
Journal of Scientific Computing, Vol. 3, No. 2, 1988 
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High-accuracy numerical quadrature methods for integrals of singular periodic 
functions are proposed. These methods are based on the appropriate 
Euter Maclaurin expansions of trapezoidal rule approximations and their 
extrapolations. They are subsequently used to obtain accurate quadrature 
methods for the solution of singular and weakly singular Fredholm integral 
equations. Throughout the development the periodic nature of the problem 
plays a crucial role. Such periodic equations are used in the solution of planar 
elliptic boundary value problems such as those that arise in elasticity, potential 
theory, conformal mapping, free surface flows, etc. The use of the quadrature 
methods is demonstrated with numerical examples. 

KEY WORDS: Fredholm integral equations; singular integral equations; 
quadrature methods; boundary integrals. 

1. I N T R O D U C T I O N  

In this work we shall present Romberg-type integration formulas for the 
numerical evaluation of singular integrals whose integrands are periodic. 
We shall subsequently use these integration formulas to develop new high- 
order quadrature methods for the numerical solution of singular and 
weakly singular Fredholm integral equations of the first and second kinds 

cof(t)+ K(t,x)f(x)dx=g(t), a<t<~b (1.1) 
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where co = 0 and o~ = 1 for first and second kinds, respectively, and the 
corresponding eigenvalue problems 

f ( t ) +  2 K(t ,x) f(x)dx=O, a<~t<~b (t.2) 

subject to the following conditions: 

(1) The kernel K(t, x) in (1.1) and (1.2) is periodic both in t and in x 
with period T =  b - a ,  and for t r x is differentiable in t and x as many 
times as needed. We furthermore assume that it is of the form 

N 

K(t, x)-~ ~ mk(t, x)I~k(t)--qak(x)l~kUlog IqWk(t)--~k(x)l] qk 

k=l  
l/~rl (t, X) 

-~ . + ffz2(t, x )  
r  - ~ , ( x )  

where /7 k are real numbers satisfying i l k > - 1  and qg are nonnegative 
integers. The functions Wg(t, x) and Wj(t, x) are periodic in t and x with 
period T, and differentiable in t and x as many times as needed. Similarly, 
the functions Ck(t), ~g(t), and q~l(t) are periodic in t with period T, and are 
differentiable as many times as needed. It is assumed that Wk(t, t)r 
whenever W~(t, x) ~ 0 for some k. Similarly, it is assumed that ff/l(t, t) r 0 
whenever ff/l(t, x) ~ 0, and in this case the integrals in (1.1) are to be 
taken as Cauchy principal value integrals. When ru k = 0 for all k and 
W1 ~ 0 the integral equations in (1.1) and (1.2) are called singular, and 
when Wk ~ 0 for some k and W~ - 0, they are called weakly singular. It is 
worth mentioning that the more important cases of K(t, x) that arise in 
applications are 

K(t, x) = Wl(t, x)log [~l(t) - ~;~(x)[ + lYC'2(t, x) (weakly singular) 

K(t, x) = ff'~(t, x) I- lfi/2(t, X) (singular) 
~ , ( t )  - ~ l (X)  

and combinations of the two. 

(2) The right-hand side, g(t), in (1.1) is periodic in t with period 
T =  b -  a, and is assumed to be differentiable as many times as needed. 

(3) We assume that the solution f(t)  exists uniquely, is periodic in t 
with period T=  b -  a, and is differentiable as many times as needed. [-A 
heuristic argument to justify the assumption about the smoothness o f f ( t )  
will be given later in this section.] 

We note that integral equation formulations of two-dimensional boun- 
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dary value problems over domains with rectifiable boundaries naturally 
result in Fredholm integral equations (single or coupled) with singular or 
weakly singular (in general logarithmic) and periodic kernels and periodic 
input functions and solutions. This class of problems is by no means 
limited. Laplace's equation and the biharmonic equation, problems in 
elasticity, conformal mapping, free surface flows, etc., are but a few 
examples. For example, the conformal mapping problem can be solved via 
the equation of Symm (1966), which is a Fredholm integral equation of the 
first kind with a logarithmic kernel (see Example 3 in this work for 
additional references). The same problem can also be solved via 
Theodorsen's equation (see Gaier, 1964, p. 65), which is a nonlinear 
singular Fredholm equation with the Hilbert kernel as its kernel Similarly, 
the solution of the biharmonic equation can be obtained with the help of 
the solution to a weakly singular coupled system of two Fredholm 
equations (see, for example, Jaswon and Symm, 1977, Chaps. 9 and 15). In 
all cases, the kernels K(t, x) in the resulting integral equations are singular 
for x = t, but smooth otherwise, provided the boundary of the domain over 
which the original problems are defined is smooth too. The solutions seem 
to be smooth in general, provided the input functions are smooth in 
addition. For some cases of interest this can be shown rigorously. 

Integral equation formulations of practical problems such as those 
mentioned in the previous paragraph are used very widely in many 
branches of engineering and fall in the category of "boundary integral 
equation methods." 

One of the methods for solving (1.1) and (1.2) numerically is the 
quadrature method (see Baker, 1977, Chap. 4, Section 3), in which one 
replaces the integral Sa b K(t, x) f(x) dx by a numerical quadrature formula, 
whose abscissas are xj, j =  l,..., n, with t = xi, i=  1,..., n, then replaces the 
f(xj) by their approximation ~,  and finally solves the resulting system of 
linear equation for the ~.  Obviously, the accuracy of this method depends 
on the accuracy of the numerical quadrature formula being used, which in 
turn depends on the analytic properties of both the kernel K(t, x) and the 
solutionf(t) over [a, b]. It can be said, in general, that whenever K(t, x) is 
weakly singular or singular, the solution f(t) will be singular at the end 
points a and b. The singularity structure o f f ( t )  may be complicated and 
difficult to determine; see MacCamy (1958) and Graham (1982) for some 
general results on this problem. When K(t, x), g(t), and f ( t )  are (periodic) 
as assumed in the present work, then a and b in (1.1) and (1.2) can be 
replaced by a' and b', respectively, where b' - a' = T. If we now assume that 
f(t) has singularities at a and b, then it should be singular at a' and b' and 
hence at all t. As a result we conclude, heuristically, that f(t)  cannot have 
any singularities, and this is the assumption that we have made above. 
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In relation to the kernel K(t, x), it is important to note that it can also 
be reexpressed in the form 

1,, I:I i ( t, x ) 
K(t ,x)= ~ Hk(t,x) l t -xl=k(loglt-xl)Pk+ - ~-ISI2(t,x) (1.3) 

k = l  t - - X  

This is the form to be used in the developments throughout the remainder 
of this work. Here ~k are real numbers satisfying c~k > - 1  and Pk are non- 
negative integers. The Hk(t, x) and/~j(t,  x) have the same properties as the 
Wk(t, x) and l~(t ,  x), respectively, with the exception that they are not 
required to be periodic, neither in t nor in x. This is so as none of the terms 
I t - x l  ~k (log [ t - x l )  pk and ( t - x )  -1 is. It is only the combination given on 
the right-hand side of (1.3) that is required to be periodic. Furthermore, as 
will become clear later in this work, full knowledge of the Hk(t, x) and 
/4j(t, x) is not needed. What is needed, in general, is Hk(t, t), 1 <~ k <<. M, 
and /12(t, t). For the particular case of the singular integral equations, 
however, neither/t1(t ,  t) nor/q2(t,  t) is needed. 

Finally, the task of determining the appropriate Hk(t, t) and H2(t, t) 
can be accomplished by simply expanding K(t, x) for x --* t. As an example, 
consider K(t ,x)=log Iz(t)-z(x)l, where z(z) is a complex periodic 
function of ~ with period T (see Example 3 in this work). We can express 
K(t, x) as in (1.3) as follows: 

z ( O - z ( x )  
K(t, x)---log It-x1 +log  t - x  

i.e., 

Hi(t, x) = 1 and /t2(t, x ) = l o g  z(t)~__z(X)x 

Thus, Ha(t, t) = 1. Expanding z(x) about x = t, and letting x --, t, we also 
obtain H2(t, t ) = l o g  Iz'(t)l. Note that It2(t,x) is not periodic, although 
K(t, x) is. 

We now give a brief outline of the developments of the present work. 
Let 

xj = a + jh, h = (b - a)/n, n a positive integer (1.4) 

Using the Euler-Maclaurin expansion for smooth integrands, and their 
extension to integrands having end-point singularities (see Navot, 1961, 
1962), in the next section we derive Euler-Maclaurin expansions essentially 
for the integrals ~ K ( t , x ) f ( x ) d x ,  with K(t,x) and f (x )  as described 
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previously. We actually derive asymptotic expansions, for h--, 0, for the 
differences 

where 
A(t, h)=I[t; f]  - In[t; f ]  (1,5) 

[[t;f] = K(t, x) f (x)  dx (1.6) 

and I.[t;f],  the approximation to I[t;f], has the form 

I .[ t; f]  = ~ w.(t, xs)f(xj) (1.7) 
j = l  

with the x s as defined in (1.4), such that t is one of the points xj, and is 
being held fixed, and w.(t, xj)= hK(t, xj) for x j r  t, and w.(t, t) depend on 
the type of singularity that K(t, x) has for x =  t. For the case in which 
K(t, x) = Hi(t, x) log It-x] + H2(t, x) we have 

Wn(t,t)=h[IgI2(t,t)+log(h)H~(t, t)] and 

A(t, h)~ ~ fl,h 2'+1 as h ~ O  
i=1 

where the fli are independent of h and depend only on t. Consequently, 
the error in the quadrature formula I~[t;f] is O(h 3) as h ~ O. Similarly, 
for the case in which K(t, x)= Hi(t, x)[t-x[~+/~2(t, x), we have 

w.(t, t)=hEIgI2(t , t ) - 2 ( ( - ~ ) H l ( t  , t )U] and 

A(t,h)~ ~ fli h2i+~+~ as h ~ 0 ,  
i=1 

where, again, the fli are independent of h and depend only on t. As a result, 
the error in L,[t;f] is O(h 3+~) as h ~ 0 .  Here ~(s) is the Rieman zeta 
function. 

Using the asymptotic expansions for A(t, h), in Section 3 we derive 
Romberg-type numerical quadrature formulas for I[t; f] ,  thus increasing 
the accuracy of I ,[t; f]  by as many orders of magnitude as we wish. In 
Section 4 we devise quadrature methods for the integral equations men- 
tioned above that are based on these Romberg-type formulas. In Section 5 
we illustrate the efficiency of our new quadrature methods with numerical 
examples. In Section 6 we review some quadrature methods that have been 
proposed in the past and bear some relation to the ones derived in the 
present work. 

854/3/2-7 
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Note. The treatments of singular and weakly singular integral 
equations are not separated from each other throughout this paper. The 
reader interested in the treatment of singular integral equations could 
follow it easily by going through Theorems 2.1, 2.4, 2.7a, 3.1, 3.2, and the 
first part of Section 4, without having to consider the rest of this work. 

2. EULER-MACLAURIN EXPANSIONS 

The notation described below will be used throughout the remainder 
of this work. 

Let x j = a  + jh, j=O, 1 ..... n, h= (b -a ) / n ,  where n is a positive integer. 
Let t e (a, b) be fixed and t �9 {xj I 1 ~< j ~< n - 1 } for some n = no. Obviously, 

n there exists an infinite sequence of integers { k}k=o, n~+l>  nk, k =0,  1,..., 
such that t is one of the xj whenever n = n~, k = 0, 1 ..... With the exception 
of Theorems 1-3, the notation h ~ 0 will be assumed to mean that n ~ 
through the sequence of integers {nk}ff= o. We shall take Z'~'~m~ ~j (or 
Z*~m~ ~j) to mean that ~,~2 (or ~m~) is to be multiplied by 1/2, while 
Z"~2,~ c9 will be taken to mean that both ~nl and C~m2 are to be multiplied 
by 1/2, in the respective summations. 

Theorems 1-3, which are stated below without proof, form the basis of 
our development throughout the remainder of this work. 

Theorem 1. 
Then 

where 

Let the function g(x) be 2m times differentiable on [a, b]. 

n 

E" D(h) = g(x) dx - h g(xj) 
j = O  

=~3< ~ B2~ [g(2U l)(a ) _  g(2,-n(b)]  h2U+R2,,[g; (a, b)] (2.1) 

h2 m f f  J ~ 2 m [ ( X  - -  a)/h ] -- n2m 
R2m[g; (a, b)] (2m)! g(2m)(x) dx (2.2) 

Here Bu are the Bernoulli numbers, and Bu(x ) is the periodic Bernoullian 
function of order #. In addition, since/] ,(x) are bounded on ( - o 0 ,  o0), it 
follows that 

IRzm[g;(a,b)]l<~M2m(b-a)h 2m m a x  Ig(2m)(x)[ (2.3) 
a<~x<~b 

where 

M2m = max IB2m(x)-B2ml/(2m)! (2.4) 
--oo <x<oo 
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and, therefore, is independent of h. Consequently, if g(x) is infinitely 
differentiable on [a, hi, then D(h) has an asymptotic expansion of the form 

D(h)~ ~ B2u [g(Z"-l)(a)-g(2P-')(b)] h 2~ 
.~--1 (2#)! 

as h ~ 0 (2.5) 

For a proof of this result see Steffensen (1950). The expansion in (2.5) 
is the classical Euler-Maclaurin expansion for trapezoidal rule approxi- 
mations of integrals of smooth functions. Navot (1961, 1962) has extended 
the Euler-Maxlaurin expansions to trapezoidal rule approximations of 
integrals of functions having algebraic and/or logarithmic end point 
singularities. By a different approach that utilizes generalized functions, 
Lyness and Ninham (1967) have rederived Navot's results. The results 
stated as Theorems 2 and 3 below are special cases of those proved by 
Navot. 

Theorem 2. Let g(x) be 2m times differentiable on [a, b] and let 
G(x)= ( x - a )  s g(x), s >  -1 .  Then 

D(h)=;] G(x )dx -h  ~'  G(xj) 
j = l  

= _ ~ 1  B2~, G (2~' = 1 ~ - 1)(b) h2u 

2m--1 f f ( - - S - -  ]/) g(~')(a) h "+ '+1  + P2m - Z (2.6) 
.=0 P! 

where r is the Riemann zeta function initially defined for Re z > 1 by 
r = ~ =  1 k-~, and then continued analytically, and 

P2m = O(h:m) as h ~ 0 (2.7) 

If g(x) is infinitely differentiable on [a, b], then D(h) has an asymptotic 
expansion of the form 

D(h) "~ - 
B2~ 

Iz = 1 ~ G~2~ 1)(b) h2~ 

-- ~ ~(-s-tOg(~)(a)hU+~+l as h ~ O  (2.8) 
,=o g! 

Starting from Theorem 2, Navot (1962) shows that the extensions of 
the Euler-Maclaurin expansion to trapezoidal rule approximations of 
integrals of function of the form ( x - a y [ l o g ( x - a ) ]  p g(x), with p being a 
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positive integer and g(x) being sufficiently smooth in [-a, b], can be 
obtained by differentiating both sides of (2.6) p times with respect to s. For 
p = 1 the following result is obtained. 

Theorem 3. Let g(x) be 2m times differentiable on [a, b], and let 
G(x) = (x - a) s log(x - a) g(x), s > -1 .  Then 

D(h) = G(x) dx - h ' G(xj) 
j = l  

= _ ~ 1  B2~ G~2~,_t)(b)h2~, 
= ~ (2~)! 

2m-- 1 g(~')(a) h~ , 
- ~ [ - ~ ' ( - - s - I ~ ) + ~ ( - s - I ~ ) l o g h ] - - ~ .  

#=0 

+ s + l  "~ P2m 

(2.9) 
where ( ' ( z ) =  d((z)/dz, and 

t32m = 0(h 2m) as h ~ 0 (2.10) 

If g(x) is infinitely differentiable on I-a, b], then D(h) has an asymptotic 
expansion of the form 

D(h) ~ - ~ B2~ G (2~- 1)(b) h 2# 
~ (2#)! 

hi g(")(a)h~+S+~ (2.11) - L, [ - - ( ' ( - s - # ) + ( ( - s - # ) l o g  --U-., 
/.t=O 

Note that both Theorem 2 and Theorem 3 are true for any s> -1 ,  
although they were originally stated for - 1 < s ~< 0. 

We shall now apply Theorems 1-3 to integrals of the types 

f: b g(X) dx and [ x - t [ ' ( l o g l x - t [ ) P  g (x )dx  
x - - t  

the former being defined as a Cauchy principal value integral. 

Theorem 4. 
G(x) = g ( x ) / ( x -  t). Then 

D(h) = G(x) dx - h G(xj) 
j = 0  
x/r  

~ 1 B2~ i-a(2._~)(a)_ a (2~ = h g ' ( O  + 

u = l  

+ O(h 2r~) as h --, 0 

Let g(x) be 2m times differentiable on [a, b], and let 

1)(b)] h2, 

(2.12) 
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Proof We can assume without loss of generality that t - a  ~< b -  t. 
Then, since t is one of the xj, so is b ' = 2 t - a .  Furthermore, t is the 
midpoint of the interval [a, b']. Now 

and 

ff' G(x) dx= ~ ' g(x)-  g(t) t 

(2.13) 

(2.14) 

the integral on the right-hand side of (2.14) being an ordinary integral, in 
which the integrand becomes g'(t) when x = t. Applying Theorem 1 to the 
right-hand side of (2.14), we have 

[ g(xj)-g(t) 
Dl(h)= G(x)clx-h ~" -hg'(t) 

xj<~b" x j -  t 
xj~ t 

MX 2# d2'U-11 [ g(x ~ g(t)] 
--  x=b' J _ h2" 

+ O(h 2m) as h ~ 0 (2.15) 

Now 

and 

l 
~ "  = 0  

xj<~b, xj - t 
xjv~ t 

(2.16) 

dr (  1 ) ( - 1 )  ~r! 
d x  r ~ = ( x - t )  r + l '  

r - 0 ,  1,... (2.17) 

Combining (2.16) and (2.17) in (2.15), we have 

~' 2t t Dl(h) = 6(x) clx- h 6(xj)- hg'(t) 
xj<~b' 
xjq-t 

m - 1  B -- ,uY'l~ ~]A)!~ [-G(2'u- l)(a) -- G(2p- l)(bt)] h2~ -[- O(h2m) as h-~O 

(2.18) 
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Applying Theorem 1 to ~, G(x) dx, we obtain 

;j D2(h) = , G(x) d x - h  Y'" G(xfl 
xj>~b' 

: ~ t B2,u .=J- ~ [-G (2u-l)(b')- G (2u- ')(b)] h 2~+ O(h 2m) 

Sidi and Israeli 

as h ~ 0  

(2.19) 

and 

Be(N + x) = Bk(x), N integer, k >/2 (2.23) 

/~k(-x)  = ( -  1)k Bk(x), k~>2 (2.24) 

Since ( t -a) /h  is an integer, it follows using (2.23) and (2.24) that the 
integrand of the integral on the right-hand side of (2.22) is odd. Con- 
sequently, when taken as a Cauchy principal value integral, this integral is 
zero. The result now follows by using this in (2.21), and adding to R~,,~ the 
remainder term of the Euler-Maclaurin expansion for the integral 

a(x) dx. D 

Recall that 

Adding (2.18) and (2.19), (2.12) now follows. 

Corollary. The remainder term O(h 2m) in (2.12) is actually given by 

h2 m fs B2m[(X -- a)/h] -- B2m /~2mEG; (a, b)] (2m)! G(2m)(x) dx (2.20) 

this integral being interpreted as a Cauchy principal value integral. 

Proof The remainder term O(h >") in (2.15) is 

R~,, = hzm ff' B2m[ (X-  a)/h'] - B2m d2m [ g(x~_g(t) 1 
(2m)! dx 2m dx (2.21) 

Now making the change of variable x = t + r we have 

b' B2m[(X-a)/h]-O2m d 2m (xl_~_t) 
(2m)! dx 2m dx 

(,_ ~) (2m)! d~2r n d~ (2.22) 
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Theorem 5. Let g(x) be 2m times differentiable on [a, b] ,  and let 
G(x) = I x -  t[ s g(x). Then 

n 

2" D(h) = G(x) dx - h G(xj) 
j = 0  
x j ~  t 

= m~ 1 B2~, 
.=2 ~ [G~2U-~)(a ) -G(2u- l ) (b) ]  h21z 

, 1  ~ ( - s - 2 # )  h2U+S+ 1 - 2 g(2~,)(t) -'k O(h 2m) 
~ = o  (2p)! 

as h ~ 0 (2.25) 

Proof Applying Theorem 2 to ~b G(x) dx, we have 

Dl(h  ) = G(x) dx - h G(xfl 
x j >  t 

m--1 B 
S" 2~ G(2U-1)(b)h2U 

2m--, ~ ( - -S- -#)  g(")(t) h'U+s+ 1 -{ - O(h 2m) 
~=o kt! 

a s h o 0  (2.26) 

Next  applying Theorem 2 to S~ - a  ~Sg(t - 4) d~[ =~', G(x) dx], we have 

D2(h) = G(x) d x -  h 2 "  G(xj) 
x j <  t 

= ~ 1  B2 u (2 =~ ~ a u X)(a ) h2U 

2 m  m 1 

2 ( -  1) ~ ~ ( - s - # )  g(~)(t)h ~+s+l + O(hZm) 
~=o ,u! 

as h - ~ 0  

(2.27) 

Adding (2.26) and (2.27), (2.25) follows. 

Theorem 6. Let G ( x ) =  [ x - t l S l o g  [ x - t [  g(x) in the statement of 
Theorem 5, everything else being the same. Then 
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Proof 

n 

2" D(h) = G(x) dx - h G(xfl 
j = 0  
x j #  t 

m - 1 ~t~D2# 

= 2 ~ [ G(2" ')(a)-G(2"-l)(b)] h2" 
, u = l  

m--1  

- 2  y" [ -~ ' ( - s -2# )+~( - s -2# ) logh]  
p = 0  

g(2")(t) -2.+ 
X (---~-). rt "+l + O(h2m) as h ~ 0  

Similar to that of Theorem 5. 

(2.28) 

D 

that 

Corollary. For s = 0 ,  (2.28) becomes 

m 1 B2~ [G(2~,_ 1 ) ( a  ) _ G(2~ ,_ 1}(b)] h2~, D(h) = g(t) h log h + 
/~=1 

+2~= l~'(-2#)g(2")(t)h2"+l+O(h2m)o (2kt) ! as h ~ 0  

Proof 

(2.29) 

The proof follows by setting s = 0 in (2.28) and using the facts 

~(0)= -1/2,  ~ ( -2#)  = 0, # =  1, 2 .... (2.30) 

(see Abramowitz and Stegun, 1964, p. 807). D 

The results in the following theorem will be the ones on which our 
quadrature methods will be based. 

Theorem 7. Assume that the functions g(x) and ~(x) are 2m times 
differentiable on [a, b]. Assume also that the functions G(x) are periodic 
with period T=b-a ,  and that they are 2m times differentiable on 
/~= ( - 0 %  ov)\{t + kT}~= -oo. Then we have the following: 

(a) If G(x) = g(x)/(x- t) + ~(x), and 

Q,[G]=h i G(xfl (2.31a) 
j = l  
x j #  t 

then 

E,[G]=[~,(t)+g'(t)]h+O(h 2m) as h--*0 (2.32a) 
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(b) If G(x) = I x -  t[ ~ g(x) + ~(x), s >  -1 ,  and 

Q . [ G ]  =h 
j = l  
x j ~  t 

G(xj)+ ~ ( t ) h - 2 ~ ( - s )  g(t)h ~+1 (2.31b) 

then 

m • l  ~( --S -- 2#) E,[G] = - 2  g(Z,)(t ) h2#+s+ 1 + O ( h 2 m )  

.=1 (2#)! 

(c) If G(x)= I x -  tl slog I x -  tl g(x)+~(x), s >  -1 ,  and 

as h ~ 0  

(2.32b) 

Q,[G] =h 

then 

j = l  
x j ~  t 

G(xj) + ~,(t) h + 2 [ # ' ( - s ) -  ~ ( - s ) l o g  h] g(t) h "+1 (2.31c) 

m--1  
E, [G]=2  ~ [ ~ ' ( - s - 2 # ) - ~ ( - s - 2 # ) l o g h ]  gIe")(t) 

,=1 (2/~)! 

xh2"+*+l+o(hZm) as h ~ 0  (2.32c) 

(c') When s = 0  in (c), by (2.30) and ~'(0)=-�89 (see 
Abramowitz and Stegun, 1964, p. 807), (2.31c) and (2.32c) reduce to 

Q . [ G ]  = h i 
j = l  
x)~  t 

G(xj) + ~ ( t ) h + l o g ( h )  g(t) h (2.31c') 

and 

E, [G]=2  2_,l~'(-212) g(2")(t)h2U+l+O(h as h ~ 0  (2.32c') 
,=1 (2#)! 

where E,[G] = ~b G(x) d x -  Q,[G] in all cases. 

Remarks. (1) As is seen from (2.32b), (2.32c), and (2.32c'), E,[G] 
depends only on t, and is independent of a and b. This is a consequence of 
the periodicity of G(x), and is an important property that will be exploited 
in the derivation of Romberg-type quadrature formulas in the next section. 

(2) Until now we assumed that t is one of the points xj. When t is 
arbitrary the periodicity of G(x) can be used to shift the interval [a, b] to 
[a', b ' ]  such that t coincides with one of the x s in the new interval [a', b']. 
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This, combined with the observation of Remark 1, means that (a) En[G ] in 
all parts of Theorem 7 stays the same if the sum Z n G(xj) in (2.31a), j = l ,  x j~ t  
(2.31b), (2.31c), and (2.31c') is replaced by Z~=~ G(t+jh) or by the iden- 
tical sum Zjeo.a<,+jh<.bG(t+jh), and (b) Theorem7 holds for all 
positive integers n. These facts will be repeatedly used in Section 4 without 
further explanation. 

(3) In each of the cases of Theorem 7, the numerical quadrature 
formula Qn[G] is computed by using the function values only. The 
quadrature formula (2.31a) has an error that is of order h, and it would 
seem that one would have to know g'(t) with a high accuracy in order to 
improve this formula. But as we shall see in the next section, the term 
[~(t)+g'(t)]h that appears in En[G] is easily removed by one 
extrapolation. 

(4) Let G(x) = Y~ff=l gk(X) Ix-tl=k(loglx-tl)P~ + gl(x)/(x-t)+ g2(x), 
where ek and p~ are as described following (1.3), and gk(x), 1 ~k<<. M, 
~l(x), and ~2(x) are 2m times differentiable on [a, b] and G(x) is periodic 
with period T =  b -  a and is 2m times differentiable on R. Inspection of 
Theorems 4-7 reveals that if we form Qn[G] as the sum of the quadrature 
formulas for each one of the terms in G(x), then the error E,[G] does not 
contain any contribution from G(x) and its derivatives at the end points, 
and the only contribution to En[G] comes from G(x) and its derivatives at 
x = t, as in Theorem 7. 

3. ROMBERG-TYPE N U M E R I C A L  Q U A D R A T U R E  F O R M U L A S  

Using the results of Theorem 7, we can apply extrapolation techniques 
to derive Romberg-type numerical quadrature formulas for ~b G(x) dx. The 
simplest case is that of Theorem 7a, and we deal with it first. 

Theorem 8. Let G(x) and Qn[G] be as in Theorem 7a. Let hk = T/k 
and 

Q . [ G ]  = 2 Q 2 . [ G ] -  Q.[G] =h. ~ G(a+jh.-hn/2) 
j = l  

i.e., Q , [ G ]  is a midpoint rule approximation. Then 

(3.1) 

F_,n[G] = G ( x )  d x  - Q n [ G ]  = O(h 2m) as  h. ~ 0 (3 .2)  

Proof Equation (3.2) follows directly from Theorem 7a, the h term 
in E,[G] being eliminated when Qn[G] is formed. D 
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As a result of Theorem 8 we conclude that if G(x) is infinitely differen- 
tiable on / 2 = ( - o %  oo)\{t+kT}~= ~, then E,,[G] tends to zero more 
quickly than any inverse power of n, as n --* oo. We can improve this result 
considerably whenever G(z) is analytic in a strip in the complex z plane, 
which, with the exception of the points t +kT, k = 0, + 1,..., contains the 
real line Im z = y = 0 in its interior. 

Theorem 9. 
Ilmzl < a ,  except at the simple poles t+kT, k = 0 ,  +1, +2  ..... Then 

Let G(z) in the previous theorem be analytic in the strip 

where 

[/~[G]I <~2TM(a') exp[-2rma'/T] a ' < a  (3.3) 
1 - exp [ - 27rna'/T]' 

and 

M(r) = max{ max IG~(x+iv)l, max jGe(x-i~)[} (3.4) 
- - c o < x < ~  - - { ~ 0  ~ x <  oo  

Proof 

Ge(~) = �89 + ~) + G(t- 4)] 

By the periodicity of G(x), we can write 

f~ G(x) dx=f,'+;/~ G(x) dx 

(3.5) 

and again Theorems 8 and 9 apply. 
0n[G]  in Theorem 8 has been obtained by employing the Richardson 

extrapolation process once, eliminating the term O(h) in the error E,,[G]. 

Ge(z) is analytic in the strip IImzl < a  and is periodic with period T. 
After some algebra it can be shown that the n(odd)-point trapezoidal 
rule approximation or the n(even)-point midpoint rule approximation to 
~r_/2r/2 Ge(~)d~ is just Q,,[G]. Applying now a theorem due to Davis (1955) 
(see also Davis and Rabinowitz, 1984, pp. 314-316), (3.3)-(3.5) follow. 
(Actually Davis' result is stated for the trapezoidal rule. However, inspec- 
tion of his proof shows it to be valid for the off-set trapezoidal rule. The 
midpoint rule is an off-set trapezoidal rule.) [1 

For arbitrary t, by Remark 2 following Theorem 7, the approximation 
0 , [ G ]  can be replaced by 

Q , , [ G ] = h ,  ~ G(t+jhn-hn/2) (3.7) 
j = l  

f? = ~ r/e Ge(~) de (3.6) 
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Since L' ,[G] = O(h 2m) with m as large as we wish, there is no need for 
further extrapolation. For Qn[G] as given in Theorem 7b, c, c', however, 
we apply the Richardson extrapolation process (or generalizations of it) 
repeatedly in order to eliminate successive terms in E,[G],  thus obtaining 
Romberg-type numerical quadrature formulas with higher degrees of 
accuracy. (A summary of those extrapolation methods relevant to the 
present work is given in the appendix.) 

Let G(x) and Q,[G] be as in Theorem7b, c,c', and define 
A = S b G(x) dx and A(h) = Q,[G] in the notation of the appendix. Select a 
sequence of integers { t}t=o, 1 ~< no < nl < ... ,  and set h l T/nl, I= O, 1 ..... 
Obviously lim t ~ .  h t = 0, as required; see the appendix. Now the Romberg- 
type quadrature formulas A(q m), based on A(ht), m <<. l<<. m + q, are of the 
form 

q 

A(qm)= Y, a(q )A(hm+k) (3.8) 
k = 0  

where ,J(m) O ~ k ~ q ,  are constants determined by the nature of the ~q,k 
asymptotic expansion of A - A ( h )  =E~[G]  as h-+0, as described in the 
appendix. Some of the details for two special cases are given below: 

(1) If G(x) is as in Theorem 7b (or Theorem 7c'), then A(h) is of the 
form given in (a) of the appendix with 7 i = s + 1 + 2 i ,  and fli= 
- 2 ( ( - s - . 2 i )  g(2i)(t)/(2i)! [-or ])i = 1 + 2i, and fl, = 2 ( ' ( - 2 i )  g(Zi)(t)/(2i)!], 
i = 1, 2,.... Hence for a sequence of the form hi = hop ~, l = 0, 1 ..... the d(,Jk ) can 
be computed from (A.6). For arbitrary hi, the algorithm given in (A.11) 
and (A.12) in (b) of the appendix is appropriate with q~(h)= h ~+3 and r = 2 
[or q~(h)= h 3 and r = 2]. 

(2) If G(x) is as in Theorem 7c with s # 0, then A(h) is of the form 
given in (A.1) with e~(h) = [ ( ' ( - s -  2i) - (( - s -  2i) log hi h 2~+*+ 1, and 
fl~ = 2g(Z~)(t)/(2i)!, i = 1, 2 ..... The d}~k ) then can be obtained by solving the 
equations in (A.5). 

Before closing this section we recall that, for any positive integer 
n, A(h) = Q,[G] in Theorem 7b, c, c' has the form 

A(h) = h ~ G(xj) + C(t, h) (3.9) 
j ~O  

a < t + j h ~ b  

where 

~(t) h - 2 ( ( - s )  g(t) h s+1 for Theorem 7b 

C(t ,h)= ~ , ( t ) h + 2 [ ( ' ( - s ) - ( ( - s ) l o g h ]  g(t)h s+~ forTheorem7c 

~(t) h + l o g  ( h )  g(t)h 'for Theorem 7c' (3.10) 
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4. THE QUADRATURE METHODS FOR INTEGRAL EQUATIONS 

In what follows we consider the integral equation (1.1), with f ( t )  and 
g(t)  being periodic in t with period T, and K(t, x )  being periodic both in t 
and x with period T. Of course, a similar treatment can be given to the 
eigenvalue problem in (1.2). 

4.1. The Singular Case 

Let K(t, x)=/-I i( t ,  x ) / ( t - x ) + I g I 2 ( t ,  x). For a given integer N, let 
h = h2N = (b -- a) / (2N),  and xj  = a + jh ,  j = 1 ..... 2N. Then setting t = xi for 
some i, and approximating the integral Sb K ( x ,  x)  f ( x )  dx  by the rule ON 
in (3.1), we write down the following set of equations for the 2N unknowns 
j7 i [the approximations to the corresponding f (xj ) ] :  

2N 

~ojTi+2h ~ ~.ijK(xi, x j ) L = g ( x i )  , / =  1,2,...,2N (4.1) 
j = l  

where 

10 if l i - j l  odd (4.2) 
% =  if l i - j l  even 

4.2. The Weakly Singular Case 

We mentioned in the previous section that when G(x)  is a known 
n function any set of integers { z}z=0, l~<no<nl  < " ' ,  can be chosen for 

computing the approximation A~q m) to the integrals S ~ G ( x ) d x  in 
Theorem 7b, c, c'. If, however, we want to use the Romberg-type formula 
A~q m) for solving integral equations by quadrature methods, the nt cannot be 
arbitrary. In fact, we should choose the nz (hence the h t = Tint), such that 
the sets of abscissas that enter the computation of A(hm+k)=Qn~+kEG ], 
0~<k~<q-1 ,  where G ( x ) = K ( t , x ) f ( x ) ,  are all subsets of the set of 
abscissas that enter the computation of A(hm+q). This is achieved by 
picking the nl, m ~< l~< m + q - 1 ,  as divisors of nm+q. With this choice of 
the nt let x i =  a + jhm + q = a + jT/nm + q, 1 <~ j <. nm + q. With the help of (3.9) 
it can be verified that, for t = xi, 

nm+q 

Qnm+k[ G] =hm+k Z ~J'q'kG(xj)+C(xi , hm+k) 
j = l  
j # i  

(4.3) 

where 

if l i - Jl is divisible by n m + q/n m + k ' 
otherwise 

(4.4) 
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Thus (3.8) becomes, for t=xi, 

i~_] ( .4(,,)1, ) qd~)C(xi, + k ) ( 4 . 5 )  A(q m)= Z C'~J'q'kuq, k"m+kj a(xj )-}- 2 , hm 
-- k = 0  k = 0  

Now for j r i, G(xj) = K(xi, xj) f(xj). By Theorem 7b, c, c' we note that 
when 

(b) g(t, x) = Hi(t, x) It - xl" +/4z(t, x), g(x) = Hi(t, x) f(x) and ~(x) = 
/42(t, x) f(x) in (2.31b). Thus C(t, h)= C(t, h) f(t), where 

C(t, h ) =  h[H2(t, t ) -  2~( - s )  H~(t, t)h ~] (4.6b) 

(c) g(t, x) = g~(t, x) I t - x[' log I t - xl + H2(t, x), g(x) and ~(x) in (2.31c) 
are as in (b) above. Thus C(t, h) = C(t, h)f(t), where 

C(t,h)=h {H2(t, t )+2[~' ( -s ) -~(-s) logh]  H~(t, t)h'} (4.6c) 

(c') K(t, x)=Hi(t, x)log I t -  xl + I:&(t, x), g(x) and g(x) in (2.31c') are as 
in (b) and (C) above. Thus C(t, h)= C(t, h)f(t), where 

d(t,h)=h [I212(t, t) + log ( h )  Hl(t, t)] (4.6c') 

Combining the above in (4.5), approximating the integral 
SbK(t,x)f(x)dx in (1.1) by A(q m), and replacing the f(xj) by the 
corresponding approximations ~., 1 <. j <~ nm+ q, we obtain the appropriate 
quadrature methods for (1.1), which are defined by the systems of linear 
equations 

nm+q 
cop+ Z KuL=g(x~), l<~i<~n,,+q (4.7) 

j = l  

where 

and 

_ (  om,q,k ) go - -  ~xk~O uij " q,k " r e + k )  K(Xi, Xj), j ~ i  (4.8) 

q 

~2ii= y" d~%)d(xi, hm+~) (4.9) 
k = O  

with C(t, h) as defined in (4.6b), (4.6c), and (4.6c'). 
It is not the purpose of this work to give precise error bounds or con- 

vergence results for A =maxj  I f ( x j ) - f j l .  However, in general, we would 
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expect A to be of the order of magnitude of the error in the numerical 
quadrature formula used in approximating the integral ~a b K(t, x ) f ( x )dx .  
Thus, for the singular case, if K(t, z) is meromorphic in the strip IIm zl < a 
with its only poles at t+kT,  k =  0, _+ 1, +2,..., and g(z) is analytic in the 
same strip, we would expect f (z)  to be analytic in this strip too. Therefore, 
by Theorem 9, ~ G(x) d x - Q , [ G ]  =O(e  2~N~/r) as N ~  ce, thus we would 
expect A = O(e -2~N~/T) as N--* oo too. For the weakly singular case, by the 
appendix, ~] G(x) dx - A(q m) = O(eq + l(hm)) as m ~ oo, in general. Thus, for 
M =  1, s = el ,  and p = Pl in (1.3), we would expect A = O(hSm+3+zq(log h) p) 
as m ~ oo for s # 0, p = 0, 1, and A = O(h3m +2q) as m ~ oo for s = 0, p = 1. 

Finally, we could use the approximations ~ to f(xi), i = 1 ..... /V, where 
N = 2 N ,  for singular equations and iV=n~+q for weakly singular 
equations, to construct a trigonometric interpolation polynomial P~(x) in 
cos(2rtkx/T), sin(2~kx/T), k=O,  1,..., satisfying P~(x~)=fi, i =  1,..., N, thus 
obtaining an approximation to f (x )  for all x in [-a, b]. 

5. NUMERICAL EXAMPLES 

5,1. The Singular Case 

Example 1 (See Mikhlin, 1964, pp. 122-124). 

af(t) + ~ Jo cot f (x )  dx = u(t) (5.1) 

When a r  and a2+ b2:A 0 (a and b may be complex) a unique solution 
exists and is given by 

a ;/ f ( t )  = a2 + b2 u(t) - 2z~(a2 + b2 ) u(x) cot dx 

b2 f ~  
-~ 2rm(a2 + b2 ) u(x) dx (5.2) 

We first observe that the kernel function K(t, x ) =  (b /2 7 r ) co t [ (x - t ) / 2 ]  
is periodic with period 2n in both x and t. Also for fixed t, K(t,z) 
is meromorphic in the whole z plane with simple poles at t+2zrk, 
k = 0, _+ 1, + 2,..., thus being of the form described in Section 4.1. Next, we 
observe that if u(t) is periodic with period 2zr, then so isf( t ) .  Also if u(z) is 
analytic in a strip Jim z] < o-, then so is f(z) .  The last two assertions can be 
verified with the help of (5.2). 
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In our numerical experiments we chose u(t) = (D + cos t ) -  ~, D > 1, so 
that both u(z) and f(z)  are analytic in the strip I Imzl<0-= 
log[D + (D 2 -  1)1/2] .  With this choice of u(t), (5.2) becomes 

1 bs in t  'x b 2 l os 
Denote 2N, the number of abscissas in (4.1), by N. Then h=2n/N 
and xj=jh,  1 <~j<~N. Denote f s j - ~ - ,  1 ~<j~<N, and let A s =  
maxl~<i~<~ [ f (x j ) - f~ j I .  Then, by what has been said in the paragraph 
following (4.9), we would expect to have A s =  O(e -~s/2) as .N-~ ~ .  This is 
born out by the numerical results, where, for each N, 0- can be estimated by 
the formula 

2 log As 
0- ~-~ ]Qmax-"""" ~ ~ ~max ~-- O-S,~max (5.3) 

where Nmax is the maximum of the N's used in the computation. This 
estimate, of course, is based on the As, which in turn are based on f(x). 
An estimate based solely on the computed values.~s.j can be obtained from 
the formula 

2 fS+ 2j, S+ 2j-)TS+ j,~+ s 0-  log ,-0-s 

This follows from the following expected behavior offs ,  a: 

f ~ , s ~ f ( x s ) + C ( x s ) e  -~ as ~ r ~  

(5.4) 

(5.5) 

Here, of course, 97~, s and 2 N = 2n can be replaced by f~Tj(s) and 2, respec- 
tively, where xj(s)= 2 is the same for all N used in the computations [in 

(5.4) they are N, N +  J, and N +  2J]. 
Table I gives the results obtained for As, as, sin,, and as ,  N =  4(4)44, 

Nmax=44, with a = b =  1. Note that 044,44, 0-4, and 0-12 are not defined. 
Note also that, for D = 2, 0-~7,Sm,x and a s  deteriorate for N large. This is due 
to the fact that there is a loss of significance in the arguments of log in (5.3) 
and (5.4), which is caused by the high accuracy of the )Ts, j. 

5.2. The Weakly Singular Case 

In both of the examples below the kernel function is of the form 
described in (c') of Section 4.2, namely, K(t,x) = Hl(t ,x)  x 
log I t -  x l + H2(t, x). Therefore, the approximations ~Tj to f(xj), the solution 
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Table I. Results for A ~ , a S . ~ , ,  and ~ ,  37=4(4)44, 37max=44, for Example 1 a 

D = I . 1  D = 2  

37 A~ a~.~m,x ~r~ A~ a&~m~ ~ a~  

4 2.03 • 10 ~ 0.426 6.10 • 10 -2 1.3136 

8 1.12 x 10 ~ 0.4407 4.60 x 10 -3 1.3157 
t2 4.93 x 10 -1 0.445 0.67 3.37 x 10 4 1.3170 1.354 

16 2.01 x 10 1 0.4442 0.52 2.41 • 10 5 1.31677 1.3195 

20 7.98 x 10 2 0.4411 0.474 1.73 • 10 6 1.31683 1.3171 

24 3.33 • 10 2 0.4420 0.456 1.25 x 10 -v 1.3171 1.316971 

28 1.39x 10 2 0.44339 0.4485 8.94x 10 9 1.3169586 1.3169588 

32 5.73 x 10 -3 0.44303 0.4456 6.42 x 10 -1~ 1.316996 1.3169580 

36 2.33 • 10 3 0.4400 0.4444 4.62 x 10 11 1.3173 1.3169587 

40 9.72 x 10 4 0.4420 0.44391 3.31 • 10 - lz  1.3172 1.316948 
44 4.01 x 10 -4 0.44371 2.38 x 10 -13 1.3176 

Exact values of a are 0.44357 for D =  1.1 and 1.3169579 for D = 2 .  

to the integral equation, satisfy (4.7)-(4.9) with (4.4) and (4.6c'). Here the 
d ~  ), O<~k<~q, in (4.8) and (4.9) can be determined from (A.5) with 
ei(h) = h  2i+1, i =  1, 2,.... If we let nz=2 t, thus hi= T/U, /--0,  1, 2,..., as we 
do in the examples below, then the d~q,~ ) are independent of m, and can be 
computed recursively from (A.6) with a~ = 2 -2~- i, i = 1, 2 ..... Thus we find 
d~0.%)=l, d~,%)=-1/7, d~,~)=8/7, dC2,%)=1/217, d~2,~ )=  -40/217, dC2,~)= 
256/217, etc. From what has been said in the paragraph following (4.9) and 
from (A.7), we would expect to have A~m)=o(crq+l)=O(2 -(2q+3)m) as 
m ~  oo, where A~qm)=-max,m<<.j<~ .... q [ f ( x j ) - f / .  This is indeed observed 
numerically. 

Example 2. (See Christiansen, 1971). 

log 2a sin f (x)  dx = - ~ cos 2t 

Provided a # l ,  the unique solution to this equation is f ( t )=cos2t .  
Otherwise, the solution is f ( t )=  cos 2 t +  e, c being an arbitrary constant. 
We observe that the kernel K(t, x ) =  log[2a sin (I t - x l / 2 ) ]  is periodic with 
period 2~ in both t and x, and is of the form described in (c') of Sec- 
tion 4.2, namely, K(t, x) = Hi(t, x) log I t -  x[ + / t 2 ( t ,  x ) ,  with Hi(t, t) = 1 
and/~2(t,  t) = log a. 

Table II gives some of the results obtained with a = x / ~  for 
A (m), N=nm+q=2 m+q, m + q = 3 ( 1 ) 7 .  Note that, for a given row in this 
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table, N, the number of abscissas in (4.7)-(4.9), is he same for every mem- 
ber of this row. Thus the first column is the result of no extrapolation, the 
second, of one extrapolation, the third, of two extrapolations, etc. As can 
be seen for a given number of abscissas N-- 2 r, the best results are obtained 
roughly for q ,,~ r/2. 

Example 3. (see Henrici, 1979, pp. 492-494). Let F : z = z ( z ) ,  
0 ~< z ~< fl, be the boundary curve of a Jordan region D containing the point 
z = 0, and let f ( z )  be the function mapping D conformally onto the unit 
disk le)] < 1 in such a manner that f ( 0 ) = 0  and f ' ( 0 ) > 0 .  To determine 
f ( z )  it is sufficient to know its values on the boundary of D. Because 
If(z)l = 1, it suffices to know ~l(z)= arg(f(z(z))) ,  0 <~ z <~ ft. Let ~(z)= O'(z). 
Then, provided the capacity of F is different than 1, s is the unique 
solution of 

f0~ log [z(a)-z(z)]  r =27z log Iz(a)l, O ~ a ~ 3  (5.6) 

which is known as Symm's equation (see Symm, 1966). The capacity of F is 
different from 1, in particular, if F is entirely within or entirely without the 
unit circle. 

Obviously, the kernel K(a, z )=  log Iz(a)-z(~)] is periodic in both a 
and z with period f i ,  and is of the form K ( a , z ) = H ~ ( a , z ) x  
log [ a - z [  +/42(a, z) with Hi(a,  a ) =  1 and /~r2(a, a ) = l o g  [z'(a)[. Also, 
log [z(v)[ and ~(z) are periodic with period ft. 

Let fl = 2re and let D be the elliptic domain whose boundary curve is 
F: z(z) = c(e i~ + ee i~), 0 ~< z ~ 2~, with 0 < ~ < 1, and c > 0 chosen so that 
F is entirely without the unit circle. (Actually the capacity of F in this case 
is c, so that it is sufficient to choose c r 1.) The semiaxes of D are c(1 +e)  
and c ( 1 -  e). The solution for ~(z) can be expressed as 

r  1 + 4  ( -  1 ) k ~  cos (2kz) 
k = l  

Note that both log lz(z)l and ~(z) are analytic functions of z. 
Observe that ~(z) for this example is symmetric with respect to both 

the Re z and the Im z axes. This can be utilized to reduce the dimensions 
of the matrix (Kij) by 4, thus reducing the storage and computing time 
considerably. 

Tables III and IV give some of the results obtained with c = 50 and 
= 2 m e = 0.1 and e = 0.5, respectively, for A (qm), N =nm + q + q, m + q ~< 7. As in 

Table II, in these tables too, for a given row, N, the number of abscissas in 
(4.7)-(4.9), is the same for every member of this row. 
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Table III. Results for ACq m) for Example 3 with e = 0.1 and  c = 50 ~ 

q 

m + q  0 1 2 3 

2 1.6 x 10-1 

3 2.9 • 10 -2  2 .7 •  10 2 

4 4.0 • 10 -3 8.1 • 10 -4  4.5 x 10 -3 

5 5.0 x 10 -4  2.7 x 10 . 5  6.1 x 10 -5 

6 6.3 x 10 5 7.1 • 10-7  1.0 • 10-7  4.8 x 10 -7  

7 7 . 8 •  2 . 2 x 1 0  -8 6 . 7 x 1 0  lo 1 . 5 x 1 0  lo 

Here  N =  2 m+q is the n u m b e r  of abscissas in the quadrature method and q is the number of 
extrapolations in the corresponding numerical quadrature formula. The best result for fixed 

N (or  m + q) is underlined. 

For small values of e the ellipse is close to a circle. Therefore, ~(r) does 
not change rapidly with a, and this explains the high accuracy obtained for 
the approximations to r even with a small number of abscissas when 

= 0.1. For large values of e, however, the ellipse is elongated, and this 
leads to rapid changes in ~(r) in the vicinity of r = 1r/2 and ~ = 3rc/2, i.e., 
where ~(r) is maximal. This then explains the slow convergence of the 
approximations for e = 0.5. Furthermore, extrapolation becomes effective in 
this case starting with a relatively large N. 

To improve the performance of the quadrature method above for the 
cases in which r has rapid changes we can make a change of variable of 
integration ~ = z(tp) so that ~(v(~b)) changes slowly as a function of ~,. This 

Table IV. Results for A~q m) for Example 3 with e = 0.5 and  c = 50 a 

q 

m + q  0 1 2 

5 5 . 7 x 1 0  2 1 . 9 •  -1 

6 1 . 6 •  3 1 . 5 •  3 

7 9.4 • 10 -4 3.2 x 10 -5 3.6 x 10 -5 

a Here  N =  2 m+q is the number of abscissas in the quadrature method and q is the number of 
extrapolations in the corresponding numerical quadrature formula. The best result for fixed 
N (or  m + q) is underlined. 
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can be achieved by picking z(~)  such that  dz/d~ becomes small where 
d~/& is large. This is equivalent  to having more  abscissas in places where 
r  changes rapidly. Needless to say, the t rans format ion  z = z(~k) should 
be such that  dr~dO is a periodic function of 4. 

Fo r  the example  under  considerat ion we can choose 

so that  

d~ ,7(1 -~- ?]2)1/2 
dr r/2 + cos 2 r 

a positive constant  

tk(z)  = t a n -  1 [ . (1 + r/2)1/2 1 tan r , 0--.< T --.< z/2 

o r  

V 
r (~ t )  = t a n - 1 L ( 1  

z(q/) is now extended so that  

r ( 0 )  = ~ + r ( 0  - ~), 

+ r/2)1/2 tan g, , 0 ~< ~k ~< n/2 

We used this t rans format ion  with different values of r/. In Table  V we give 
some of the results with c =  50 and e = 0 . 5  obta ined  for the errors at 
T = n/2, the point  at which the error  is max imum,  and at r = 0. The  number  
of  abscissas in all cases is N = 3 2 ,  and q = 0 ,  i.e., no ext rapola t ion  is 
employed.  Nevertheless,  the improvemen t  in the results is remarkable .  

Table V. Results for the Error at z = 0 and v = n/2 in the 
Approximations to ~(z) in Example 3, with c = 5 0  and 
e = 0.5, and the Change of Variable z = z(~k) as Described 

in the Text a 

q Error for z = 0 Error for z = n/2 

0.2 4 .0x10  3 8 .1x10  4 
0.5 1.2 x 10 -4 2.3 x 10-3 

100 2.4 x 10-4 5.7 • 10-2 

a The numerical quadrature formula used has N = 3 2  
abscissas and does not employ extrapolation. ~(0)=  
0.014671... and ~(n /2)=  4.5324... 
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6. C O N C L U D I N G  R E M A R K S  

In this section we shall briefly discuss some known quadrature 
methods that are related to those proposed in the present work. 

A lot of attention has been paid to Cauchy principal value integrals 
and singular integral equations. We do not intend to survey all the 
methods developed for these, but we shall restrict our attention to those 
that are periodic. When 

K(t, x) = ~ cot 0~<t, x~2rc (the Hilbert kernel) 

we have 

~2ij= 2heo.K(xi, xj) = l c o t  [ (i Z2N) rC] ~, i ,j= l ..... 2N 

[cf. (4.1)]. The matrix K =  (Ko) is called Wittich's matrix (see Gaier, 1964, 
p. 76) and its  properties are .well known. Gutknecht (1981) has used 
Wittich's matrix to discretize Theodorsen's integral equation for conformal 
mapping and has analyzed various nonlinear iterative techniques for 
solving the resulting equations. We note that Theodorsen's equation has 
the Hilbert kernel as its kernel. 

The Hilbert kernel arises as part of the Cauchy kernel on closed curves 
and Atkinson (1972b) has proposed and analyzed product-type integration 
formulas for the Cauchy transform 

ag, F closed, z s F 

which are different than those proposed in the present work. 
As for the weakly singular integral equations, the case that has 

received the widest attention is that Of logarithmic singularity. Periodic 
integral equations with logarithmically singular kernels arise naturally, for 
example, in eonformal mapping (Symm's equation) and two-dimensional 
potential theory. Two of the quadrature methods that have been con- 
sidered for such equations are based on the so-called modified quadrature 
method (see Kantorovich and Krylov, 1964, p. 102; and Baker, 1977, 
Chap. 5, Sec. 4). In this method we begin by writing (1.1) in the form 

cof(t) + K(t, x ) [ f ( x ) -  f ( t ) ]  dx +f(t) K(t, x) dx = g(t) (6.1) 
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Employing the numerical quadrature formula Z~= 1 wjF(xj) to approximate 
the integral S~ F(x)dx, and using the fact that limx~, K(t, x ) [ f ( x ) - f ( t ) ]  
= 0, we replace the integral equation above by the linear equations 

K(xi, x)ax 7,+ wjX(xi, xj) yj-Y,l=g(x,), i=l,...,n 
j = l  
i#i (6.2) 

where ~ are approximations to the f(xi). Kussmaul and Werner (t968) 
have applied this method with equidistant abscissas x i + l - x , = h ,  
i=  1,..., n -  1, to periodic integral equations with logarithmically singular 
kernels and have shown that the error is O(h 3) as h-~0, assuming 
S b K(ti, X) dx have been computed exactly. For kernels of the type K(p, q) = 
log p(p, q), where p(p, q) = { I x ( p ) -  x(q)] 2 + EY(P)- y(q)]2}1/2, and 
(x(p), y(p)), a <~ p <~ b, is the parametric representation of a simple closed 
curve in the x - y  plane, Christiansen (1971) has used the modified 
quadrature method in (6.1) with f~K(ti, q)dq essentially replaced by a 
numerical quadrature approximation. The numerical results indicate that 
this method too has an error of O(h 3) as h--+0. For both methods 
above we can show, using Theorem7c', that the errors in the 
numerical quadrature formulas are O(h 3) as h-+ 0, although this proof for 
Christiansen's method becomes very complicated. 

For weakly singular Fredholm integral equations of the second kind 
methods based on product integration have also been developed and 
analyzed by Atkinson (1967, 1972a). 

Finally, the approach of this work can easily be extended to coupled 
Fredholm integral equations for several unknown functions in which 
several types of singularities occur simultaneously. 
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APPENDIX 

In this appendix we summarize some of the important aspects of 
generalizations of the classical Richardson extrapolation process. 
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Let the function A(h), where h > 0 is a continuous or discrete variable, 
have the asymptotic expansion 

A(h)~A+ ~ ~iei(h) as h--*0 (A.1) 
i = 1  

with ei+l(h)=o(ei(h)) as h--*0, i =  1, 2 ..... A(h) and the ei(h) are known, 
but A and the /~  are not. We are interested in approximating A, which, in 
general, is limh~o A(h) when this limit exists. 

Select a sequence of h's, namely, h 0 > hi > ..., such that limt~ ~ ht = 0, 
and define A~ j) (the approximation to A) and the fli to be the solution of 
the system of linear equations 

A(hl)=A(~J)+ ~ flie~(ht), j<~l<~j+n (A.2) 
i = 1  

For some classes of functions A(h) and ei(h), i = 1, 2,..., and some choices of 
hi, l = 0, 1 ..... the following can be shown: 

(1) For fixed n, 

A-A(,J)=O(e,+~(hj)) as j -~  oo (i.e., hi--* 0) (A.3) 

(2) For  fixed j, A(, j) ~ A as n ~ o% and the convergence in this case 
is better than in the previous case. 

For  the present work, it is important to note that A~J) can be 
expressed as 

A(~])= ~ d(J)Ath ~ (A.4) n,k  \ j + k )  
k = 0  

where the coefficients d(]k ) can be obtained directly by solving the linear 
system of equations 

~ d  (j) - 1 n ,k  - -  

k=o (A.5) 

~ eth ~d(J)=O, l<i<.n i~. j + k !  n ,k  
k = 0  

The problem of computing the A~J) recursively has been attacked by 
several authors. Schneider (1975), H~vie (1979), and Brezinski (1980) have 
devised an algorithm that has been denoted the E algorithm. Recently, a 
more efficient algorithm has been derived by Ford and Sidi (1987). 
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Special  Cases 

(a) ei(h) = h  ~, 0 < 7 1  < 72 < "" ,  limi~o~ 7~= ~ .  Fo r  the choice 
h+ = hop t, l = 0, 1 ..... 0 < p < 1, the d~,Jk ) can be computed  f rom the recursion 
relation 

(7 d(j) _ d(j+ 1) 
A(J) , n -  1,k , 1,~- 1 0 <~ k <~ n (A.6) 
~n,k = a n -- I ' 

with d(~,J)_, = 0 = d(~,J~ +~, n = O, 1 ..... d(0Jo ) = 1, j = 0, 1 ..... and ag = p~', i = 1, 2 ..... 
Obviously,  the d(~,J k) are independent of j. This development ,  in slightly 
different nota t ion,  is due to Bulirsch and Stoer (1964), who also give a 
recursive a lgor i thm for A~:) and a thorough  convergence analysis. First, 

A - A ( ~  y)= O(a~+l )  as j ~  ~ (a .7)  

Second, if there exist constants  ~k, k = 1, 2 ..... for which 

N - - 1  

[ A ( h ) - A -  ~ fl~h~[<~]uhU, h<~ho ( a . s )  
i=1  

and, for some fixed R > 0, 

~ ,  = O ( k !  R k) as k ~ oo (A.9)  

then, for the special case 7i = 7o + it, for some 7o > 0 and r > 0, 

A - A ~ J ) = O ( ~  ~2) as n-- ,  oo (A.10) 

where (~ = p~/2 + e < 1, any e > 0. For  a similar result pertaining to the case 
of arbi t rary  7i see Bulirsch and Stoer (1964). 

(b) ei (h)=q~(h)hi~  r, r > 0 .  Fo r  a rb i t ra ry  ht, the A~ i) can be com- 
puted by using the recursive W algor i thm of Sidi (1982). As a consequence 
of this a lgor i thm we have 

d(Jk) = ZT=0 6(j), O<~k<~n (A.11) 

where 5(J) can be obta ined f rom the recursion relation n,k 

6 ( j+~ -6r  
6(j) , - l , k  i -1,k O<~k<~n (A.12) 

. , k  = h ~  + . - h ~  ' 

with 5 (j) = 0 = 6  (j) n = O ,  1,..., and  ~o,o . , - 1  . , .+~, "~(J) = 1/~p(hj), j = 0 ,  1,.... We note  
that  this is also a special case of the generalized Richardson ext rapola t ion  
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process of Sidi (1979), a very efficient recursive algorithm for which has 
recently been given by Ford and Sidi (1987). 

We also note that the algorithms given for the two special cases above 
are more efficient than the algorithms for the general extrapolation 
algorithms for obtaining A~ j) defined by (A.2), since they take advantage of 
the special forms of the problem. 
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