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Abstract: It is shown that the four vector extrapolation methods, minimal polynomial extrapolation, reduced rank 
extrapolation, modified minimal polynomial extrapolation, and topological epsilon algorithm, when applied to linearly 
generated vector sequences, are Krylov subspace methods, and are equivalent to some well known conjugate gradient 
type methods. A unified recursive method that includes the conjugate gradient, conjugate residual, and generalized 
conjugate gradient methods is developed. Finally, the error analyses for these methods are unified, and some known 
and some new error bounds for them are given. 
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1. Introduction 

The purpose of the present work is to investigate the connection between extrapolation (or 
convergence acceleration) methods for sequences of vectors and projection methods for solving 
systems of linear equations. The extrapolation methods that we wish to consider are the minimal 
polynomial extrapolation (MPE) of Cabay and Jackson [7], the reduced rank extrapolation 
(RRE) of Eddy [9] and MeSina [20], the modified minimal polynomial extrapolation (MMPE) of 
Sidi, Ford and Smith [26], and the topological epsilon algorithm (TEA) of Brezinski [4]. The 
projection methods of interest, on the other hand, are Krylov subspace methods for linear 
equations; in particular, the conjugate gradient method (CG) of Hestenes and Stiefel [15], an 
extension due to Saad [21] of the method of Arnoldi [l] for eigenvalue problems, to which we 
shall refer as the Arnoldi method for short, the conjugate residual method (CR) of Stiefel [28], 
the generalized conjugate gradient method (GCG) of Concus and Golub [8] and Widlund [30], 
the generalized conjugate residual method (GCR) of Eisenstat, Elman, and Schultz [ll], and the 
method of Lanczos [17]. Other related Krylov subspace methods will be mentioned later in this 
work. 

A survey of vector extrapolation methods has been carried out by Smith, Ford, and Sidi [27], 
and some of the convergence and stability properties for MPE, RRE, MMPE, and TEA are given 
by Sidi [24,26], and more recently by Sidi and Bridger [25]. Recursive algorithms that can be used 
for implementing all of these methods have recently been given by Ford and Sidi [13]. Of these 
methods MMPE and TEA can also be implemented by the algorithms of Brezinski [6]. 
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In Section 2 we show that the four extrapolation methods, when applied to linearly generated 
vector sequences, are bona fide Krylov subspace methods and conjugate gradient type methods 
as well. In particular, we show that MPE, RRE, and TEA are equivalent to the Arnoldi method, 
GCR, and the Lanczos method respectively. Some of the results of this section have been 
obtained also by Beuneu [3]. In Section 3 we give a unified recursive algorithm from which 
complex versions of CG, CR, and GCG can be obtained as special cases. Finally, in Section 4, 
we give a unified approach for error bounds in MPE and RRE (equivalently the Arnoldi method 
and GCR respectively) based on the approaches of [30] for GCG and of Manteuffel [19] for 
Chebyshev acceleration, from which there follow some known and some new results. 

Before closing, we mention that the four extrapolation methods, unlike conjugate gradient 
type algorithms, are designed to work directly with the vector sequence, whose limit or antilimit 
is being sought, and do not depend on how this sequence is generated. Thus they are quite 
different than the extensions of conjugate gradient type methods when applied to sequences that 
are generated nonlinearly. 

2. Extrapolation vs. projection methods 

Let B be an inner product space over C, the field of complex numbers, and let (x, y) and 
]] x I] = /m be respectively the inner product and norm associated with B. The homogeneity 

property of the inner product is such that, for (Y and /3 complex numbers and x and y vectors, 
(ax, PY) = WX> Y). 

2.1. Summary of algebraic properties of vector extrapolation methods 

Let x0, x1, x2, . . . , be a sequence of vectors in B, and define the first and second order 
forward differences of the xi by 

~~=Ax,=x~+~-x~, w, = A2xi = Au. 1) i=O, l,... . (2.1) 

As is shown in [24] and [26], all four vector extrapolation methods, MPE, RRE, MMPE, and 
TEA, when applied to the sequence x0, xi,. . . , produce approximations s,,~ to the limit or 
antilimit of this sequence, which are of the form 

S n,k = J~oy:".k'xn+j~ (2.2) 

with 

5 yJ(n*k) = 1. (2.3) 
j=O 

The y_= y!",k) 
J J ’ 

m addition to (2.3), satisfy and are determined by the linear equations 
k 

c u~,~Y~=O, O<i<k-1, (2.4 
j=O 
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where the scalars ui,i are 

u;,~ = (u,+, , u,,+~) for MPJ% (2.5a) 

z.L~,~ = (NJ,+;, u,+~) for RRE, (2.5b) 

ui,j= (4iY un+j> for MMPE, (2.5~) 

ui,j= (43 Un+i+j) for TEA, (2.5d) 

provided the matrix of the equations (2.3) and (2.4) is nonsingular. In (2.5~) { qo, . . . , qk-l} is a 

linearly independent set of fixed vectors in B, and in (2.5d) q is a fixed vector in B. As such, 
s n,k, for MPE, RRE, and MMPE, is based solely on the vectors xi, n < i < n + k + 1, and for 
TEA it is based on xi, n < i 4 n + 2k. 

By inspection it can be shown that s,,~ for all four methods can be written as the quotient of 
two determinants in the form 

%Gz, x,+l,-*J,+k) 
s n,k = D(l,l,._.,l) ’ 

(24 

where 

00 (31 *** Ok 

uo,o UO,l * . . 
D(u,, q )...) Uk) = . 

UO,k 
. . 2 (2.7) 

Uk-1,o uk-l,l ... Uk-l,k 

provided D(1, 1,. . . , 1) # 0. Here the determinant D( a,, . . . , uk) is to be taken as its expansion 
with respect to its first row in case u, are vectors. See [24] and [26] for details. 

We note that the convergence and stability of s,,k, for all four methods, have been analyzed in 
[24], [25] and [26] for the limiting case in which k is held fixed and n + cc, and for sequences of 
vectors such as those obtained by iterative solution of linear systems of equations. In the 
remainder of this work we turn our attention exactly to these sequences and analyze the behavior 

Of ‘, k for fixed n and increasing k. 

N&e: The original definitions given for ui,j in [26] regarding the methods MMPE and TEA 
are more general than those given in (2.5~) and (2.5d), and are good also for the case in which B 
is a normed linear space only, i.e., B is not required to be an inner product space. In this case 
(2.5~) and (2.5d) are replaced by 

u,,~ = Q,(u,+~) for MMPE (2.5~)’ 

and 

ui,, = Q( Un+i+j) for TEA, (2.5d)’ 

respectively. Here Qi and Q are fixed bounded linear functionals on B, and Qi, i = 0, 1,. . . , are 
linearly independent. Further generalizations are obtained by allowing these functionals to 
depend on n, i.e., by letting 

ui,j = Qi”‘( u,+~) for MMPE (2.5~)” 

and 

u;,~ = Q(n)(~n+i+,) for TEA. (2.5d)” 
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This, of course, results in the vectors qi and q in (2.5~) and (2.5d) being replaced by some new 
vectors qf”’ and q(“) 
q!“) = u,ii or q!“) = w 

respectively, in case B is an inner product space. In fact, by choosing 
n+i, (2.5~)” reduces to (2.5a) or (2.5b) respectively. Obviously, when q!“) 

aie independen; of n (2.5~)” is the same as (2.5~). Thus this new general version of MMPE, 
which we shall designate generalized MPE (GMPE), provides us with a very comprehensive class 
of vector extrapolation methods that includes MPE, RRE, and MMPE and other new methods 
as well. We add that the recursive algorithms developed in [13] for methods like MPE and RRE 
are suitable for implementing GMPE too. An interesting result derived in [13] states that there is 
a four-term (lozange) recursion relation involving the s,,~. 

2.2. Conditions for existence of s,,~ for linear systems 

Let now A be a linear operator mapping B to itself, and consider the operator equation 

x=Ax+b. (2.8) 

We assume that I-A is nonsingular so that (2.8) has a unique solution, which we denote by s. 
We now pick the vector x0 arbitrarily and generate the sequence x0, xi, x2,. . . , by 

x,+i=Axi+b, j=o, l)... . (2.9) 

Define the residual vector r(x) for a vector x by 

r(x) = Ax + b - x. (2.10) 

Obviously 

r(s)=0 and r(xi)=ui, i=O,l,... . (2.11) 

Furthermore, it can easily be shown that 

xi - s = Aj(xa - s), uj = Ah,,, w, = A’wo, j=o, l,... . (2.12) 

The case in which B is the Euclidean space Q= N for some positive integer N, and A is an 
N x N (complex) matrix is of special interest both mathematically and practically. For this case 
we take (x, y) =x*y, where x* denotes the hermitian conjugate of x. It is this case that we 
consider below and in Theorems 2.1 and 2.2, although most of our development is valid in the 
setting of the general vector space B. 

Let P(A) = C&ociA’, ck, = 1, be the minimal polynomial of the matrix A with respect to the 
vector x, - s, i.e., 

and 

%‘Nx, - (2.13) 

(2.14) 

It is known that P(h) exists and is unique. It is also known that if R(A) is another polynomial 
for which R(A)(x, - s) = 0, then P(h) divides R(X). Consequently, if Q(X) is the minimal 
polynomial of A, and has degree m, then P(A) divides Q(A), Q(X) divides the characteristic 
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polynomial of A, and hence k, G m <N. For details see [16, pp. 18-191. When I -A is 
nonsingular it can be shown that P(h) is also the minimal polynomial of A with respect to u,. 

With P(A) and k, as above it is known that 

s = ; cixn+i/l~ocj; 
i=o 

(2.15) 

and that C~~oc,ci # 0 since I - A is nonsigular. It is also known that s,,~, always exists uniquely 
for MPE and RRE, and that 

S n,k, = s (2.16) 

for these two methods. For more details on this see [27]. If D(1, 1,. . . , 1) f 0 for k = k, in (2.6), 
then S, k , o exists uniquely and satisfies (2.16) also for MMPE and TEA; otherwise, s,,k,) does not 
exist uniquely for these methods, hence (2.16) does not necessarily hold. 

We now wish to investigate the conditions under which D(l, 1,. . . , 1) # 0 for each of the four 
methods above. 

Theorem 2.1. With A, b, x,, P(X), and k, as above, k < k, is necessary for D(1, 1,. . . ,l) Z 0 and 
hence for the existence of a unique s,,~ for all four extrapolation methods. Let U be the N X k 

matrix whose columns are u,, u,+l,. .., u,+&l, i.e., 

u= (% I%+1 1 “. 1 %+k-1). (2.17) 

Then 

(a) for MPE %,k always exists uniquely when k = k, (as mentioned following (2.15)), and it 
exists uniquely when k < k, if U * (I - A) U is nonsingular. 

(b) for RRE sn,k always exists uniquely when k < k,. 
(c) for MMPE s,,~ exists uniquely when k < k, if T * ( I - A) U is nonsingular, where 

T= hOhI I ‘.* hk-1). (2.18) 

Cd) for TEA sn,k exists uniquely when k < k, if T *(I - A) U is nonsingular, where 

T=(q)A*ql ... IA*k-‘q). (2.19) 

Proof. Without loss of generality we take n = 0. By appropriate column transformations we can 
show that 

0 0 

D(1, l,..., 1) = 
(%),‘u,, &, wC)> ::I (%), wk-_l) 

. for MPE. (2.20) 

(u,-;> %)> (Uk-i’, wl)) ..’ (Uk-lr’Wk-i) 

By the fact that 

wj= (A-I)+ j=O, l,..., (2.21) 

which follows from (2.1) and (2.12), (2.20) becomes 

D(1, l,..., 1) = det{ U*(A - I)U} for MPE. (2.22a) 
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By similar means it can be shown that 

D(1, l,... ,l) =det{[(A -I)U]*[(A -I)u]} for RRE, (2.22b) 

D(1, l,...,l) =det{T*(A -I)U} for MMPE, (2.22c) 

and 

D(1, l,... ,l) = det{ f*(A -1)U) for TEA. (2.22d) 

Now, in order for D(1, l,... , 1) # 0 to hold the k X k matrices on the right hand sides of 
(2.22a)-(2.22d) need to have full rank. For this it is necessary that U as well as T and T be of 
rank k. We now show that a necessary and sufficient condition for U to have rank k is that 
k G k,. For if k < k, and the rank of U is less than k, then the vectors uO, ur,. . ., z.L~_~ are 
linearly dependent. Thus, there exist scalars d,, i = 0,. . . , k - 1, not all zero, for which CF:tdiui 
= 0. By (2.12) this is equivalent to (CfZtd,A’)u, = 0. By the assumption that k, is the degree of 
the minimal polynomial of A with respect to uO, this implies that k - 1 2 k,, which contradicts 
k G k,. By a similar argument we can show that if the rank of U is k, then k G k,. 

All this is sufficient for proving (a), (c), and (d). 
Finally, in order to prove (b), we note that the N X N matrix I - A is nonsingular. Thus the 

matrix U = (A - I) U has rank k. Consequently, so does fi * fi. 0 

Theorem 2.1 suggests that when k < k, a unique solution s,,~ is guaranteed for RRE, but may 
not exist for MPE. This is surprising since both methods have very similar performance when 
applied to the same sequence. However, Theorem 2.1 is optimal in the sense that not always does 
s n,k exist for MPE for k -c k,. The following simple example demonstrates this. 

Example. Let A be a hermitian N X N matrix with real eigenvalues hi and corresponding 
orthogonal eigenvectors ui, i = 1,. _ _ , N. Normalize the ui such that ( ui, uj) = a’,, where aij is the 
Kronecker delta. Assume that h, # h,, h, # 0, h, # 0, and consider an initial vector x0 for 
which u0 = u1 + us. This implies that k, = 2. Let us now investigate the determinant D(1, 1) for 
MPE when k = 1 (< k,). We have 

m 1) = (uolu ) 
) 0 

(uo: u ) = bo, wo>. 
1 

Since wo=(A-I)u,=(h,-l)u,+(A,-l)u,, we see that D(1, 1) = h, + A, - 2. Now it is 
possible for X, and A, to be such that I - A is nonsingular and X, + X, - 2 = 0, in which case 
D(1, 1) = 0, hence so,r does not exist uniquely for MPE. 

The following theorem, however, gives a sufficient condition for existence and uniqueness of 
s n,k for MPE when k c k,. 

Theorem 2.2. If the matrix C = I - A has positive definite hermitian part, then s,,~ for MPE exists 
and is unique for k < k,. 

Proof. It is enough to show that for any nonzero vector < E Q=’ F(t) = <*U *Cl_J< # 0. In the 
proof of Theorem 2.1 we showed that the columns of U are linearly independent if k G k,. 
Consequently77=U~#O.LetuswriteC=C,+C,,whereC,=~(C+C*)andC,=t(C-C*) 
are the hermitian and antihermitian parts of C. Then F(c) can be reexpressed as &‘( 5) = (Y + ip, 
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where a: = n*C,q and ip = n* Can and (Y and p are real. Now since Ch is positive definite and 
nf0, a>O.Thus IF(t)] =(a*+~*)“*),,>O. 0 

2.3. Equivalence of vector extrapolation and Krylov subspace methods for linear systems 

We now state the first main result of this section. For this we go back to our general inner 
product space setting. In regard to (2.26d) below we recall that the concept of the adjoint D * of 
a linear operator D mapping B to itself makes sense only with respect to the inner product 
associated with B. Specifically, D* is that operator satisfying (0*x, y) = (x, Dy) for all x, 
y E B. 

Theorem 2.3. Let A, b, and xi be as above and let s,,~ be well defined for all four methods of 

extrapolation. Then these methods are Krylov subspace methods. If we let 

Wj= span{ u,, U,+,, . . .) U,+j} = span{ u,, AU,, . . . , Aju,}, (2.23) 

then 
k 

r(s,,k) = c yl(““k)u,+j E wk. (2.24) 
r=O 

Furthermore, 

(t, r(s,,k)) =O for all t E vk-l, (2.25) 

where 7. are subspaces defined by 

7. = W, for MPE, (2.26a) 

I$= span{ w,, w,+~, . . . , W,+j} = span{ w,, Aw,, . . . , Ajw, } for RRE, (2.26b) 

~==span{q,, ql,-**,qj} =span{q,, Gqo,...,G’qo} forMMPE, 

for some fixed matrix G, and 

y==span{q, A*q,..., A*jq} for TEA. 

(2.26~) 

(2.26d) 

Proof. (2.24) is seen to hold by (2.3) (2.10)-(2.12) and (2.23). That (2.25) holds for MPE, RRE, 
and MMPE is seen from (2.24), (2.4), and (2.5a)-(2.5c). The second equality in (2.26~) follows 
from the fact that it is possible to construct a linear operator G for which q,+l = Gq,, 
j=o,..., k - 1, for k < N - 1. That (2.25) holds for TEA with (2.26d) follows from (2.4) once we 
rewrite (2.5d) in the form u~,~ = (A*‘q, u n+j), which in turn follows from (2.12). This completes 
the proof. q 

From Theorem 2.3, we see that MPE is an orthogonal projection method, while the remaining 
three methods are oblique projection methods, in general. We also observe from the details of the 
proof of Theorem 2.3 that MPE, RRE, and MMPE are projection methods (but not necessarily 
Krylov subspace methods), even when the sequence x0, xi, x2,. . . , is generated nonlinearly. That 
MPE, RRE, and TEA are Krylov subspace methods has also bee shown in [3]. 

When we let qi=A*‘q, i=O, l,..., in MMPE, with q as in TEA, “; for MMPE becomes 
identical to “; for TEA. Thus MMPE reduces to TEA for this case, in the sense that s,,~ for 



78 A. Sidi / Comparison of methods for solving linear systems 

MMPE is the same as s,,~ for TEA. In case A is hermitian and 4 = u,, we see that v/ for TEA is 
identical to V, for MPE, thus s, k for TEA is the same as s, k for MPE. In both of these cases we 
should remember that the s, k in question are being obtained from the 2k + 1 vectors 
x x n+l,..-,Xn+2k 

l&E. 
for TEA, and from the k + 2 vectors x,, x,+i,. . . , x,+~+~ for MMPE and 

We also note that the inner product (. , . ) can be replaced by any other inner product (. , . )M, 

where (x, Y)~ = (x, My), M being a hermitian positive definite operator. This becomes useful 
when dealing with GCG. The remark prior to the statement of Theorem 2.3 concerning the 
adjoint of an operator should be kept in mind, however. 

We now state the second main result of this section showing the connection between 
extrapolation methods and some Krylov subspace methods that were mentioned in the introduc- 
tion to this work. (For a discussion of Krylov subspace methods and also the method of Lanczos 
see Saad [22].) For simplicity we shall set n = 0 and denote s0 k = sk. Also we shall define 
I - A = C. Thus s is the solution to Cx = h. (Conversely, given C we define A through 
A = I - C.) If we let r”(x) be the residual for the vector x, i.e., 7(x) = b - Cx, then by 1- A = C 
we have Y”(X) = Y(X). We shall denote by zO, z,, zz, . . . , the sequence of approximations to s 
obtained by applying the Arnoldi method or GCR or the Lanczos method to the linear operator 
equation Cx = h starting with z0 = x0. 

Theorem 2.4. With So and zx as above, 

Sk = Zk ) k=O, l,..., 

(a) for MPE and the Arnoldi method, or 
(b) for RRE and GCR, or 
(c) for TEA and the Lanczos method. 

(2.27) 

Remark. With I’, = span{ qO, Gq,, . . ., GkqO} for MMPE with some linear operator G, this 
method seems to be equivalent to a generalized version of the Lanczos method. 

Proof. For the Arnoldi method, GCR, and the Lanczos method z, for the system Cx = b are of 
the form 

k-l 

zo=xo, zk = x0 + c G,C’r(x,), k = 0, 1,. . . . (2.28) 
I = 0 

Thus, by the facts that r(x) = b - Cx and C = I - A it follows that 
k-l k-l 

r(zk) ‘r(xo) - c 6,C’+‘r(xo) = u. - c 6,c’+‘uo E wk, (2.29) 
r=O r=O 

with W, as defined in (2.23) with n = 0. At this point recall that r(sk) E W, for all methods of 
extrapolation considered in this work. 

For the Arnoldi method the 6, are determined by the requirement that r( zk) be orthogonal to 
r(zo),..., r(z,_,), i.e., (t, r(zk)) = 0, for every t E W,_,. This proves (a). 

For GCR the 6, are determined by the requirement that (Cr( z,), r( zk)) = 0, i = 0,. . _, k - 1, 
i.e., (Ct, r( zk)) = 0 for every t E W,_,. But the subspace { Ct 1 t E W,} is the same as v/ in 
(2.26b). This proves (b). 
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For the Lanczos method the 6, are determined by the requirement that (t, r( zk)) = 0 for every 
t E v,-, with y. as given in (2.26d). This proves (c). 0 

All three projection methods above, namely, the Arnoldi method, GCR, and the Lanczos 
method, were devised to solve the system of linear equations CX = h for an arbitrary nonsingular 
matrix C. Note that the conjugate gradient type method of Axelsson [2], the method of Young 
and Jea [31] that has been designated ORTHODIR, and the recent generalized minimum 
residual method (GMRES) of Saad and Schultz [23], for solving Cx = b with an arbitrary 
nonsingular matrix C, are all mathematically equivalent to GCR. Similarly, CG and CR were 
devised for solving the same system for a hermitian matrix C. 

Let us now consider the case in which C is hermitian. From the theory of CG it follows 
immediately that if the Arnoldi method and CG are implemented beginning with the same vector 
zo = x0, then they are equivalent. But in this case A = I - C is hermitian too. Therefore, as 
mentioned following Theorem 2.3, if we pick 4 = u. for TEA, then so,k for TEA is identical to 
so,k for MPE. Combining both of these observations with parts (a) and (c) of Theorem 2.4, we 
conclude that, in the case under consideration and with the assumptions above, MPE, TEA, the 
Arnoldi method, the Lanczos method, and CG are equivalent. It is interesting to note that when 
C is hermitian and positive definite, sk (or equivalently z,,.), as obtained by these methods, are 
such that 

E(zJ = &_ E(-q, + A>, 
I 1 

(2.30) 

where 

E(z) = ((z -s), c(z - s)) 

is a positive definite quadratic form. 

(2.31) 

When the matrix A in C = I - A is antihermitian (a complex version of) GCG can be used to 
implement the method of Amoldi recursively. Actually, GCG is designed to solve a system of 
linear equations cx = d for an arbitrary matrix e;. If we let c^, and ?, be respectively the 
hermitian and antihermitian parts of c^, and assume that c,, is positive definite, then GCG is 
actually a Krylov subspace m:thod equivaleni to MPE, for which the vectors xi are generated by 
xj+, = Ax, + b, with A = - C;‘ca and b = Ci’d, and the inner product (. , . ) is replaced by the 
inner product (. , . )e,, where (x, y)e, = (x, C,y). With respect to-the new inner product the 
operator A is antihermitian, i.e., (x, Ay)eh = -(Ax, y)~,. Since Cx = d is also equivalent to 
Cx = b, with C = c^,ic^ = I - A, we are back at the case discussed above, only with a different 
inner product. 

Again when C is hermitian from the theory of CR it follows immediately that if GCR and CR 
are implemented beginning with the same vector z. = x0, then they are equivalent. Combining 
this with part (b) of Theorem 2.4, we conclude that in this case RRE, GCR, and CR are 
equivalent. For arbitrary nonsingular (not necessarily hermitian positive definite) C, sk (or 
equivalently zk), as obtained by these methods, are such that 

J”(z,J = Ap$_ f’(x, + A>, 
A 1 

(2.32) 

where 

F(z) = (r(z), +)) = II +> II 2 
is a positive definite quadratic form. 

(2.33) 
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We wish to mention one more method that has been proposed for solving CX = b with 
arbitrary nonsingular C, namely the biconjugate gradient method of Fletcher [12]. This method is 
equivalent to the Lanczos method. Consequently, by Theorem 2.4, the biconjugate gradient 
method is equivalent to TEA too. The connection of TEA with CG and the biconjugate gradient 
method has also been studied in Brezinski [5, pp. 186-1891. 

Finally, we recall that when B is the Euclidean space Q= N and C is a (complex) N x N matrix 
all of the projection methods mentioned above terminate in a finite number of steps. Actually 
zk = s for some k < N. From the discussion prior to Theorem 2.1 and from the equivalence of the 
vector extrapolation methods and the various projection methods as they are applied to linearly 
generated sequences beginning with the same initial vector x0, it is now obvious that for all 
Krylov subspace methods mentioned above zk = s for k = k,, where k, is the degree of the 
minimal polynomial of C (or A = I - C) with respect to the vector x0 - s (or ZQ). 

3. A unified treatment for CG, GCG, and CR 

In this section we propose a unified recursive algorithm from which CG, GCG, and CR can be 
obtained as special cases. We shall deal with the linear operator equation Cx = b, whose solution 

we denote by S. In case C is a matrix, we shall allow it to be complex. Furthermore, we shall 
assume that C satisfies 

C* = aI + K, u, 7 scalars. (3.1) 
Let M be an operator that commutes with C, i.e., MC = CM, and define 

(x, Y)M= (X> MY). (3.2) 
Of course, when M is hermitian positive definite (x, Y)~ is a true inner product; otherwise it is 
not. 

The unified algorithm now reads as follows: 

( Pick x0 arbitrarily, set z0 = x,, , r0 = b - Cz,, p,, = r, . 

Do for j=O, l,..., 

<zj+l=Z~+~jPj,where Or,=(Pj, ‘j)M/‘(pj, Cpj)M; 

rj+l = b - CzI+i; if r,+l = 0, then set s = z,+i and stop, else 

\Pj+1=rj+l+PjPj,wherepj= -(Pj, Crj+i),/(Pj, CPj)M. 

(3.3) 

Needless to say, we assume that ( pj, Cpj), f 0 and aj # 0 when r, # 0. Under these cir- 
cumstances the algorithm does not break down. 

Theorem 3.1. Provided each step in the algorithm above is well defined, we have 

(p,, rk)M=O, i<k-1, 

(pi, Cp,),=O, i<k-1, 

van{~,,..., pk} = span{ r,,. . . , rk} = span{ ro, Cr,,. . ., Fro}, 

ak = (50 r!AAPk, CPA%0 
and 

Pk = 7 e-2ie+k+1, r,+,),/m, 0, = ariz(p,, CP,)~. 

(3.4) 

(3.5) 

(3 -6) 

(3.7) 

(3.8) 



A. Sidi / Comparison of methods for solving linear systems 81 

Proof. Following Luenberger 118, Ch. 81, we shall prove (3.4)-(3.6) by induction on k. 
For k = 1 these assertions are true as can be verified directly. Suppose they are true for all 

k <<j. We need to show that they are true for k =j + 1 too. 
First, we note that by zj+r = zj + a,p, 

rj+l = rj - ajCpj. (3.9) 

Thus ( pJ, rj+l),u = 0 is satisfied by the definition of cllj. Similarly, ( pj, Cp,,,), = 0 is satisfied 

by p,+l = r,+l + pjpj and the definition of fij. Now for any i <j - 1 

(Pi, ‘j+l)M=(P,, rj),-ol,(PiT cPj), (3.10) 

and 

(Pi, cPj+I),+f= (Pi, crj+l)M+ P,(Pi, cPj),* (3.11) 

By applying the induction hypothesis to each of the terms on the right hand side of (3.10) 
(Pi, ‘j+l)M = O f or i <j - 1 follows. Again by the induction hypothesis (pi, CP,)~ = 0 for 
i <j - 1, so that (3.11) becomes 

(Pi9 cPj+I),= (Pi, Crj+lJM. (3.12) 

Since CM = MC, (3.12) can be expressed as 

(Pi, cPj-tl>,= (c*PiY rj+lIM- (3.13) 

Invoking (3.1), (3.13) becomes 

(Pi, CPj+I)~=(~u1+7Cl Pi, yl+I)~- (3.14) 

Since (pi, r,+h = 0 for i <j has already been shown, (3.14) now becomes 

(Pi, cpj+l),=f(cPi, rj+l)M- (3.15) 

Now since Cpi = (r, - rI+l)/cxi by (3.9), Cp, E span{ po, pl,. . . , p,} by the induction hypothesis 
and (3.6). This, combined with (pi, rj+l)M = 0 for i <j, which has already been proved, results 
in (pi, Cpj+I)M = 0 for i <j - 1. 

The relations pj+ 1 = rj+ 1 + fijp, and (3.9), the induction hypothesis, and the assumption that 
aj # 0, together with the fact that the set { r,, Cr,, . . . , CkrO} is linearly independent provided 
k < k, - 1, can be used to prove (3.6) for k = j + 1. 

The proof of (3.7) can be achieved by substituting pj = r, + pi_ Ipj_l in the expression for (Y, 
in (3.3), and invoking (3.4). 

For the proof of (3.8) we proceed as follows: By MC= CM we have (tj, Cr,+,),,,, = 

(C*p?, rj+l)M. Invoking now (3.1), and using (3.4), this becomes (pj, Crj+,)M= T(CP,, r,+,)M. 

Substrtuting now CPj = (rj - rj.+r)/‘olJ, and using ( rj, r,+l)M = 0, which follows from (3.4) and 
(3.6), we obtain (pi, Crj+l)M= -(y/gj)(r,+,, rj+l M. ) (3.8) follows by using this and (3.7) in the 
expression for fij given in (3.3). q 

As can be seen from Theorem 3.1, a sufficient condition for the algorithm not to break down 
is that MC and M have positive definite hermitian parts. 

Note: If C is not a constant multiple of I and satisfies (3.1) then ) 7 ) = 1 and u + 5~ = 0. It can 
be shown that this is possible if and only if C = hl + D, where h is some appropriate scalar, and 
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pD, for some p f 0, is hermitian. In fact, it turns out that p = 7ii2. Thus the algorithm in (3.6) 
can be specialized to produce all the known recursive algorithms, extending them to complex 
matrices at the same time: 

(1) When u = 0 and 7 = 1, C* = C. Letting M = I, we obtain CG. Letting M = C, we obtain 
CR. 

(2) When u = 2 and 7 = - 1, C = I + D with D * = -D. Letting M = I, we obtain (another 
form of) GCG. The method obtained by letting A4 = C * is equivalent to ORTHOMIN(l) by 
Vinsome [29]. When B is a real space, the new form of GCG (with A4 = I) can be simplified 
considerably by noting that (x, Dx)~ = 0 hence (x, Cx), = (x, x) for all x E B. This results in 
‘Y~ = (T-, rj)/( pj, p,) from (3.7). (3.Q on the other hand, can be simplified to read pi = 

(rj+l, rj+l )/( rj, rj). Other simplifications can be made for the case A4 = C *. We omit the details. 
Finally, we note that when C and M are hermitian positive definite, zk in the algorithm given 

in (3.3) satisfies 

(3.16) 

where f(x) is the positive definite quadratic form 

F(x) = ((x -S), c(x _S))M 

and 

Y = span{ r,, Cr,,. . . , Ck-‘r,}. 

(3.17) 

(3.18) 

4. Error analysis for MPE and RFW 

In this section we wish to give error bounds related to ek = s/i - s for MPE and RRE, where 
sk = s~,~. We recall that when B is the Euclidean space @ N and C is an N x N (complex) matrix 
sk, exists and sk = s for both methods. When k < k,, sk exists and is unique for RRE always. 
For MPE, howe;er, sk for k < k, exists and is unique if C has a positive definite hermitian part. 
Our analysis is similar to and generalizes that of GCG that was given in [30], in conjunction with 
that of [19], to cover all the methods mentioned above. (For further developments concerning 
GCG and its convergence properties see Hageman, Luk, and Young [14] and Eisenstat [lo].) 
Furthermore, it also reproduces the results known for CG, GCG, and CR. We shall state most of 
our results within the framework of the general vector space B with its inner product (. , - ) and 
we shall treat A and C as bounded linear operators on B. 

Let M be a bounded linear operator on B, and define 

(X> J&4=(-% MY). (4.1) 

Here M is not necessarily hermitian positive definite, consequently ( -, - )M is not necessarily an 
inner product. We set 

for RRE, 
for MPE. (44 

Lemma 4.1. The errors ek = sk - s for MPE and RRE satisfy 

(ek, CeA,= -(Q&Xx0 - 4 CeA,, (4.3) 

where Qk( A) is an arbitrary polynomial of degree < k in A, normalized such that Qk(0) = 1. 
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Proof. By (2.2), (2.3), and (2.12) 
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.gk = ,~oyp~kyxi - s) = ( z~oy:“*‘Aljlr~ -4. (4.4) 

By (4.4) and (2.10) 

Ce,= Cs,-- Cs= -(b- Csk) = -T(s~). (4.5) 

By Theorem 2.3 (t, Y( sk)) = 0 for all t E W,_, for MPE, and (Ct, r( sk)) = 0 for all t E W,_, for 
RRE. This can be expressed in a unified way as 

(t, y(s,)),= (t, Ce,),=O. 

Thus 

(ekY Ce,),= -(ek, Y(s~))~= -(ek + t, r(~~))~ for all t E IT,_,. 

Now if t E Wk_l, then it can be expressed in the form 

which, by u. = - C(X, - s), becomes 

By (4.4), (4.9), and C = I - A 

e,+t= 
i 
5 y!“yI- c)i- ck&(r- c)’ (x0-s) 

I I 

i=O i=O 1 

= e,(c)b, - 4. 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

Obviously, since S,, . . . , Sk_ 1 are arbitrary, Qk(h) is an arbitrary polynomial of degree < k 
satisfying 

Qk(0) = ; ~i(~,~) = 1. (4.11) 
i=O 

Substituting (4.5) and (4.10) in (4.6), the result follows. 0 

From Lemma 4.1 we can now obtain an error bound for (1 Y(s~) )I for RRE. For any linear 
operator D on B denote by (1 D 11 the operator norm induced by the vector norm )( x 11. 

Theorem 4.2. For RRE 

II 6%) II G II Q&> II II rhd Il. 
Proof. Letting M = C* in (4.3), we obtain 

(cek, Cek) = (Q.&%(X,, - 4, Cek). 

(4.12) 

(4.13) 
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(4.12) follows from (4.13) by applying the Cauchy-Schwarz inequality on the right hand side, 
using Ce, = - r( sk) and C( x0 - s) = - r( so), and cancelling a (1 r( sk) I( factor from both sides. 
0 

Note that since C is nonsingular and Y(s~) = - Ce,, (( T(.s~) I( is a true norm for ek. The result 
in (4.12) is identical to that obtained for GCR in [ll]. 

We now turn our attention to the analysis of MPE. As before, let us denote C, = :( C + C*) 
and C, = i( C - C” ), and assume in the sequel that C, is positive definite. Then 

(x9 v)‘= (x3 ChY) (4.14) 

is a true inner product in B. Consequently, 

II x II ’ = Jcc7 = II wx II (4.15) 

is a true norm in B, and it satisfies 

)( x II ’ < I (x, cx) I 1’2. (4.16) 

The proof of (4.16) can be accomplished by the technique used in the proof of Theorem 2.2. For 
any linear operator D on B, let us denote by Ij D 11 and 11 D 11’ the operator norms induced by 
the vector norms 1) x )I and ]I x 11’ respectively. 

Lemma 4.3. In general 

(( D (( ’ = (1 c;‘zDc~1’2 I( < \w (I D (I, 

where cond(G) = I( G I( (1 G-’ (I, and 

I(D(I’= (ID(( ifDC,= C,D. 

Proof. The first part of (4.17) follows from 

(4.17) 

(4.18) 

llD ,( I = sup (f)x* GDd’* ( dc’,/*x, ky2xy2 
.%#O (x, chxy2 = ~2 (c+, fyxy2 ’ 

(4.19) 

where b = C,!,‘2DC,1/2. The second part of (4.17) follows from the fact that /I Ci 1) = p(CE) for 
any real (Y. Finally, (4.18) is a corollary of (4.17). Cl 

Theorem 4.4. The error ek for MPE satisfies 

11 ek 11 ‘G 11 G’C*Q&)bo - S) 11’ G L iI Q&)(X, - 5) II ’ 

G L 11 Q,(c) II ’ 11 eo iI ‘7 

where e, = so - s = x0 - s and 

L= IIc,V*Ij’= (Ic,‘q’=/ixF, 

with A = p( Ch-lCn), the spectral radius of the operator C,-IC,. 

Proof. Invoking (4.14)-(4.16) in (4.3) we have 

( tkll’)2~ I(Ci?C*Q&?(Xo-S), %)‘I, 

(4.20) 

(4.21) 

(4.22) 
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which, upon using the Cauchy-Schwarz inequality, becomes 

( II ek II ‘j2 G II Ch*C*Qk(C)(xO - s> It ’ II ek II ‘. (4.23) 

This proves (4.20). To prove (4.21), we note that from Lemma 4.3 

(( c,‘c (I’ = 11 c;1’2cc;1’2 I( = (1 I + ca II) ca zz c, ‘/2f-c, 112. (4.24) 

Now since C, is antihermitian, Ca is antihermitian too, consequently I + C, is normal. Therefore, 

IIIt-Ca:,l =p(I+CJ. (4.25) 

By Ca = CA’,/‘< C,- ‘C,) C, ‘I2 c” and Ch’C have the same spectrum. Since Ca is antihermitian, 
all of its eigenvalues are zero or” pure imagi;ary, and so are those of C, ‘C,. Combining all this in 

(4.24), we obtain 11 Ch’C (I = m. That (( C;‘C* (1 = m follows by exactly the same 
argument. This proves (4.21). q 

We now aim at obtaining bounds on II ek (I ’ that involve 1) Qk( C) )I and not 1) Qk( C) 1) ‘. This 
enables us to unify the treatments for CR, CG, GCG, and MPE and RRE in general. To this 
effect we have the following result: 

Theorem 4.5. In general, for MPE, 

11 ekh '$~I@k(C) II IIeoli '7 (4.26) 

and if C is a normal operator, i.e., CC* = C*C, 

11 ek 11 ’ G L 11 Q,(c) II II eo II ‘. (4.27) 

Proof. (4.26) follows by invoking (4.17) in (4.20). Now if C is normal, then C, and C, commute. 
Consequently C, commutes with C. This, combined with (4.18), implies II Qk( C) 11’ = II Qk( C) (I, 
from which (4.27) follows. •I 

Theorem 4.2 for RRE and Theorem 4.5 for MPE provide us with upper bounds on different 
nOrInS Of ek( 11 r(sk) (1 = I( cek (( for RRE and 11 ek I( ’ = )) C,!,“e, 1) for MPE), and these Upper 

bounds have all been expressed in terms of II Qk( C) 11, where Qk( h) is an arbitrary polynomial 
of degree at most k, normalized such that Qk(0) = 1. Therefore, in (4.12), (4.26), and (4.27) 

11 Qk(C) II can be replaced by rk = mine, ETk II Qk(c) II > w h ere we have denoted by VT~ the set of 
all polynomials Qk( A) of degree at most k satisfying Qk(0) = 1. 

We now try to bound Fk in terms of the eigenvalues hi, i = 1, 2,. . . , of C. Let us denote by 
a(C) the spectrum of C, namely the set {A,, A,, . . . , }. Since Ch is hermitian positive definite, 
a(C) is contained in the open right half of the complex X-plane. That this is so can be seen by 
observing that if (A, U) is an eigenvalue-eigenvector pair of C, then Re X = (u, C,u)/( U, U) > 0. 
Following [19], a(C) is contained in an ellipse J’( d, c, a) of smallest size, which in turn is 
contained in the open right half of the h-plane. Here d is the center of the ellipse, d k c are its 

foci, and a is its semimajor axis length, such that I c I G a and 1Re c I c Re d. Let us now set 

Q,(h) = Tk( G)/&( f) = ?k(h). (4.28) 

Obviously fk E rk and hence it iS tI7.E that 

rkG IIFk=k(c)II* (4.29) 



86 A. Sidi / Comparison of methods for solving linear systems 

Let us qk by 

known properties Chebyshev polynomials follows that 

k+) 
q!== ) +=cosh-’ 

i-1 
,;I and w=cosh-’ 

(4.30) 

(4.31) 

Thus 

!immq’,/k<e+-Rew=q, ~(1. (4.32) 
+ 

We now bound ]I fk(C) (( for different operators C in terms of 7)k and 77. 
(1) If C is normal, I] fk( C) ]] = p( yk( C)), thus (4.12) and (4.27) become 

t]+k) /I G ~kib+O)~t -~kb-(SO) 11 forRRE 

and 

(4.33) 

(1 ek ]I ’ < L% ii e. (1 ’ G aLvk ii e0 (1 ’ for MPEy (4.34) 

for some (Y > 0. In particular, if C, = I, then all eigenvalues of C are of the form 1 + ip with 
) p 1 G A. Thus F( d, c, a) degenerates to the line segment [l - iA, 1 + iA 1, i.e., F( d, c, a) = 

F(1, in, A). Consequently, qk = 1 Tk(i/A) 1 - 1 in (4.33) and (4.34). The result for MPE in this 
case becomes, by (( . (1 ’ = 1) - )I for this case, 

]I ek 11 G m/n” Tk(i/A) 1 11 eo 11) (4.35) 

and this result is identical to the one given in [30] for GCG. When C is hermitian positive 
definite C = C, and all eigenvalues of C are real and positive. If we let h,, and X,, be 
respectively the smallest and the largest eigenvalues of C, then F( d, c, a) degenerates to the line 
segment [hti, A,,], and its parameters become d = :(A,, + Amin), c = +(A,, -X,,) = a. 

Consequently vk = 1 Tk((hmm + hmin)/(xmax - Ati,,)) ( -I both in (4.33) and (4.34). After some 
manipulation, it can also be shown that v7/, < 2qk for all k, with 77 = (& - l)/(& + l), where 
K=$,,,/&,= cond(C). Thus (4.33) and (4.34) become 

]I +k) it G 277kt1r(sO) 11 forRRE (4.36) 

and 

I] ek (1 ’ < 2qk (1 eO (1 ’ for MPET (4.37) 

the latter being the well-known result for CG. 
(2) If B is the Euclidean space QZN, and C is an arbitrary N x N matrix, then as mentioned in 

[191> 

1) Fk( C) )] < ak”qk, (4.38) 

m being a positive integer and cx a positive constant. In fact, m + 1 is the size of the largest 
Jordan block of C. (This implies that m = 0 if C is diagonalizable.) In this case (4.33) and (4.34) 

become 

]I +k) ]] G ak”‘qk ]I +o) ]I for RRE (4.39) 

and 

]I ek 1) ’ G cuL/mk”qk 1) e, 1) ’ for MPE. (4.40) 
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In all our results above, we have obtained upper bounds for )I T(s~) (( or (1 ek (I’ in terms of 

the quantity r, = minp,E_ (1 Qk(C) I(, w ‘c a hl h ft er a certain value of k are decreasing monotoni- 

cally towards zero. Needless to say, these results can also be used to give convergence rates for 
restarted forms of the methods under consideration. The application of the Krylov subspace 
methods in their restarted forms is termed ‘cycling’ in the context of vector extrapolation 
methods. 

Note that r, = mine& En, II Q&) II can also be bounded by using an approach suggested in 
[ll]. In this approach we make use of 

(4.41) 

where II8 denotes the field of real numbers. Now 

)JI+cKJJ2= ,,rna~t[l+2Re (Y(x, Cx)+ ]aj2(x, C*CX)]. 
X 

(4.42) 

When C, is positive definite 

Re(x, Cx) = (x, C,x) ~~IIxII~, (4.43) 

where p is the smallest eigenvalue of C,. Let w be the largest singular value of C. Then for (Y real 
and negative 

~JI+(.ycJ~2~l+2~~+w2~2. (4.44) 

The minimum of 1 + 2~” + w2a2 is obtained for (Y = --p/w2 < 0, and is 1 - p2/w2. Combining 
this with (4.42) and (4.41), we finally obtain 

r, < (1 - p2/w2) k’2, (4.45) 

which is the same as that given in [ll] for a real operator C. 
Finally, when B is a Hilbert space and C is a compact operator, superlinear convergence 

results similar to the ones given in [30] for GCG can also be proved. We omit the details. 
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Note 

The author has been informed by one of the referees that the unified algorithm of (3.3) follows 
also from the recent work of V. Faber and T.A. Manteuffel, Orthogonal error methods, SIAM J. 

Numer. Anal. 24 (1987) 170-187. 
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