_En)]-1 k n=0,1,2,...

By working along diagonals on which n + k is constant, (5.2) permits calculation of
each entry of a triangular array in terms of previously calculated entries, with initial
conditions given by (5.1).
TnOM 2 (Wynn). For each pair of nonnegative integers k and n, if the indicated

quantities exist,

(5.3) e[nk) e, ( x, ) e[")+ lle, ( Ax, )

In particular, the even numbered columns of the e array evaluate the Shanks-Schmidt
transform (4.11). Furthermore, if {x,) satisfies (4.12) for some k, then e[)=s for
every n.

Once we see what has to be proved, a proof by induction is not difficult, but it
requires several pages of determinantal identifies and expansions, which we choose not
to reproduce here. (See [35] or [9, pp. 44-47] for the details.)

The principal stumbling block in the extension of the epsilon algorithm to vector
sequences is the appropriate interpretation of the inversion (reciprocal) in (5.2) when
applied to a vector quantity. One possibility is to treat the sequence of ith components
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of (x) as a separate scalar sequence for each i, so that "inverse" continues to mean
"reciprocal." This algorithm, as applied to vector sequences, is called the scalar epsilon
algorithm (SEA). Of course, this approach ignores the linkage between the scalar
sequences in different components, and it also runs the risk that, in one or more
components, the required reciprocals frequently will either fail to exist or be quite large
numerically. (Singular rules have been devised to work around this latter problem, but
we choose not to digress to discuss them here.) In spite of these obvious difficulties,
SEA works quite well in a surprisingly large number of cases.

A connection between SEA and GSS may be made in the following way. If one
chooses the arbitrary vector y in (4.10) to be the th standard unit vector in N-space,
and then ignores all but the th component of the extrapolation, the result will be the
th component of the vector computed by SEA.

Brezinski [8], [9, pp. 172-205] has shown how to make a stronger connection
between the epsilon algorithm and GSS by an appropriate interpretation of "inverse"
of a vector, i.e. how to solve the system (4.2), (4.4) to produce the extrapolations (4.10)
by recursivc formulas of the form (5.1), (5.2). Indeed, the possibility of such a connec-
tion was his reason for introducing GSS, which, as we have noted, is not an effective
computational scheme in itself.

We define the inverse of an ordered pair (a, b) of vectors such that a, b = 0 to be
the ordered pair (b-, a-), where

b-l= a/(b. a), a-l=b/(b, a).
We call a-t the inverse of a with respect to b, and vice versa. Several properties of this
concept of inversion are immediate.

(a-)- =a (the second inversion with respect to a),
a-l.a=l,
a-.b- 1/(b.a).

Now we define a vector version of (5.2) with inversion of vectors interpreted in the
following way: For even subscript 2k, the inverse of Ae) is with respect to a fixed
vector y, arbitrary except for the restriction that all the required inverses should exist,
i.e.y. Ae)= 0 for each k and n. For odd subscript, the inversion is with respect to the
y- determined at the previous step. Thus we have

Ae(2, t y/(y Ae(2,) ),
y- t A:’/(y A[,)),

y-1/( A<)+ y ) A(2:)/( Ao<)2+t. A[,) )
This leads to the topological epsilon algorithm (TEA)

(5.4) I(__nl 0, In)= Xn, r/---0,1,2,. ,
(5.5) o<) 0<) +y/(y.Ae)) k,n=O,1,2,...(C)2k+l (C)2k-1

(5.6)

The name derives from the fact that the entire development of the previous section and
this one can be carried out in the context of a topological vector space E, with dot
product by y replaced by the application of an arbitrary element of the topological dual



210 DAVID A. SMITH, WILLIAM F. FORD AND AVRAM SIDI

space E’. In this generality, the even and odd columns of the epsilon array are
alternately in E and E’, respectively, and inversion is defined on (most of) E E’.

TI-I.ORE 3 (Brezinski). If an epsilon table is generated from a sequence (x.) by
formulas (5.4)-(5.6) With a fixed vector y, and if all the indicated quantities exist, then

(5.7) e(2,= e(x),

and

I)+ [e,(U)]- =y/[y’e,(u)],

for n, k 0,1, 2,..., where ek is given by (4.10).
We may see that Theorem 3 is a generalization of Theorem 2 by considering the

case of dimension N 1, and indeed the proof of Theorem 3 is essentially the observa-
tion that the definitions of GSS and TEA have been properly constructed to permit
Wynn’s argument to be extended to generalized determinants. See [8] or [9] for the
details.

Our primary purpose in describing TEA is to demonstrate the connecting link
between "polynomial" type algorithms such as MPE and RRE and "epsilon" type
algorithms. TEA solves equations (4.1)-(4.4) for s without the necessity of matrix
inversion, but at a cost of generating almost twice as many terms of the sequence {x }.
However, TEA has not been notably successful as a numerical algorithm, and little is
known about appropriate selection of the auxiliary vector y, let alone optimal selection.

A much more successful extension of (5.1)-(5.2) to the vector case is that given by
Wynn [36], who suggested interpretation of "inverse" as the Samelson inverse

(5.9) w-X=w/llwll=.
This is also the transpose of the Moore-Penrose generalized inverse of w, considered as
a matrix. Furthermore, it is a special case of Brezinski’s notion of inverse of an ordered
pair, with only pairs of the form (w,) considered. The vector version of (5.1)-(5.2) in
this case is called the oector epsilon algorithm (VEA), and the recursive formulas take
the form

(5.10) e=0, e(f)=x,, n=0,1,2,...,

(5.11) o(,,) o(n+ 1)+, o(,,)/ 2,o -x k n=0,1 2,...

These formulas are simpler than those for TEA in that they do not require an even-odd
distinction, and VEA has also turned out to be the most useful member of this family
of algorithms from the point of view of numerical computation. However, it suffers the
(theoretical) defect that we do not know what system of linear equations is actually
being solved by VEA. On the other hand, we do have an exactness result analogous to
Theorems 2 and 3.

TrlEOREM 4 (McLeod, Graves-Morris). Suppose a sequence (x) of vectors satisfies
a recurrence relation of the form (2.14) for some coefficients co, cl,..., c (co O, c O)
and some fixed oector s. If the VEA array is generatedfrom {x } by (5.10) and (5.11),
and if all the required quantities exist, then

k

(5.12) e(2,)=s, n>=O, if E cjqO,
j--0
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and

k

(5.13) e)=0, n>=O, if E c=0.
j--0

Of course, we know from Theorem 1 that if the sequence is generated linearly, as
in (2.1), then a recurrence of the form (2.14) exists, with k the degree of the minimal
polynomial P, and with c 1. The conditon co 4:0 is satisfied by either dropping zero
terms and redefining k or starting the sequence with x, where r is the multiplicity of 0
as a zero of P (see Lemma 1). Our assumption that 1 is not a root of P rules out the
degenerate case (5.13).

Theorem 4 has an interesting history. The scalar case, essentially Theorem 2, was
published over 20 years ago by Wynn [37], who conjectured the extension to the vector
case. McLeod [25] proved the special case of Theorem 4 in which the coefficients c are
restricted to be real numbers, even though the vector quantities might have complex
entries. It may be difficult to imagine how an argument that proves certain relations
among complex vectors with real coefficients might fail if the coefficients were allowed
to be complex. In fact, McLeod’s argument used techniques of universal algebra, first
establishing a version of Theorem 4 for matrix quantities (with ordinary matrix inver-
sion), then constructing a linear isomorphism of CV, as a real vector space, into a
high-dimensional matrix space that would map Samelson inverses to matrix inverses.
The construction depended on treating real and imaginary parts separately, and the
mapping simply was not linear over C.

That is where matters stood for more than a decade, in spite of the fact that
everyone who knew about McLeod’s theorem (including Wynn and McLeod) must
have thought that the restriction to real scalars was merely an artifact of the indirect
method of proof, and that a proper understanding of the theorem would remove it.

That understanding has recently been provided by Graves-Morris [19], who has
related VEA to a general scheme for vector-valued rational interpolation and thereby
obtained a constructive proof of Theorem 4 as a corollary. The details lie outside the
scope of this paper.

6. Extension ot the algorithms to nonlinear sequences. We turn our attention to a
sequence x 0, Xl, x _, generated by

(6.1) x+l F(x),
where F is a vector-valued function of real or complex vectors, defined on an open and
connected domain D in N-space, and which has a Lipschitz continuous derivative. If
s F(s) is a fixed point in D, and F’(s) is the Jacobian matrix of F at s, then

(6.2) F(x)-s F’(s)(x s) + O(11 x s

for all x D. Note that this context includes that of the linearly generated sequences
studied in the previous sections, as well as sequences generated by more general
iterations of the form

(6.3) xj+ Axj+ b + ej,

where ej is any small "error" that approaches 0 quadratically as j--)oo. If ej is the
actual error in a linearly generated sequence (2.1), for example, from use of finite
precision arithmetic, there is no reason to think that ej->O. Nevertheless, we will see
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that the technique to be described here for nonlinear sequences has some practical
application to linear sequences as well. That is, it has the effect of "squeezing out"
small errors in the linear computations in many situations that are not covered by the
theoretical development.

We assume as before that the Jacobian matrix F’(s) does not have 1 as an
eigenvalue, and we let k denote the degree of the minimal polynomial of F’(s) with
respect to x0-s. All of the algorithms presented above may now be extended by
"cycling" to generate a sequence s0,sl, s2,--, of approximations to s, in much the
same way that scalar iterations are accelerated by iterating Aitken’s A- method (Stef-
fenson’s method).

NONLINEAR EXTRAPOLATION ALGORITHM.
(a) Set So= x o, the given starting vector, and i= 1.
(b) Generate an appropriate number of vectors x by (6.1): k + 1 for MPE or RRE,

2k for SEA, VEA, or TEA.
(c) Apply the appropriate algorithm to these iterates to compute a vector s*.
(d) Set s s*, increase by 1, replace x o by s*, and return to step (b).

Each time through this loop is called a cycle. (We want to avoid overuse of
"iteration," which is already in use in reference to generation of the terms of the
sequences, and which is explicitly involved in construction of any of the epsilon tables.
Another type of iteration will be seen to be necessary for determination of k for MPE
and RRE.) The principal "result" concerning this cycled extrapolation algorithm (all
versions) is that it is quadratically convergent, in the following sense.

"THV.ORM" 5. Under the assumptions stated abooe on F and s, if k is chosen on the
ith cycle to be the degree of the minimalpolynomial ofF’(s) with respect to si_ -s, and if
so is sufficiently close to s in D, then

(6.4) IIs, / x -s II O(11 s,-s I1=).
( ln the case of the epsilon algorithms, we also assume that all the required quantities in the
computationsfor each extrapolation step exist.)

Arguments for (6.4) in the VEA case were given independently by Brezinski [4]
and Gekeler [17]. Skelboe [31] gave another argument in this case and also included the
MPE and SEA cases. RRE may be treated similarly to MPE and TEA similarly to the
other epsilon algorithms. The arguments are nearly persuasive, especially in the pres-
ence of strong empirical evidence for quadratic convergence, but unfortunately all of
these authors have left a subtle gap, and we have not been able to dose it, so we will
instead disclose it. All of the arguments are based on linear propagation of errors
through each extrapolation. In particular, quadratic deviations from the linear case are
propagated as quadratic deviations from the exact extrapolations in the linear case. In
the next two sections we will sketch Skelboe’s arguments for the MPE and VEA cases,
and then indicate the gaps. Since Skelboe’s treatment of MPE is based on Cabay and
Jackson’s presentation of the algorithm [12] and ours is based on the simpler presenta-
tion in {}2, our error analysis is also simpler, but the essential ideas remain the same.

7. Error analysis for MPE. Our immediate objective is to compare an extrapolated
vector s* from a sequence of the form (6.3) with the exact fixed point s extrapolated
from the sequence (2.1), in both cases by application of MPE with k=degP, where P
is the minimal polynomial of A with respect to x0- s. To fix notation, we attach an
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asterisk to all quantities that may contain an error

(7.1) x*j.+t =Ax +b+ e,

where x x o + eo is the given approximate value of the starting vector x o- We write

(7.2) aj xy

for the errors in the data on which the extrapolation is based. Then ao eo, and

J
(7.3) aj+l=Aaj+ej=AJ+leo + ., AJ-iei.

i--0

Thus each of the a’s is a linear combination of the e’s and vice versa. We further write

(7.4) uj j uj+ Aaj.

The extrapolation coefficients c* (c’, c,.. *., Ck t)t are computed as the least-squares
solution of the overdetermined system

(7.5) U’c*= -u,
U*where U* [u, u’,- k- 1]" Thus, the residual vector r*, where

k

*(with* 1)(7.6) r*= E cTuj Ck-"
j=o

has minimal length, and c* is given by

(7.7) c* U*+u].

Finally, we have the extrapolated vector s* given by

k

(7.8) P*(1)s*= E c*x,
jffi0

where P* is the "almost annihilating" polynomial

k

(7.9) P*(X) E chi.
jffi0

We write

(7.10) Ilall max Ilajll.
0_jk+l

Then we need to show that, for Ilall sufficiently small, P*(1) 0 (so that s* exists), and

(7.11) IIs* II--- o(lla II).
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The key to the argument is the perturbation analysis of least squares solutions, which
may be found, for example, in [23, Chap. 9]. If we write E U*- U and use the fact
that rank(U)= k, then [25, Thm. (9.12)] yields

If E I1" u+ < , then rank (U *) rank (U), and

(7.12)
Ilc*-cllz IlU+ I{(llEIlllc{l/

1 -II E I/" U+

The matrix norms in this expression are given by the usual "spectral" norm

M

maximal singular value of M.

Since IIEII O(llall), by (7.4), we have

IIc*-cll--- o(llall).(7.13)
It then follows that

k-1

(7.14) P*(1)- P(1)I= E (c? c)
j--O

k-1

<- E Ic;’-cy[<=llc*-cll--o(llall).
j--0

In particular, for Ilall sufficiently small, P*(1):0, since P(1):0. Finally, we combine
(7.13) and (7.14) to compute

P*(1) I" IIs* sll--II e*(e)s* e*(1)s

=< P,(1)s, P(1)s[l+lP*(1)-P(1) I" Ilsll

E (cTx’-cx) +o(llall)
j=0

j--O

k k

j---0 j=0

Since P *(1) #: 0, we also have

(7.15)
as desired.

=o(11,11).

IIs*-sll= o(llall),

Now we turn to the "proof" of "Theorem" 5 in the MPE case. Given a possibly
nonlinear sequence (6.1) satisfying (6.2), we may consider the sequence to be of the
form (6.3) with A F’(s), i.e. of linear type with errors that are O(llx- sl12), thus also
O(llx0- sll). Since these errors are propagated linearly in the sense of (7.11), the error
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in the extrapolated value at the end of each cycle is O(llx0-sllZ), where x0 is the
starting vector for that cycle.

The problem with this argument is that the key estimate for the extrapolation,
(7.13), has an implied proportionality constant, and (7.12) reveals that the constant
depends on IIU/ll, which is constant for a given cycle, but certainly not from one cycle
to the next. In fact, the difference matrices U tend to become more and more singular
as s is approached, and there is no indication that IIU+ll will remain bounded, or that
IIEII-IIU+II will be bounded away from 1. When these additional conditions are met, we
do see quadratic convergence of the (si} in practice, but this is not always the case.

8. Error analysis for VEA. Here we show that errors in the epsilon table defined
by (5.10)-(5.11) vary linearly with errors in the initial data (5.10). As in the previous
section, we use asterisks to indicate values actually computed

(8.1) e,’)* e,’)+ a")

where en) is the exact (k, n)-entry, and an) is the error in that entry. Then the errors in
the initial data are

(8.2)

and, as in [}7, we write

(8.3) Ilall max I1  0, 11,
O<n<2K

where K is the appropriate value of k to achieve the exactness result of Theorem 4. We
show by induction that

(8.4) II.’z II- o(11. II)

for all k, n, under the assumption that all the required entries of the epsilon table exist.
In particular, this will be the case for a(2)r, the error in the extrapolated value for a
single cycle.

The computed entries of the epsilon table satisfy

g(n),k+l ’k-l"(n+1),
__

m,(kn),/} mg(kn), =.
If we subtract the exact values (5.11), we get a recursion for the errors

(8.6) ak"+ a__+x)+

a(n+ 1) (kn) O/A.(knk_a + [(a--1)A + =

where

(8.7)
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For Ilall sufficiently small, the induction hypothesis and the assumption that IIA)II 0
(for all k and n) imply that IIA)*II may be bounded away from 0 (for all k and n).
Thus a and all the entries of the computed e table exist.

(8.8) a 1 (11 =- I1=)/11 =.
Substitution from (8.1) and expansion of the squared norms in the numerator of (8.8)
by inner products lead to the observation that

a- 1 o(11, II) o(11, II),

so (8.6) completes the induction step to show that (8.4) is valid.
The argument that takes us from (8.4) to "Theorem" 5 is exactly the same as that

given in the previous section for the MPE case. The gap to be filled is more subtle in
this case, however. Formula (6.4) requires an absolute constant, not one dependent on
the cycle number, and that has not yet been demonstrated. For example, the degree of
the minimal polynomial of F’(s) with respect to x0-s depends on x 0, and that affects
the assumption of existence of entries in the epsilon array. The possible degrees cannot
exceed the dimension of the space, of course, and for any finite number of cycles, there
are only a finite number of instances of (8.4) to consider. But (6.4) is a statement about
asymptotic behavior, and, as is the case with MPE, the epsilon computations tend to
become more singular (both numerically and in theory) as the limit is approached.
What "Theorem" 5 actually provides is a strong indication, supported by much
numerical evidence, that the sequences {si} converge rapidly from a good starting
point, usually to the limits of machine accuracy before any singularity problems set in.

9. Strategies for implementation. In this section we will consider our "base se-
quence" {xj } to be generated by an iteration of the form (6.3), which we may think of
as incorporating both the nonlinear case (6.1), with A F’(s) and subject to (6.2), and
the linear case (2.1) with small errors, for example, from limited precision of data
and/or computations. We discuss here some considerations for practical use of the
various extrapolation techniques.

The first such consideration has already been noted in [}2: If little is known about
the starting point, it may be useful to generate some number rn of base iterates that will
not be used in the extrapolation, effectively starting over with xm in place of x 0. This
number may be small or large, depending on the cost of computing individual terms.
One purpose of this initial step is to reduce the (theoretical) size k of the extrapolation
problem by removing factors of X from the minimal polynomial (if there are any). Of
course, in the process of eliminating the role of 0 as an eigenvalue, one is also reducing
the influence of eigenvalues close to 0. (Think of the base sequence as having the form
(4.13), at least approximately.) Examination of these initial iterates may provide some
evidence of the rate of convergence (or divergence!). If the base sequence appears to
converge rapidly, no extrapolation may be needed. On the other hand, if the sequence
appears to diverge, the selected sequence transformation should probably be applied
starting from x 0, to avoid numerical difficulties with data ranging over many orders of
magnitude.

Up to now we have said nothing about determination of the "magic number" k
(degree of the minimal polynomial), and in fact there is no practical way to determine k
in advance. Fortunately, it is not necessary to do so. Cabay and Jackson [12] have
observed that even poor approximations to k and to the coefficients e of P can lead to
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good approximations (via MPE) to s, and the same is true of the other extrapolation
methods. The reason for this is evident from the eigenvector decomposition (4.13). For
k < degP, only the "dominant" components appear in (4.13), and a small error term is
neglected; instead of achieving equality in (2.11), the least squares solution (2.12) gives
coefficients of an "almost annihilating" polynomial that is the "best" monic poly-
nomial of degree k for eliminating the influence of k dominant components of the
error. (Similar comments, apply to RRE and the epsilon algorithms, but the sense of
"best" depends on the method. Further details of this interpretation of the methods
will be provided in the next section.)

Thus an appropriate way to implement MPE and RRE on the first cycle is to
extrapolate to Sm,k from Xm, Xm+l,’’,Xm+k+l with k= 1,2,3,. -, and stop when the
least squares residuals, or the solution residuals Sm,k- F(Sm,k) are acceptably small.
When there is strong separation between the "dominant" and the "small" eigenvalues,
there is often a precipitous drop in the magnitudes of these residuals when k reaches
the number of dominant ones (multiplicities included). In other cases the decline in
residuals with increasing k is gradual. However, with cycling, even a k large enough to
produce only one or two orders of magnitude difference between IISm,kll and IlSm,k-
F(Sm,k)ll will be sufficient to produce convergence of the extrapolation sequence. If k is
too small, we cannot expect this convergence to be quadratic, but it may still be far
faster than the convergence of the base sequence (if any).

There is no absolute guarantee that the k accepted on the first cycle will continue
to work on subsequent cycles, but in practice it always seems to. If k is actually degP
on the first cycle, then with high probability it accounts for the error components
corresponding to all the eigenvalues of A, since there are only a finite number of special
directions for x0-s in which any could be missed. In this case, the required degree
could not increase on subsequent cycles. In practice, the number of dominant eigenval-
ues whose error contribution must be suppressed remains constant from one cycle to
the next. Thus for MPE and RRE multiple extrapolations with increasing k are
unnecessary after the first cycle.

The epsilon algorithms, on the other hand, provide much less definite evidence of
the proper degree k. In the linear case, Theorems 2, 3, and 4 produce (in theory) an
entire column (the 2kth) of equal results for SEA, TEA, and VEA, respectively, so
computing the appropriate inverses for the next column should be impossible. How-
ever, this does not always happen, as a result of roundoff error. Furthermore, individ-
ual inverses can fail to exist for other reasons, especially with SEA, which requires a
significant difference in every component for adjacent entries in each column. Even if a
.suitable k <N is found (for example, by acceptably small residuals in the 2kth column),
this does not. shorten the computation on subsequent cycles, because of the recursive
nature of the epsilon formulas (in contrast to MPE and RRE, which are explicit once k
is known).

It is easily seen that the computational cost of a single epsilon table out to column
2k is comparable (for large k and N) to the cost of a single-extrapolation cycle for
MPE or RRE with an N by k least squares step. Thus the epsilon extrapolations have
a computational advantage (given the base sequence) on the first cycle, but not on
subsequent cycles. Offsetting that modest advantage, the epsilon algorithms require
nearly twice as many base iterates. We have found, for example, in applications of these
methods to the solution of partial differential equations with finite difference grids of
even moderate size, that 80 to 90 percent of the total computation time may be devoted
to computation of the base iterates.
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Just as there may be an advantage in generating some number of base iterates at
the start that will not be used in the extrapolation, there may also be a good reason for
inter-cycle "runs" of the base sequence generator (if it is convergent). That is, instead
of using the extrapolated vector s* as the new x0 for the next cycle, it could be used as
the start of a sequence of base iterates xl, x 2," ", with xm taken as the start of the next
extrapolation cycle. (The choice of m could vary with the cycle as well.) One reason for
this strategy is that an extrapolation may magnify the error components associated with
small eigenvalues at the same time it is drastically reducing the dominant components.
The base iteration reduces the small components rapidly, while not increasing the
dominant ones.

Another modification of the method that has been found to be effective in some
circumstances is to use every qth base iterate for some q> 1, i.e. to extrapolate from
X 0’ X q, X 2q, This is equivalent to replacing A with Aq, thus achieving greater
separation of the dominant from the other eigenvalues.

10. Connections and credits. We have commented briefly on the work of some
individuals in connection with the ideas presented. Here we attempt to fill in more of
the details of who did what and how these efforts relate to each other.

Cabay and Jackson [12] introduced the minimal polynomial extrapolation (so
named by Skelboe [31]), but in the form of (2.16), which is a little more complicated to
compute than our MPE. They trace the underlying idea to Schmidt [28] and note that
little had previously come of Schmidt’s ideas except the direction taken by Shanks [29]
and Wynn [35] with the e-transform and epsilon algorithm. Independently of Cabay
and Jackson, Medina [26] described an acceleration algorithm that was essentially MPE,
except he chose a polynomial whose coefficients sum to 1 rather than a monic poly-
nomial. Both [12] and [26] dealt with the case of a linearly generated base sequence
only; Medina used cycling and inter-cycle runs of the sequence generator, whereas
Cabay and Jackson used neither. Medina used least squares solutions of the incon-
sistent equations; Cabay and Jackson preferred the Krylov method [34, pp. 369-377]
for its computational simplicity while still achieving "nearly minimal" residuals, as
opposed to the actual minimization of least squares.

Skelboe [31] was the first (in print) to bring together the work of Brezinski and
Rieu [11] and Gekeler [17] on application of the (cycled) vector epsilon algorithm to
nonlinearly generated sequences with a cycled version of MPE (based on [12], not [26])
for the same purpose.

Many authors have addressed the question of the appropriate extension of Aitken’s
A2 to vector sequences. Henrici [22, pp. 115-117] presents a cycled version of the full
rank extrapolation (3.1) as "Steffenson’s iteration for systems of equations" and cites
empirical evidence for quadratic convergence. (Steffenson’s iteration in the scalar case
is the cycled version of Aitken’s A2.) Ortega and Rheinboldt [27, pp. 199-200] note that
the Henrici formulation is equivalent to one given by Ludwig [24]. Eddy has unpub-
lished work on the full rank extrapolation, also dating to the early 1950’s, which
eventually led to his work [13], [14] on the reduced rank extrapolation (RRE), and it is
his presentation we followed in [}[}2 and 3 for both MPE and RRE. We can now
demonstrate how closely related these two methods actually are, and in the process add
another insight into how they work.

We return to equations (3.2) and (3.3) without the assumption that k is the degree
of a minimal polynomial, and we seek an approximation s* to s such that

k-1

(10.1) s* x o + E t.u,
j=O
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where the vector/= (0,1,"" ", k-1) is chosen to minimize the norm

(10.2) lluo+ V,II,

i.e. the length of the residual vector in (3.3). It is easy to see that (10.1) may be
rewritten as

k

(10.3) s*= E x,
j=o

with

for 1 =<j =< k- 1,

and thus

k

(10.4) E - 1.
j--0

Furthermore, the condition of minimizing (10.2) uniquely determines/ and therefore
the set of coefficients V0,"" ", ’k in (10.3) satisfying (10.4).

Now

.o+ E Xo+ E
j,=O j--O

(A Tx Tu.
j-o

Thus RRE (for arbitrary k) is equivalent to choosing an approximation s* of the form
(10.3) by solving the problem

(10.5)
k

subject to 3,j 1.
j=o

But this is precisely Medina’s algorithm. Thus the essential distinction between MPE
and RRE in determining coefficients by minimization is whether one chooses to set the
leading coefficient equal to 1 or the sum of the coefficients equal to 1. It is not
surprising, then, to find that these two algorithms behave very much alike in most
circumstances, but that the Eddy-Medina algorithm is sometimes less stable numeri-
cally, since it tends to produce very large coefficients with alternating signs. (We
explained this instability earlier, in the context of the Eddy formulation, by the use of
second differences for the coefficients in the least squares problem.)
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Since both MPE and RRE lead to extrapolations of the form (10.3)-(10.4), with
Vj=cj/P(1) in the MPE case, it is natural to ask how we might find the best such
extrapolation for a given k, in the sense of minimizing IIs-s*ll. For any linear combi-
nation of the form (10.3), using (2.2) and (10.4), we have

k

s-s*=(I-A) -tb- E "tjxj
j--O

[b k ]=(I-A) -t E 7j(I-A)x+
j--O

=(I-A)- E ,j(xj-x./+t+b)
j--O

=(I-A) -x + E yu+- ,j b
j=O

k

=(I-A) -x E ,sus.
j-O

Thus

(10.6)

Now the first factor on the right is unknown but constant (only approximately so in the
nonlinear case). Thus, to come as dose as possible to a minimum for the left-hand side,
it is natural to minimize the second factor on the right. This is in the spirit of Medina’s
derivation, which attempts to minimize the norm of the residual,

IIAs*/b-s*ll.

Essentially the same calculation shows that this quantity is equal to the second factor
on the right in (10.6).

All vector norms in the preceding discussion have been Euclidean norms, but as
observed in a recent work [30] by the authors, any other norm would do as well, as long
as the minimization problem could be solved efficiently. In particular, if either the 11
norm or the 1oo norm were used, the least squares problem would be replaced by a
linear programming problem. Both of these norms have been proposed in [30] as
alternatives to the Euclidean norm.

There is an extensive literature on polynomial extrapolation methods, some of
which are much more familiar than MPE and RRE, for example, the conjugate gradient
and Chebyshev methods. Since notation and terminology differ markedly from one
author to the next, we will place the methods studied here in the context of the broader
range of polynomial methods.



EXTRAPOLATION METHODS FOR VECTOR SEQUENCES 221

Given a linear base sequence generator (2.1). with a unique fixed point s given by
(2.2), suppose s* is any "extrapolation" formed from a weighted average of x 0, xl,. .,x k
for any k (temporarily fixed)

k k

(10.7) s*= E "tjxj, ., "l 1.
j=o j=o

As we saw in the proof of Theorem 1,

xj-s---AJ(xo-S), j=0,1,2,...,

SO

k k

S*--S= E yj(Xj--S) E TjAJ(xo-s)=P(A)(xo-S),
j=o j--o

where P is the polynomial defined by

k

(10.8) P(
jffiO

That is, the error in the extrapolation is obtained from the initial error by applying a
polynomial in A, where A is the iteration matrix and the coefficients of the polynomial
are the averaging weights. (The notation in (10.8) differs from the minimal polynomial
notation in 2 by a normalizing factor of P(1). It is more convenient here to have
coefficients as in (10.7) than to have a monic polynomial.) Hageman and Young [21,
pp. 40-41] call any method satisfying this error condition a polynomial acceleration
method. Of course, one would like to choose P to make

(10.9) II*-11 P(A)(Xo- s)

as small as possible. For the "right" degree k, MPE and RRE make this error exactly
zero, and for smaller k (depending on the number of "dominant" eigenvalues of A)
they tend to make it small enough to qualify as legitimate extrapolation methods.

It follows from (10.9) that

(10.10) [[s*-sll< lIP(A)Illlxo- sll,

for the induced matrix norm, and some polynomial methods are based on minimizing
IIP(A)[I subject to constraints on effective computability of the coefficients (weights).
One cannot assure that [[P(A)[[--0 unless k is the degree of the characteristic poly-
nomial of A, which will often be the dimension N of the vector space. The vector norm
in (10.10) need not be Euclidean, of course. Hageman and Young have given an
excellent (unified) treatment of the Chebyshev and conjugate gradient (CG) methods
[21, Chaps. 4 and 7, respectively] in the case of a symmetrizable iteration matrix A, that
is, where W(I-A)W- is symmetric and positive definite for some invertible matrix
W. The choice of appropriate vector norm depends on W. In the Chebyshev case what
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is actually minimized is the "virtual spectral radius" of P(A)

max P(,)[,
m(A)_A_M(A)

where m(A) and M(A) are the smallest and largest eigenvalues, respectively. In the
CG case, the minimized quantity, expressed in Euclidean norm, is

In both cases the polynomials Pk for increasing degree k satisfy a three-term recur-
rence from which the successive extrapolants s may be computed recursively, without
explicit determination of the coefficients 3’i,. However, these methods require restric-
tions on the matrix A and some knowledge of its eigenvalues for effective use, and this
is not the case for MPE or RRE. ([21, Chap. 12] summarizes what is known about
generalizations of the Chebyshev and CG methods to nonsymmetrizable iterations.)

The explicit solution in the proof of Theorem 1 of the recursion (2.1) may also be
written

xj=AJxo + (I-A)-t(I-A)b,
from which we see that s* of the form (10.7) may be written

(10.11) s*=P(A)xo+R(A)b,

where P is given by (10.8) and R(h)=[1-P(h)]/(1-h), also a polynomial. (Again,
this differs from R as defined in {}2 by the normalizing factor P(1).)

Some authors have taken (10.11) as the definition for polynomial extrapolation
methods (see, for example, [18]). Faddeev and Faddeeva [15] use the term "universal
algorithm" for such methods when the coefficients are determined independently of the
particular sequence being acCelerated. (We would call such a method "linear," in
contrast to the methods studied here, for which each s* is formed in a nonlinear way
from the given vector sequence.) They show that, with strong assumptions on the
locations of eigenvalues (confined to an interval on the real line), both maximal
suppression of components of the error vector and minimization of residuals lead to
Chebyshev-type methods (the classical method in the first case). By focusing on the
spectral radius rather than the norm of P(A), Germain-Bonne [18] has shown that
methods not depending on symmetry or real eigenvalues may be devised, but at the
expense of needing to know approximate locations in the complex plane of all the
eigenvalues.

Vorobyev [33] makes a distinction between methods of the form (10.11), presuma-
bly in the "universal" sense, and methods for which successive extrapolations s* are
computed by

k-1

*(10.12) sin= Xm + E jUm+j,
j=0

where k is fixed (to suppress the error components corresponding to the k largest
eigenvalues) and the coefficients are to be determined directly from the sequence of
vectors. Note that the Cabay-Jackson form of MPE and RRE, as given by (2.16) and
(3.4), respectively, both have this form when the starting point is allowed to "slide"
along the base sequence, and the (2k)th column of each, of the epsilon arrays implicitly
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has this .form as well. Vorobyev also writes the problem in a form equivalent to that of
Theorem 1 (i.e., MPE), with coefficients to be determined from a system of equations
equivalent to (2.11) "in one way or another." The idea is not pursued further, and no
reference is given, but he calls this "the extrapolation method." Instead, Vorobyev
determines the coefficients for his accelerated sequence by the "method of moments,"
which involves successive projections on certain subspaces and orthogonalizations of
these projections. He. shows that, for a self-adjoint A, the error lls-s*ll is O(IXk/lm),
where hk/ is the (k + 1)th largest eigenvalue.

All of the methods studied here have "sliding" (as opposed to "cycling") versions,
applicable primarily to linearly generated sequences of the form (2.1). Elsewhere [30]
we introduce a sliding method that is conceptually and computationally simpler than
either MPE or the method of moments and that has a similar error analysis.

11. Numerical examples. We have conducted numerical tests of the five methods
described above with many linear and nonlinear vector iteration problems drawn from
a variety of sources: [1], [3]-[5], [7], [11], [12], [16], [17], [20], [36]. Cabay and Jackson
[12] have reported extensive numerical comparisons of their version of MPE with SEA
and VEA in dimensions 10 and 400, but limited to linear iterations and without cycling.
Megina [26] reported having used his equivalent of RRE for a problem of dimension
about 3000 in neutron transport theory and claimed an average reduction in the
number of base iterates of 3 to 5 times. He also presented a number of comparisons of
his method (in dimension 50) using cycling and inter-cycle runs, with the Chebyshev
method, also limited to linear base iterations. Eddy has informed us in a private
communication that he has applied RRE to "the vector sequences generated by various
finite difference equivalents of a Poisson equation (10 10 mesh in 2D, 10 10 10
mesh in 3D)... [and] cut computation time by a factor ranging from 2.4 to 4.7 as
compared to using no extrapolation at all." Skelboe’s numerical examples [31] arise
from steady state analysis of electrical circuits. The iterations are nonlinear and of low
dimension, with an appropriate degree k predictable from the circuit. He includes
MPE, SEA and VEA in favorable comparisons with Newton and gradient methods
previously used for such circui,..t, alaalysis; in most cases SEA is effective and the most
efficient.

We present here selected examples from our numerical comparisons which serve to
illustrate several general, but tentative, conclusions. We have found no effective way to
implement TEA, either by iteration (5.4)-(5.6) or by solving the defining equations
(4.2) and (4.4) directly. However the auxiliary vector y is chosen (including "at
random"), we seldom find any significant acceleration of convergence. When applied to
divergent sequences, it tends to slow divergence somewhat, but not to produce a
convergent sequence. We are not aware of any other authors reporting success with
TEA, either, so it remains for us a theoretical bridge between the MPE-type algorithms
(via approximate solution of inconsistent linear equations) and the epsilon-type algo-
rithms.

The anticipated numerical difficulties with RRE arise frequently, and we have
found very few examples of performance that is noticeably better than MPE. Similarly,
the numerical difficulties with SEA are real (and documented elsewhere [11]), and this
method seldom performs better than VEA. Under most circumstances, MPE has an
advantage over VEA in requiring only half as many base iterates and less storage (for a
given accuracy), at the cost of more computation on the first cycle (to find k).
However, this advantage is sometimes offset by numerical considerations, as we shall
see.
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In all of the figures presented here, we show the minimal number of significant
digits of accuracy (SD) in each extrapolated answer as a function of the number of base
iterations (2.1) or (6.1). SD is computed from the formula

(11.1) SD logx0 (!1 x- ANS /11ANS I1),
where X is the computed extrapolation and ANS is the known answer. Inter-cycle steps
are indicated by solid lines, and steps within cycles (increasing k), if shown at all, are
indicated by dashed lines.

Example 1. Divergent iteration with an eigenoalue close to unity. Wynn [36] il-
lustrates SEA and VEA with sequences derived from a number of well known iterative
methods. In particular, we consider the solution of the system

5 7 6 5 x 23
7 10 8 7 x2= 32
6 8 10 9 x3 33
5 7 9 10 x4 31

by diagonal relaxation [36, Eq. (12)] starting from x0=(0, 0, 0, 0) t. The problem is the
same as [36, Eq. (16)], except for correction of a typographical error, and the solution is
s= (1,1,1,1)/. When written in the form (2.1), the matrix A generating the linear
iteration has eigenvalues (approximately) -2.48, 0.9985, 0.915, 0.562. The one large
root causes the base iteration to be divergent from any starting point, and the root near
1 causes 1-A to be nearly singular, a situation that Cabay and Jackson claim leads to
superior performance for MPE.

-2.q8, 0.99135, 0.915, 0.562
15-

12-

10-

9-

7.
T

6-

10

NUMBER OF BASE ITERATIONS

LEGEND" METHOD {--B MPE SEA VEil

20 25 30

FIG. 1. Divergent 4 by 4.
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Figure 1 illustrates the following points: (a) For the methods shown (MPE, VEA,
SEA), the jump in accuracy from k 3 to k 4 is striking; (b) VEA and SEA are very
similar; (c) in spite of the linearity of the base iteration, a significant gain in accuracy
can be achieved by a second cycle with all three methods; (d) there is no gain after the
second cycle; (e) MPE is more accurate, and achieves its accuracy faster, than the
epsilon methods, in agreement with Cabay and Jackson (but see Example 3 for another
view of near-singularity).

RRE is not shown in Fig. 1 because it fails to converge to the right answer, and
therein lies a tale. We first computed this and many other examples using APL code on
an IBM 5100. With apparently equivalent FORTRAN code and essentially the same
(double) precision, we expected to get the same answers. In most cases we did, but there
were several cases like this one, in which RRE or SEA or both failed to give the
performance in FORTRAN that we had found in APL, apparently because of the
greater sensitivity of these two methods to the internal handling of numbers and to the
differences between the APL "domino" operator and IMSL’s least squares routine. The
APL answers for R.RE were nearly identical to those for MPE.

The steps for k < 4 are shown only for the first cycle for MPE, since these would
not be computed on subsequent cycles. On the other hand, these steps are routinely
available on all cycles for the epsilon algorithms, because of the recursive nature of the
calculations, so they have been shown.

Example 2. More rapid divergence. Wynn also uses the Gauss-Seidel iteration as
an example. When this method is applied to [36, Eq. (14)], and the iteration is written
in the form (2.1), we find eigenvalues -2.35 + 2.05i, -0.0228, and 0. The results are

lO-

7-

6-

S-

NUMBER OF BRSE ITERRTIONS

LEGEND: METHOD O-EF- MPE ,e,-- VER

FIG. 2. Divergent 4 by 4.
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shown in Fig. 2. Here the base iteration diverges more rapidly than in Example 1,
which seems to affect .MPE much more than VEA. RRE and SEA fail to detect the
unique solution to this problem by "converging" quickly to a vector on which the
sequence generator is almost constant, approximately

(13.36, 1.940, 5.532, 5.342) t.
The sequence eventually diverges from this point, of course, but the first six iterates
agree to 14 SD, so the extrapolation is to the same point.

The MPE cycles in Fig. 2 have only three steps instead of four because the method
correctly detects k 3; the system of equations becomes singular with k 4. VEA does
not detect this, but nevertheless achieves an excellent result on the first cycle and
machine accuracy on the second. MPE also achieves machine accuracy eventually, but
the convergence is only linear, even when the cycle starting point is quite close to the
fight answer.

Example 3. Conoergent iterations with eigenoalues close to unity. In this example
and the next two we use Cabay and Jackson’s 10 by 10 problem generator [12, {}{}6, 7].
The eigenvalues occur in complex conjugate pairs cie +e,, where Oi=,r(i-1)/4, and

1, 2, 3, 4, 5. Thus the real roots (i 1 and 5) are double roots, and with all c :/: 0, the
degree k is 8. For this example, we take c2=0.4, C3----0.2 C4=0.1 and cs=0.001.
Figure 3 shows results for MPE and VEA, both with k=8, for five choices of cx
approaching 1.0 (top to bottom in Fig. 3). Observe that in all cases VEA achieves a
superior result on the first cycle and that the two methods are very similar on second

Max 0.9, 0.99, 0.999, 0.9999, 0.99999
15

12-

tO-

9-

8-

7-

6-

5-

IO 5 0 25 O 5 qO q5 50

NUMBER OF BRSE ITERATIONS

LEQEND: PROBLEM -x-K--x BASE B--B--B MPE MPE
c MPE MPE c MPE

VER VEA VEA
VEFI VEil

FIG. 3. Five convergent 10 by 10s.
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and subsequent cycles. If anything, VEA has a slight edge in eventual accuracy in the
worst case, in contrast to Cabay and Jackson’s observation about superior performance
of MPE in the near-singular case. Of course, the efficiency of MPE in use of base
iterates is still evident here.

Example 4. Varying the degree k. Here we use the same problem generator as in
Example 3, with c =0.4, c2=0.2, c3= 1.0, c4=0.1 c5=0.01. Thus the eigenvalues of
largest magnitude are + i. (Only h 1 is forbidden; other points on the unit circle have
little effect other than to prevent the base iteration from converging.) Figure 4 shows
the results of cycling MPE and VEA with k= 2, 4, 6, and 8 (bottom to top, respec-
tively), to illustrate that one need not correctly detect k in order to get a highly
accurate answer. For k < 8, the two methods are very similar (with a slight advantage to
VEA); both converge linearly, and at a rate dependent on k. For k 8, MPE needs the
second cycle to achieve machine accuracy, which offsets its efficiency in use of base
iterates.

Example 5. Large negative eigenoalues. Here we use the 10 by 10 problem genera-
tor again, with c 0.001, c2 0.4, c3 0.2, c 0.1, cs 0.9. Thus the dominant eigen-
values are a pair at -0.9. The results for all four methods (k 8) are shown in Fig. 5.
Note that (a) MPE and RRE are virtually identical and little different from VEA; (b)
MPE and RRE need three cycles to reach their maximum accuracy; (c) SEA is slightly
better than VEA on the first cycle, but is not improved by cycling. The deterioration of
SEA on a second cycle has been observed with some other examples as well, but with

HRX XI ai" 4- i, K=2.tt.6.8

13-

1o

G
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I0 15 20 25 30 35 qO q5 50

NUMBER OF BRSE ITERRTION$

LEGEND: METHOD = = = MPE (2) = = = MPE (q) = = = MPE (6)
MPE (8) VER (2)
VEIl (6) VER (8)

Fit}. 4. Divergent 10 by 10.
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no obvious pattern. For example, when SEA is applied to the five cases in Example 3,
the second cycle shows no change for c 0.9, marked deterioration for c 0.99, slight
improvement for cx 0.999 and 0.9999, and marked improvement for cx 0.99999.

Example 6. Nonlinear iteration. Our first nonlinear example is the determination
of a dominant eigenvector by a variant of the power method. Specifically, each iterate is
computed from the previous one by multiplication by the given matrix B and scalar
division by the first component

F(x)=Bx/(Bx).

We use

2.4
2.4
2.8

-3.7 2.4 -0.6]
-2.5 2.2 -0.6
-3.6 3.6 -0.9
-5.2 4.8 -0.9

x0= (2, 1, 0.5, 2)to

The dominant eigenvalue is 1.5, and the corresponding eigenvector is s=(1, 1, 1, 1) t.
The power sequence diverges, but the base iteration converges at a moderate rate: The
eigenvalues of F’(s) are: 0.533, 0.467, 0.4, and 0.

15-

10

9-

B-

7-
T
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5-

Max I 0.9 at -0.9. K B_

lO 15 20 25 30 35 qO q5 50

NUMBER OF BASE ITERATIONS

LEGEND: METHOD --w BASE c MPE ARE
SEA VEA

FIG. 5. Conoergent 10 by 10.
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The results for this problem are shown in Fig. 6, which is typical of slowly
convergent, nonlinear iterations with "dominant" linear part (except for the apparent
failure of SEA after the first cycle): The quadratic convergence (final term of each
cycle) is evident, up to machine accuracy. MPE and RRE are shown with k 3, the
proper degree because the first component of each vector was required to be unity. The
epsilon methods were allowed to run to k 4 because the vectors had length four.

We digress here to comment on the application of these method to the infamous
Bodewig matrix [3], a 4 by 4 integer matrix for which the poWer method requires some
800 iterations to get anywhere near an eigenvector for the dominant eigenvalue. The
problem arises from roots that are close in magnitude and opposite in sign. (-8.03 and
7.93), and the power sequence is initially "dose" to an eigenvector for the smaller root,
7.93 (1 to 2 SD accuracy in each component at 20 terms). All four methods find this
latter eigenvector to machine accuracy, with numbers of base iterations and significance
levels very similar to those shown in Fig. 6. It is of interest to note that such a sequence
that eventually converges to a very different vector actually "contains" this informa-
tion.

Example 7. Quadratic iteration. Gekeler [17] illustrates the vector epsilon algorithm
with a number of quadratic iterations that can be written in the form

(11.2) F(x)=b+Ax+Q(x),
where Q(x) is the quadratic part. All of these are 4-dimensional and all have been
constructed to have solution (1, 1, 1, 1)/. However, they have other solutions as well,
and depending on the starting point, some of the base iterations and/or epsilon
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FIo. 6. Normalizedpower method (nonlinear).
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accelerations converge to other solutions. Unfortunately, Gekeler does not indicate in
each case what solution was actually found.

We will discuss two of these problems [17, Examples I, V], the first of which has

0.01 0.05 0.5
0.01 1.75 0. 0.05
0.05 0. 1.75 0.01
0.5 0.05 0.01 2.25

I)=(-0.81, -0.31, -0.31, -0.81)’,
Q(X) --0.5(X?+X1X4, X, X23, X1X4q=X24) t,
Xo= (2, 2, 2, 2)’.

The eigenvalues of F’(s) are 0.9, 0.8, 0.7, and 0.6. The results for this problem (Fig. 7)
show again that MPE and RRE do not always retain their 2-to-1 efficiency in use of
base iterates. (RRE and SEA are not shown in Fig. 7, but their results were similar,
respectively, to MPE and VEA.) The figure shows VEA both for k=4 and k 3 to
illustrate the point that often it makes little difference whether the correct k is detected
exactly.
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LEGEND: METHOD c MPE --e. VER(3) ,o--e.-.. VEfl()

FIG. 7. Quadratic sequence generator.
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Example 8. Quadratic iteration with two solutions. Gekeler’s Example V in [17] has
the form (11.2) with

3.9 -3.7 2.4 -0.6
2.4 -2.0 2.2 -0.6
2.4 -3.6 4.1 -0.9
2.8 -5.2 4.8 -0.4

b= -0.75(1, 1, 1, 1) t,
Q(x)=-0.25(x2, x, x, x)’,
Xo= 1.5(1, 1, 1, 1)t.

The iteration has both (1, 1, 1, 1) and (3, 3, 3, 3) as fixed points. The base iteration,
VEA, and SEA all converge to the latter from the given starting point, but MPE
initially jumps to components less than unity and then approaches (1, 1, 1, 1) from
below. Figure 8 shows roughly quadratic convergence of MPE with k---2 and VEA
with k-4. But this convergence is to different answers, and thus is governed by
different sets of eigenvalues.In fact, F’(1, 1, 1, 1) is the matrix B in our Example 6,
which has eigenvalues 1.5, 0.8, 0.7, 0.6, whereas F’(3, 3, 3, 3)B-I, which has
eigenvalues 0.5, -0.4, -0.3, -0.2. Thus MPE is solving a divergent problem with all
the eigenvalues relatively large, while VEA is solving an "easier" problem with rela-
tively small eigenvalues. In particular, the relevant set of eigenvalues is misstated in
[171.

), 1,5, 0.8, 0.7, 0.6
p.= 0.5, -O.q, -0.3, -0.2
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This example is another for which RRE gives results very similar to MPE when
coded in APL, but fails to converge when coded in FORTRAN. The SEA results were
nearly identical to those for VEA with both programs.

12. Summary. We have motivated and derived five nonlinear extrapolation meth-
ods for vector sequences with a limit or an anti-limit and for which the sequence
generator may not be known explicitly: the minimal polynomial extrapolation (MPE),
the reduced rank extrapolation (RRE), and the topological, scalar, and vector epsilon
algorithms (TEA, SEA, and VEA). All five give an exact extrapolation if the sequence
is generated linearly and if they are applied to a system of’equations of the right rank k
(the degree of a minimal polynomial of the sequence generator), which is often smaller
than the dimension of the space in which the vectors are generated.

All but TEA can also be implemented without knowing the correct dimension k,
achieving approximate extrapolation if k is the number of dominant eigenvalues of the
sequence generator (or of its linear part if it is not linear), This value of k often can be
determined empirically with a reasonable amount of computation, and the extrapola-
tions can be iterated ("cycled") in the same dimension to obtain a sequence of ap-
proximations that often converges quadratically. Since attempts to implement TEA this
way do not appear to work, its significance remains as a theoretical bridge between the
minimal polynomial methods (MPE and RRE) and the epsilon methods (SEA and
VEA).

Our numerical tests suggest some tentative guidelines for practical use of these
methods. Numerical difficulties anticipated on theoretical grounds for RRE and SEA
do occur, and we see tittle or no reason ever to prefer RRE to MPE or SEA to VEA.
MPE has a theoretical advantage over VEA in that, under conditions in which the
quadratic convergence "theorem" holds, it should achieve the same accuracy from
roughly half as many base iterates (steps of the sequence generator) and with less
storage. However, quadratic convergence of MPE is more likely to fail, and the algo-
rithm itself is more sensitive to certain numerical effects, such as rapid divergence of
the base sequence. Thus there are circumstances in which either MPE or VEA might
give the better result for a given problem of the type considered, and those circum-
stances are difficult to determine in advance. Both methods can sometimes be enhanced
by intercycle runs of the sequence generator and/or sampling the base sequence at
regular intervals instead of using consecutive terms.
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