
Applied Numerical Mathematics 4 (1988) 477-489
North-Holland

477

RECURSIVE ALGORITHMS FOR VECTOR EXTRAPOLATION METHODS

William F. FORD
Computer Services Division, NASA Lewis Research Center, Cievelanri, OH 44135, U.S.A.

Avram SIDI
Computer Science Department, Technion, Israel Institute of Technology, Haifa 32oo0, Israel

In this work we devise three classes of recursion relations that can be used for implementing some
extrapolation methods for vector sequences. One class of recursion relations can be used to implement methods
like the modified minimai polynomial extrapolation and the topological epsilon algorithm, another allows
implementation of methods like minimal polynomial and reduced rank extrapolation, while the remaining class
can be employed in the implementation of the vector E-algorithm. Operation counts and storage requirements
for these methods are also discussed, and some related techniques for special applications are also presented.
Included are methods for the rapid evaluation of the vector E-algorithm.

1. Introduction

Let &, m,n = 0, 1, 2,. . . , be given complex numbers, and let b,, n = 0, 2, 2,. . . , be an
arbitrary sequence of either complex
field of complex numbers. We define

I PY PY+1

numbers or vectors in a vector space B defined over the
G;*m to be the determinant

m+l

G;vrn = pnm Pzf . . .
. .

Pn
m+k-1 g:y

and jL*“(b) to be the determinant

f;*m(b) =

b n+l . . . b n+k

. . . p:+k
.
.
.

0 1) .

. (12) .

When bn are scalars the determinant Qm(b) is also a scalar, and when b,, are vectors then
/L*m(b) is to be interpreted as the vector C&Oz@~+j that results from expansion of the
determinant with respect to its first row. Finally, we define G:*m = 1 and fa”*“(b) = b,,.

0168-9274/88/$3.50 0 1988, Elsevier Science Publishers B.V. (North-Holland)

478 W.E Fwt$ A. Sidi / Recukve algorithms

In this work we shall develop recursive algorithms for computing the quantities

Sk”**(b) =f;*m(b)/f;*m(I),

where I, = 1 for all n, as well as the quantities

T,“*“(b) = fk”*m(b)/G;+‘*m.

(1 3) .

0 4 .

Note that since

S;**(b) = T;**(b)/T,“*“(I), (15) .
S,“*“(b) may be obtained from T,“*“(b). Therefore, if S[vm(b) is not needed for all values of n
ad k, T,R-m(b) may be computed recursively and (1.5) used to obtain the desired values of
S;-m(b). This strategy requires fewer arithmetic operations than direct recursive computation of
S,“*“(b), as will be discussed later.

Quantities such as Si*m arise, for example, when one applies extrapolation (or equivalently,
convergence acceleration) techniques to a vector sequence x,, II= 0, 1, 2,. . . , in B, whose limit
or antilimit s is being sought, the approximations to s being SIVm(x), and the scalars &’
depending on the extrapolation technique being used. Let U, = Ax,, = x,,+~ - x,, n = O,l, For
the modified minimal polynomial extrapolation of Sidi, Ford, and Smith (121, the approxima-
tions to s are S,“*O(x) with &’ = Qm+i(un), where Qi, Qz, . . . , are fixed linear functionals over
the space B. For the topological epsilon algorithm of Brezinski [2] the approximations to s are
S:*‘(x) with pr = Q(u,+,,), where Q is a linear functional over the space B. For the minimal
polynomial extrapolation method of Cabay and Jackson [S] and the reduced rank extrapolation
method of Eddy [6] and MeSina [8] the approximations to s are S;*“(x) with py = (urn, u,) and

tr: =(w,,, u,) respectively, where B is an inner product space, (l ;) represents the inner
product, and w, = Au,, (see [9])_ The last three of these methods, as well as the scalar and vector
epsilon algorithms of Wynn 114, 151, were reviewed and tested numerically by Smith, Ford, and
Sidi [13]. In addition, the convergence and stability of all four methods were analyzed for a class
of vector sequences xnr n = 0, 1,2,. . . , that includes, for example, those sequences that arise in
the iterative solution of linear systems. The relevant results for St*O(x) for the first two methods,
and for S,“-“(x) for the last two methods, may be found in I9,11,12] (in all cases with k fixed and
n --) 00). The theoretical results of [9,11,12] were also verified by numerical examples in [11,12].
(Of course, one can also consider fixing n and increasing k in all these extrapolation techniques.
A convergence analysis for such an approach is provided by Sidi [lo] for minimal polynomial
and reduced rank extrapolation, where the connection between these extrapolation methods and
well known Krylov subspace methods is also explored.

From the discussion above it is clear that there are two separate problems of interest:

(1) Recursive computation of Slvrn(b) and T[vrn(b) when m is fixed.
(2) Recursive computation of Sl-*(b) and T,“*“(b) when m varies with n as m = n + a fixed

integer.

In at least one application the following problem also turns out to be of interest:

(3) Recursive computation of Scqrn(b) and Tz*m(b) when n is fixed and m varies.

Problem (1) will be treated in Section 2, where we shall also consider related algorithms
proposed by Brezinski [4] and Ford and Sidi [7]. Problems (2) and (3) will be treated in Sections

W.F. Ford, A. Sidi / Recursive algorithms 479

3 and 4 respectively. Speci
will be discussed in Section 5.

applications covering also the vector E-algorithm of Bretinski 13)

2. Recursions for fixed m

Since 111 is kept fixed we shall denote &V(b) and T,“*“(6) by S,“(b) and T,“(b) respective!y.

Theorem 2.1. S,“(b) and Ti b) satisfy the three-term recursion relations

SK”(b) =
&(b) - Q;?;(b)

1 - ck” (2 1) .
and

T,“(b) = T;_*(b) - d;T:-+ll(b), (2 2) .
where

c;= s~_l(~m+k-t)/s~tll(~m+k-l) 3
(3) .

and
d; = Tk”_l(pm+k-)/Tkn_+ll(pm+k-l), (2 4) .

and pj denotes the sequence pi, n = 0, I, 2,. . . , in the same way that b denotes the sequence
b,,n=0,1,2 ,... .

Proof. Applying Sylvester’s determinant identity (see [l, p. 231) to f’*m(b) with respect to the
first and last rows and first and last columns, we obtain

(b)G;+lvrn - f;:;pm(b)Givrn. (2 5) .
Invoking (1.4) and (2.4), we see that (2.2) follows. Next, we replace b in (2.5) by I, and divide
(2.5) by the new identity r f/ern(I). Finally, we invoke (1.3) and use the fact that GiPrn =
(- l)k-lf~:-(~m’k-‘) to obtain (2.1). [7

Note that (2.1) and (2.2) can also be written as

I %(b) SElf(b) I

Sk”(b) = I
g&p+k-1) s;rM(pm+k-l

)I

I 1 1 I
m+k-I) s;fll(pm+k-l

)I

and

T,“(b) = I T;_l(pm+k-l) Tkn_+;(pm+k-l)

T,n_i’(pm+k-l)

(2 6) .

(2 7) .

Using Theorem 2.1, S[and Tz can be computed by Algorithm 2.2. Without loss of generality
we set m = 0. We assume that x,, 0 < n < K, are introduced one by one along with the
appropriate fiq. p We also assume that whenever X, and/or cl,” are introduced, automatically

480 W.F. Ford A. Sidi / Recursive algorihns

To”(x) = X, and/or %‘(P’) = P$ Finally, di, T:(b), and S:(b) are to be computed using (X4),
(2.2), and (1.5) respectively.

Algorithm 22 (for m = 0).

ferl:=l toKdo

begin
(read xi, p:-‘, &Of&/- 1);
for p:= 1 to I- 1 do for k:= 1 to p do compute T[-k(p’-‘);
for k := 1 to I do

begin
n := 2 - k; compute di,
for i := k to I - 1 do compute Ti($);
compute T/(x); compute Tc(I); compute Sl(X)

end
(save all c$, 1~ n + k eg 1)
(save T,“(P’), k G i 6 1 - 1, T{(x), T,,(I) for n + k = 1, discarding all others)

end

The operation count for Algorithm 2.2 can be obtained as follows: To compute the scalars

T:(p)), k<j<K,O<kfn<K, requires $K3+O(K2) multiplicationsand fK3+O(K2) ad-
ditions. To compute the vectors Tt(x) and Sz(x), 0 < k < n < K, requires K2 + K scalar-vector
mr!tiplications and $(K 2 + K) vector additions. Finally, to compute remaining scalar quantities
dt and Tc(I) is O(K 2, multiplications and divisions, thus being negligible.

As for storage, observe that the basic computational flow is along the diagonals n + k =
constant in the n-k plane. Therefore, only the vectors T:(x) and the scalars T[(I) and
Tc($), k < i <n + k - 1, that lie along a given diagonal need to be saved for the next diagonal
(and can be overwritten by the new quantities as they are computed). All of the d& however,
must be saved. Thus, with appropriate programmin g, one needs to save at most f K' + 0(K2)
scalars and K + 1 vectors.

We can devise a similar algorithm for computing the S;(x) directly from (2.1) and (2.3). For
this algorithm SK3 + O(K 2, scalar multiplications. tK3 + o(K 2, scalar additions, K2 + K
scalar-vector multiplications, and i(K 2 + K) vector additiolrs are required.

If B is a vector space of finite dimension M, M being very large, it is the vector operations
that dominate the computations. In this case the two algorithms described above have almost the
same operation count, namely a total of $(K2 + K) vector operations. If, however, we are not
interested in all the S;(x), but only in S,“(x), k = 0, 1, 2,. . . , then Algorithm 2.2 (with the
obvious modification that S;(x) is now computed only for n = 0), is more efficient, its operation
count now being $(K 2 + 3K) scalar-vector multiplications and i(K 2 + K) vector additions, a
total of K2 + 2 K vector operations.

We now prove Theorem 2.1 using a different method that will be of considerable advantage in
Sections 3 and 4. First we observe that, by construction, S”**
that

k (b) and Ti**(b) are normalized so

s:**(I) = 1 (2 8) .

W. F. Ford, A. Sidi / Recursive algorithm 481

and

Tkn~m(b) = 6, + ~ Ujb,+j;
j=l

(2 9 .

that is, for a constant sequence b, = C, n = 0, 1, 2,. . . , we have S:*“‘(b) = C, and for an
arbitrary sequence b,,, n = 0, 1, 2,. . . , the coefficient of b,, in the expansion of T;*m(b) is unity.
Another implication of (2.8) is that §:*m(b) is a weighted average of bj, n <j < fz + k, that is,
S[*“(b) = E:=oqjb,+i with E;=oqj = 1, though qj are not necessarily real and/or positive.
Second we observe that a sort of orthogonality property, namely

S[*m(r_lj)=T[*m(pi)=O, m<j<m+k-1, (2.10)

is satisfied. The proof now proceeds as follows: From Sylvester’s determinant identity we infer
that

S;(b) = t~Sk”_.~ (b) - PS,“f,‘(b) (2.11)

and

T,“(b) = yTkn_,(b) - 6T,“_+,‘(b), (2.12)

where (Y, /3, y, and S are scalars to be determined. From (2.8) we conclude that Q! - /I = 1, while
from (2.9) and the fact that Tk”-+1’(b) does not contain b, in its expansion we conclude that y = 1.
Finally, we observe that the orthogonality relations in (2.10) are automatically satisfied by (2.11)
and (2.12) for m <j < m + k - 2, while those for j = m + k - 1 lead to p/at = ci and S/y = d[.
Details are left to the reader.

The contents of this section are a fuller exposition of ideas sketched out in the recent work of
Ford and Side [7]. That work treated a generalized extrapolation procedure for scalar sequences,
and the vector method was only incidental.

Algorithms related to those described here have previously been proposed by Brezinski,
namely the RPA and CRPA [4]. The RPA computes a ratio of determinants (the numerator of
which is a vector) having a single index k. The CRPA is a slight variation of the RPA in which
the determinants depend on two indices, n and k. For a given sequence xn, n = 0, 1,2,. . . , rhe
ratio being computed by CRPA is what we have called T:(x) with

CL: = (z,’ X”), (2.13)

where Zi are members of the dual space B* of B, and (l ,.) is the bilinear form of duality
between B and B*. For this choice of &

Tkn(ccP) = (zp9 Tk”(x)L (2.14)

and (2.2) and (2.4) (with m = 1) reduce to the CRP_4 recursion relation

l

(2.15)

When p,P is of the form (2.13) it is more efficient to use (2.15) than (2.2) and (2.4), since the
recursion for the coefficients di is avoided.

482 W.F. Forti. A. Sidi / Recursive algorithms

3. Recursions for variable m

We now treat the case in which m = n + a fixed integer. Without ambiguity we again denote

S,“*“(b) and T,“*“(b) by S:(b) and T[(b) respectively. We shall also need the auxiliary
quantities $‘(b) = S:*m-l(b) and i;,“(b)=T,“9m-‘(b).

Theorem 3.1. Si(b) and TL(b) can be computed from the recursion relations

(3 1) .

and

T,“(b) = T;_*(b) - d;T;_+ll(b), i;;(b) = T/_,(k) - d=;T;?;(b),

where

ck” = s,“_,(j.4m+“-1)/S;_‘l’(tLm+k-1), q = s;_l(~m-l)/$-‘;(jLm-l)

and

dk” = T,“_,(/A”+~-‘)/T;?;(~~“+~-‘), d-i = T~“_,(c(“-‘)/T;_+;(~~-~).

Furthermore, Sz(b) and T:(b) also sati& the four-term (lozenge) recursion relations

(3 2) .

(3 3) .

(3 4) .

s;-,(b) S;:;(b) S,“+‘(b)

SL(Prn) s,“_‘:(11”) s;+‘(pm)

Skn,I(b) =
s;_l(pm+k) s;_+;(pm+k) s;+l(jkm+k)

1 1 1

SL(CLrn) SZ(Prn) S,“+‘(P”)

s;_l(/Jm+k) s;_+;(pm+k) s;+l(jP+k)

and

Ti- l(b)
Tkn_I(Clrn)

T,:,'(b)

TZYP”)

Tk”+‘(b)

Tkn+YPm)

T” (b) pi~-l(Pm+k)

k+l =

T,~_‘,‘(P~+~) T;+‘(/A~+~) (

T&z (cl”) T;+‘(pm) *

Tk”_+ll(~~+~) T;+‘(P~+~)

(3 5) .

(3 6) .

Proof. Applying Sylvester’s determinant identity to fTvrn(b) with respect to the first and last rows
and first and last co!umns, we obtain

f’qm(b) = pfk”$ b) - uf;?;lm(b), (3 7) .

W.F. Ford, A. Sidi / Recursive algorithm 483

where p and u are scalars. Similarly, applying Sylvester’s identity to f,“*“-‘(b) with respect to
the first two rows and first and last columns, we obtain

f n*m-l(b) = 7fknl’;I(b) - uJ”:;*m(b), k (3 8) .

where T and o are scalars. It follows directb that

S,“(b) = a& (b) - @:,“, $(b)=cu”S,“_,(b)-p$_+:(b). (3 9) .

The proof of (3.1) and (3.3) can now be completed by using the normalization and orthogonality
relations for S[*m(b) given in (2.8) and (2.10) just as in the previous section.

As for (3.5), we first observe that the normalization condition (2.8) holds by construction, and
that the orthogonality conditions for S” k+ 1(. 5); namely SF+ i($) = 0, m <j 6 m + k, are satisfied
by the quotient on the right-hand side. Hence what remains :o be shown is that Sl+ ,(b) can be
expressed as a linear combination of Sk”+ * (b), S[(b), and Skn_t i(b), and this can be accomplished
by manipulating the two equations in (3.9). Details are left to the reader.

The proof of (3.2), (3.4), and (3.6) can be carried out in a similar manner. q

Using Theorem 3.1 the Sk” and TF can now be computed by Algorithm 3.2. Without loss of
generality we set m = n. Again we assume that x,,, 0 < n < K, are introduced one by one along
with the appropriate p,P,
C(PP) = cc;.

and that automatically T{(x) = xn, fz(x) = x,, Tt(pp) = p,“, and

Algorithm 3.2 (for m = n).

(read x0);
fork=1 toKd0
begin

(read x1, pi-i, pf,Ogi<l- 1);
for p :=ltoI-ldofork:=ltopdo

begin compute TkPVk($-‘); if p > k then compute Z?[-k(yf-l) end;
for k := 1 to I do
begin

n := I - k; compute di; if n > 0 then compute J,;
compute T[(x); compute Ti(I); compute Si(x);

if n > 0 then begin compute F[(x); compute FJ(I) end
end;
fori:=OtoI-ldofork:=ltoIdo

begin
n := I - k; if i < n then compute TF(p,’ j;
if (i < n - 1 or i = I - 1) and n > 0 then compute Fz(pi)

end
(saveall d[and &lgn+kgZ)
(save T[(pi), k< i< Z- 1, T{(x), and Tz(I) on the diagonal n + k = I, discarding
all others]

end

(The if statements near the end of Algorithm 3.2 are used to avoid calculating Tl(pi) or
fc(r_l’) when they are known to vanish.)

484 W.F. For-4 A. Sidi / Recursive algorithms

The operation count for Algorithm 3.2 is as follows: Computing all needed values of
rz(#), ?“($), T/(Z), di, and Ji, a total of SK3 + 0(K2) scalar quantities, requires SK3 +
O(K2) multiplications and SK3 + O(K2) additions. Computin,: all needed values of
T,“(x), f:(x), and S,“(x), a total of $(K2 + K) vector quantities requires i(K2 + K) scalar-vec-
tor multiplications and K2 + K vector additions.

As for storage, since the basic computational flow is along the diagonals n + k = constant in
the n-k plane, none of the quantities f[(PI’), F,i’(I), or F[(x) must be saved. All of the di and
&! need to be saved, however, and the storage requirements for T/(pi), T[(I) and T[(X) are as
in Algorithm 2.2.

4. Recursions for fixed II and varying m

Let us now treat the case in which n is fixed and m is varying. Without ambiguity we denote
S,“9m(b) and T,“*m(b) by SF(b) and fT(b) respectively.

Thewem 4.1. Z@‘(b) and fkY(b) can be computed from the recursion relations

$“(b) =
$!!,(b) - 2$~-‘(6)

1 - ?F (41) .

(4 2) .

where
t? = ~~_l(pm+~-l)~~~-l(pm+k-l) .

and
(4 3)

27 = ~~,(,“+~-l),~~-‘(~m+~-~). (4 4) .

Proof. Eliminating fkn_+:*m (b)
and f[*m-l

from (3.7) and (3.8), we obtain a relation among f[*n2(b), fL:_T(b),
(b), which can also be expressed as

g-(b) = a$!_,(b) -&“-l(b), (4 5) .

where a and @ are scalars to be determined. The proof of (4.1) and (4.3) can now completed by
using the normalization and orthogonality relations for S”*”
in the previous sections.

k (6) given in (2.8) and (2.10) just as

The proof of (4.2) and (4.4) can be accomplished in a similar manner. II

We note that (4.1) and (4.2) can also be expressed as

I $x4 $‘-‘(6)

Ztn(b) = I (
$_, pm+k-l) $;-l(pm+k-l)

I 1 1 1
(4 6) .

I (SF-1 pm+k-l) $t-l(pm+k--l

)I

W. F. Ford, A. Sidi / Recursioe algorithms 485

and

fT-=lUd f‘-l(b)

fr(b) =

f;_l(pm+k-l) fp-l(pm+k-l)

I 1 1 l I
(4 7) .

m+k-1) *F-l(pm+k-l) 1

Using Theorem 4.1 the Sr and fr can be computed by Algorithm 4.2. We note that this
algorithm works provided both porn, m = 0, 1,. . . , and fz, k = 0, 1,. . . , are given. Although
forn(b) = T,“*m(b) = b,, are immediately available for all m, fz(b)=T,“*‘(b) have to be computed
for increasing k and this can be done, for example, by using Algorithm 2.2. (This should be
compared with Algorithms 2.2 and 3.2, for both of which ro’(b) = bn are the only quantities that
need to be given.) Without loss of generality, we set n
fom(X) = x0 and ft(PP) = ~0” automatically. Finally, @,

= 0. Consequently we assume that
f,(b) and Sr(b) are to be computed

using (4.4), (4.2), and (1.5) respectively.

Algorithm 4.2 (for n = 0).

(read x0)
for I:=1 to L do
begin

(read x,, &‘, ~3, 0 6 i 6 I - 1, compute f:(x), ft(jP), 1 < k < I- 1);
for p := 1 to I - 1 do for k := 1 to p - 1 do compute f/‘-“(#-‘);
for k:= 1 to I- 1 do
begin

m := I - k; compute 2’;
compute fT(x); compute fkrn(1); compute SC(x)

end
(save all~~,2~rn+k~l)
(save i?‘p(#), fkrn(x), f,(l), m + k = i, discarding all others}

end

5. Special applications

The algorithms developed in Sections 2 and 3 are most effective when used to generate all
quantities SL(Y) along the diagonals n + k = I in the n-k plane for increasing L In some
applications not all S;(X) may be needed, and direct use of Algorithms 2.2 and 3.2 for these
applications may be relatively expensive as far as the number of vector operations is concerned.
The applications that are of special interest are those in which

(1) S,N< x), k = 0, 1, 2, . . . (N fixed) are needed,

(2) G(x), n = 0, 1, 2,... (K fixed) are needed.

486 W. F. Ford, A. Sidi / Recursive aigotithms

5.1. Computing S:(x), k = 0, 1, 2,. . . (IV fixed)

As mentioned earlier, invoking (1.5) in Algorithm 2.2 for computing Si(x) only when n = N,
the computation of Sr(x) requires 2 k + 1 vector operations for each k.

similarly, invoking (1.5) in Algorithm 3.2 for computing S:(x) only when n = N, the
computation of SF(x) requires 4k + 1 vector operations. But if we recall that S:(X) E SFN(X)

and T,“(x)=~‘!-~(x) in Algorithm 3.2, we see that the sequence S[(x), k >, 0, is a subsequence
of SlqN(x), n + k >, 0, in which m = N is fixed. Thus Algorithm 2.2 can be used to generate
SA;“c x), at the cost of 2k + 1 vector operations for each k.

In view of what has been said in the previous paragraph, we now give a precise vector
operation count for the minimal polynomial extrapolation (MPE) and the reduced rank extrapo-
lation (RRE) for a process that was termed “cycling” in [13]. At each “cycle” the vectors

x0, +.=.,-++i are generated and the vector S;‘(x) is computed and used as the vector x0 for
the next cycle. Thus, given the xi, we would like to know the overhead for each cycle. We recall
that pi=(u , us) for MPE, and /LOP = (wp, us) for RRE, that Ui = Xi+1 - Xi, and Wi = Ui+l- Ui,
and that y, t 7-3 = (z, y). To avoid saving the Ui as well as the Xi we will compute pc from inner
products (xi, Xi). Then one cycle (using Algorithm 2.2 and computing S>‘(X), 1~ k < K)
requires i(K2 + 3K) scalar-vector multiplications and $(K2 + K) vector additions for both
MPE and RRE, and L = $(K2 + SK + 4) inner products for MPE and L + 1 inner products for
RRE. Thus the total number of vector operations for one cycle of MPE or RRE requires
$(K2 + 3K) + O(l) vector operations.

If the modified minimal potinomial extrapolation method is used with cycling, then by proper
choice of the functionals Qi, Q2,. . . , the need for computing inner products can be eliminated
altogether (see [12]), the rest of the operation count being as for MPE or RRE.

It is instructive to compare the overhead for cycling MPE and RRE with that for the vector
epsilon algorithm (WA). VEA is defined and implemented through the recursion relation

$!!, = &k-l (n+l) + A$‘)

(bQ),A$)) ’
k>,O, n>,O, (5 1) .

where AC?) = @+*) - E?), with the initial conditions

,y;=o eF)=x 7 ny na0. (5 2) .

Thus, the computation of &k (n) for k > 2 requires one scalar-vector multiplication, two vector
additions, and one inner product. For &in) only one vector addition is required. Now as is
suggested by experience and as can be justified heuristically, foi & n K, Sz”(X) for MPE or
RRE and E;$ would have comparable performance. The overhead for &‘i turns out to be
2 K2 + K scalar-vector multiplications, 4K2 vector additions, and 2 K2 + K inner products, a
total of gK2 + O(K) vector operations. Thus, it is seen that VEA, in addition to requiring
2K + 1 vectors Xi (as opposed to K + 2 for MPE or RRE), requires a much larger overhead in
vector operations. Storage requirements are similar, namely, about 2K vectors for VEA and
about K vectors for MPE or RRE.

5.2. Computing S:(x), n = 0, 1,’ 2, . . . (K fixed)

Invoking (1.5) for computing Si**(x) (m fixed) only for k = K, the computation of Si*m(x)
requires 2 K + 1 vector operations for Algorithm 2.2.

W. F. Ford, A. Sidi / Recursive algorithm 487

The computation of Si*“(x) by Algorithm 3.2, however, requires 4K + 1 vector operations.
Employing the relation

s;**(x) = i q;:yx,+i (~oG=l)9 (5 3) .
i=O

for computing SF**(x) requires 2k + 1 vector operations for each k, thus it can be used to
evaluate Si*‘(x), reducing the number of vector operations to 2 K + 1. The coefficients qz,i = $$
along with the auxiliary Gi,i E $:~-‘, can be conveniently computed by Theorem 3.1 using the
recursion relations

4.i =

%.i =

with

9

Ogi<k, (5 4) .
,

qiqo = 5j”,,o = 1 all n ,

rlnk,i = ~“k,i = 0 for i < 0 or i > k. (5) 5

We leave the proof of (5.4) and (5.5) to the reader.
Finally, we consider two related applications involving the vector E-algorithm. This algorithm,

whose details will not be given here, computes recursively the quantities

I %I gA4 . . . aAn) I

(Y* Ax,) (Y, A&(n)) --- (Yl &L&4)
.

(y, A; n+k_l) (y, Ag,(i+k-1)) -a. (Y, Ag&+k-1))
Ek(x,) = ’

where

f
(Y9 A&d) -** (Y9 bsn))

(y, bg,(;+k-1)) . . . (y, Ag,(r;+k-1))

(5 6) l

Ax,=x,+l -x,,, ‘gitn) = giCn + l) - gitn)T
and y is an arbitrary fixed vector. We first note that x,,, gI(n), . . . , gk(n), the entries of the first
row of the numerator determinant, are the nth members of k + 1 different vector sequences;
therefore the top row of Ek(x,+ ,) need not have any vector in common with the top row of
EA(x,J, which is quite different than the cases treated in this work so far.

Nevertheless, the sequence Ek(x,), k = 0, 1,. . . , with N fixed, can be efficiently computed

using Algorithm 2.2. For convenience, we define

g&) = Xl, h~(l)=g,(l+q+l)-g,(f+q). (5 7) .

488 W. F. Ford A. Sidi / Recursive algorithms

Then, setting

b,=8,(N)* p=o, 1,2 ,...,

4 clp= (y, h;(N)), p.q=O, 1, L.., (5 8) .

and substituting into (5.6), wc find that

E&+) = T;(b), (5 9) .

which may be obtained using Algorithm 2.2 at the cost of 2k vector operations for each k.
Computing &(x,), m = 0, 1,2,. . ., with K fixed, by Algorithm 2.2 as explained above,

requires K * + K vector operations for each m. This number can be reduced to 2K by using the
fact that

E,(x-,,,) = x,~ + i e;:,g,(m), (5.10)
I= 1

for some scalars 8:‘,, 1 < i g k, which f o 11 ows from (5.6). Note that the t!$ do not depend on the
first row of the numerator determinant in E&,). Letting now

(y, Ax,.;) = p;+‘, i >, 0,

(_v, Ag,(m+i)) =py? i>,O, ja 1,

we see that for an arbitrary sequence b,, b,, b2, . . . ,

T;*“(b) = b. + i t?;‘b,.
I= 1

(5.11)

(5.12)

Thus Theorem 4.1 can be conveniently used to generate the el:, recursively, the appropriate
recursions being

(5.13)

where

&& = 1 all m and k

SF,=O, fori<Oori>k, allmsndk, (5.14)

and ef,,, 0 < i 6 k, have to be given. Actually t?&, which are related to 7’,‘,‘, can also be
computed recursively by using Theorem 2.1. We leave the details to the reader.

6. Conclusions

In this work we have presented recursive means for evaluating certain vector quantities
SzVrn(x) and 7”*“*(x) that arise in a number of vector extrapolation methods. Our methods are
divided into two major categories, one in which the SISrn(x), for fixed m, are computed by a
three-term recursion relation, and another in which the S,“*“(x), for m = n + a fixed integer, are
computed essentially by a four-term (lozenge) recursion relation. The methods in the former

W. F. Ford, A. Sidi / Recursire algorithms 489

category can be used to implement the modified minimal polynomial extrapolation technique
and the topological epsilon algorithm, and are related to, but not identical to, others that have
been proposed in recent literature. Those in the latter category, however, are, to the best of our
knowledge, new, and permit recursive evaluation of the extrapolants that arise in, for example,
minimal polynomial and reduced rank extrapolation techniques. We have also devised recursion
relations for the case in which n is being held fixed while m is increasing, and have used them in
the implementation of the vector E-algorithm.

References

[l] G.A. Baker, Jr. and P.R. Graves-Morris, fade Approxinrants. Part I: Basic Theory, Encyclopedia cf Mathematics
and Its Applications 13 (Addison-Wesley, London, 1981).

[2] C. Brezinski, Acchlhration de la Convergence en Analyse Numhrique, Lecture Notes in Mathematics 584 (Springer,
Berlin, 1977).

(3) C. Brezinski, A general extrapolation algorithm, Numer. Math. 35 (1980) 175-187.
[4] C. Brezinski, Recursive interpolation, extrapolation and projection, J. Comput. Appl. Math. 9 (1983) 369-376.
[5] S. Cabay and L.W. Jackson, A polynomial extrapolation method for finding limits and antilimits of vector

sequences, SIAM J. Numer. Anal. 13 (1976) 734-752.
(61 R.P. Eddy, Extrapolating to the limit of a vector sequence, in: P.C.C. Wang, ed., Information Linkage between

Applied Mathematics and Industry (Academic Press, New York, 1979) 387-396.
[7] W.F. Ford and A. Sidi, An algorithm for a generalization of the Richardson extrapolation process, SIAM J.

Numer. Anal. 24 (1987) 1212-1232.
[8] M. MeSina, Convergence acceleration for the iterative solution of the equations X = AX + I, Comput. Methods

Appl. Mech. Engrg. 10 (1977) 165-173.
[9] A. Sidi, Convergence and stability properties of minimal polynomial and reduced rank extrapolation algorithms,

SIAM J. Numer. Anal. 23 (1986) 197-209.
(10) A. Sidi, Extrapolation vs. projection methods for linear systems of equations, J. Comput. Appf. Math. 22 (1988)

71-88.
[ll] A. Sidi and J. Bridger, Convergence and stability analyses for some vector extrapolation methods in the presence

of defective iteration matrices, J. Comput. Appl. Math. 22 (1988) 35-61.
[12] A. Sidi, W.F. Ford and D.A. Smith, Acceleration of convergence of vector sequences, SIAM J. Numer. Anal. 23

(1986) 178-196.
[13] D.A. Smith, W.F. Ford and A. Sidi, Extrapolation methods for vector sequences, SIAM Reu. 29 (1987) 199-233;

see also: Correction to “Extrapolation methods for vector sequences”, SIAM Reo. (to appear).
[14] P. Wynn, On a device for computing the e,(S,,) transformation, MTAC JO (1956) 91-96.
[15] P. Wynn, Acceleration techniques for iterated vector and matrix problems, Math. Comp. 16 (1962) 301-322.

