Applied Numerical Mathematics 4 (1988) 477-489 477
North-Holland

RECURSIVE ALGORITHMS FOR VECTOR EXTRAPOLATION METHODS

William F. FORD
Computer Services Division, NASA Lewis Research Center, Cieveland, OH 44135, U.S.A.

Avram SIDI

Computer Science Department, Technion, Israel Institute of Technology, Haifa 32000, Israel

In this work we devise three classes of recursion relations that can be used for implementing some
extrapolation methods for vector sequences. One class of recursion relations can be used to implement methods
like the modified minimai polynomial extrapolation and the topological epsilon algorithm, another allows
implementation of methods like minimal polynomial and reduced rank extrapolation, while the remaining class
can be employed in the implementation of the vector E-algorithm. Operation counts and storage requirements
for these methods are also discussed, and some related techniques for special applications are also presented.
Included are methods for the rapid evaluation of the vector E-algorithm.

1. Introduction

Let p), m,n=0,1,2,..., be given complex numbers, and let b,, n=0,1,2,..., be an
arbitrary sequence of either complex numbers or vectors in a vector space B defined over the
field of complex numbers. We define Gi'™ to be the determinant

m m m
By Pps1 s Bntr-1
m+1 m+1 m+1
nm K Bnsa cee Bavre—
Gk‘ = - . - (1'1)
m+k—1 m+k—1 m+k—1
Kn Bpia CEEI |

and f;"™(b) to be the determinant

bn bn+] bn+k
m m m
,:l.m(b) = "'.n "'n.+l cee p’n‘+k (l 2)
T T SR T

When b, are scalars the determinant f;"™(b) is also a scalar, and when b, are vectors then
fi™(b) is to be interpreted as the vector Z'J;Ovjb,, 4+; that results from expansion of the
determinant with respect to its first row. Finally, we define G§*" =1 and f5""(b) =b,.

0168-9274 /88 /$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

478 W.F. Ford, A. Sidi / Recursive aigorithms

In this work we shall develop recursive algorithms for computing the quantities

Se™(b) =f&m(b) /£, (1.3)
where I, =1 for all n, as well as the quantities

Tem(b) = fim(b) /G ™. (14)
Note that since

Se™(b) = T"(b) /T (1), (1.5)

S™(b) may be obtained from T;"(b). Therefore, if S;™(b) is not needed for all values of n
and k, T/™(b) may be computed recursively and (1.5) used to obtain the desired values of
S7™(b). This strategy requires fewer arithmetic operations than direct recursive computation of
Sp™(b), as will be discussed later.

Quantities such as S*™ arise, for example, when one applies extrapolation (or equivalently,
convergence acceleration) techniques to a vector sequence x,, n=0, 1, 2,..., in B, whose limit
or antilimit s is being sought, the approximations to s being S;™(x), and the scalars p)
depending on the extrapolation technique being used. Let u,=Ax,=x,,, — x,, n=0,1,.... For
the modified minimal polynomial extrapolation of Sidi, Ford, and Smith [12], the approxima-
tions to s are S%(x) with p™ = Q,,.(u,), where Q,, Q,,..., are fixed linear functionals over
the space B. For the topological epsilon algorithm of Brezinski [2] the approximations to s are
Sr%(x) with p = Q(u,,,,), where Q is a linear functional over the space B. For the minimal
polynomial extrapolation method of Cabay and Jackson [5] and the reduced rank extrapolation
method of Eddy [6] and MeSina [8] the approximations to s are S;""(x) with p) = (u,,, u,) and
py =(w,,, u,) respectively, where B is an inner product space, (-,-) represents the inner
product, and w, = Au, (see [9]). The last three of these methods, as well as the scalar and vector
epsilon algorithms of Wynn [14, 15], were reviewed and tested numerically by Smith, Ford, and
Sidi [13]. In addition, the convergence and stability of all four methods were analyzed for a class
of vector sequences x,, n=0, 1, 2,..., that includes, for example, those sequences that arise in
the iterative solution of linear systems. The relevant results for S7%(x) for the first two methods,
and for S;"(x) for the last two methods, may be found in [9,11,12] (in all cases with k fixed and
n — oo). The theoretical results of [9,11,12] were also verified by numerical examples in [11,12).
(Of course, one can also consider fixing » and increasing k in all these extrapolation techniques.
A convergence analysis for such an approach is provided by Sidi {10] for minimal polynomial
and reduced rank extrapolation, where the connection between these extrapolation methods and
well known Krylov subspace methods is also explored.

From the discussion above it is clear that there are two separate problems of interest:

(1) Recursive computation of S;""(b) and T,™(b) when m is fixed.

(2) Recursive computation of S;*™(b) and T;"™(b) when m varies with n as m = n + a fixed
integer.

In at least one application the following problem also turns out to be of interest:
(3) Recursive computation of S7"(b) and T;™(b) when n is fixed and m varies.

Problem (1) will be treated in Section 2, where we shall also consider related algorithms
proposed by Brezinski [4] and Ford and Sidi {7). Problems (2) and (3) will be treated in Sections

W.F. Ford, A. Sidi / Recursive algorithms 479

3 and 4 respectively. Special applications covering also the vector E-algorithm of Brezinski [3]
will be discussed in Section 5.

2. Recursions for fixed m
Since m is kept fixed we shall denote S;*"(b) and T™(b) by S}(b) and T}'(b) respectively.

Theorem 2.1. S;(b) and T;'(b) satisfy the three-term recursion relations
Sk-1(b) — ciSp*i(b)

Sk(b) = 1 Ck (2‘1)
and

T (b) = Ty_\(b) — di T (b), (2.2)
where

e =Sp_ (g NS (pmrr) (°.3)
and

di =T (p** 1) /T (), (2.4)

and p’ denotes the sequence pl, n=0, 1,2,..., in the same way that b denotes the sequence
b,n=012,....

Proof. Applying Sylvester’s determinant identity (see [1, p. 23]) to f™(b) with respect to the
first and last rows and first and last columns, we obtain
fEM(BYGRIT™ = iR (B)GR 1™ = fr (b)) GRom. (25)

Invoking (1.4) and (2.4), we see that (2.2) follows. Next, we replace b in (2.5) by 7, and divide
(2.5) by the new identity for f;*™(7I). Finally, we invoke (1.3) and use the fact that G;'" =
(= Dk-1fmmum+k=1y 1o obtain (2.1). O

Note that (2.1) and (2.2) can also be written as

Sk-1(b) Si21(b)
n_ m+k-1 Sn+1 m+k—1
sn(b) = k 1(!‘1) (1) (2.6)
Sioa(w™) s (et
and
T, (b) 7.4 (b)
T" . m+k—1 Tn-H m+k-1
oy < LT TR o)

Tn+l(#m+k l)

Using Theorem 2.1, S and 7;" can be computed by Algorithm 2.2. Without loss of gex}erality
we set m=0. We assume that x,,0<n<K, are introduced one by one along wntl} tl_le
appropriate p2. We also assume that whenever x, and/or p} are introduced, automaticaliy

480 W.F. Ford, A. Sidi / Recursive algorithms

Ty (x) = x,, and/or Tg'(p?) = pf. Finally, df, T;'(b), and S;(b) are to be computed using (2.4),
(2.2), and (1.5) respectively.

Algorithm 2.2 (for m = 0).

{read x,};
for/:=1to K do
begin
{read x,, pi™!, W), 0<i<I—1);
for p:==1to /—1do for k=1 to p do compute T/ *(u'"1);
fork:==1to/do
begin
n:=[— k; compute d;,
for i:==k to ! — 1 do compute T;7(p');
compute 7;'(x); compute 7,;'(I); compute S;(x)
end
{save all d, 1 <n+k<l}
{save T (p'), k <i<l—1, T(x), T}(I) for n + k =1, discarding all others}
end

The operation count for Algorithm 2.2 can be obtained as follows: To ccmpute the scalars
i ('), k<j<K,0<k<n<K, requires }K> + O(K?) multiplications and 1K> + O(K?) ad-
ditions. To compute the vectors T;'(x) and S;(x), 0 < k < n < K, requires K2 + K scalar-vector
multiplications and 3(K? + K) vector additions. Finally, to compute remaining scalar quantities
d; and T;(1) is O(K?) multiplications and divisions, thus being negligible.

As for storage, observe that the basic computational flow is along the diagonals n + k =
constant in the n-k plane. Therefore, only the vectors 7;'(x) and the scalars T(I) and
T{ ('), k <i<n+k—1, that lie along a given diagenal need to be saved for the next diagonal
(and can be overwritten by the new quantities as they are computed). All of the dJ, however,
must be saved. Thus, with appropriate programming, one needs to save at most 3K° + O(K?)
scalars and K + 1 vectors.

We can devise a similar algorithm for computing the S(x) directly from (2.1) and (2.3). For
this algorithm 3K+ O(K?) scalar multiplications. X3+ O(K?) scalar additions, K2+ K
scalar-vector multiplications, and (K2 + K) vcetor additious are required.

If B is a vector space of finite dimension M, M being very large, it is the vector operations
that dominate the computations. In this case the two algorithms described above have almost the
same operation count, namely a total of 3(K?+ K) vector operations. If, however, we are not
interested in all the S{(x), but only in SP(x), k=0, 1,2,..., then Algorithm 2.2 (with the
obvious modification that S7(x) is now computed only for n = 0), is more efficient, its operation
count now being }(K?+ 3K) scalar-vector multiplications and (K2 + K) vector additions, a
total of K2+ 2K vector operations.

We now prove Theorem 2.1 using a different method that will be of considerable advantage in

Sections 3 and 4. First we observe that, by construction, S}*"(b) and T.;-™(b) are normalized so
that

Sem(I1) =1 (2.8)

W.F. Ford, A. Sidi / Recursive algorithms 481

and
k
T;""(b)=b,+ Y, 0;b,.;; (2.9)
j=1

that is, for a constant sequence b,=C, n=0,1,2,..., we have S"(b)=C, and for an
arbitrary sequence b,, n=0, 1, 2,..., the coefficient of b, in the expansion of T;™(b) is unity.
Another implication of (2.8) is that S;"™(b) is a weighted average of b;, n<j<n+k, that is,
Sy m(b) = Ef,,on jbns; With Z§=on ;=1, though %; are not necessarily real and/or positive.
Second we observe that a sort of orthogonality property, namely

Spm™(p!)=TP"(0/)=0, m<j<m+k-—1, (2.10)

is satisfied. The proof now proceeds as follows: From Sylvester’s determinant identity we infer
that

St (b) = aS;_,(b) — BS;*{(b) (2.11)
and

T, (b) = yT;_1(b) — 8T (b), (2.12)

where a, B, v, and § are scalars to be determined. From (2.8) we conclude that a — 8 = 1, while
from (2.9) and the fact that T,"*}'(») does not contain b, in its expansion we conclude that y = 1.
Finally, we observe that the orthogonality relations in (2.10) are automatically satisfied by (2.11)
and (2.12) for m <j<m+ k — 2, while those for j=m+ k —1 lead to 8/a= ¢} and 8/y=d}.
Details are left to the reader.

The contents of this section are a fuller exposition of ideas sketched out in the recent work of
Ford and Sid:1 [7]. That work treated a generalized extrapolation procedure for scalar sequences,
and the vector method was only incidental.

Algorithms related to those described here have previously been proposed by Brezinski,
namely the RPA and CRPA [4]. The RPA computes a ratio of determinants (the numerator of
which is a vector) having a single index k. The CRPA is a slight variation of the RPA in which
the determinants depend on two indices, » and k. For a given sequence x,, n=0, 1, 2,..., the
ratio being computed by CRPA is what we have called 7;'(x) with

ph=(z,, x,), (2.13)

where z;, are members of the dual space B* of B, and (-,-) is the bilinear form of duality
between B and B*. For this choice of p?,

T (r?) = (z,, T{(x)), (2.14)
and (2.2) and (2.4) (with m = 1) reduce to the CRPA recursion relation

n n <Z > Tkn-l(x)> n+1
T (x) = Ty (x) - (z:, ' 1(x)) T4 (x). (2.15)

When p? is of the form (2.13) it is more efficient to use (2.15) than (2.2) and (2.4), since the
recursion for the coefficienis dj; is avoided.

482 W.F. Ford, A. Sidi / Recursive algorithms

3. Recursions for variable m

We now treat the case in which m = n + a fixed integer. Without ambiguity we again denote
S»m(b) and T;™(b) by S;(b) and T;'(b) respectively. We shall also need the auxiliary

quantities S7(b) = S{*™~Y(b) and T{(b)=T;"™"'(b).

Theorem 3.1. S (b) and T;(b) can be computed from the recursion relations
Si-a1(d) - "“(b)

sp(p) = 2=

-~ S"_ b _~nsn:-] b

$t(b) = S=l8) = 1(6)
and

T (b) =T _,(b) - d:f:fll(b), fkn(b) =T () __Jz n+l(b)
where

ci=Sta(wm*h)/8 "+](Fm+k_l)s G=Sea(wm1)/S "”(p.)
and

dk'_Tk 1("m+k 1)/ n+l(m+k—l), dk Tk 1(".m l)/ n+l(m— l).

Furthermore, S;(b) and T;)(b) also satisfy the four-term (lozenge) recursion relations

Si-1(b) Si21(b) Si*'(b)
Si-(p™) S5 S (em)
) S,:l—l(pm-(‘-k) n+l(pm+k) Sn+l(pm+k)
Si+1(b) = 1 1 1
Si-(k™) ST ST (e™)
S;:_l(ﬂm“() n+l("'m+k) Sl:l+l(”'m+k)
and
T¢_1(b) T3 (b) T (b)
W™ T (™)
oy < (TR0 TG 1)

AW 1)
T[:'jll(ﬂm+k) T[:‘+1(I-'-m+k)

(3.1)

(32)

(3.3)

(3.4)

(3.5)

(3.6)

Proof. Applying Sylvester’s determinant identity to f{™(b) with respect to the first and last rows

and first and last columns, we obtain

x"(b) = pfe1(b) — of 2™ (b),

(3.7)

W.F. Ford, A. Sidi / Recursive algorithms 483

where p and ¢ are scalars. Similarly, applying Sylvester’s identity to £~ '(b) with respect to
the first two rows and first and last columns, we obtain

U (b) = () — wfi ™ (b), (3.8)
where 7 and w are scalars. It follows direcil; that
Sk(b) = aS;_ 1(b) BS, n”(b) Sk(b) asy_ 1(b) B "+1(b) (3-9)

The proof of (3.1) and (3.3) can now be completed by using the normalization and orthogonality
relations for S;"™(b) given in (2.8) and (2.10) just as in the previous section.

As for (3.5), we first observe that the normalization condition (2.8) holds by construction, and
that the orthogonality conditions for S7, (D), namely S}, ,(p’/) =0, m <j < m + k, are satisfied
by the quotient on the right-hand side. Hence what remains :o be shown is that S}, ,(b) can be
expressed as a linear combination of S;y*'(b), Sf(b), and S;3}'(b), and this can be accomplished
by manipulating the two equations in (3.9). Details are left to the reader.

The proof of (3.2), (3.4), and (3.6) can be carried out in a similar manner. O

Using Theorem 3.1 the S and 7' can now be computed by Algorithm 3.2. Without loss of
generality we set m = n. Agam we assume that x,, 0 < n < K, are introduced one by one along
with the appropnatc p?, and that automatically Ty'(x) = x,, T(x) = x,,, T¢(n?) = p?, and

I3 (p?) = pl.

Algorithm 3.2 {for m = n).
{read x,};
for /:==1 to K do
begin
{read x,, p!™, pi, 0<i<I—1);
for p==1to/—1dofor k:=1to p do
begin compute 77~ *(u'~1); if p > k then compute 77 *(u'~') end;
for k:==1to/do
begin .
n:=[—k; compute d;; if n > 0 then compute d;;
compute 7;'(x); compute 7 (I); compute Sk(x)
if n > 0 then begin compute 7;"(x); compute 7;"(I) end
end;
for i==0to/—1dofor k:=1to !/ do
begin
n:=[—k; if i <n then compute 7,'(1');
if i<n—1ori=1I—1)and n> 0 then compute 7"(n')
end -
{save all d; and df,1<n+k<l}
{save T (1), k <i<l—1, T{(x), and T(I) on the diagonal n + k =/, discarding
all others}
end

(The if statements near the end of Algorithm 3.2 are used to avoid calculating T,'(p') or
T"(¢') when they are known to vanish.)

484 W.F. Ford, A. Sidi / Recursive algorithms

The operation count for Algorithm 3.2 is as follows: Computing all needed values of
T (), TA(W), TA(I), df, and d7, a total of 3K*+ O(K?) scalar quantities, requires 3K+
O(K?) multiplications and 3K® + O(K?) additions. Computinz all needed values of
T (x), T7(x), and S7(x), a total of 3(K? + K) vector quantities requires 3(K2 + K) scalar-vec-
tor multiplications and K2+ K vector additions.

As for storage, since the basic computational flow is along the diagonals » + k = constant in
the n-k plane, none of the quantities f,f'(u'), TA(I), or T (x) must be saved. All of the dj and
d? need to be saved, however, and the storage requirements for T}*(g'), T;°(I) and T;*(x) are as
in Algorithm 2.2.

4. Recursions for fixed n and varying m

Let us now treat the case in which n is fixed and m is varying. Without ambiguity we denote
Sz™(b) and T,"™"(b) by S"(b) and T,(b) respectively.

Theecrem 4.1. §,:"(b) and f',j"(b) can be computed from the recursion relations
Seea(b) — &7Si~(b)

S7(b) = =& (4.1)
and . A

. T (b)) —drTrY(b

fin(p) = ZorlB) di T (B) 42)

1 _dk

where A A

& = Sia (W) /S k) (43)
and) A N

di =T, () /1w k). (4.4)

Proof. Eliminating f"*"™(b) from (3.7) and (3.8), we obtain a relation among f;""(b), f-"(b),
and f*™~'(b), which can also be expressed as
S7'(b) = aS7L1(b) — 8BS (b), (4.5)

where a and B are scalars to be determined. The proof of (4.1) and (4.3) can now completed by
using the normalization and orthogonality relations for Si™(b) given in (2.8) and (2.10) just as
in the previous sections.

The proof of (4.2) and (4.4) can be accomplished in a similar manner. O

We note that (4.1) and (4.2) can also be expressed as

Sv1(b) Sr='(b)
X S"Zn_l(”'m+k—l) S‘I:n—l(”m+k-—‘;)
S¢'(b) = 1 I (4.6)
§:'-1(#m+k_l) §Ln—l(”m+k-~l)

W.F. Ford, A. Sidi / Recursive algorithms 485

and
T, (b) T~'(b)
. kam_l(ﬂm+k—l) fkm—l(“m-#k—l)
Ty (b) = n] : (4.7)
f-,:n_l("'m+k—l) fkm—l(p‘m-&-k—])

Using Theorem 4.1 the .§,:" and f,:" can be computed by Algorithm 4.2. We note that this
algorithm works provided both 7", m=0,1,..., and f‘k",‘ k=0,1,..., are given. Although
T"(b) = Ty"™(b) = b, are immediately available for all m, T,2(b)=T;"°(b) have to be computed
for increasing k and this can be done, for example, by using Algorithm 2.2. (This should be
compared with Algorithms 2.2 and 3.2, for both of which Ty'(b) = b, are the only quantities that
need to be given.) Without loss of generality, we set n=0. Conseguently we assume that
fo"'(x) = x, and To"(p?) = pg automatically. Finally, dj, T{"(b) and S;"(b) are to be computed
using (4.4), (4.2), and (1.5) respectively.

Algorithm 4.2 (for n = 0).

{read x,}
for/:==1to L do
begin
{read x,, p!~", i, 0 <i<!—1, compute T2(x), T(W ™), 1<k <i-1});
for p:=1to /-1 do for k:=1 to p— 1 do compute f',{’“"(u’"‘);
fork:=1to/—1do
begin .
m =l — k; compute d;; A)
compute f‘,:"(x); compute 7,(I); compute S;'(x)
end .
{save all d;’, 2 <m+ k<l}
{save T"(u), T(x), T(I), m+ k =1, discarding all others}
end

5. Special applications

The algorithms developed in Sections 2 and 3 are most effective when used to generate all
quantities S;(x) along the diagonals n+ k=1 in the n-k plane for increasing /. In some
applications not all S/(x) may be needed, and dirzct use of Algorithms 2.2 and 3.2 for these
applications may be relatively expensive as far as the number of vector operations is concerned.
The applications that are of special interesi are those in which

1) SM(x), k=0,1,2,... (N fixed) are needed,
(2) S(x), n=0,1,2,... (K fixed) are needed.

486 W.F. Ford, A. Sidi / Recursive algorithms

5.1. Computing SX(x), k=0, 1, 2,... (N fixed)

As mentioned earlier, invoking (1.5) in Algorithm 2.2 for computing S;(x) only when n= N,
the computation of S;'(x) requires 2k + 1 vector operations for each .

Similarly, invoking (1.5) in Algorithm 3.2 for computing S;(x) only when n=N, the
computation of SY(x) requires 4k + 1 vector operations. But if we recall that S{'(x) = SNN(x)
and T¥(x)=TY¥(x) in Algorithm 3.2, we see that the sequence S;(x), k >0, is a subsequence
of SM(x), n+ k>0, in which m=N is fixed. Thus Algorithm 2.2 can be used to generate
S7(x), at the cost of 2k + 1 vector operations for each k.

In view of what has been said in the previous paragraph, we now give a precise vector
operation count for the minimal polynomial extrapolation (MPE) and the reduced rank extrapo-
lation (RRE) for a process that was termed “cycling” in [13]. At each “cycle” the vectors
Xg» X3,-+-» Xg4; are generated and the vector Sg(x) is computed and used as the vector x, for
the next cycle. Thus, given the x,, we would like to know the overhead for each cycle. We recail
that p? = (u,, u,) for MPE, and pf =(w,, u,) for RRE, that u;=x,,, —x;, and w,= u,,, — u,,
and that (y, z)=(z, y). To avoid saving the u; as well as the x; we will compute g/ from inner
products (x,, x,). Then one cycle (using Algorithm 2.2 and computing S{°(x),1<k<K)
requires (K2 + 3K) scalar-vector multiplications and }(K 2+ K) vector additions for both
MPE and RRE, and L = }{K?2+ 5K + 4) inner products for MPE and L + 1 inner products for
RRE. Thus the total number of vector operations for one cycle of MPE or RRE requires
3(K?+ 3K) + O(1) vector operations.

If the modified minimal polyaomial extrapolation method is used with cycling, then by proper
choice of the functionals Q,, Q,,..., the need for computing inner products can be eliminated
altogether (see [12]), the rest of the operation count being as for MPE or RRE.

It is instructive to compare the overhead for cycling MPE and RRE with that for the vector
epsilon algorithm (VEA). VEA is defined and implemented through the recursion relation
(Ael,Ae™)
where Ae{™ =¢{"*D — ¢{™, with the initial conditions

eM=0, &'=x,, n>0. (5.2)

(n) — (a+])
Er+1 =

k>0, n>0, (5.1)

Thus, the computation of & for k > 2 requires one scalar-vector multiplication, two vector
additions, and one inner product. For ™ only one vector addition is required. Now as is
suggested by experience and as can be justified heuristically, fur &' 'n K, SR%(x) for MPE or
RRE and ¢f} would have comparable performance. The overhead for &) turns out to be
2K?+ K scalar-vector multiplications, 4K 2 vector additions, and 2K 2+ K inner products, a
total of 8K%+ O(K) vector operations. Thus, it is seen that VEA, in addition to requiring
2K + 1 vectors x; (as opposed to K + 2 for MPE or RRE), requires a much larger overhead in
vector operations. Storage requirements are similar, namely, about 2K vectors for VEA and

about K vectors for MPE or RRE.
3.2. Computing Sg(x), n=0, 1, 2,... (K fixed)

Invoking (1.5) for computing S;"™(x) (m fixed) only for k = K, the computation of S;"™(x)
requires 2K + 1 vector operations for Algorithm 2.2.

W.F. Ford, A. Sidi / Recursive algorithms 487

The computation of Sg"(x) by Algorithm 3.2, however, requires 4K + 1 vector operations.
Employing the relation

k
Sim(x) = X ml X
i=0

k
Yonpr= 1), (5.3)
i=0

for computing S;"™(x) requires 2k + 1 vector operations for each k, thus it can be used to
evaluate Sg'"(x), reducing the number of vector operations to 2K + 1. The coefficients n} ; = n}7,
along with the auxiliary 7}, =%}:7"", can be conveniently computed by Theorem 3.1 using the
recursion relations

n "l'/:—l.i—cﬁlzt}.i—l

Nki = n ’
1 - Ck .
n _ xn~n+1 0<i<k, (54)

o= Ni-1,i ~ CkMk-1.i-1

k.i 1- E,’: ’

with

Moo =Too=1 alln,
i, =W, =0 fori<Oori>k. (5.5)

We leave the proof of (5.4) and (5.5) to the reader.
Finally, we consider two related applications involving the vector E-algorithm. This algorithm,
whose details will not be given here, computes recursively the quantities

X, g (n) g(n)
(y. Ax,) (y, Agy(n)) (y. Agi(n))
(3, Axneis) (s Bgi(n+k=1) ... (y, Agn+k—1)
E.(x,)= : (5.6)
(v, Agy(n)) (y, Agi(n))
(y, Agi(n+k=1)) ... (v, Ag(n+k—1))

where
Ax,=Xx,,1— X, Ag,(n)=g,(n+1)-gi(n),

and y is an arbitrary fixed vector. We first note that x,,, g,(n),..., g(n), the entries of the first
row of the numerator determinant, are the nth members of k + 1 different vector sequences;
therefore the top row of E,(x,.,) need not have any vector in common with the top row of
E,(x,), which is quite different than the cases treated in this work so far.

Nevertheless, the sequence E,(xy), k=0, 1,..., with N fixed, can be efficiently computed
using Algorithm 2.2. For convenience, we define

gl =x, hi(l)=g,(I+q+1)—g,(I+q). (5.7)

488 W.F. Ford, A. Sidi / Recursive algorithms

Then, setting

b,=g,(N). p=0.1.2,....

g _ s, 24NN na=0 19 (5§ R)

Pp"'\)’, "’,\")]s VP-4 Uy Ly &L50ecey \J0)
and substituting into (5.6}, we find that

E (xy)=T{(b), (5.9)

which may be obtained using Algorithm 2.2 at the cost of 2k vector operations for each k.

siaazaRhe wedaza K4 -‘av--- Lo QL - 2 L (> 1 19 | 14V for each

Computing Ex(x,,), m= 0 1,2,..., with K fixed, by Algorithm 22 as explained above,
requires K2+ K vector operations for each m. This number can be reduced to 2K by using the
fact that

k
Foll B v Y am £ an)
(X)) =X, + L rigi(m), (5.10)
far cama cealare &AM 1 o7 < F which fallawe fram 18 £) Natoe that tha &M da nat danand Aan tha
1UL JUILLIV dhvaidlo Uk L) LT l\, WILGIL ZULIUVU WO 11 Vi1 ‘J.U’a ANULY J1IAL LI Uk.' WV 11V ubl.l\vllu Wil L1
first row of the numerator determirant in E;(x,,). Letting now
(y, Ax,,.,)=ul" i>0
s m+i A = .
mei . (5.11)
(V~Ag,(m+l)) R, i20, j=1,
we see that for an arbltran sequence by, by, b,,...,
O.m Am
T)™(b) = b, + Z 6" b,. (5.12)

Thus Theorem 4.1 can be conveniently used to generate the 6;", recursively, the appropriate
recursions being

AN amam—1
gm o= k10T GOk Deicl (5 12)
VEa Am) NNy \J-1J)
1-¢;
where
6y,=1 all mand k
am _n far i N ne s L all .o aed L. £ 1A\
Ui~ Yy UiV~ n, daurmana n, \v.194)
and 67,,0<i<k, have to be g‘ven Actually 6y ;» which are related to T,?°, can also be

PR [S T 7y

compuica rc&.urbnvt:ly Dy usmg Theorem 2.1. We leave the details to the reader.

6. Conclusions

ln. this work we have presented recursive means for evaluating certain vector quantities
K (X) and 7;”"(x) that arise in a number of vector \.xtrapolauon methods. Our methods are

ma & __

ividea into two major categories, one in which the SgM(x), for fixed m, are computed by a
e

ﬂ’\ ep.torm rernrcinn ralatian and amnthar 1o sxrhinal ¢lan OIS o\ £ae o 4 o £00 X S a
SRAESATINIIL AVLULSIVAL IVtauull, alil antUuict 1 Wil i€ 5,7 (X), 10r m=n -+ a 1ix ced mu:gcr, aic
computed essentlall bv a four-ter (1n79nap\ recursion relation. The methads in the faormer

ity o vuv--cv’ awr SRR WANSAA A WwWitAaRAiW/AAe A AA%W AREWRLIANJNEVD 11k ViAW 2V illwl

W.F. Ford, A. Sidi / Recursive algorithms 489

category can be used to implement the modified minimal polynomial extrapolation technique
and the topological epsilon algorithm, and are related to, but not identical to, others that have
been proposed in recent literature. Those in the latter category, however, are, to the best of our
knowledge, new, and permit recursive evaluation of the extrapolants that arise in, for example,
minimal polynomial and reduced rank extrapolation techniques. We have also devised recursion
relations for the case in which » is being held fixed while m is increasing, and have used them in
the implementation of the vector E-algorithm.

References

[1] G.A. Baker, Jr. and P.R. Graves-Morris, Padé Approximants, Part I: Basic Theory, Encyclopedia cf Mathematics
and Its Applications 13 (Addison-Wesley, London, 1981).
[2] C. Brezinski, Accélération de la Convergence en Analyse Numérique, Lecture Notes in Mathematics 584 (Springer,
Berlin, 1977).
[3] C. Brezinski, A general extrapolation algorithm, Numer. Matk. 35 (1980) 175-187.
[4] C. Brezinski, Recursive interpolation, extrapolation and projection, J. Comput. Appl. Math. 9 (1983) 369-376.
[5] S. Cabay and L.W. Jackson, A polynomial extrapolation method for finding limits and antilimits of vector
sequences, SIAM J. Numer. Anal. 13 (1976) 734-752.
[6] R.P. Eddy, Extrapolating to the limit of a vector sequence, in: P.C.C. Wang, ed., Information Linkage between
Applied Mathematics and Industry (Academic Press, New York, 1979) 387-396.
{71 W.F. Ford and A. Sidi, An algorithm for a generalization of the Richardson extrapolation process, SIAM J.
Numer. Anal. 24 (1987) 1212-1232.
[8] M. MeSina, Convergence acceleration for the iterative solution of the equations X = AX + f, Comput. Methods
Appl. Mech. Engrg. 10 (1977) 165-173.
[9] A. Sidi, Convergence and stability properties of minimal polynomial and reduced rank extrapolation algorithms,
SIAM J. Numer. Anal. 23 (1986) 197-209.
[10] A. Sidi, Extrapolation vs. projection methods for linear systems of equations, J. Comput. Appl. Math. 22 (1988)
71-88.
[11] A. Sidi and J. Bridger, Convergence and stability analyses for some vector extrapolation methods in the presence
of defective iteration matrices, J. Comput. Appl. Math. 22 (1988) 35-61.
[12] A. Sidi, W.F. Ford and D.A. Smith, Acceleration of convergence of vector sequences, SIAM J. Numer. Anal. 23
(1986) 178-196.
[13] D.A. Smith, W.F. Ford and A. Sidi, Extrapolation methods for vector sequences, SIAM Rev. 29 (1987) 199-233;
see also: Correction to “Extrapolation methods for vector sequences”, SIAM Rev. (to appear).
[14] P. Wynn, On a device for computing the e,,(S,) transformation, MTAC 10 (1956) 91-96.
[15] P. Wynn, Acceleration techniques for iterated vector and matrix problems, Math. Comp. 16 (1962) 301-322.

