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AN ALGORITHM FOR A GENERALIZATION OF THE
RICHARDSON EXTRAPOLATION PROCESS*
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Abstract. In this paper we present a recursive method, designated the W(O’)-algorithm, for implementing
a generalization of the Richardson extrapolation process that has been introduced in [8]. Compared to the
direct solution of the linear systems of equations defining the extrapolation procedure, this method requires
a small number of arithmetic operations and very little storage. The technique is also applied to solve
recursively the coefficient problem associated with the rational approximations obtained by applying the
d-transformation of [6], [13] to power series. In the course of development a new recursive algorithm for
implementing a very general extrapolation procedure is introduced, which is similar to that given in [2],
[4] for solving the same problem. A FORTRAN program for the W(’)-algorithm is also appended.
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1. Introduction. In a recent paper [8] a generalization of the well-known Richard-
son extrapolation process has been introduced. This generalizationmcalled GREP for
shortmhas proved to be very useful in accelerating the convergence of a large class
of infinite sequences. It allows, for example, the summation in just a few terms of
series as simple as no (1 +v/-ff)/(1 + n)2, or as difficult as Yno Pn(x) cos ny. The
technique can be applied equally well to integrals, ranging from simple ones like

o sin (ax2+ bx) dx to difficult ones like o Jo(X)Jl(ax)Jr,(bx) dx.
GREP is defined, and so far has been implemented, through the solution of systems

of linear equations. As has been mentioned in [8], the matrices of these linear systems
become large in dimension if one wishes to increase the accuracy in extrapolation.
Thus implementing GREP through the direct numerical solution of the linear equations
may become costly. Therefore, it is desirable to have efficient algorithms for implement-
ing GREP. Since the linear equations defining GREP have a very special structure, it
seems that any algorithm, in order to be efficient, has to take advantage of this structure.
In fact, a very efficient algorithm for a special case of GREP has been given in 12],
and has been denoted the W-algorithm.

The purpose of the present work is to present an algorithm for what is probably
the most common form of GREP.

Specifically, we develop an algorithm to be designated the w(m)-algorithm, for
obtaining A(,0.’) which, with a slight change in the notation of [8], is defined by the
linear equations

nk

(1.1) A(m’) A(y) + dk(y) , kY, j<=l <--j +N,
k=l i=0

where n denotes (nl, n2,"’", n), N k___ (nk + 1), the y, A(y) and Ck(Yl) are given,
r is a known positive constant, and A(,"’) and the/k are the unknowns. The equations
in (1.1) differ from those of [8], given for the most general form of GREP, in that the
linear equations defining the latter are obtained from (1.1) by replacing r by rk.
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The above-mentioned W-algorithm of 12] is a recursive method for implementing
GREP when m 1 in (1.1). The w(m)-algorithm of the present work is designed so
that it reduces to the W-algorithm for m 1. This is the justification for the designation
W(-).

Below we characterize the sequences whose convergence can hopefully be acceler-
ated by the form of GREP given in (1.1).

DEFINITION. We shall say that a function A(y), defined for 0< y-< b, for some
b >0, where y can be a discrete or continuous variable, belongs to the set P(), if
there exist functions (y), fl(y), k 1,..., m, and a constant A such that

(1.2) A A(y) + Z Chk(Y)k(Y),
k=l

where A limy_,o+ A(y) whenever this limit exists, and the functions ilk(Y), as functions
of the continuous variable s, are continuous for 0 _-< s -< b, and for some constant r > 0,
have the asymptotic expansions

(1.3) flk (S) E /3k,:’ as : 0+.
i=0

If, in addition, the functions Bk(t)= flk(t l/r) are infinitely differentiable for 0=< =< b r,
we shall say that A(y) belongs to the set F(oom). When lim_.o+ A(y) does not exist, A
is called the antilimit of A(y).

In attempting to accelerate the convergence of a sequence that can be identified
with A(y), the idea is to extrapolate A(y) to y=0 and obtain (or approximate) A
whether A is the limit or antilimit of A(y), and this is precisely what we are trying to
accomplish through the equations in (1.1) that define GREP. A(,re’j) in (1.1) is taken
to be an approximation to A. Note that the equations in (1.1) are obtained by formally
substituting (1.3) in (1.2), truncating the asymptotic expansions for ilk(Y) at the terms

flknkY nkr, replacing A and the ki by A(,"’j) and ki respectively, and finally collocating
at the points y, Y+I, ",Y+v. Here the yt are chosen in such a way that b >_- yo> Yl >

> 0, and limt_.oo y 0, although this ordering has no effect on the derivation of the
W(’)-algorithm.

Several examples of functions A(y) in F(m) are given in [8, 2]. Some examples
of GREP are the D-transformation of [6] for infinite integrals, the D- and D-transfor-
mations of 10] for oscillatory infinite integrals, the W-transformation of 11] for very
oscillatory infinite integrals, and the d-transformation of [6] and the T-transformation
of [5] for infinite series. For more information on these methods and their convergence
properties see [5]-[13].

In 2-4 we develop the W("-algorithm by which the A"’ can be computed
recursively without solving numerically the equations in (1.1). This algorithm requires
very little storage and computing time.

In 5 we shall consider the case in which qbk(y) v(l)z 1, where Vk(l) are independ-
ent of z. This arises, for example, when one applies a modified version of the d-
transformation of 13] to power series in z. The approximations A"’j turn out to be
rational functions in z. Here, using the techniques of the W"-algorithm, we develop
a recursive method for computing the coefficients of the numerator and denominator
polynomials of A"’.

As part of our development, in 2 we also devise an algorithm for solving a very
general extrapolation problem. This algorithm, although similar in form to the E-
algorithm of [2], [4], is different from the latter and requires a smaller number of
arithmetic operations. These and other details concerning this algorithm are given



1214 w.F. FORD AND A. SIDI

in Appendix A. A FORTRAN program for the w(m)-algorithm is included in
Appendix B.

Before closing this section we shall rewrite the equations in (1.1) in a more
convenient form as follows: Let yr and tt y, 0, 1,. ., and define a(t)=- A(y)
and 0k (t) ek(Y), k 1," ", m. Then (1.1) becomes

(1.4) A(,"’j) a(h) + , Ok(h) flkit- j <-- <--j + N.
k=l i=O

In the remainder of this paper we shall work with these equations.

2. Theoretical preliminaries. Consider the equations in (1.4). Let us denote the
qk(h)tl and fl, 0 <- i<=nk, l<=k<-_m (ordered in a manner to be described later), by
gg (1) and a, 1-<_/z _-< N, respectively. We note that the exact nature of this ordering
is crucial in the development of the w(m)-algorithm. For present purposes, however,
this ordering is irrelevant, and in fact, throughout most of this section, the g (l) can
be treated as arbitrary. Let us also denote A(m’j by A, and a(h) by a(l). Then (1.4)
can be expressed as

N

(2.1) A a(l) + a,g,(l), j _-< =<j + N.
i=1

By Cramer’s rule A can be expressed as the ratio of two determinants, namely as

f(a) [g,(j)... g,(j)a(j)[
(2.2) A-f(I) Ig,(J)"" gN(j)I(j)l’
where I(l)= 1, l>-O, and lul(j) uv(j) is the p x p determinant

u,(j) Up(j)
(2.3) [ul(j)’’’ Up(j)l-

u,(j+p-1) up(j+p-1)

Let us now denote

(2.4) G Ig(J) gv(J)l, Gg= 1,

and, for arbitrary b(l), -> 0, define

(2.5) (b) =f(b)/G+
Then (2.2) may be reexpressed as

(2.6) A%= g,(a)/ g,(I).
Because f(b) differs from G+ by only one column in the determinantal array,

it is natural to seek a relation between these quantities. This is accomplished by means
of an identity known as Sylvester’s theorem, a proof of which can be found in [1, p. 23].

THEOREM 1. Let C be a matrix, and let Cp denote the matrix obtained by deleting
row p and column r of C. Also let Cpp,;oxr, denote the matrix obtained by deleting rows p
and p’ and columns o, and or’ of C. Provided p < p’ and r < r’

(2.7) det C det Cpp,;, det C det Cp,,- det Cp, det Cp,.

If C is a 2 x 2 matrix, then (2.7) holds with det Cpp,.,,= 1.
Applying Theorem 1 to the (p + 1) x (p + 1) determinant f(b)

[gl(j)""" gp(j)b(j)l with p 1, r=p, p’= r’=p+ 1, and using (2.4), we obtain

(2.8) fp(b) i+1 =ri+, i+-’p--1 J p-(b)Gp-fJp-(b)--.p
This is the desired relation.
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Upon invoking (2.5), and letting

G++-p--I(2.9) D= G_.p",+

(2.8) becomes
a,j+ :/(2.10) 4(b) ,_,) ,_(b)]/D.

From (2.6) and (2.10) we see that once the D are known, the $(a) and $(i)
and hence A can be computed recursively. Therefore, we aimat developing an ecient
algorithm for the deteination of the D. In the absence of detailed knowledge
concerning &(1), we could proceed by obseing that for b(1)= g+(1), (2.5) reduces
to

(2.1) ,(g,+,) .
Consequently (2.10) becomes

+

which permits a recursive evaluation.of D through the quantities $(g), ip+ I.
(Note that (&)= 0 for I p.) US (2.10) and (2.12) provide us with a recursive
algorithm for solving the general extrapolation problem in (2.1). This algorithm,
although similar in form to the E-algorithm of [2], [4], is different from it and requires
a smaller number of arithmetic operations. For the actual implementation of, and more
details on, this new algorithm see Appendix A.

In the present case of GREP, however, the &(1) have a known structure which
may be profitably employed to increase the computational eciency and reduce the
storage requirements. Consider the case of m 2 in (1.2) and (1.4) and suppose we
would like to compute A A(’) for n (0, 0), (I, 0), (I, I), (2, I), (2, 2), etc. For this
we set

,() ,,(t,), = , 2, () t,g,_(), = 3, 4,

Therefore, for p 3

G [,(t) ,(t:) t:l(t) t:(t:).., g,(J)l.
If we factor out t:+_ from the ith row, I, 2, , p, we obtain

G (,= t+,_,)[h,(j)h(j)g,(j) g_(j)[,

where

hi(l) 1, 2.
tt

The determinant obtained above differs from G by two columns, and it is not hard
to see that there will be m different columns in the general case. We need therefore
to develop procedures for evaluating these objects.

We start this by introducing the following generalizations of the fp(b), $(b), and

(2.13)
(2.14)

(2.15)

the quantities hi(l) being arbitrary so far.
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(2.16)

(2.17)

and

(2.18)

As simple consequences of (2.13)-(2.15) we obtain

F(O) C, F;p(1)=f;p(hl),
*(1) q(hl)

D(O) D,
respectively. In addition, we define F(O)= I.

We also note that since F(q) is defined for p _-> 0 and q _-> O, J(q) is defined for
1 -< q _-< p + 1, and D(q) is defined for 0 _-< q <_- p 1.

It may be interesting to note that W(q) along with the parameters ai, 1 === i<-p,
satisfies the set of linear equations

p-q+1 q-1

(-1)-lhq(l) , a,g,(l)+gp-q+E(l)xI#p(q) + tp-q+i+lhi(l), j<-l<=j+p,
i=1 i=1

where the summation 0 is taken to be zero for q 1 and q =p + 1i----!

The following results will be of use in the development of our algorithm further on.
THEOREM 2. The *Jp(q) and Dip(q) satisfy

,Jp(q)=[*Jp+Jl(q)-Jp_l(q)]/DJp(q-1), l <-_q<-p,(2.19)

and

atj+lt [ 1 1 ](2.20) Dp(q)=--p-2’q) ip_,(q) -,,,+,p_l(q) 1 <=q=p< 1.

Proof Consider the (p+ q) x (p+ q) determinant F(q). Applying Theorem 1 to
this determinant with p 1, p’=p+ q, tr p, and tr’= p+ q, we obtain

(2.21) Fip q Fp+_ll q -1) Fp+_ll q Fip q -1) Fip+ q -1)Fip_ q

Replacing p in (2.21) by p+ 1- q, and using (2.14) and (2.15), (2.19) follows. In order
to prove (2.20) we start with (2.15). When we invoke (2.14), (2.15) becomes

j+lp(q)p-E(q). DJp( 1).(2.22) Dip(q) jp_l(q)jp+_l(q) q-

When we substitute (2.19) in (2.22), (2.20) follows.
The recursion relations given in (2.19) and (2.20) will be applied, for a given p,

altJ+1 t.- 1),with q increasing from 1 When q =p-1, (2.20) requires knowledge of p-2tr
and when q =p, (2.19) requires knowledge of _,(p) and +_l(p). Now (p+ 1)
cannot be computed using the recursion relation in (2.19) since neither _l(p+ 1)
nor Dp(p) is defined. However, it is possible to derive a recursion relation among the
(p+ 1), and this is given in Theorem 3 below.
THEOREM 3. Let

(2.23)

Then, for arbitrary b(l),

(2.24)

where

(2.25)

(b) Ih’(J) hp(j)b(J)l

(b) "+’d/p_l(b)-qp_,(b)]/Dp,
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and

(2.26) v(p + 1)= (-1)P/J(gl).

Proof First (2.26) follows directly.from the fact that (p+ 1)= Fo(p+ 1)/F(p).
Next, we note that the definition of q/(b) as given in (2.23) is very similar to that of
q/(b) as given in (2.5), the only difference being that g(l) in (2,5) has been replaced
by h(1) in (2.23). This immediately^.sugges.,t.s that (2.10)-(2.12) hold with q,(b), D
and g(l), 1, 2,. , replaced by q,(b), D and h(l), 1, 2,. , respectively. This
proves (2.24) and (2.25).

What we see from Theorem 3 is that the computation of the (p+ 1) can be
achieved through that of the O(g), which in turn can be achieved by using the
algorithm given in Appendix A. As we shall see in the next section, the h(l) in GREP
have no particular structure in general, thus the actual computation of the (p+ 1)
in the W< algorithm is done as described above.

In addition to the relationships in the previous two theorems, we give one more
result concerning the (q).

THeOReM 4. The (q) satisfy the relation

(2.27) F+l_,(q) (1)(2) (q)G+I.
Proof Let us reexpress (2.14) in the form

(2.28) Fp/l_q(q) p(q)Fp+l_q_l)(q 1).

Invoking (2.14), with q replaced by q-l, on the right-hand side of (2.28), and
continuing, we obtain

(2.29) F+l_q(q)=p(q) (1)Fp+l(0).

Equation (2.27) follows from (2.29) and (2.16).

3. Ordering of o(t)t and its consequences. Numerical experience and theoretical
results suggest that as the nk in (1.4) become large simultaneously, usually A,m’J) A
quickly where A is the limit or antilimit of the sequence a(l), =0, 1, 2,.... The
simplest way of achieving this is by letting nk s, 1 <-k_ m, and increasing s. More
generally, we can let nk lk -S for some fixed integers Vk >- O, 1 <--k <-m, and s
0, 1, 2,. . With the Ok(tl)tl, 1 <= k <-m, >-_ O, ordered in an appropriate manner, the
w<m)-algorithm is actually designed to compute a sequence of Are’j), that includes
those Are’J) for which the /1k are as above. We now describe this ordering.

Without loss of generality we may assume Vl --> P2" Pm" We define the indices

ik by

(3.1) im+l 00, il 1, ik+l ik + 1 + k( 1k /k+l), 1 _-< k _-< m- 1.

Note that ik+l >- ik + 1 and thus ik >- k, 1 <-_ k <- m. Note also that

(3.2) Ck=(ik+l--ik--1)/k, l <--k<--m,

are nonnegative integers for 1 <-k =< rn- 1, and c,, oo. Let us define

k

(3.3) c[= E c, 1 =< kl < k2 -<- m, ckk=0 otherwise.

For each ordered pair of integers (k, i), 1-< k -< m, i->0, we define, in one-to-one
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correspondence, a single integer/x >-1 by

(3.4) = iq_(q_k)+(i_c_)q

Finally, we set

(3.5)

if 0,
ifi_->l and c,-l<i-<c.

thus determining the desired ordering. We note that the condition c-1 < -< c implies
that iq < Ix < iq+.

In order to illustrate the exact meaning of this ordering, let us analyze the following
example.

Example 1. rn 5, , 7, ’2 5, u3 4 u4, ’5 2. By (3.1) il 1, i2 4, 7,
i4=8, i5 17, and by (3.2) c1=2, c2 1, c3=0, c4=2. In the diagram below, starting
from the left, the square in the kth row denotes 0k(h), and the ith circle in the same
row denotes tpk(tt)tl. The integer below each square or circle is/z in g,(1)=Ok(h)tl.
Note that the m rows have been arranged so that the terms Ok(h)t7 are in the same
column, and that Ck denotes the number of columns that contain those/z’s satisfying
ik < l < ik+l.

0 2 3 4 5 6 v =7 8 9
U] 0 0 0 0 0 0 0 0 0

i 2 3 5 9 13 18 23 28 33

0 2 3 4 u2=5 6 7
U] 0 0 0 0 0 0 0

4 6 10 14 19 24 29 34

0 2 3 ’3 =4 5 6
U] 0 0 0 0 0 0

7 11 15 20 25 30 35

0 2 3 v4=4 5 6
U] 0 0 0 0 (C) 0

i,=8 12 16 21 26 31 36

0 ,=2 3 4
U] 0 0 0 0

i5 17 22 27 32 37

With the ordering above the sequence of approximations ,(s), where n(s)=
(Ul+S,’", ’m+S), S=0, 1,2,’’’, is actually a subsequence of the sequence A,
p 0, 1, 2," , and ,(s)A(m’J) Ao+,,, where No k= (/k " 1).

As a consequence of this ordering we have

(3.6)
g,( l) { hk( l), i= ik,

1 <= k <= m,
tt gi-k(l), ik < < ik+l,

where we have defined

q)k(h) g,k (/)(3.7) hk( l) =-- --, 1 <-- k <- m.
tt tt

Conversely, (3.6) and (3.7) define the ordering of (3.4) and (3.5). We note that (3.6)
and (3.7) are the key to the development of the W( algorithm.
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Example 2. An important case of the construction above is that for which /)k 0,
1 =< k _-< m, which we shall henceforth refer to as the "normal ordering." For this case
we have

(3.8) k k, 1 <- k <- m, Ck =0, 1_--< k_-< m- 1,

(3.9) Ok(h)t= gk+,m(1), 1 <-- k<--_ m, i>--_O,

1 _<-- =< m,
(3.10) g’(/)=

hg,-m(1), i> m,

and

(3.11) hk(l) -k(t’)-gk(l) 1 < k < m.
h tl

The FORTRAN program given in Appendix B to this work deals with the normal
ordering.

Since we have defined hk(l) only for 1 _--< k<_- m, we see that F(q) is defined only
for O<-_q<-m, p->0, p(q) for l <-q<-min {p+ l, m}, and D(q) for 0-<_q-<

min{p-1, m}. Consequently, the recursion relation in (2.19) is valid for l_-<q_-<

min {p, m}, and that in (2.20) for 1 -<_ q -<_ min {p 1, m}.
Through g(l)= ttg-m(1), i> im, cf. (3.6), the ordering above enables us to relate

Fp_m(m) to G and hence D(m) to D(0)= D, the desired quantity, thus reducing
the amount of computation for the wm)-algorithm considerably. More generally we
have the following results.

LEMMA 5. Let

k

(3.12) trk (is S), 1 _--< k _-< m,

and

j+p-1

(3.13) r 1-I t,, p >-- 1.
i=j

Then for ik p < ik+l

(3.14) +k2+pk’J k).G, (-1) o., ,, ,-k,

Proof Starting with the determinant representation of G in (2.4), and dividing
the ith row by tj/i_l, i= 1,..., p, and invoking (3.6) and (3.13), we obtain

(3.15)

Gp *r[hgl’’ gi2-EhEgi2-," g3-ah3gi3-E" g4-4h4" g,k-khkg,k-k+

where we have omitted the index j for simplicity of notation. Note that when p ik,
hk is the last column in the determinant above. Let us now move h2 to the right of h,
h3 to the right of h2, etc. The number of column interchanges required for this is trk.
Thus

(3.16) G (-1)’%rlh,(j) hk(j)g,(j)’’’ g-k(J)l.

Equation (3.14) now follows from (3.16) and (2.13).
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THEOREM 6. For ik <p < ik+l and k < k =p, Dp can be computed from
(*p(k+l)/*;p+_lE(k), k<ik=p=ik+i--1,

(3.17) D;p=D(O)=D(k)xl(-1)k/p+-lE(k)’ k<ik=p<ik+l--l’

ik <p < ik+l-- 1,
(--1)k;p(k + 1), ik<p=ik+l--1.

Proof. By (2.9) D is a combination of G+I, /,_j+l
-,p-l, G and G+1. For ig <p<

ig+l 1, we also have ig =< p + 1 < ig+l. Consequently, we can make direct use of Lemma
5 on all four G’, above. Invoking now (2.15), we obtain D= Dip(k). When ig <p=
ig+l 1, we have ig <_- p 1 < ig+l and ik < p < ig+l, but p + 1 ig+l. Thus we can make

j+l G, and G+l only. We apply Lemma 5 to G+I withdirect use of Lemma 5 on
k in (3.14) replaced by k + 1. The overall result of this is

(3.18)
ILvj+
p--1Dp=(_l)kVJp+l_(k+l)(k-b 1) -k(k)

-j+l kF;p_g(k)p_gt
Multiplying both the numerator and the denominator of (3.18) by Fp+l_k(k), and
invoking (2.14) and (2.15), we obtain D= (-1)kDJ(k)p(k + 1). The proof of the rest
of (2.17) is accomplished similarly.

Note that for k m (3.17) reads

(3.19) DJp= Dp(m), p > i,,

and it is this property that makes the w(m)-algorithm economical. Observe that in the
general algorithm outlined in 2 and described in detail in Appendix A, the calculation
of any D requires roughly j recursive steps. As more terms are introduced j becomes
large and so do the recursive calculations. For the W(")-algorithm, however, calculation
of any D, on account of (3.19), never requires more than m recursive steps.

Also with the help of Theorem 2, (3.17) can be reexpressed as

(3.17)’ D D(O)=

all,j+ altj+ k),p_,(k+ 1)-_l(k+ 1)]/-- p-2t
/ltj+l(--1)k[llgSp-l(k)- llp-l(k)],

+ 1)-*D-,(k + 1)},

k < ik p ik+l 1,
k < k p < ik+l 1,

k < p < ik+ 1,

ik <p ik/l--1.

The only case not covered by Theorem 6 is that of p ik k, and D for this case
can be computed by using (2.10) and (2.12). If we let kl be that integer for which
ik k when k<=kl and ik> k when k> kl, then we can use (2.10) and (2.12) for
1 =< p <- k, and Theorem 6 for k > kl. In the W( algorithm given in the next section,
however, we choose to compute D for p ik, 1 <= k <= m, using (2.10) and (2.12), thus
making the programming simpler.

THEOREM 7. When ik 1 <-- p <= ik/l 2
k

(3.20) (--1)"<+Pk’rrj+, rI *(i) 1.

Proof. Let us put q k in (2.27). The result now follows by applying Lemma 5
to the resulting identity.

Applications of Theorems 6 and 7 to the cases rn 1, 2.
The case m 1. From (3.19) D D(1) for p -> 2. Similarly from (3.20)

(-1)Pr/lJp(1) 1 for p=>0. Thus solving for Jp(1), and substituting in (2.20) with
q 1 there, we obtain

(3.21) D t+p t,
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which is valid for p _-> 2. Using (2.9), we see that (3.21) is valid also for p 1. Thus we
have recovered the W-algorithm of [12].

The case m 2. For simplicity we shall consider the normal ordering, for which
i1=1, i2=2. Thus from (3.19) D=D(2) for p=>3. Similarly from (3.20)
7r+1(1)(2) = 1 for p -> 1. Solving for (2) in terms of (1) /(hi), and
substituting in (2.20) with q--2 there, we obtain

ol,j+l .i,j+l[hl)(3.22) Dp’-[tjJp_(h)- ,j+pp_(hl)]/vp_2

which is valid for p->3. Using (2.9), we can show that (3.22) is valid also for p 2.
As for p 1, we use

(3.23) D=g2(j+l) g2(j)=2(t/) q2(t)
g(j+l) g(j) tp(tj+) (tj)’

which follows from (2.9). Thus we have actually developed the wE)-algorithm for the
normal ordering. The order of computation in this algorithm is as follows: Given l(h),
qE(tl), >-- O, use (3.23) and (2.10) to obtain the @{(hi). Then for p 2, 3,. ., use (3.22)
to obtain the D, and then (2.10) to obtain the @(hl).

Note that (3.22) is also valid for the general case in which i2> 2 and p >_-i2-1- 1,
and it can be used for computing D without having to compute and store ,(2) in
the algorithm given in the next section.

In Theorem 3 we obtained a recursion relation among the @(b), which, through
(2.26) enables us to determine p(p + 1). Since we have defined hk(1) only for 1 <_- k <_- m,
the (p+ 1) are defined and needed only for 0 _-< p _-< m 1. In general the (p+ 1),
0 p -<_ m 1, and the D, p ik, 1 <-_ k <-_ m, are computed by different procedures. For
the case of normal ordering, however, they can be obtained simultaneously using the
same computational procedure, namely the algorithm given in Appendix A, as suggested
by the following theorem.

THEOREM 8. For normal ordering, i.e., ik k, 1 <--_ k <-_ m, we have

(3.24) *p(p+ 1)--(-1)P/OJp(gm+l), O<-_p<-m-1,

and

p+l

(3.25) 7"/’+1 1-I (i)=1, O<-_p<-m-1.
i=1

Proof. (3.24) follows from Theorem 3, and (3.25) from Theorem 7. [3

4. The Wtm)-algorithm. We now describe the wm)-algorithm that will enable us
to compute the A efficiently when the k(tl)tl are ordered as in the beginning of 3.

Since a(1), j <= <-j +p, enable us to determine Ap, it is readily seen that we can
determine all the Ap for j +p _<-L, j-> 0, p-> 0, whenever a(l), 0 <- <= L, are given. If
we now introduce the element a(L+ 1 ), we can compute those Ap for whichj +p L+ 1,
in addition to those already computed. That is to say, the calculational flow is along
the diagonals j +p constant in the j-p plane.

Along a diagonal all quantities (b) in general, and (a) and (I) in particular,
are advanced using the primary recursion in (2.10). For this at each lattice point (j, p)
the denominator D D(0) must be evaluated, and this is accomplished as follows"
For all values of p we use Theorem 2 to compute D(q) for 1 -< q min {p 1, m} and
(q) for 2<=q<=min{p,m}. For p<=m-1 we also need (p+l). This can be

^jcomputed by Theorem 3, Dp in this theorem being computed from Theorem 8 and
the new algorithm given in Appendix A. We next evaluate D D(0) by Theorem 6
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for ik <p < ik+l when ik+l > ik d- 1, and by (2.12) for p ik, 1 <- k <- m. With D deter-
mined, we compute .(1) by Theorem 2, and (gs+l), k+l<--s<-m, O(a), J(I),
and Ap, thus completing the calculation.

We now express all these steps of the w(m)-algorithm semiformally in Pascal. For
simplicity of notation we shall define ,k(l)= gk+l(/), 1 _--< k_-< m. Below by "initialize
(j)" we shall mean

{read t, a(t)= Ao, qk(t), 1 <-- k <- m, and compute (a) a(j)/gl(j),
(I) 1/gl(j), (1) 1/t, (gl) t; Jo(,k)=,k(j)/gl(j), l<-k<-m;

So( h,) tC,( t)/ tpl( t), 2 <i <= m}.
Note also that statements of the form "for := i’ to i" do" are not executed if i’> i".
We assume that a(1) are given for 0 =< <= L, but are being introduced one by one.

begin
initialize (0);
forl:=l toLdo
begin

initialize (/);
for p := 1 to do
begin

j:=l-p;
if p _-< m 1 then
begin

..j+ hp+l) jp hl,+ l);D:= ,,_
..j+lfor i:=p+2 to m do (h,):=[w,_l(h,)-p_l(h,)]/D;

^j+l(gl) := [,-1(gl) -1(gl)]/D; *(p + 1):= (-1)P/
end;
for q := 1 to min {p 1, m 1} do
begin

j+l j Airj+ [,h/ITtj+l q,D(q):=*p-E(q)/*.-l(q)-p-2j.p-l(q); := q+l"
I’Tj+l.(q’) := t._l(q’)-.J_l(q’)]/DJp(q)

end;
if p > m then Dp(m):= *+J2(m)/*_l(m)-*J2(m)/*_ll(m);
{determine that integer k, 1 -<_ k _<- m, for which ik <- p < ik+l. (For im+l oo
use the largest positive integer available on the computer.)};

ol,j+lif p ik then D := Wp-l(,k)- -l(k);
if ik < p and p < ik+l 1 then D := D(k);
if ik <p and p ik+l- 1 then D := (-1)kD(k)*p(k+ 1);

.I,j+for i:= k + 1 to m do (g,):= [.p-lS,) -l(g,)]/D;
*Jp(1) := [*+_(1) *-1(1)]/D;

j.j+ls(a) := [w,-la) ,_,(a)]/ DJ;
ol,j+lg,(I) := w,-l(I) g’J-l(I)]/Dip;

:=

end;

end
end

We now turn to the questions of storage and operation count for the W(m)-

algorithm.
As can be seen from the above, not everything has to be saved throughout the

course of computation. Before is incremented in the statement "for := 1 to L do"
the following newly computed quantities are saved: (h,), p+ 2_-<i_-< m, and
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for p<=m-1, p(q), l<-q<-min{p+l,m; p(,), k+l<-_i<-_m, for ik<--_p<ik+l;
@(a) and (I); j+p l, j_-> 0, p -> 0. With suitable programming these quantities can
occupy the storage locations of those computed in the previous stage of this statement.
None of the D(q), 0-<q_-<min(p-1, m} has to be saved. Thus we need to save
approximately m / 2 vectors of length L when L is large. The rest of the storage
required does not increase with L.

As for the operation count, we first observe that there are L2/2 + O(L) lattice
points (j,p) for j+p<-_L, j>-O, p>-O. At each point (j,p) we compute AJp, @(a),
@(I), (q), 1 _-< q_-<min {p+ 1, m}, and D(q), 1 _-< q-<min {p- 1, m}. One division
is required for A, one division and one subtraction for each of the @(a), gd(I) and
p(q), and two divisions and one subtraction for each D(q). Consequently for

j/p <-_ L, j>-O, p >-0, the computation of the above mentioned quantities requires
3(m + 1)L2/2 + O(L) divisions and 2(m + 1)L2/2 + O(L) subtractions. The operation
count for the rest of the quantities is O(L) divisions and subtractions. Thus the final
count for the W(’)-algorithm is 3(m+ 1)LE/2+O(L) divisions and 2(m+ 1)L2/2+
O(L) subtractions, a total of 5(m + 1)L2/2 / O(L) operations.

For the W(1)- and w(E)-algorithms the storage requirements and the operation
count are reduced considerably by making use of the results in (3.21) and (3.22). Thus
for m 1 we need to compute and store only two vectors of dimension L, namely
@(a) and @(I) forj +p constant, and the operation count is 3L2/2+ O(L) divisions
and 3L2/2 + O(L) subtractions. Similarly, for m 2 we need to compute and store
only three vectors of dimension L, namely b(a), (I), and @(hl)=(1) for
j +p constant, and the operation count is 5L2/2 + O(L) divisions, L2 / O(L) multipli-
cations, and 2L2/ O(L) subtractions.

We recall that the sequences A(m’) with j fixed and nk increasing simultaneously
have the best convergence properties. Thus we may be satisfied computing only A
for p= 1, 2,..., or even for p= i,,+ms, s =0, 1,.-.. This reduces the number of
divisions by L2/2 / O(L) in all cases above.

Finally, a stopping criterion, based on the values ofAp forp im + ms, s O, 1,. ,
can also be incorporated within the loop "for := 1 to L do". The simplest approach
is to estimate the truncation error from the difference oftwo successive approximations,

oe.g., lAp+ -Ap]. A better method is to estimate also the growth of roundoff error in
the computations, and stop when this becomes of the order of the truncation error.

i=o ]Yp,i[ as discussed in [8]. Here y, isOne means of estimating roundoff of A, is P

the cofactor of a(j+ i)in fJp(a) divided by fJp(I), cf. (2.6), thus A =P=o )’Jp, a(j+ i).
A more accurate but more laborious method is to compute t__j [(OAJv/Oa(l)) 8a(l)l}/,
where 5a(l) is an estimate of the uncertainty in a(l), the/th member of the sequence
to be accelerated. Because the W(-algorithm is recursive in nature, formulas for
OAJv/oa(l) can be obtained trivially, but are expensive to evaluate. (The idea was
implemented in HURRY [3], an adaptive algorithm for accelerating convergence using
the u-transformation of [5], where it proved to be very accurate.)

A simple and inexpensive way ofestimating roundoff, based solely on the computed
values of the A could be as follows: Since for increasing the approximations A,
A_,..., A_, for s fixed and small, are close to A and to each other, take (some
combination of) the differences IA-A_[, l-<j-< s, as an estimate of the total error
(including roundoff) in the computed value of A. The extrapolation process can be
stopped when the sequence of these errors begins to increase, i.e., when roundoff starts
to dominate the computations.

The FORTRAN program for the w(m)-algorithm that is given in Appendix B
does not include the simpler versions of W()- and W(2)-algorithms. The storage used
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in the program is about twice the minimal storage described above. We have preferred
to give up some of the storage in order to make the program readable. The program
also does not include a stopping criterion. All this is left to the interested reader.

5. Application to rational approximations from the d-transformation. As mentioned
in [8], the d-transformation of [6] for accelerating the convergence of infinite series
is a form of GREP applied to the sequence of partial sums of these series. When
applied to a power series i=1 cizi-1, this transformation produces approximations
d,m’J)(z) to the limit or antilimit that are rational functions in z. In [13] the d-
transformation has slightly been modified such that the coefficients of the above-
mentioned rational approximations are obtained by solving a linear system of equations
that are independent of z. Clearly, this results in considerable savings when approxima-
tions are required for many different values of z, since otherwise for each z one has
to solve the linear systems of equations that define the d-transformation. For further
details see 13 ].

With a slight change of notation, the approximation d,m’J)(z) to the limit or
antilimit of the power series Yi=l cz’-I is determined by solving the linear system of
equations

nk 02(5.1) d(nm’J)(z)--Sl+ k=lE l’Cl+kZ’+k--’,=O (/+ 1)’’ J<=l<=j+N’

where n (n, n2," ", n,,) and N Yk’= (nk + 1) as before, Wk <- rn are some fixed
integers which can usually be taken to be 0, and

(5.2) So=O, S c,z ’-, 1>-1.
i=1

For the important questions of when to expect the d-transformation to be efficient,
how to determine tn and the integers Wk, when to set Wk O, we refer the reader to 13].

Comparing (5.1)-(5.2) with (1.4), we see that the d-transformation above is indeed
a form of GREP for which

(5.3) ti=(l+l)-, a(l)=Sl, qk(tl)---lWkci+kZl, l<--k<--m,

and consequently A<,m’)= d,m’)(z) and /k zk-ki.
It turns out, see [13], that

(5.4) d(nm’J)(z) iN=O hizN-ia(J A- i)
N N-iZ=o Az

where the A are independent of z. Thus dm’)(z) is a rational function whose numerator
and denominator polynomials are of degree j + N- 1 and N, respectively. The form
of d"’)(z) in (5.4) can still be achieved ifwe allow o(h) in (5.3) to read more generally

(5.5) tPk(tl)-- Ok(1)z 1, 1 <-- k<-_ m,

where Vk(l) can be any numbers. Thus (5.1) becomes

(5.6) dm’J)(z)=a(l) +
k=l i=0

j<-l<-_j+N,

and we shall deal with (5.6) in the remainder of this section.
As in 3, let us assume that we would like to compute d"’)(z) for n=

(, + s, v2 + s, , v,, + s), s 0, 1, 2, , and that v => ’2 =>" ->- Vm are fixed. Define
the ik as in (3.1), and set

(5.7) gk(l) -/k(l), 1 _-< k_-< m,
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and define the rest of the gi(l) as in (3.6). For d(,"J)(z) obtained by applying the
modified d-transformation to power series as in (5.1), (5.7) is replaced by

(5.7)’ g,k(/) lWkc+k, 1 <--_ k <- m.

If, in (5.6), we let d(,"’J)(z)= A, and replace the Vk(l)tl by the appropriate g,(l),
and finally multiply (5.6) by z-t, we obtain

N

(5.8) z-tA z-la(l)+ a,g,(l), j<- l<-j+ N,
i=l

cf. (2.1). According to Cramer’s rule, the solution for A can be expressed as

fN(:)
(5.9) A -ii
where fp(b) is as defined by (2.2), and

(5.10) sO(l) z-’a(1), q(l)= z-l, 1>0.=

If we divide the numerator and the denominator of (5.9) by G/I, A can also be
expressed as

(5.11) AN i7
Here q(:) and q(r/) can be evaluated rec,:rsively by using (2.10), and for this we
need to know the D, which are defined in (2.9). Since G are independent of z, so
are D. Thus they have to be computed only once, and this can be accomplished
efficiently by using the W( algorithm. Subsequently they can be used to compute
b(:) and ff(r/) recursively for all values of z.

Expanding tip(r/) with respect to its first column, we see that q(r/) is a polynomial
in z-1 of degree =<j +p of the form

p

AJ .z-J-ig(n) 2
i=0

Thus, by expanding qt(:) with respect to its first column, we obtain

p

AJ z-J-a(5.13) q(:) 2 p., (J + i).
i=0

Note that by multiplying q(s) and q(r/) by zj+p, and substituting in (5.11), we
recover (5.4). As is seen from (5.12) and (5.13) if we know the h.p.,, we can use them
to compute both q(r/) and q(s). By (2.10), the M.,, can be computed recursively as
follows"

(5.14)

with

-Ap-l,o/Dp,
[Aj/I AJ,i p--l,i-1-- p-,,,)/Dp,
j+l /DJIt p--l,p--1/ p

i---0,
l_-</---p-l,

p,

(5.15) j=0.Ao.o 1/g,(j), >

Appendix A. Following Theorem 1, we introduced a recursive algorithm for
implementing the general extrapolation procedure defined by (2.1), assuming that we
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did not have detailed knowledge concerning gi(1). Actually, the gi(l) can be assumed
to be arbitrary.

In this Appendix we give the details of this algorithm, at each stage of which only
one new term of the sequence a(/), l-> 0, is made available. Thus the computational
flow is along the diagonals j /p constant. Here are the stages of the algorithm when
we have assumed that a (l) are available for 0 -< -< L, but again they are being introduced
one by one:

{read a(O)= A, g,(O)}
(a) := a(O)/gl(O); (I) := 1/gl(O);
{save Jo(a), Jo(I)}
for l:=l to L do
begin

{read a(l) Ao, g,(1), l <- <- l, gt+,(j), O<--j <-- l}
/o(a) := a(l)/g,(l); to(I):= 1/gl(l);
for i:= 2 to do bto(g,): g,( l)/ gl(1);
for j := 0 to do ff(g,+l) := g+l(j)/g(j);

j+for p := 1 to 1-1 do forj := 0to 1-1 -p do ff(gt+l) := [p-(gt+l)- _(gt+)]/D;
for p:= 1 to do
begin

j:=l-p;
.hj+D := ,ep-l(gp+,)- qJ-l(gp+l);

ol,j+lfor i:=p+2 to 1+ 1 do p(g,):=[V,p_(g,)-p_(g,)]/Dp;
r.,.j+l "A+l I _(I)]/D;

A := C,(a)/(I)
end
{save (a), d/Jp(I),j+p= l, O<-p <-_ l, @(g,), p+2_< i_-< 1+ 1,j+p l, 0_-<p<_-l- 1,
and discard those previously saved; save all Dp, 1 <-j +p <- l, 1 <- p <-_ l}

end;

Note that statements of the form "for k := k to k2 do" are not executed if kl > k2.
The main difference between the present algorithm and the E-algorithm is that in

the present algorithm recursion is among the ,(b), whereas in the E-algorithm it is
among the Bp(b)=fip(b)/fip(I). Thus in the notation of the present work the recursion
for the E-algorithm as stated in [2] becomes

(A.1)
lj+

Biv(b) ,,,p_,(b)B_,(gp)- Bv_,(b)B+_(gp)
ij+ (p)B-I(gp)- -p-1

where b(l) is either a(l) or g(l), >= p+ 1. Note that Bp(gi), denoted by gp.") in [2], is
zero for i=< p. Also note that Bp(a)= Ap. Equation (A.1) can be obtained by writing

r’-+-/[fip(I)r’-+ applying (2.8) to both the numerator andB(b)-[f(b),-,v-l., ,.,p-,.,
denominator of this quotient, and finally by dividing both numerator and denominator
by f_(I)f+_11(I), and realizing that GJv=fiv_(gv).

Now most of the computational effort is spent in obtaining the $(gi) in the
present algorithm and the B(g) in the E-algorithm, the rest ofthe effort being relatively
minor in both cases. Given a(/), 0 _-< _-< L, the computation of the A, j +p _-< L, j-> 0,
p_->0, requires knowledge of L/3+O(L2) (g)’s for the present algorithm and
L/3 + O(L2) B(g)’s for the E-algorithm. Thus, as mentioned also in [2], if one uses
(A.1) to implement the E-algorithm, one needs 2L/3 + O(L2) multiplications, 2L/3 +
O(L2) subtractions, and L/3 + O(L2) divisions. The E-algorithm can be implemented
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in a more efficient way by rewriting (A.1) in the form

(A.1)’ B(b) B’+-I(b) Bj,(b)c
1-c

ij+ [where c= ,p_sp)/Bp_l(g), and computing c and 1-c only once, the operation
count becoming L3/3 + O(L2) multiplications, L3/3 + O(L2) subtractions, and L3/3 +
O(L2) divisions, a total of L3 + O(L) operations. For the new algorithm, however, the
operation count is L3/3 + O(L2) divisions and L3/3 + O(L2) subtractions, a total of
2L3/3 + O(L2) operations. Thus the new algorithm is about 30% more economical
than the E-algorithm even when the latter is implemented using (A.1)’.

Finally, A can be expressed as

p

(A.2) A= yp,,a(j+i),
i=0

where

(A.3) 3,.i=vp hj O<-i<=p,
=0 p,s

and the Aj.p., are computed using the recursion relation in (5.14) and (5.15). The
demonstration of (A.3) is left to the reader.

Appendix B. In this Appendix we give a FORTRAN program that includes the
subroutine subprogram WMALGM, for the w(m)-algorithm with normal ordering.
The program illustrates the use of the W(’)-algorithm as the d-transformation. We
recall that the d-transformation is a form ofGREP used in accelerating the convergence
of infinite series whose terms form sequences in the family/") described in [6]. The
program has been written in (standard) FORTRAN 77.

WMALGM
The CALL statement for WMALGM is as follows:
CALL WMALGM(MDIM,LDIM,M,LMAX,MLTAG,G,PSIAI,
BIGPSI,PSIG,APPROX,EPSDIV)
MDIM A positive integer. (Input of integer type).
LDIM A positive integer. (Input of integer type).
M The value of m in the text. M =< MDIM. (Input of integer type).
LMAX The maximum number of terms a(l) made available to WMALGM.

LMAX_-<LDIM. Starting with a(0) the terms a(1), a(2),..., are
introduced one at a time. (Input of integer type).

MLTAG The name of an external subroutine subprogram the CALL statement
for which is
CALL MLTAG (M,L, T,A,G)
M The value of m as before. (Input of integer type).
L An integer _>-0. (Input of integer type).
T tL in the text. (Output of double precision type).
A a(L) in the text. (Output of double precision type).
G A one-dimensional array containing the gi(L), 1 <-i <-m, in the

text. Here G(K) gK(L), 1 <-- K <-_ M. (Output of double pre-
cision type).
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G
PSIAI

BIGPSI

PSIG

APPROX

EPSDIV

This subroutine subprogram is to be supplied by the user and must
be declared in an EXTERNAL statement in the calling program.
Exactly as described in MLTAG.
An array of dimension (0:LDIM,2,2). (Output of double precision
type).
An array of dimension (0:LDIM,MDIM,2). (Output of double pre-
cision type).
An array of dimension (0:IDIM,2:MDIM + 1,2). (Output of double
precision type).
An array of dimension (0"LDIM,0"LDIM) with APPROX (J,P) Ap
in the text. (Output of double precision type).
A small positive constant used to avoid division by zero in the
computation A, 0,(a)/,(I). If [,p(I)[ < EPSDIV, then A, is not
computed, the sentence "APPROX (J,P) IS NOT DEFINED" is
printed instead. (Input of double precision type).

WMALGM can be used with any M and LMAX.
In the listing of WMALGM below

j*PSIAI (P,I,*)= @p*(a), PSIAI (P,2,*)= @p (I),
(B.1)

BIGPSI (P,Q,*) p*(Q), PSIG (P,I,*) ip(gi),J*
where

(B.2) j. [L- 1 P when * denotes CUR,
L- P when * denotes TEMP.

Note. If we want to save only Ap, p => 0, we do not have to compute or save
APPROX (J,P) for 1 _-< J _-< L, thus reducing the storage requirement substantially. This
can be achieved by deleting all reference to APPROX (J,P) for J => 1, and then replacing
APPROX (0,P) by APPROX (P). Of course, APPROX (0:LDIM, 0:LDIM) in the
DIMENSION statement should be replaced by APPROX (0:LDIM). Also, as we
mentioned in 4, before the statement "80 CONTINUE" we can insert a stopping
criterion.

MLTAG for d-transformation. We now describe an example of the subroutine
subprogram MLTAG, namely, for use in accelerating the convergence of infinite series
of the form r=0 Ur by the d--transformation. In general, if we select an increasing
sequence of integers, Rl, 0 -< Ro < R1 < RE <’’’, then for given m and

1 R
(B.3) tt- and a(l)= Ur, 1=>0,

Rt + 1 r=o

and we can set

(B.4) gk(l)=(R+ l)khk-luR,, l <=k<=m, l>=O,

where A is the forward difference operator, defined by

(B.5) Aui-- gli, AU Ui+ Ui, Akgli-- A(Ak-lui),
The simplest choice for the R is (1) R l, => 0, although others like (2) Rt sl,

l=>0, for s any positive integer, or (3) Ro=0, R/I [trRt] + 1, l=>0, for g some positive
number (not necessarily integer)> 1, are also possible and useful in appropriate cases.
For example (1) is useful for alternating series, (2), with s =>2, for power series,
trigonometric Fourier series, Fourier-Legendre series, Fourier-Bessel series, etc., close
to singularities ofthe functions they represent (away from singularities s 1 is normally
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sufficient). Also, (3) is useful for monotonic series or for those series whose terms can
be expressed as ur ul)+ u2) such that the wCm)-transformation, with appropriate
values of m, can be applied to both series ro u(1) and =o 2)u and at least one of
these series is monotonic.

In the listing of MLTAG below, SIGMA and INCR stand for cr and s respectively.
SIGMA 1 and INCR s, s 1, 2, , give the choices (1) and (2), whereas INCR 1
and SIGMA> 1 give the choice (3). Both parameters are passed to MLTAG from the
main program by a COMMON statement.

The final value of LSUM in MLTAG is RL.
The function CF(I) which is called by MLTAG returns the value of ui, i.e., the

Ith coefficient of the infinite series Yo Ur.
Note that we have given up computational efficiency in MLTAG in favor of its

readability. Of course, efficiency can be achieved by saving previously computed values
of CF(I) and A.

Main program. The quantities to be supplied by the user are MDIM, LDIM,
EPSDIV, M, LMAX, INCR, and SIGMA (all exactly as described above), and they
appear in PARAMETER statements. Recall that M_<-MDIM and LMAX_-<LDIM

must be satisfied.
The program as given below applies the d-transformation to the series

2
o

2_- i+l)3/ t-(i. with Ro 0, R+ [1.3R]+l 0,

i.e., INCR 1 and SIGMA 1.3. Part of the computer output is given in Table 1. The
exact sum ofthis series is ’(3/2) + ’(2) 4.25709415533 , where () is the Riemann
zeta-function.

TABLE

R A
0 0

2 2
3 3
4 4
5 6
6 8
7 11
8 15
9 20
10 27
11 36
12 47
13 62
14 81
15 106

0.2000000000000000D+01
0.3522407749927483D+01
0.4378833067917802D+01
0.4214370874170596D+01
0.4203604635757008D+01
0.4244408285363892D+01
0.4257902453896256D+01
0.4257227978412741D+01
0.4257267095028335D+01
0.4257314273661214D+01
0.4257310664017329D+01
0.4257309211241072D+01
0.4257309428983710D+01
0.4257309420937747D+01
0.4257309414416707D+01
0.4257309415571107D+01

Here are the listings of WMALGM, MLTAG, CF, and the main driving program:

IMPLICIT DOUBLE PRECISION(A- H,O-Z)
PARAMETER (MDIM 6,LDIM 50,EPSDIV 1D 77)
PARAMETER (M 2,LMAX 20,INCR 1,SIGMA 1.3D0)
DIMENSION G(MDIM),PSIAI(0:LDIM,2,2),BIGPSI(0:LDIM,MDIM,2)
DIMENSION PSIG(0:MDIM,2:MDIM+ 1,2),APPROX(0:LDIM,0:LDIM)
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111

121

131

EXTERNAL MLTAG
COMMON SIGMAP,INCRP
WRITE(6,111)
FORMAT(’SUMMATION OF 1/(I+ 1)**(3/2)+ 1/(I+ 1)**2’,lX,

’FROM I=0 TO I-INFINITY’)
INCRP INCR
SIGMAP- SIGMA
CALL WMALGM(MDIM,LDIM,M,LMAX,MLTAG,G,PSIAI,BIGPSI,PSIG,

APPROX,EPSDIV)
WRITE(6,121)
FORMAT(3X,’J’,3X,’P’,3X,’APPROX(J,a)’)
WRITE(6,131 )((L- I,I,APPROX(L- I,I),I 0,L),L 0,LMAX)
FORMAT(214,D25.16)
END

10

20

30

SUBROUTINE WMALGM(MDIM,LDIM,M,LMAX,MLTAG,G,PSIAI,BIGPSI,PSIG,
* APPROX,EPSDIV)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
INTEGER CUR,TEMP,P,PM,Q,QP
DIMENSION G(MDIM),PSIAI(0:LDIM,2,2)
DIMENSION BIGPSI(0:LDIM,MDIM,2),PSIG(0:MDIM,2:MDIM+ 1,2)
DIMENSION APPROX(0:LDIM,0:LDIM)
CUR
TEMP 2
CALL MLTAG(M,0,T,A,G)
APPROX(0;0) A
PSlAI(0,1,CUR) A/G(1)
PSlAI(0,2,CUR) 1D0/G(1)
BIGPSI(0,1,CUR)-- 1D0/T
DO 10 K= 2,M
PSIG(0,K,CUR) G(K)/G(1)
CONTINUE
PSIG(0,M + 1,CUR) T
DO 80 L= 1,LMAX
CALL MLTAG(M,L,T,A,G)
APPROX(L,0) A
PSIAI(0,1,TEMP) A/G(1)
PSIAI(0,2,TEMP) 1D0/G(1)
BIGPSI(0,1,TEMP) 1D0/T
DO 20 K=2,M
PSIG(0,K,TEMP) G(K)/G(1)
CONTINUE
PSIG(0,M + 1,TEMP) T
SIGN -1D0
DO 60 P= 1,L
IF (P.LE.M) THEN

D PSIG(P- 1,P+ 1,TEMP)- PSIG(P- 1,P+ 1,CUR)
DO 30 I=P+2,M+I
PSIG(P,I,TEMP) (PSIG(P- 1,I,TEMP)- PSIG(P- 1,I,CUR))/D
CONTINUE

END IF

IF (P.LT.M) THEN
BIGPSI(P,P/ 1,TEMP) SIGN/PSIG(P,M / 1,TEMP)
SIGN -SIGN

END IF
PM MIN0(P- 1,M- 1)
DO 40 Q=I,PM
PS BIGPSI(P- 2,Q,CUR)
DQ PS/BIGPSI(P- 1,Q,CUR)- PS/BIGPSI(P- 1,Q,TEMP)
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4O

50
60

101

70

80

QP=Q+
BIGPSI(P,QP,TEMP) (BIGPSI(P- 1,QP,TEMP) BIGPSI(P- 1,QP,CUR))/DQ
CONTINUE
IF (P.GT.M) THEN

PS BIGPSI(P- 2,M,CUR)
D PS/BIGPSI(P- 1,M,CUR)- PS/BIGPSI(P- 1,M,TEMP)

END IF
BIGPSI(P,1,TEMP) (BIGPSI(P- 1,1,TEMP)- BIGPSI(P- 1,1,CUR))/D
DO 50 1,2
PSIAI(P,I,TEMP) (PSIAI(P- 1,I,TEMP) PSIAI(P- 1,I,CUR))/D
CONTINUE
CONTINUE
DO 70 P= 1,L
J=L-P
IF (DABS(PSIAI(P,2,TEMP)).GE.EPSDIV) THEN

APPROX(J,P) PSIAI(P,1,TEMP)/PSIAI(P,2,TEMP)
ELSE

APPROX(J,P) 1D75
WRITE(6,101)J,P
FORMAT(1X,’APPROX(’,I3,’,’,I3,’) IS NOT DEFINED’)

END IF
CONTINUE
JJ-" CUR
CUR TEMP
TEMP=JJ
CONTINUE
RETURN
END

10

20

30

40
50

60

SUBROUTINE MLTAG(M,L,T,A,G)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION G(M)
COMMON SIGMA,INCR
LSUM =0
DO 10 1,L
LSUM =SIGMA,LSUM+ INCR
CONTINUE
PARSUM =0D0
DO 20 =0,LSUM
PARSUM PARSUM+ CF(I)
CONTINUE
P LSUM+
T= 1D0/P
A PARSUM
DO 30 K= 1,M
G(K) CF(LSUM + K- 1)
CONTINUE
DO 50 I=2,M
DO 40 J-M,I,-1
G(J) G(J)-G(J- 1)
CONTINUE
CONTINUE
DO 60 K= 1,M
G(K) G(K),P
P P,(LSUM / 1)
CONTINUE
RETURN
END

FUNCTION CF(I)
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IMPLICIT DOUBLE PRECISION (A- H,O- Z)
CF= 1D0/(I / 1D0)**I.5D0/ 1D0/(I / 1D0)**2
RETURN
END
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