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Abstract. In a recent publication 141 the author developed an extrapolation method, 
the W-transformation, for the accurate computation of convergent oscillatory infinite 
integrals. In yet another publication [6] this method was shown to  be applicable to  
divergent oscillatory infinite integrals that are defined in the sense of summability. The 
application of the W-transformation involves some asymptotic analysis of the integrand 
as the variable of integration tends to infinity. In the present work the W-transformation 
is modified so as to  keep this asymptotic analysis to a minimum, involving only the 
phase of oscillations. This modified version, which turns out t o  be as efficient as the 
original W-transformation, can also be applied to  convergent or divergent oscillasory 
infinite integrals other than those dealt with in [4] and [6]. The convergence properties 
of the modified transformation are analyzed in detail for the integrals of [4] and [6], and 
numerical examples are provided. 

1. Introduction. In [4] the author developed an extrapolation method, the W- 
transformation, by which a large class of convergent infinite oscillatory integrals can 
be computed very efficiently. The approach of [4] was later extended to divergent 
infinite oscillatory integrals in [6], and it was shown that the W-transformation, with 
no modifications, can be applied to such integrals with the same efficiency. The 
use of the W-transformation involves some asymptotic analysis of the integrand 
as the variable of integration tends to infinity. The purpose of the present work 
is to modify the W-transformation so that this asymptotic analysis is kept to a 
minimum. 

For future use and reference, we now summarize some of the notation and results 
of [4] and [6]. 

Deficition 1.1. We say that a function a (x )  belongs to the set ~ ( 7 )if it is 
infinitely differentiable for all x > a 2 0, for some a,  and if, as x -+ m, it has a 
Poincark type asymptotic expansion of the form 

00 

z=o 
and if all its derivatives, as x + oo, have Poincard type asymptotic expansions 
which are obtained by differentiating the right-hand side of (1.1) term by term. 

Definition 1.2. We say that a function f (x) belongs to B if it can be expressed 
in the form 

T 

(1.2) f = v,(@j(x))exp(dj (x))hj(x) ,  
j=1 
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where 
( I )  u,(z) is eZz or ePiz or any linear combination of these (like cos z or sin z ) .  
(2) 8, (x) and 4, (x) are real and Bj  E and 4, E for all j, where m is a 

positive integer and k is a nonnegative integer. If, as x + m ,  

- - .. 

(1.3) 8 (x) - and 4, (I) -x4,axk-S, 
a=o a=o 

and we set 

8,(x) = x d,3xm-a and $,(x) = x 4 , , x k - ' ,  

then we assume that 

(1.5) (x) -6 (x) and $, (x) = $p (x) whenever j # p. 

We will denote &(x)  = 8(x) and $j(x) = $(x). Note that 8(x) and $(x) are 
the polynomial parts of O,(x) and 4, (x), respectively, and Aj(x) = @,(x)- O(x) 
and A,(x) = 4,(x) - $(x) are both in A('). We also assume that if k > 1, then 
lim,,, 4, (x) = -m ,  i.e., 4,0 < 0. Obviously, when k = 0, $, (x) = 0, j = 1 , . . . , r .  
Without loss of generality we will assume that lim,,, Bj(x) = oo, i.e., 0,o > 0. 

(3) h, E A(?]) for some arbitrary y, such that y, - yp are integers for all j and 
p when r > 1. We will denote y = max{yl, . . . , 7,). 

The set B is the union of the two mutually exclusive subsets that were denoted 
B, and Bd in [6]. B, is the set of functions in B that are integrable at infinity, i.e., 
functions f (x) for which either k 2 1 or k = 0 and y < m- 1. Bdon the other hand 
is the set of functions in B that are not integrable at infinity, i.e., those functions 
f (x) for which k = 0 and y 2 m- 1. It was shown in [6] that integrals of functions in 
Bdexist in the sense of Abel summability, and that the W-transformation that was 
developed for integrals of functions in B, can be applied to integrals of functions 
in Bd without any changes. 

Let f E B and be of the form described in Definition 1.2 with the notation 
therein. Let a > 0, and define 

, 

(1.6) I[f]= Srnf (t) dt and F (x )  = lxf (t)  dt, 
a 

where I[f]is to  be taken as Jaw f (t) dt in the Abel summability sense when f E Bd.  
Then, as is shown in [4] and [6], 

(1.7) I[f ]= F(x )  + xu+? exp($(x))[cos(8(x))b1 (x) + sin(8(x))bz (x)], 

where b l ,  b2 E A(') and 

(1.8) a = min{-m + I ,  -k + I )  = 1 -max{m, k). 

Now let xo be the first zero of sin(d(x)) that is greater than a .  This means that xo 
is a root of the polynomial equation O(x) = qn for some integer q. Then determine 
xl to be the largest positive root of the polynomial equation 8(x) = (q + 1)n, 
1 = 1 ,2 , .. . , i.e., x1, 1 = 0 ,1 , . . . , are ultimately consecutive zeros of the function 
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sin(B(x)). This guarantees xo < xl < 2 2  . . . .  Obviously, liml,, xl = m. The 
W-transformation is then defined by the solution of the linear system of equations 

7L 


= F(xi)  + $(xi) j 5 1 5 j + n + 1, 
i=O 

(1.9) ~ 2 )  @i/xiI 

in which w$) and the pi are unknown, w$) is the approximation to I[f],and 

The equations (1.9) and (1.10) are obtained as follows: Let x = xl in (1.7) so 
that the term sin(8(x))b2(x) disappears; the result is 

where the constant multiplicative factor (-1)q has been absorbed into b l  (xi). Recall 
that bl E A('), so that b1 (x) -CEObl,/xi as x +m. Truncate this expansion at  
the term bln/xn and replace bl(xl) in (1.11) by this truncated series. Now replace 
I[f ]by w;') and bl, by pi,  treat these as unknowns, and let 1 = j ,  j+1 , . . . ,j + n +  1 
so as to get (1.9). 

The solution of the system for w;') can be achieved very efficiently by the W- 
algorithm of [5]; here are the steps of this algorithm: Set 

and compute, for s = 0, I , .  . . , p = 0,1 , .  . . , 

Now, as is shown in [3] and [5], WL') is of the form 

where 

(1.15) 

n+l 

7:;x = 1 for all j and n ,  
z=o 

and 

(1.16) yn,i 0 < i 5 n + 1, for all j and n, (3)  > 0, 

the latter being a direct consequence of 

which in turn holds by (1.10). Actually, (1.17) is necessary and sufficient for (1.16) 
to hold. Now (1.10), (1.11), and (1.14)--(1.16) enable us to  prove that 

(1.18) (j)-0 Zg+~-n- l exp($(zj))] as j +m (Process I)~ i f l -w n  - [ , 
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and 

(1.19) I[f]-w:! = o(nPp) as n + co, all p > 0 (Process 11). 

More will be said in Section 3 concerning (1.14)-(1.19). 
As can be seen frorn (1.7)-(1.10), the W-transformation involves the asymptotic 

analysis of the integrand f (x) for x + co, some of which is quantitative in nature. 
In particular, @(xl) requires knowledge of 8(x), &x), and y. In the next section 
we show how the W-transformation can be modified so as to keep the asymptotic 
analysis of f (x) t,o a minimum (involving 8(x) only), without affecting its numerical 
efficiency very much. In fact, in all of our numerical experiments we have observed 
that both the original and the modified W-transformations have comparable ac- 
curacy when applied to integrals of functions in E3. In Section 3 we analyze the 
convergence properties of the modified W-transformation for these integrals and 
show that (1.18) and (1.19) are still valid. By employing an approach different 
from the one used in 131, [4], and 161, we actually prove a significantly improved 
version of (1.18), which is valid for the (original) W-transformation as well as the 
modified one. The main results for the modified W-transformation are given in 
Theorem 3.1 (Process I) ,  and in Lemma 3.8 and Theorem 3.2 (Process 11).Finally, 
the modified W-transformation seems to produce very accurate results also for in- 
tegrals of functions f (x )  that oscillate as those in B but are not in B themselves. 
This is a surprising observation for which we have no explanation at present. More 
details on this are given in the next section. 

Before proceeding to the next section, we mention that xl, 1 = 0 ,1 , . . . , can 
be taken to be consecutive zeros of the function cos(d(x)) instead of sin(8(x)), 
everything else. including the convergence results of Section 3, remaining the same. 

2. T h e  Modified W-Transformation. The modification that we propose to 
make in the W-transformation consists of replacing (1.10) by 

(2.1.) $(x,) = f ( t )  dt = F(zri1)- F(z l i ,  1 = 0.1; 2 , . . . . l:"' 
w$) is again defined through the linear system of equations in (1.9) and hence can 
be computed recursively by the W-algorithm as described in (1.12) and (1.13). 

As is shown in Lemma 3.3 of the present work, for 1 sufficiently large, the @(xl) 
alternate in sign. 

Since F (x l  j = C;:', $(xi), where we have set $ ( z - ~ )  = Sax"f ( t )dt, we see 

that the only quantities required for the determination of WL') in the modified 
W-transformation are the finite integrals $(x,), -1 5 i < j + n + 1. Thus, the 
only information needed beyond f (t) is the set of first few xl, which in turn is 
obtained from the polynomial $(x). That is to say, in order to apply the modified 
W-transformation, we need only consider the do~ninant polynomial part of the 
phase of oscillations and need not concern ourselves with the modulating factors 
such as h, (x) exp(4'(x)). This offers a significant advantage, as it suggests that we 
could at least attempt to apply the modified W-transformation to all oscillatory 
infinite integrals whose integrands are of the form 

r 

(2.2) f ( X I  = C u j (Qj( x ) ) ~ ,(5)1 

* 

j=1 
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where u, (2) and 8, (x) are exactly as described in Definition 1.2, and the H, (x) 
are arbitrary functions that do not oscillate for x + co. We might even consider 
very slow oscillations (compared to exp(* iO(x))) in H,(x) such as exp( i iR(x) ) ,  
where as x + co, R(x)  - k > 0. Indeed, numerical results suggest that ~ ( l o ~ x ) ~ ,  
the modified W-transformation is as efficient on such integrals as on those with 
integrands in B .  

Since the modified W-transformation is ultimately based on the $(xl) only, it 
can be viewed as a method in which one first integrates f ( t )  between the zeros 
of sin(O(x)) (or cos(O(x))) to obtain the integrals $(xl),  and then accelerates the 
convergence of the (ultimately alternating) infinite series CEPl$(xi),  which con- 
verges to I[f]in case f E B,. In this sense, the modified W-transformation is 
akin to a method first proposed by Longman in [I],  in which one integrates f ( t )  
between its consecutive zeros yl < y2 < . . . , yl > a = yo, to  obtain the inte- 
grals v, = S,",?" f (t)  dt, i = 0 ,1 , . . . , and then accelerates the convergence of the 
alternating infinite series CEOv, by a sequence transformation, e.g., the Euler 
transformation. 

We now apply the modified W-transformation to some infinite integrals with 
integrands in B or as in (2.2). In all cases, the approximations presented are W, (0), 
n = 0 ,1 ,2 , .. . . The computation of the $(xl) is performed accurately by a low- 
order Gaussian quadrature formula, although other numerical quadrature methods 
can be employed. As is seen from the numerical values of F(x i )  given in Tables 
2.1-2.5, the @(xl) are alternating in sign, as expected. 

The computations reported in this section were carried out in double-precision 
arithmetic on an IBM-370 computer. 

Example 2.1. 1, = S ,  x2p Jo(x)  dx. 
Using the original W-transformation, this integral was computed in [6] for p = 1 

and p = 2. As mentioned there, since Jo(x)  = vl(x)  cos x + v2(x) sinx, where 
v1,v2 E A(-'I2), the integrand f (z) = x2pJo(x) is in Bd whenever p > 1/4, so 
that I, is defined in the sense of Abcl sumrnability. Of course, d(x) = x, hence, 
x1 = ( I  + l ) ~ ,= 0 , 1 , .. . . We again computed I, for p = 1 and p1 = 2 for which 
Il = -1 and I2= 9. The results of the computation are given in Table 2.1. 

Ezample 2.2. SF ezw(x)w(x)w'(x)dx = eZW(0)[-I + iw(O)]. 

Whenever w(z) is real and is in A(Q)for some positive integer q,  the integrand is in 
Bd. An integral of exactly this type was computed in [6] by the W-transformation. 
Actually, the integrand is in B d  also when w(x) is complex and lim,,, Im w(x) = 

C ,  a constant. When lim,,, Imw(x) = +m, however, it is in B,. 
In this work we apply the modified W-transformation to  the convergent integrals 

Is= I[fs]= / f3(t) dt, s = 1,2,3,  

where f, (x) = ~ e [ e ~ ~ ~ ( " ) w , ( x ) w ~ ( x ) ] ,and 
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TABLE 2 . 1  

F(x,) and relative error in WAO) for the integrals Il = -1 and 

Iz= 9 of Example 2.1, using the modified W-transformation. 

relative error in relative error in 
w,(O) for I ,  

0.865D+00 
0.371D-01 
0.171D-02 
0.101D-03 
0.443D-05 
0.657D-07 
0.615D-08 
0.470D-09 

and 

F ( x , )  for I 2  

-0.973D+02 
0.824D+03 

-0.27 1D+04 
0.654D+04 

-0.131D+05 
0.234D-1-05 

-0.383D+05 
0.590D+05 

w3(x) = +log(1 &, +w ~ ( x )  x).  

As mentioned above, f, (x),  s = 1 ,2 ,  are in B,, but f3 (x) is not, although SF f3 (t)  dt 
converges. In fact, f3(x) is not even in B. Now if E is chosen to be very close to 
zero, then the integrals Sr fS( t )  dt converge very slowly. Indeed, their convergence 
is not noticeable in practice. 

We note that for f l (x )  we have m = 2 and k = 3, while for f2(x) ,  m = 3 
and k = 2. For f l ( x ) ,  O(x) = x2 + 22, SO that xl = -1 + d m , and for 
f i ( x ) ,  O(x) = (x + 1)3 - 1, SO that xl = -1 + (1 + (1 + l ) ~ ) ' / ~ .The treatment 
of f3(x) is identical to that of f l (x ) .  The reason for this is that the dominant 
polynomial part of the phase of oscillations is #(x) = x2 + 22. We include the 
factors exp(&z/lOlog(l + x) )  in the amplitude, as they oscillate a t  a much slower 
rate than exp(&ig(x)). The results of the computation for E = 10W4 are given in 
Table 2.2. 

Example 2.3. 

00 sin o x  sinh px 

For 0 < p < 7 this integral converges, but its integrand is not in B .  In fact, 
the integrand is of the form (2.2) with O(x) = ox .  Therefore, we could apply the 
modified W-transformation with xl = ( 1  + l ) ~ / c r .  The results of the computation 
for o = 1, @ = 0.1, and 7 = 0.2 are given in Table 2.3. 
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TABLE 2.2 

F ( x n )  and  relative error i n  w L O )  for the  integrals I ,  = -1, s= 1:2: 3, 

of Example  2.2, using the  modified W - t r a n s f o r m a t i o n .  

relauve error m relative enor  in relnilve error m 
n F (x.) f o r / ,  \Vjo1fo r ( ,  F(x,) for l2 iVjo' for I2 F(x.) for 1, \i'jo) for l3 

TABLE 2.3 

F ( z n )  and relative error i n  w L O )  for the  integral of Example 2.3 wi th  

a = 1, /3 = 0.1, and  7 = 0.2, using the  modified W - t r a n s f o r m a t i o n .  

N o t e  that  the  exact value of the  integral i s  0.785398012695720765 and 

that  F ( X ~ ~ )  i s  correct t o  four decimal digits. 

relative error in 
wjO' 

0.296D-02 
0.788D-04 
0.791D-05 
0.501D-05 
0.744D-06 
0.275D-07 
0.221D-07 
0.215D-08 
0.245D-09 
0.840D- 10 
0.618D-11 
0.114D-11 
0.337D- 12 
0.231D- 13 
0.516D-14 
0.221D-14 
0.565D-15 
0.442D- 15 
0.565D- 15 
0.618D-15 
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TABLE 2 . 4  

F ( x n )  and relative error in wLO)for the integral of Example 2.4, 

using the modified W-transformation. The exact value of the 

integral is 0.421024438240708343. 

1 1 / relative error in 1 

Example 2.4. 3 log(1+ x2)51(x) dx = K o ( l ) .  
Because of log(1 + x2)  = 2 logx + O(1) as x + oo,the integrand is not in B .  In 

view of Jl (x) = 71 (x) cos x + qz(x) sin x, where v l ,  72 E A ( - ~ / ~ ) ,however, it is of 
the form (2.2) with 8(x) = x. Thus, xl = (1 + 1)n.  The results of the computation 
are given in Table 2.4. 

Example 2.5. J?(x3 51 (2) -3  COS(W(X))W(X)W'(X)) 0, where w(x) is real and dx = 

contained in A(Q)for some positive integer q with w(0) = 0. 
We note that,  even though both f l (x )  = x3J1(x) and fz(x) = cos(w(x))w(x)w'(x) 

are in Bd,hence in B ,  their linear combination is not. This is so because the y's 
(see Definition 1.2) associated with f l (x )  and f2(x)  are 512 and 29- 1,respectively, 
so that their difference is not an integer. Nevertheless, provided w(x) = x + O ( l )  as 
x --, oo, the integrand is of the form (2.2) with d(x) = x, so that xl = (1+ 1)n. Table 
2.5 gives the results of the computation for the case in which w(x) = x + x/(lO + x). 

We note that the lack of improvement in the results towards the end of Tables 
2.1, 2.2, and 2.5 is strictly due to the finite-precision arithmetic being used and the 
considerable difference between the orders of magnitude of the F(x1) and I[ f ] .  A 
semiquantitative explanation of this is given below. 

We recall that,  if the computed value of F ( x r )  is F(x1) + €1 and the y t j  in 

(1.14) are assumed exact, then the computed value of w$) is wL') + E ,  where 

E = ,=, ~ , , ~ & j + i .(j)~ n + l  Now, as is shown in Lemma 3.8 of this work, for fixed j ,  

C:L: ~ y t i l  W. Thus, E lq+il,where 7 = o(1)11as n < ( 1 + 7 ) m a ~ O ~ i ~ ~ + l  
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TABLE2.5  


F(z,) and w?) for the integral o f  Example 2 . 5 .  The  exact value 


of the integral is zero. 


as n + oo. If m a x ~ < i < , + ~  is of the order of loa, and if it has been IF (X~+~)(  
computed to  machine accuracy, e.g., to p decimal digits, then maxo<,<,+l ( E ~ + ~ (  

is of the order of 10-P+a. If, furthermore, I[f]is of the order of 106 then the 
relative error IE/I[f](will be of the order of I O - P + ~ - ~ ~ ,i.e., the number of correct 
significant figures in the computed value of w;) will be approximately p + P - a .  
Finally, if P < a, as is the case in Examples 2.1, 2.2, and 2.5, then this number 
is less than p. This suggests that,  in case the sequence F (x l ) ,  1 = 0,1 , .  . . , is not 
bounded, which is the case for integrals with integrands in Bd,then after a certain 
point the accuracy of the computed values of w?) will diminish with increasing n. 

Finally, we note that we can also take 

The advantage of this choice is that w:) is now determined by j + n + 2 integrals 
$(xo), . . . ,+ ( x ~ + , + ~ ) ,one less than required by the choice of $(xl) given in (2.1). 
In many cases, however, the new choice (2.1') results in less accuracy for the first few 
W;'), n = 0 ,1 ,2 , .. . . Eventually, however, the convergence rate improves quickly. 

3. Convergence Analysis. As is mentioned in Section 1, a sufficient con- 
dition for the convergence results in (1.18) and (1.19) is (1.16), which in turn is 
satisfied, since (1.17) holds for the original W-transformation. For the modified 
W-transformation, however, (1.16) need not hold in general. Nevertheless, as will 
be shown in Lemmas 3.3 and 3.8, for the modified W-transformation weaker forms 
of (1.16) and (1.17) exist, and these can be used to prove that (1.18) and (1.19) 



258 AVRAM SIDI 

hold in some cases. Without making direct use of these weaker forms of (1.16) and 
(1.17), we shall prove that (1.18) (in fact, a much stronger version of it) and (1.19) 
hold in any case. It is important to note that these weaker forms are sufficient to 
guarantee the stability of the approximations w;'), both for Process I and Process 
11. The main results for Process I and Process I1 are given in Theorem 3.1 and 
Theorem 3.2, respectively. 

Before we begin the analyses of convergence for w:), we give closed-form ex-
pressions for w$) and I[f]-w;'). In addition, we provide a thorough analysis of 
$(x1) and x1 as functions of 1.  Throughout, we assume that $(xl) + 0, 1 = 0,1, . . . . 

LEMMA3 . 1 .  Let E = 1/x, E, = l /x , ,  i = 0,1 , . . . . Def ine  G(E) - F(x),  
p ( [ )  - $(x), and  let D?) a n d  E;) denote  the  divided difference operators over 
the  se ts  o f  points {<', ['+I, . . . ,[g+n+l)  and  {xj, x ,+I , .  . . ,xj+n+l) t  respectively. 
T h e n  

and also 

Proof. The proof of (3.1) has been given in [5]. The proof of (3.2) can be 
accomplished by multiplying (1.9) on both sides by xp, and then using the technique 
by which (3.1) is obtained. 

Note that the W-algorithm described in (1.12) and (1.13) of the present work is 
based on (3.1). Equation (3.2), however, is new. 

LEMMA3.2 .  T h e  error in w?) can  be expressed as  

and also as  

Proof. (3.3) and (3.4) follow from Lemma 3.1 and the linearity of the operators
DL') and EL'). 

LEMMA3.3 .  For the  modified W - t r a n s f o r m a t i o n  a weak f o r m  o f  (1.17), n a m e l y  

(3.5) ( ) ( x + )< 0 1 > L, s o m e  integer L 2 0: 

i s  valid. Consequent ly ,  a weak f o r m  of (1.16), n a m e l y  

holds.  

Proof. By (2.1) and (1.11), 
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Since bl E b1 (2) is of one sign for all sufficiently large x. This, combined with 
the fact that liml,, x1 = oo, implies that there exists a nonnegative integer L for 
which b1 (x,), i 2 L, are all of the same sign. Consequently, the expression inside 
the square brackets on the right-hand side of (3.7) is of the same sign for all 1 > L. 
The result now follows. 

Throughout the remainder of this section, T(1) will denote generically any func-
tion of 1that has a convergent expansion of the form CZoTtlPilmfor all sufficiently 
large 1. Note that since 1 is equal to a polynomial in xl of degree exactly m,  T(1) 
is equal to  a (generic) function ~ ( 2 1 )that has a convergent expansion of the form 
CEOfix,' for all sufficiently large 1 (or xl) .  Similarly, U(1) will denote generically 
any function of 1 that has an asymptotic expansion of the form CEO~ , 1 - ~ / ~as 
1 4  oo. Again, U(1) is equal to a (generic) function u ( z l )  that has an asymptotic 
expansion of the form Czo&xct  as 1 (or xl)  + oo. Needless to say, T ( X )  is in 
A('). All the functions ~ ( x )that we encounter in the remainder of this section can 
also be shown to be in although we omit the proofs. 

LEMMA3 . 4 .  As a function of I, and for all suficiently large 1, 
(a) x1 has the convergent expansion 

(b) x1+1 has the convergent expansion 

where 

(c) for any nonzero p, 

Proof. Since x1 is the largest positive solution of the polynomial equation 6(x) -
( q + 1 ) ~= 0, we can easily see that xl = 0(11/") as 14 co.If we now let E = 1-llm 
and xl = E - ' ~ ( E ) ,  and write g(x) = ~3"~; 'pJxm-J, then the polynomial equation 

above becomes ~3"~; 'p J ~ j y m - J- (1+ ~ E ~ ) T= 0. Note that the coefficient of ym 
is independent of E, and the rest of the coefficients are polynomials in E. Therefore, 
Y(E)  is an analytic function of E at E = 0. Consequently, for all E sufficiently 
close to zero, a convergent expansion of the form Y(E) = CZ06 i ~ iexists. The 
hi can be determined by substituting this expansion for y ( ~ )in the polynomial 
equation and equating the coefficients of each to zero, and solving the resulting 
equations for 60, 61, b2,... , in this order. Actually, 6, = ( ~ / p ~ ) ' / ~> 0, since 
po > 0 by assumption. This proves part (a).  Part (b) follows directly from part 
(a) by replacing 1 by 1+ 1 in (3.8). 

To prove part (c), we first observe that 
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the second equality following from (3.8)-(3.10). Raising both sides of the equality 
in (3.12) to the power p, we obtain 

which in turn results in (3.11). 

L E M M A  3 . 5 .  AS a function of xl, 

where 
00 

(3.15a) w ( ~ )- x o , , / x '  as x - I*., wo > 0, if k 5 m, 
2 ~ 0 

and w E A('), and 

(3.15b) ~ ( x )= e P ( x ) ~ ( x ) ,  lim P (x )  = -I*., if k > m, 
X'M 

where P (x )  is a polynomial in x of degree k - m whose construction is explained 
through (3.18) (3.21) in the proof below. 

Proof. (3.14) follows from (3.7), once we identify 

By Lemma 3.4, after sorne tedious manipulations, it can be shown that 

If k = 0 (< m),  e ~ ~ [ 4 ( x ~ + ~ )- 4(x1)]= 1, thus w(xl) = 2 + 1-11~(1)for this 
case. By the remark preceding Lemma 3.4, (3.15a) now follows. If k > 1, writing 

k-1  
4(x) = C,=ov,xk-', vo < 0, and invoking Lemma 3.4, it follows that 

z=O 

for all sufficiently large 1. Again by the rernark preceding Lemma 3.4, (3.18) can 
be expressed as 

2=0 

for all sufficientlylarge 1. Now if k 5 m, then $(zl+l)  - 4(xl)  = ~ ( x f - " )  = O(1) 
as 1-+ co,hence w(x) is as in (3.15a). If k > m, however, (3.19) can be expressed 
in the form 

where 
k - m - l  M 
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Obviously, P (x )  is a polynomial in x of degree k - rn with leading coefficient neg-
ative, and Q(x) = O(1) as x + co. Combining all the above in (3.16) yields 
(3.15b). 

Note that,  in any case, 1+ w(x) - K as x + co, where K is a fixed positive 
constant. 

3.1. Analysis of Process I. 

L E M M A  3 . 6 .  Using the notation of Lemma 3.1, we have that 

where C1 is a positive constant independent of j. 

Proof. From the theory of divided differences it is known that 

3=0 
where 

Obviously, c ~ , ? c ~ , ~ + ,< 0, 0 5 s 5 n Since also +(x,+3)$(x,+3+l) < 0 for j 2 L 
by Lemma 3.3, we can write 

n+l 
(3.25) E k ) { x n / @ ( x ) } ~= x I ~ ~ , ! I X ; + ~ / W ( X , + ~ ) I ,j 2 L.  

s=o 

Therefore, the asymptotic behavior of ( E ~ ' ) { ~ ~ / $ J ( X ) ) ~is determined as the sum 
of the asymptotic behaviors of the (positive) terms in the summation on the right-
hand side of (3.25). First, 

where en,, are some fixed positive constants. To show (3.26), we observe that 

and that 
3 

(3.28) x,+, - x, = C ( x , + i  - ~ , + ~ - 1 )- ( ~ f i ~ / r n ) j ( ' - ~ ) l ~as j + M, 

2=1 
by Lemma 3.4. Combining (3.27) and (3.28) in (3.24), and invoking the remark 
preceding Lemma 3.4, (3.26) follows. Substituting (3.14) and (3.26) in (3.25), we 
obtain 

Using now the facts that x,+, - 2,  as j + M, bl E A ( O ) ,  and 1+ w(x) - K as 
j +m. where K is a fixed positive constant, (3.29) can be expressed as 

mn-u-y
m a  exp(-$(x,+,)) as j + m .O<z<n+l 

Finally using the fact that lim,,, 4(x)  = -M, (3.22) follows from (3.30). 
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LEMMA3 . 7 .  Denote 

(3.31) N$) = E L ) ) { ~ ~ ( I [ ~ ]- F(x))/$(x)) .  

Then, for some positive constant C2, 


(3.32a) IN;) ( - c . ~ ~as j +a,if k 5 rn, some integer n > n, 


and 


= 3(3.3213) ~ $ 1 O ( ~ ( , ~ + ' ) ( ~ - ~ ) - ' ~ P ( ~ J ) )as j + m, if k > m, 

with P(x)  as given in Lemma 3.5. 

Proof. By (1.11) and (3.14), 

Expanding now the right-hand side of (3.31) according to (3.231, and using (3.33), 
we obtain 

Consider now the case k 5 m. Then by (3.15a), 

It is known that, for any function g(x) that has n + 1 continuous derivatives over 

1x3, xj+n+lI> 

as a consequence of which we also have 

Substituting (3.35) in (3.34), and using (3.37), we obtain 

(3.32a) now follows by employing (3.36) and using the fact that xj+i - x, as 
j4m. Note that n = n if u;+, # 0; otherwise n > n. 

Next, consider the case k > m. Then by (3.15b), 

for all sufficiently large x, since lim,,, P(x)  = -m. Thus, for all sufficiently large 

j, 
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The s = 0 term vanishes by (3.37). The s = 1 term is the dominant one in the rest 
of the summation. Hence (3.40) becomes 

Invoking (3.36). after some lengthy manipulations, (3.32b) can be shown to hold. 
We now state the main convergence result for Process I, in which n is held fixed 

and j 4co. 

THEOREM3 . 1 .  A s  j 4co, the error in w$) satisfies 

where @ i s  a positive constant ,  a n d  ii i s  as  in (3.32a), a n d  

Proof. The proof is achieved by combining Lemmas 3.6 and 3.7 in (3.4). It 
should be mentioned that (3.42a) and (3.42b) are made possible by the fact that 
(3.22) is an asymptotic equivalence. 

Note that the result stated in Theorem 3.1 is better than that stated in (1.18) 
for all k and m. First. when k 5 m,  the right-hand side of (3.42a) is smaller than 
the right-hand side of (1.18) by a factor of x;"~-' e ~ ~ ( $ ( x , + ~ + ~ )- 6(x3))which 
tends to zero as j -+ 00 both for k = 0 and k > 0, since lim,,, $(x) = -00 and 
x,+,+l > x,. Next, when k > m, the right-hand side of (3.4213) '; smaller than the 

(k-2m+l)n+k-mright-hand side of (1.18) by a factor of x, ex~($(x j+n+l )- $(xj) + 
P(x,)) which also tends to zero as j -+ co because of lim,,, $(x) = -00 and 
lim2,, P (x )  = -00. 

Comparing (3.42a) and (3.42b). one might conclude that (3.42b) is inferior to 
(3.42a). since the power of x, in (3.42b) is greater than that in (3.42a) by S = 

(k -m + l ) ( n +  1)> 0for k > m, n > 0.Actually, (3.4213) is as good as (3.42a), the 
loss through x: being compensated for by the factor exp(P(x,)), since, practically 
speaking, exp(P(x)) = e ~ ~ ( d ~ x ~ - ~ )for x -+ oo,do < 0 (see (3.18) and (3.21) in 
the proof of Lemma 3.5). 

Finally, we mention that the result in (3.42a) holds for the original W-transforma-
tion, both when k I m and k > m. The proof of this can be achieved exactly as 
that of (3.42a). 

3.2. Analys i s  of Process 11. The following lemma gives a weak form of (1.16) for 
the modified W-transformation in conjunction with Process 11. 

LEMMA3 . 8 .  f i r  fixed j ,  

(3.43) lim rXb= o for f inite s ,
n i c e  

and  also 

(3.44) 

Proof. We begin by noting that 
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where this time, 

This can be shown by making use of (3.1) and (3.23) and (3.24), with EL') in (3.23) 
and 21 in (3.24) replaced by D:) and El ,  respectively. 

Denote now 6,, = - <j+,l for all p and q (with j fixed), and consider 

Using p(&) = $(xi), Lemma 3.5. and Lemma 3.4, it follows that 

Since limi,, [, = 0, given E > 0, there exists a positive integer M for which 6,, < E 

if p, q > M. Without loss of generality we take E < 63,s+1 and M > s .  Also, since 
E2 decreases monotonically, the sequence 6,,, increases monotonically for i 2 s + 1. 
Combining all this, we have for all n 2 M 

Combining (3.48) and (3.49) in (3.47)) and letting n + m ,  we obtain 

By Lemma 3.3 and the fact that ct,jc;?+, < 0. 0 5 s 5 n, we have that 7;/ are 
of the same sign for 1 2 L - j .  This, combined with (3.50) and (1.15), is sufficient 
to prove (3.43) and 7:j > 0, 1 2 L - j ,  from which (3.44) follows easily. We omit 
the details. 0 

Note that (3.43) is valid for the original W-transformation too, the proof of this 
being exactly as above. We leave the details to the reader. 

THEOREM 3 . 2 .  A s  n + m, the error i n  w$) satisfies 

(3.51) ~ ( n - " ) ,  a n y  p > 0. 

W h e n  f E B,, i .e. ,  I[f]exists in the  ordinary  sense ,  the  s u m m a t i o n  o n  the  right- 
hand side of (3.51) i s  bounded otherwise ,  i t  grows a t  m o s t  like a fixed power o j n .  
Consequent ly ,  i n  a n y  case, (1.19) holds. 

Proof. Consider the error expression given in (3.3). In analogy with the proof of 
Lemma 3.7, this expression can be shown to be equivalent to 
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Now it follows from Lemma 3.5 that the function G(6) = l / ( l+w(E- l ) )  is infinitely 
differentiable for 6 E [0,to].  Let xn(() be the best polynomial approximation of 
degree at most n to G(() on [O, in the Chebyshev norm. Using the fact that 

(3.52) can now be written as 

which, by (3.45), can be expanded as 

n+l 
(3.55) I [ ~ I  -wk' = C rkBg(xJ+y) ( ; (~+s )- r n ( ~ l + S ) ) .  

3=0 

By a standard result in the theory of polynomial approximation, the fact that G(E) 
is infinitely differentiable on [0,Cj] implies that 

(3.56) max IG(E) - x, (E)I = o(n-!-'), as n +cm,any p > 0. 
o l E < E j  

Using (3.56) in (3.55), (3.51) now follows. The rest of the theorem follows by noting 

Lemma 3.5, and (3.44). 
Finally, we note that both for Process I and Process 11, w$) can easily be 

shown to  be a regular summability method, in that all conditions of the Silverman-
Toeplitz theorem [2, pp. 23-27] are satisfied. This implies that if the sequence 
F (x l ) ,  1 = 0,1,2, .  . . , converges, then so do the sequences w$), j = 0,1,2 , .  . . , 
and w)', n = 0, 1 ,2 , .. . . Of course, this approach to the convergence analysis is 
too simplistic and crude, since no information concerning rates of convergence is 
obtained. Furthermore, if the sequence F(x l ) ,  1 = 0 , 1 , 2 , .. . , does not converge, 
which is the case when I[f]is defined in the summability sense but not in the 
ordinary sense, then no information on the convergence of WLJ) is obtained. 

4. Concluding Remarks. In this work we have proposed and analyzed in de-
tail a modification of the W-transformation. The W-transformation was designed 
for efficient evaluation of oscillatory infinite integrals with integrands f (x) in the 
class B and involves some amount of asymptotic analysis of the integrand f (x) for 
x -+ m. In fact, both the phase of oscillations and the amplitude have to be ana-
lyzed so as to extract information that is used as input for the W-transformation. 
The modification that we have proposed for the W-transformation requires asymp-
totic knowledge of only the phase of oscillations and requires no information on 
the amplitude. Furthermore, it requires no extra computational work and is as 
effective as the original W-transformation. It can be implemented very efficiently 
by the W-algorithm. 

As suggested by ample numerical evidence, this modifjcation can also be suc-
cessfully applied to oscillatory infinite integrals with integrands not necessarily in 
B. From this observation one might conclude that the choice of the xl is the crucial 
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ingcedient for the success of both the original and the modified W-transformations. 
I t  is important to  note that for both methods the choice of the xl is also very sim- 
ple, as it involves the determination of the largest positive zero of a polynomial of 
degree m. This problem has immediate solution when m = 1 or 2; and is a simple 
numerical problem for m > 3. 
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