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In this work we devise three classes of recursion relations that can be used for implementing some 
extrapolation methods for vector sequences. One class of recursion relations can be used to implement methods 
like the modified minimai polynomial extrapolation and the topological epsilon algorithm, another allows 
implementation of methods like minimal polynomial and reduced rank extrapolation, while the remaining class 
can be employed in the implementation of the vector E-algorithm. Operation counts and storage requirements 
for these methods are also discussed, and some related techniques for special applications are also presented. 
Included are methods for the rapid evaluation of the vector E-algorithm. 

1. Introduction 

Let &, m,n = 0, 1, 2,. . . , be given complex numbers, and let b,, n = 0, 2, 2,. . . , be an 
arbitrary sequence of either complex 
field of complex numbers. We define 

I PY PY+1 

numbers or vectors in a vector space B defined over the 
G;*m to be the determinant 

m+l 

G;vrn = pnm Pzf . . . 
. . 

Pn 
m+k-1 g:y 

and jL*“( b) to be the determinant 

f;*m(b) = 

b n+l . . . b n+k 

. . . p:+k 
. 
. 
. 

0 1) . 

. (12) . 

When bn are scalars the determinant Qm(b) is also a scalar, and when b,, are vectors then 
/L*m(b) is to be interpreted as the vector C&Oz@~+j that results from expansion of the 
determinant with respect to its first row. Finally, we define G:*m = 1 and fa”*“( b) = b,,. 
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In this work we shall develop recursive algorithms for computing the quantities 

Sk”**(b) =f;*m(b)/f;*m(I), 

where I, = 1 for all n, as well as the quantities 

T,“*“(b) = fk”*m(b)/G;+‘*m. 

(1 3) . 

0 4 . 

Note that since 

S;**(b) = T;**( b)/T,“*“( I), (15) . 
S,“*“(b) may be obtained from T,“*“(b). Therefore, if S[vm(b) is not needed for all values of n 
ad k, T,R-m(b) may be computed recursively and (1.5) used to obtain the desired values of 
S;-m(b). This strategy requires fewer arithmetic operations than direct recursive computation of 
S,“*“(b), as will be discussed later. 

Quantities such as Si*m arise, for example, when one applies extrapolation (or equivalently, 
convergence acceleration) techniques to a vector sequence x,, II= 0, 1, 2,. . . , in B, whose limit 
or antilimit s is being sought, the approximations to s being SIVm(x), and the scalars &’ 
depending on the extrapolation technique being used. Let U, = Ax,, = x,,+~ - x,, n = O,l, . . . . For 
the modified minimal polynomial extrapolation of Sidi, Ford, and Smith (121, the approxima- 
tions to s are S,“*O(x) with &’ = Qm+i( un), where Qi, Qz, . . . , are fixed linear functionals over 
the space B. For the topological epsilon algorithm of Brezinski [2] the approximations to s are 
S:*‘(x) with pr = Q(u,+,,), where Q is a linear functional over the space B. For the minimal 
polynomial extrapolation method of Cabay and Jackson [S] and the reduced rank extrapolation 
method of Eddy [6] and MeSina [8] the approximations to s are S;*“(x) with py = (urn, u,) and 

tr: =(w,,, u,) respectively, where B is an inner product space, ( l ; ) represents the inner 
product, and w, = Au,, (see [9])_ The last three of these methods, as well as the scalar and vector 
epsilon algorithms of Wynn 114, 151, were reviewed and tested numerically by Smith, Ford, and 
Sidi [13]. In addition, the convergence and stability of all four methods were analyzed for a class 
of vector sequences xnr n = 0, 1,2,. . . , that includes, for example, those sequences that arise in 
the iterative solution of linear systems. The relevant results for St*O( x) for the first two methods, 
and for S,“-“(x) for the last two methods, may be found in I9,11,12] (in all cases with k fixed and 
n --) 00). The theoretical results of [9,11,12] were also verified by numerical examples in [11,12]. 
(Of course, one can also consider fixing n and increasing k in all these extrapolation techniques. 
A convergence analysis for such an approach is provided by Sidi [lo] for minimal polynomial 
and reduced rank extrapolation, where the connection between these extrapolation methods and 
well known Krylov subspace methods is also explored. 

From the discussion above it is clear that there are two separate problems of interest: 

(1) Recursive computation of Slvrn( b) and T[vrn( b) when m is fixed. 
(2) Recursive computation of Sl-*( b) and T,“*“(b) when m varies with n as m = n + a fixed 

integer. 

In at least one application the following problem also turns out to be of interest: 

(3) Recursive computation of Scqrn( b) and Tz*m( b) when n is fixed and m varies. 

Problem (1) will be treated in Section 2, where we shall also consider related algorithms 
proposed by Brezinski [4] and Ford and Sidi [7]. Problems (2) and (3) will be treated in Sections 
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3 and 4 respectively. Speci 
will be discussed in Section 5. 

applications covering also the vector E-algorithm of Bretinski 13) 

2. Recursions for fixed m 

Since 111 is kept fixed we shall denote &V(b) and T,“*“(6) by S,“(b) and T,“(b) respective!y. 

Theorem 2.1. S,“(b) and Ti b) satisfy the three-term recursion relations 

SK”(b) = 
&(b) - Q;?;(b) 

1 - ck” (2 1) . 
and 

T,“(b) = T;_*(b) - d;T:-+ll(b), (2 2) . 
where 

c;= s~_l(~m+k-t)/s~tll(~m+k-l) 3 
( 3) . 

and 
d; = Tk”_l(pm+k- )/Tkn_+ll(pm+k-l), (2 4) . 

and pj denotes the sequence pi, n = 0, I, 2,. . . , in the same way that b denotes the sequence 
b,,n=0,1,2 ,... . 

Proof. Applying Sylvester’s determinant identity (see [l, p. 231) to f’*m( b) with respect to the 
first and last rows and first and last columns, we obtain 

( b)G;+lvrn - f;:;pm( b)Givrn. (2 5) . 
Invoking (1.4) and (2.4), we see that (2.2) follows. Next, we replace b in (2.5) by I, and divide 
(2.5) by the new identity r f/ern( I). Finally, we invoke (1.3) and use the fact that GiPrn = 
(- l)k-lf~:-(~m’k-‘) to obtain (2.1). [7 

Note that (2.1) and (2.2) can also be written as 

I %(b) SElf(b) I 

Sk”(b) = I 
g&p+k-1) s;rM(pm+k-l 

)I 

I 1 1 I 
m+k-I) s;fll(pm+k-l 

)I 

and 

T,“(b) = I T;_l(pm+k-l) Tkn_+;(pm+k-l) 

T,n_i’(pm+k-l) 

(2 6) . 

(2 7) . 

Using Theorem 2.1, S[ and Tz can be computed by Algorithm 2.2. Without loss of generality 
we set m = 0. We assume that x,, 0 < n < K, are introduced one by one along with the 
appropriate fiq. p We also assume that whenever X, and/or cl,” are introduced, automatically 
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To”(x) = X, and/or %‘(P’) = P$ Finally, di, T:(b), and S:(b) are to be computed using (X4), 
(2.2), and (1.5) respectively. 

Algorithm 22 (for m = 0). 

ferl:=l toKdo 

begin 
(read xi, p:-‘, &Of&/- 1); 
for p:= 1 to I- 1 do for k:= 1 to p do compute T[-k(p’-‘); 
for k := 1 to I do 

begin 
n := 2 - k; compute di, 
for i := k to I - 1 do compute Ti($); 
compute T/(x); compute Tc( I); compute Sl( X) 

end 
(save all c$, 1~ n + k eg 1) 
(save T,“(P’), k G i 6 1 - 1, T{(x), T,,(I) for n + k = 1, discarding all others) 

end 

The operation count for Algorithm 2.2 can be obtained as follows: To compute the scalars 

T:(p)), k<j<K,O<kfn<K, requires $K3+O(K2) multiplicationsand fK3+O(K2) ad- 
ditions. To compute the vectors Tt( x) and Sz( x), 0 < k < n < K, requires K2 + K scalar-vector 
mr!tiplications and $( K 2 + K) vector additions. Finally, to compute remaining scalar quantities 
dt and Tc( I) is O( K 2, multiplications and divisions, thus being negligible. 

As for storage, observe that the basic computational flow is along the diagonals n + k = 
constant in the n-k plane. Therefore, only the vectors T:(x) and the scalars T[( I) and 
Tc($), k < i <n + k - 1, that lie along a given diagonal need to be saved for the next diagonal 
(and can be overwritten by the new quantities as they are computed). All of the d& however, 
must be saved. Thus, with appropriate programmin g, one needs to save at most f K' + 0( K2) 
scalars and K + 1 vectors. 

We can devise a similar algorithm for computing the S;(x) directly from (2.1) and (2.3). For 
this algorithm SK3 + O( K 2, scalar multiplications. tK3 + o( K 2, scalar additions, K2 + K 
scalar-vector multiplications, and i( K 2 + K) vector additiolrs are required. 

If B is a vector space of finite dimension M, M being very large, it is the vector operations 
that dominate the computations. In this case the two algorithms described above have almost the 
same operation count, namely a total of $( K2 + K) vector operations. If, however, we are not 
interested in all the S;(x), but only in S,“(x), k = 0, 1, 2,. . . , then Algorithm 2.2 (with the 
obvious modification that S;(x) is now computed only for n = 0), is more efficient, its operation 
count now being $( K 2 + 3K) scalar-vector multiplications and i( K 2 + K) vector additions, a 
total of K2 + 2 K vector operations. 

We now prove Theorem 2.1 using a different method that will be of considerable advantage in 
Sections 3 and 4. First we observe that, by construction, S”** 
that 

k (b) and Ti**( b) are normalized so 

s:**(I) = 1 (2 8) . 
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and 

Tkn~m( b) = 6, + ~ Ujb,+j; 
j=l 

(2 9 . 

that is, for a constant sequence b, = C, n = 0, 1, 2,. . . , we have S:*“‘(b) = C, and for an 
arbitrary sequence b,,, n = 0, 1, 2,. . . , the coefficient of b,, in the expansion of T;*m( b) is unity. 
Another implication of (2.8) is that §:*m( b) is a weighted average of bj, n <j < fz + k, that is, 
S[*“( b) = E:=oqjb,+i with E;=oqj = 1, though qj are not necessarily real and/or positive. 
Second we observe that a sort of orthogonality property, namely 

S[*m(r_lj)=T[*m(pi)=O, m<j<m+k-1, (2.10) 

is satisfied. The proof now proceeds as follows: From Sylvester’s determinant identity we infer 
that 

S;(b) = t~Sk”_.~ (b) - PS,“f,‘(b) (2.11) 

and 

T,“(b) = yTkn_,(b) - 6T,“_+,‘(b), (2.12) 

where (Y, /3, y, and S are scalars to be determined. From (2.8) we conclude that Q! - /I = 1, while 
from (2.9) and the fact that Tk”-+1’( b) does not contain b, in its expansion we conclude that y = 1. 
Finally, we observe that the orthogonality relations in (2.10) are automatically satisfied by (2.11) 
and (2.12) for m <j < m + k - 2, while those for j = m + k - 1 lead to p/at = ci and S/y = d[. 
Details are left to the reader. 

The contents of this section are a fuller exposition of ideas sketched out in the recent work of 
Ford and Side [7]. That work treated a generalized extrapolation procedure for scalar sequences, 
and the vector method was only incidental. 

Algorithms related to those described here have previously been proposed by Brezinski, 
namely the RPA and CRPA [4]. The RPA computes a ratio of determinants (the numerator of 
which is a vector ) having a single index k. The CRPA is a slight variation of the RPA in which 
the determinants depend on two indices, n and k. For a given sequence xn, n = 0, 1,2,. . . , rhe 
ratio being computed by CRPA is what we have called T:(x) with 

CL: = (z,’ X”), (2.13) 

where Zi are members of the dual space B* of B, and ( l ,. ) is the bilinear form of duality 
between B and B*. For this choice of & 

Tkn(ccP) = (zp9 Tk”(x)L (2.14) 

and (2.2) and (2.4) (with m = 1) reduce to the CRP_4 recursion relation 

l 

(2.15) 

When p,P is of the form (2.13) it is more efficient to use (2.15) than (2.2) and (2.4), since the 
recursion for the coefficients di is avoided. 
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3. Recursions for variable m 

We now treat the case in which m = n + a fixed integer. Without ambiguity we again denote 

S,“*“(b) and T,“*“(b) by S:(b) and T[( b) respectively. We shall also need the auxiliary 
quantities $‘(b) = S:*m-l( b) and i;,“( b)=T,“9m-‘( b). 

Theorem 3.1. Si( b) and TL( b) can be computed from the recursion relations 

(3 1) . 

and 

T,“(b) = T;_*(b) - d;T;_+ll(b), i;;(b) = T/_,(k) - d=;T;?;( b), 

where 

ck” = s,“_,(j.4m+“-1)/S;_‘l’(tLm+k-1), q = s;_l(~m-l)/$-‘;(jLm-l) 

and 

dk” = T,“_,(/A”+~-‘)/T;?;(~~“+~-‘), d-i = T~“_,(c(“-‘)/T;_+;(~~-~). 

Furthermore, Sz( b) and T:(b) also sati& the four-term ( lozenge) recursion relations 

(3 2) . 

(3 3) . 

(3 4) . 

s;-,(b) S;:;(b) S,“+‘(b) 

SL(Prn) s,“_‘:( 11”) s;+‘( pm) 

Skn,I(b) = 
s;_l(pm+k) s;_+;(pm+k) s;+l(jkm+k) 

1 1 1 

SL(CLrn) SZ(Prn) S,“+‘(P”) 

s;_l(/Jm+k) s;_+;(pm+k) s;+l(jP+k) 

and 

Ti- l(b) 
Tkn_I(Clrn) 

T,:,'(b) 

TZYP”) 

Tk”+‘( b) 

Tkn+YPm) 

T” (b) pi~-l(Pm+k) 

k+l = 

T,~_‘,‘(P~+~) T;+‘(/A~+~) ( 

T&z (cl” ) T;+‘( pm) * 

Tk”_+ll(~~+~) T;+‘(P~+~) 

(3 5) . 

(3 6) . 

Proof. Applying Sylvester’s determinant identity to fTvrn( b) with respect to the first and last rows 
and first and last co!umns, we obtain 

f’qm(b) = pfk”$ b) - uf;?;lm( b), (3 7) . 
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where p and u are scalars. Similarly, applying Sylvester’s identity to f,“*“-‘(b) with respect to 
the first two rows and first and last columns, we obtain 

f n*m-l( b) = 7fknl’;I( b) - uJ”:;*m( b), k (3 8) . 

where T and o are scalars. It follows directb that 

S,“(b) = a& (b) - @:,“<b>, $(b)=cu”S,“_,(b)-p$_+:(b). (3 9) . 

The proof of (3.1) and (3.3) can now be completed by using the normalization and orthogonality 
relations for S[*m( b) given in (2.8) and (2.10) just as in the previous section. 

As for (3.5), we first observe that the normalization condition (2.8) holds by construction, and 
that the orthogonality conditions for S” k+ 1(. 5); namely SF+ i( $) = 0, m <j 6 m + k, are satisfied 
by the quotient on the right-hand side. Hence what remains :o be shown is that Sl+ ,( b) can be 
expressed as a linear combination of Sk”+ * (b), S[( b), and Skn_t i( b), and this can be accomplished 
by manipulating the two equations in (3.9). Details are left to the reader. 

The proof of (3.2), (3.4), and (3.6) can be carried out in a similar manner. q 

Using Theorem 3.1 the Sk” and TF can now be computed by Algorithm 3.2. Without loss of 
generality we set m = n. Again we assume that x,,, 0 < n < K, are introduced one by one along 
with the appropriate p,P, 
C( PP) = cc;. 

and that automatically T{(x) = xn, fz( x) = x,, Tt(pp) = p,“, and 

Algorithm 3.2 (for m = n). 

(read x0); 
fork=1 toKd0 
begin 

(read x1, pi-i, pf,Ogi<l- 1); 
for p :=ltoI-ldofork:=ltopdo 

begin compute TkPVk($-‘); if p > k then compute Z?[-k(yf-l) end; 
for k := 1 to I do 
begin 

n := I - k; compute di; if n > 0 then compute J,; 
compute T[( x); compute Ti( I); compute Si( x); 

if n > 0 then begin compute F[( x); compute FJ( I) end 
end; 
fori:=OtoI-ldofork:=ltoIdo 

begin 
n := I - k; if i < n then compute TF( p,’ j; 
if (i < n - 1 or i = I - 1) and n > 0 then compute Fz( pi) 

end 
(saveall d[ and &lgn+kgZ) 
(save T[(pi), k< i< Z- 1, T{(x), and Tz( I) on the diagonal n + k = I, discarding 
all others] 

end 

(The if statements near the end of Algorithm 3.2 are used to avoid calculating Tl(pi) or 
fc( r_l’) when they are known to vanish.) 
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The operation count for Algorithm 3.2 is as follows: Computing all needed values of 
rz(#), ?“($), T/(Z), di, and Ji, a total of SK3 + 0(K2) scalar quantities, requires SK3 + 
O( K2) multiplications and SK3 + O( K2) additions. Computin,: all needed values of 
T,“(x), f:(x), and S,“(x), a total of $( K2 + K) vector quantities requires i( K2 + K) scalar-vec- 
tor multiplications and K2 + K vector additions. 

As for storage, since the basic computational flow is along the diagonals n + k = constant in 
the n-k plane, none of the quantities f[( PI’), F,i’( I), or F[( x) must be saved. All of the di and 
&! need to be saved, however, and the storage requirements for T/( pi), T[( I) and T[( X) are as 
in Algorithm 2.2. 

4. Recursions for fixed II and varying m 

Let us now treat the case in which n is fixed and m is varying. Without ambiguity we denote 
S,“9m( b) and T,“*m(b) by SF(b) and fT( b) respectively. 

Thewem 4.1. Z@‘(b) and fkY( b) can be computed from the recursion relations 

$“(b) = 
$!!,(b) - 2$~-‘( 6) 

1 - ?F (41) . 

(4 2) . 

where 
t? = ~~_l(pm+~-l)~~~-l(pm+k-l) . 

and 
(4 3) 

27 = ~~,(,“+~-l),~~-‘(~m+~-~). (4 4) . 

Proof. Eliminating fkn_+:*m (b) 
and f[*m-l 

from (3.7) and (3.8), we obtain a relation among f[*n2( b), fL:_T( b), 
(b), which can also be expressed as 

g-(b) = a$!_,(b) -&“-l(b), (4 5) . 

where a and @ are scalars to be determined. The proof of (4.1) and (4.3) can now completed by 
using the normalization and orthogonality relations for S”*” 
in the previous sections. 

k (6) given in (2.8) and (2.10) just as 

The proof of (4.2) and (4.4) can be accomplished in a similar manner. II 

We note that (4.1) and (4.2) can also be expressed as 

I $x4 $‘-‘(6) 

Ztn( b) = I ( 
$_, pm+k-l) $;-l(pm+k-l) 

I 1 1 1 
(4 6) . 

I ( SF-1 pm+k-l) $t-l(pm+k--l 

)I 
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and 

fT-=lUd f‘-l( b) 

fr(b) = 

f;_l(pm+k-l) fp-l(pm+k-l) 

I 1 1 l I 
(4 7) . 

m+k-1) *F-l(pm+k-l) 1 

Using Theorem 4.1 the Sr and fr can be computed by Algorithm 4.2. We note that this 
algorithm works provided both porn, m = 0, 1,. . . , and fz, k = 0, 1,. . . , are given. Although 
forn( b) = T,“*m( b) = b,, are immediately available for all m, fz( b)=T,“*‘( b) have to be computed 
for increasing k and this can be done, for example, by using Algorithm 2.2. (This should be 
compared with Algorithms 2.2 and 3.2, for both of which ro’( b) = bn are the only quantities that 
need to be given.) Without loss of generality, we set n 
fom( X) = x0 and ft( PP) = ~0” automatically. Finally, @, 

= 0. Consequently we assume that 
f,(b) and Sr( b) are to be computed 

using (4.4), (4.2), and (1.5) respectively. 

Algorithm 4.2 (for n = 0). 

(read x0) 
for I:=1 to L do 
begin 

(read x,, &‘, ~3, 0 6 i 6 I - 1, compute f:(x), ft(jP), 1 < k < I- 1); 
for p := 1 to I - 1 do for k := 1 to p - 1 do compute f/‘-“( #-‘); 
for k:= 1 to I- 1 do 
begin 

m := I - k; compute 2’; 
compute fT( x); compute fkrn( 1); compute SC(x) 

end 
(save all~~,2~rn+k~l) 
(save i?‘p( #), fkrn( x), f,(l), m + k = i, discarding all others} 

end 

5. Special applications 

The algorithms developed in Sections 2 and 3 are most effective when used to generate all 
quantities SL( Y) along the diagonals n + k = I in the n-k plane for increasing L In some 
applications not all S;(X) may be needed, and direct use of Algorithms 2.2 and 3.2 for these 
applications may be relatively expensive as far as the number of vector operations is concerned. 
The applications that are of special interest are those in which 

(1) S,N< x), k = 0, 1, 2, . . . ( N fixed) are needed, 

(2) G(x), n = 0, 1, 2,... (K fixed) are needed. 
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5.1. Computing S:(x), k = 0, 1, 2,. . . (IV fixed) 

As mentioned earlier, invoking (1.5) in Algorithm 2.2 for computing Si( x) only when n = N, 
the computation of Sr( x) requires 2 k + 1 vector operations for each k. 

similarly, invoking (1.5) in Algorithm 3.2 for computing S:(x) only when n = N, the 
computation of SF(x) requires 4k + 1 vector operations. But if we recall that S:(X) E SFN( X) 

and T,“(x)=~‘!-~(x) in Algorithm 3.2, we see that the sequence S[( x), k >, 0, is a subsequence 
of SlqN(x), n + k >, 0, in which m = N is fixed. Thus Algorithm 2.2 can be used to generate 
SA;“c x), at the cost of 2k + 1 vector operations for each k. 

In view of what has been said in the previous paragraph, we now give a precise vector 
operation count for the minimal polynomial extrapolation (MPE) and the reduced rank extrapo- 
lation (RRE) for a process that was termed “cycling” in [13]. At each “cycle” the vectors 

x0, +.=.,-++i are generated and the vector S;‘(x) is computed and used as the vector x0 for 
the next cycle. Thus, given the xi, we would like to know the overhead for each cycle. We recall 
that pi=(u , us) for MPE, and /LOP = ( wp, us) for RRE, that Ui = Xi+1 - Xi, and Wi = Ui+l- Ui, 
and that y, t 7-3 = (z, y). To avoid saving the Ui as well as the Xi we will compute pc from inner 
products (xi, Xi). Then one cycle (using Algorithm 2.2 and computing S>‘(X), 1~ k < K) 
requires i( K2 + 3K) scalar-vector multiplications and $( K2 + K) vector additions for both 
MPE and RRE, and L = $( K2 + SK + 4) inner products for MPE and L + 1 inner products for 
RRE. Thus the total number of vector operations for one cycle of MPE or RRE requires 
$( K2 + 3K) + O(l) vector operations. 

If the modified minimal potinomial extrapolation method is used with cycling, then by proper 
choice of the functionals Qi, Q2,. . . , the need for computing inner products can be eliminated 
altogether (see [12]), the rest of the operation count being as for MPE or RRE. 

It is instructive to compare the overhead for cycling MPE and RRE with that for the vector 
epsilon algorithm (WA). VEA is defined and implemented through the recursion relation 

$!!, = &k-l (n+l) + A$‘) 

(bQ),A$)) ’ 
k>,O, n>,O, (5 1) . 

where AC?) = @+*) - E?), with the initial conditions 

,y;=o eF)=x 7 ny na0. (5 2) . 

Thus, the computation of &k (n) for k > 2 requires one scalar-vector multiplication, two vector 
additions, and one inner product. For &in) only one vector addition is required. Now as is 
suggested by experience and as can be justified heuristically, foi & n K, Sz”( X) for MPE or 
RRE and E;$ would have comparable performance. The overhead for &‘i turns out to be 
2 K2 + K scalar-vector multiplications, 4K2 vector additions, and 2 K2 + K inner products, a 
total of gK2 + O(K) vector operations. Thus, it is seen that VEA, in addition to requiring 
2K + 1 vectors Xi (as opposed to K + 2 for MPE or RRE), requires a much larger overhead in 
vector operations. Storage requirements are similar, namely, about 2K vectors for VEA and 
about K vectors for MPE or RRE. 

5.2. Computing S:(x), n = 0, 1,’ 2, . . . (K fixed) 

Invoking (1.5) for computing Si**( x) (m fixed) only for k = K, the computation of Si*m( x) 
requires 2 K + 1 vector operations for Algorithm 2.2. 
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The computation of Si*“( x) by Algorithm 3.2, however, requires 4K + 1 vector operations. 
Employing the relation 

s;**(x) = i q;:yx,+i ( ~oG=l)9 (5 3) . 
i=O 

for computing SF**(x) requires 2k + 1 vector operations for each k, thus it can be used to 
evaluate Si*‘( x), reducing the number of vector operations to 2 K + 1. The coefficients qz,i = $$ 
along with the auxiliary Gi,i E $:~-‘, can be conveniently computed by Theorem 3.1 using the 
recursion relations 

4.i = 

%.i = 

with 

9 

Ogi<k, (5 4) . 
, 

qiqo = 5j”,,o = 1 all n , 

rlnk,i = ~“k,i = 0 for i < 0 or i > k. (5 ) 5 

We leave the proof of (5.4) and (5.5) to the reader. 
Finally, we consider two related applications involving the vector E-algorithm. This algorithm, 

whose details will not be given here, computes recursively the quantities 

I %I gA4 . . . aAn) I 

(Y* Ax,) (Y, A&(n)) --- (Yl &L&4) 
. . . . . . 

(y, A; n+k_l) (y, Ag,(i+k-1)) -a. (Y, Ag&+k-1)) 
Ek(x,) = ’ 

where 

f 
(Y9 A&d) -** (Y9 bsn)) . . . . 

(y, bg,(;+k-1)) . . . (y, Ag,(r;+k-1)) 

(5 6) l 

Ax,=x,+l -x,,, ‘gitn) = giCn + l) - gitn)T 
and y is an arbitrary fixed vector. We first note that x,,, gI( n), . . . , gk( n), the entries of the first 
row of the numerator determinant, are the nth members of k + 1 different vector sequences; 
therefore the top row of Ek( x,+ ,) need not have any vector in common with the top row of 
EA(x,J, which is quite different than the cases treated in this work so far. 

Nevertheless, the sequence Ek( x,), k = 0, 1,. . . , with N fixed, can be efficiently computed 

using Algorithm 2.2. For convenience, we define 

g&) = Xl, h~(l)=g,(l+q+l)-g,(f+q). (5 7) . 
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Then, setting 

b,=8,(N)* p=o, 1,2 ,..., 

4 clp= (y, h;(N)), p.q=O, 1, L.., (5 8) . 

and substituting into (5.6), wc find that 

E&+) = T;(b), (5 9) . 

which may be obtained using Algorithm 2.2 at the cost of 2k vector operations for each k. 
Computing &(x,), m = 0, 1,2,. . ., with K fixed, by Algorithm 2.2 as explained above, 

requires K * + K vector operations for each m. This number can be reduced to 2K by using the 
fact that 

E,(x-,,,) = x,~ + i e;:,g,(m), (5.10) 
I= 1 

for some scalars 8:‘,, 1 < i g k, which f o 11 ows from (5.6). Note that the t!$ do not depend on the 
first row of the numerator determinant in E&,). Letting now 

(y, Ax,.;) = p;+‘, i >, 0, 

(_v, Ag,(m+i)) =py? i>,O, ja 1, 

we see that for an arbitrary sequence b,, b,, b2, . . . , 

T;*“(b) = b. + i t?;‘b,. 
I= 1 

(5.11) 

(5.12) 

Thus Theorem 4.1 can be conveniently used to generate the el:, recursively, the appropriate 
recursions being 

(5.13) 

where 

&& = 1 all m and k 

SF,=O, fori<Oori>k, allmsndk, (5.14) 

and ef,,, 0 < i 6 k, have to be given. Actually t?&, which are related to 7’,‘,‘, can also be 
computed recursively by using Theorem 2.1. We leave the details to the reader. 

6. Conclusions 

In this work we have presented recursive means for evaluating certain vector quantities 
SzVrn( x) and 7”*“*(x) that arise in a number of vector extrapolation methods. Our methods are 
divided into two major categories, one in which the SISrn( x), for fixed m, are computed by a 
three-term recursion relation, and another in which the S,“*“(x), for m = n + a fixed integer, are 
computed essentially by a four-term (lozenge) recursion relation. The methods in the former 
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category can be used to implement the modified minimal polynomial extrapolation technique 
and the topological epsilon algorithm, and are related to, but not identical to, others that have 
been proposed in recent literature. Those in the latter category, however, are, to the best of our 
knowledge, new, and permit recursive evaluation of the extrapolants that arise in, for example, 
minimal polynomial and reduced rank extrapolation techniques. We have also devised recursion 
relations for the case in which n is being held fixed while m is increasing, and have used them in 
the implementation of the vector E-algorithm. 
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