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Comparison of Some Numerical Quadrature Formulas for Weakly Singular Periodic Fredholm Integral 
Equations. Several numerical quadrature formulas that are used in the quadrature method for the 
numerical solution of periodic Fredholm integral equations are analyzed and precise asymptotic expan- 
sions for their errors are derived. All of these formulas are based on the trapezoidal rule with equidistant 
abscissas. They are compared with respect to their computational cost, accuracy, and efficiency when 
used in conjunction with the Richardson extrapolation. On the basis of this comparison it is concluded 
that the formula developed in [4] is the most advantageous. A numerical example is appended. 
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Vergleich yon numerischen Quadraturformeln fiir schwach singul~ire periodische Fredholm-lntegralglei- 
chungen. Eine Reihe numerischer Quadraturformeln, die bei der numerischen L6sung periodischer 
Fredholm-Integralgleichungen in Verwendung sind, werden analysiert und es werden fiir ihre Fehler 
genaue asymetrische Entwicklungen hergeleitet. Alle diese Formeln beruhen auf der Trapezregel mit 
gleichabst~indigen Abszissen. Sic werden beziiglich Rechenaufwand, Genauigkeit und Effizienz bei Ihrer 
Verwendung im Zusammenhang mit Richardson-Extrapolation verglichen. Es ergibt sich, dab die 
Formel aus [4] am vorteilhaftesten ist. Ein numerisches Beispiel ist beigefiigt. 

1. Introduction 

Let f ( 0  be the  so lu t i on  to the  F r e d h o l m  in tegra l  e q u a t i o n  

f: o f ( t )  + K ( t , x ) f ( x ) d x  = g(t) ,  a <_ t <_ b,  (1.1) 

where  co = 0 or  co = 1 acco rd ing  to whe the r  (t.1) is of  first k i n d  or  of s econd  k i n d  

respectively.  W e  a s sume  tha t  

(1) K(t ,  x) is per iod ic  b o t h  in  t a n d  in  x wi th  pe r iod  T = b - a, 

(2) g(t) a n d  f ( 0  are pe r iod ic  in  t wi th  pe r iod  T = b - a, 

(3) K(t ,  x) is c o n t i n u o u s l y  di f ferent iable  a sufficient n u m b e r  of t imes wi th  respect  to 
b o t h  t a n d  x, except  for t = x, b u t  has  a weak  ( integrable)  s ingu la r i ty  at  t = x, 

(4) g(t) a n d  f ( 0  are  c o n t i n u o u s l y  di f ferent iable  a sufficient n u m b e r  of  t imes. 
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One of the methods for solving (1.1) numerically is the quadrature method, in which 
one first replaces the integral ~b K(t, x) f(x)dx by a numerical quadrature formula, 
whose abscissas are xj, j ~ 1 . . . . .  n, with t = xi, i = 1 . . . . .  n, then replaces the f(x~) 
by their approximations fj, and finally solves the resulting system of linear equations 
for the fj. Obviously the accuracy of the j~ depends very strongly on the accur- 
acy of the numerical quadrature formula used in approximating the integrals 
~ K(t, x) f(x)dx for t = xi, i = 1, . . . ,  n. 

The purpose of the present note is to analyze and compare in detail several 
numerical quadrature formulas that were specifically developed for use in the 
approximate solution of weakly singular Fredholm integral equations, and that are 
based directly or indirectly on the trapezoidal rule with equidistant abscissas. To 
the best of our knowledge the results of this work have not been given before. 

Let n be a positive integer, and define h = Tin. Let the )9 in the numerical quadrature 
formulas be 

)9 = a + jh, j = O, 1 . . . .  , n. (1.2) 

Let 
f'b 

I(t) = Ja K(t, x)f(x) dx. (1.3) 

All the numerical quadrature formulas I,(xi) for I(xi) that we discuss below are 
ultimately of the form 

I,(xl) = h ~ K(xl, xj)f(xj) + r,(xOf(xi) =- S,(x,) + r,(xl)f(xi), (1.4) 
j=l  
j # i  

in which r,(xl) varies according to the formula. It will be shown that the accuracy 
and nature of I,(xi) depend heavily on what we pick for r,(xi). We shall analyze I,(xi) 
for the case in which K(t, x) can be expressed in the form 

K(t,x) = Hl( t ,x ) log)  - x] + Hz(t,x), (1.5) 

where Hl(t,x) and H2(t, x) are differentiable in t and x (including t = x) as many 
times as needed, but are not required to be periodic neither in t nor in x. Also 
H~(t, t) ~ O. Although we limit ourselves to kernels with logarithmic singularity for 
t = x, the treatment of kernels with certain other singularities at t = x does not 
present additional difficulties; see Sidi and Israeli [-4-]. 

The numerical quadrature formulas 

(1) In the numerical quadrature formula/ , (xi)  - P,(xi) = S,(xi) + r2(xi)f(xi) that 
appears in the modified quadrature method we have 

r,l(xl) = K(xi, x ) d x -  h ~, K(xi, xj), (1.6) 
j=l  
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see, e.g. Baker El, Chap. 5, Sect. 4]. This formula is obtained by first writing (with 
t = X i )  

I(t)  = f f  K ( t , x ) [ f ( x ) -  f ( t ) ] d x  + f ( t )  f f  K ( t , x ) d x ,  

and then replacing the first of the integrals by a sum of the form S.(x~), and the 
second by its exact value. 

(2) Define ~b(x) = ~ l o g ~ d ~  = x logx  - x, and let I .(xi)  - I2(xi) = S.(xl)  + 
r2. (xi) f (x ,) ,  where 

with 

rZ(xi) = Hl (x i ,  x i )u .  + hHz(xl ,  xi) ,  

bl n ( 2~b ( T ) -  h k_~'~/2 log,khl, 

k#O 

(n+l)/2 

h ~ "  loglkhl, 
k =  --(n-- 1)/2 

k ~ 0  

(1.7) 

n even 

(1.8) 

n odd. 

h 2 
By replacing u, in (1.7) by u, + ~ we can improve the accuracy of I2(xi)  as we 
show in the next section. 

v v-1 1 
Here and in the sequel ~"co  i is taken to mean ~ co i + (co u + ~o~). This 

formula is obtained by first writing (with t ~ xi) 

I(O = [H1 (t, x ) f ( x )  - HI (t, t)f(t)l log lt - xl dx  + Ha (t, x ) f ( x )  dx  

+ I t l ( t ,  Of( t)  log[t - x[ dx ,  b' - a' = T,  

which is allowed by the periodicity of K(t ,  x ) f ( x ) ,  and then replacing the first 

and second integrals by the sums h s  [Hl ( t  , ~j)f(~j) - H~(t, 0f(t)]  loglt - ~jl 
j=0  
~jCt 

n 

and h ~ "  H2(t , ~j)f(~j) respectively. Here, ~j = a' + jh, j -- 0, 1 . . . . .  The third 
j=0  

integral is replaced by its exact value, namely, by r - a') + r - t). Now 
we pick a' = t - T/2 and b' = t + T/2 for even n and a' = t - (T  - h)/2 and 
b' = t + (T  + h)/2 for odd n. This implies that t is the midpoint of [a', b'] for 
even n, whereas for odd n, t = (a' + b') /2 - h/2. From this development it now 
becomes clear that u, in (1.8) is 

fo  ~ u, = logfxi -- x [ d x  - h ~ "  logIxi - ~[ (t.9) 
' j=0  

for both even and odd n. 
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(3) For the logarithmically singular kernel 

K(t, x) = log[(~( t ) -  ~(x)) 2 + (t/(t) - r/(x))2] m,  (1.I0) 

where (~(t), q(t)), a _< t _< b, is the parametric representation of a closed curve in 
the ~ - t /  plane, Christiansen [2] has proposed two numerical quadrature 
formulas that we denote I,(xi) - 13'e(xi) = S,(xi) + r3'Q(xl)f(xi), Q = I, II, in 
which 

~ x i + h / 2  

r3"1(Xl) = K(xi,  x )dx  , (1.11) 
,d x i  - h /2  

and, for n an even integer, 

3,ii - + ~ n n - n - 2  ~ log(kh) , (1.12) r;, ( x i ) = h  l o g s [ + ( n  T 1 
k=l  

where 

s; = [ r  + . ' ( x y ]  '/~. 

assumptions of the first paragraph of this section, 

I ( x i ) -  Iff(Xi)'~ ~ o~u(xi)h 2u+l as 
/ t=l 

where 

thus giving 

h --* 0 (n ~ oo), (1.14) 

au(xl) = 2 ( , ( _ 2 p  ) 02u 
(2#)! Ox 2"[Hl(x' 'x)f(x)][x=~'' (1.15) 

I ( x i ) - I 2 ( x i ) = O ( h  3) as h ~ 0 .  (1.16) 

In (1.15) ('(s) denotes the derivative of ~(s), the Riemann zeta function. Note that 
the c~u(xi) are independent of the end points a and b. 

Unlike I)(x,) and 1,2(xz), it seems that 1,4(xl) can not be obtained by any kind of 
simple manipulation of I(t) and (1.3). This should also be clear from the very special 

Note that r 3 n ' l ( x i )  is independent of the explicit form of K(t, x) given in (1.10). 
r3'n(xi), however, does depend explicitly on K(t, x) as given in (1.10). Further- 
more, as will be shown in the next section, there is a very close connection 
between ran'U(xi) and r~(xi) for this particular K(t,x). In fact, I3'n(xi) can be 
obtained from I2(xi) in a very simple way. Based on the formula I2(xi) with odd 
n, it is also possible to extend I3'U(xi) to odd n. The details will be given in the 
next section. 

(4) In the numerical quadrature formula proposed recently by Sidi and Israeli [4], 
In(xi) =-- In4(Xi) = Sn(xl) + r4n(xi)f(xi), where 

1. 
In [4, Theorem 7] it is also shown that, with the periodicity and differentiability 
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form of rg(x~). In fact, 1,4(xi) is obtained from a careful analysis of the appropriate 
Euler-Maclaurin expansion associated with S.(x,). 

In the next section we shall compare I,P(x,), p = 1, . . . ,  4, with the help of(1.14)-(1.15) 
and the following result that follows from [4, Corollary to Theorem 6-1: 

Theorem 1: Le t  G(x) = g(x) logl  t - x I, g(x) being sufficiently smooth on [a, b], and 
f i x  t such that t e { x a , x 2 , . . .  , x , - 1 }  for  n = n o, n 1, n 2 . . . . .  Then  

G ( x ) d x  - h G(xj) + -~G(a) + G(b) + g(t)log 
j = l  LxjCt 

~, B2u + ' 2 ~ [ G ( 2 U - 1 ) ( x )  x=blh2u 2 ~ ( ( -  #)"tzu)q'hzu+l 

(1.t7) 

n c~ (Here, h --, 0 is taken to mean that n ~ ~ through the set { ~}~=o so that t always 
remains an abscissa.) 

B, in (1.17) are the Bernoulli numbers. 

We note that both (1.14)-(1.15) and (1.17) have been obtained in [4] by employing 
[4, Theorem 3], which is a special case of a more general and fundamental result 
due to Navot  [3]. 

The main results concerning the precise asymptotic expansions of the errors I(x~) - 
lP(xO are given in (2.6) for p = 1, in (2.14) for p = 2, and in (2.19) and (2.23) for p = 3. 

Based on the results of Section 2, it is concluded in Section 3 that 1,4(x~) of [4] is the 
most advantageous of all the methods considered in this work. Section 4 includes 
some numerical results that support this conclusion. 

Before we proceed, we note that for arbitrary t we can always write I ( t ) =  
~tt_ T K( t ,  x ) f ( x ) d x  by the periodicity of the integrand. That is to say, we can always 
take a = t - T and b = t without affecting I(t). This forces x, = t, which means that 
t can always be made an abscissa. This enables us to use the numerical quadrature 
formulus I,V(x~) above with arbitrary t. 

2. Analysis of the formulas 

We now give a detailed analysis of the errors in the formulas I.P(xi), p = 1 . . . .  ,4. To 
this effect, we first observe that for p = 1, 2, 3, 

I(x ,)  - I,;(x,) = [I(xi)  - 1~4(x,)] - [I,P(xi) - 1,4(x,)], (2.1) 

and since I (x l )  - 1,4(xi) is known fully from (1.14) and (1.15), it is sufficient to analyze 
I,V(xi) - I4(xi).  From (1.4), however, we realize that 

I,V(xi) - I ) ( xO  = [r~(xi) - r4,(xl)]f(xi) - V,V(xi)f(xi),  (2.2) 

so that it is sufficient to analyze V~(x~). 
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(1) Analys isof I ) (x l )  

From (1.6) and (1.13) we have 

Vnl(Xi)~ f;K(xi'x)dx- h ~ K(xi'xj)- h[Hl(xi'xi)l~ l ' j = l  
) r  

(2.3) 

Invoking (1.14) and (1.15), with f i x )  there replaced by the constant  function 1 (which 
is also periodic), we see that  

Vnl(Xi) '~ ~ flu(xi)h 2u+l as h - -  0 (n - -  oo), (2.4) 
t~=l 

where 
( ' ( -  2/~) ~2/~ 

flu(xi) = 2 (2#)! cqx 2uHl(xi'x)[ . . . .  ' (2.5) 

and are independent  of the end points a and b. Consequently,  

l(xi) -- IJ(xi) ~ ~ [au(xl) -- fl ,(xi)f(xi)]h 2u+1 as h - -  0. (2.6) 
/~=1 

So far we have assumed that  the integrals J, = S b K(x~, x) dx are computed  exactly. 
Normally,  however, the Ji are computed  approximately,  in which case (2.6) needs 
to be modified to accommoda te  this approximat ion  procedure.  If the error  in the 
approximat ion  of Ji is O(h m) for some m, I(xi) - I,~(xi) will he O(hq), where q = 
rain(m, 3). Fur thermore ,  whether  an expansion of the form v~ ,, tx lh 2#+1 exists /4,=1 U#~, il 
for l(xi) - I,~(xi) depends on how the Ji are approximated.  

(2) Analysis of  I,Z(xi) 

From (1.7) and (1.13), in conjunct ion with (1.9), we have 

V,2(xi) = Hi (xi, xi) W~, 
where 

W, = loglt  - x ldx  - h " loglt  - ~il - h log  , 
, j=O 

Cj:~t 

Invoking Theorem i of the previous section with g(x) _~ 1, we obtain 

W~ ~ ~ 7.(h)h 2" as h ~ O, 
~/=1 

where 

~.(h) -- - (2/~)! [Ox--~ TS-~ l~ - 

B2, t)-zu+ 1 - 2 # ( 2 ~ - - -  1) [(b' - + (t - -  a') -2~+1] # O. 

t:X i . 

(2.7) 

(2.8) 

(2.9) 

(2.1o) 
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N o w  for even n, b'  - t = t - a '  = T/2, thus 

B2u (2 ' ]  2"-1 
?,(h) = ~, - /~ (2~2  i ) \ T J  " (2.11) 

Fo r  odd n. b' - t = (T + h)/2 and t - a' = (T - h)/2. thus 

yu(h) = 2 # ( ~  Z 1) + . (2.12) 

It  is clear that  if 7.(h) is expanded  in powers  of h, its expansion contains  only even 
powers  of  h. Combin ing  these with (2.9) we see that  

IV...~ ~ ~,h z" as h ~ 0, (2.13) 
#=l 

where ~. for even n is as given in (2.11), while for odd  n, ~. is slightly more  compl ica ted  
and will no t  be given here. As a result of (2.13), we have 

l ( x O -  12(x0 ~ ~ au(x~)h z " + t -  Hl(xi, x~)f(x,) ~ 9,h 2" as h ~ 0 .  (2.14) 
//=i /t=l 

This implies that  

I(x,) - I2(x,) = O(h 2) as h ~ 0. (2.15) 

2B 2 1 
Fur the rmore ,  f rom (2.14) and ~ - - both  for even and  odd n, we see 

T 3 T  
h 2 

that  if we replace u. in (1.7) by u. + ~ ,  the second sum in (2.14) becomes O(h4).  

This  improves  (2.15) in the sense that  I(x~) - Iff(x~) = O(h 3) now, and the coefficient 
of h a is the same as that  in l(xi) - I4(xi), namely  al(Xl). This implies tha t  l(x~) - 
1.2(x~) ~ I(xi) - 14(xi) as h ~ 0 for this case. 

(3) Analysis of I. 3 (xi) 

We start  with the analysis of  1.3'1(xl) and assume first that  K(t, x) is of  the general 
form given in (1.5). F r o m  (1.11) and (1.13) we have 

= f f ' + ; / f  - h [ H l ( X i ,  x i ) log(  h ) H2(xi, xi) l (2.16) V3'~ (x3 K (xi, x) ,tx + . 

Expanding  the functions H1 (x~, x) and  H2(xi, x) abou t  x = x~, and substi tuting these 
expansions  in L, cx~+h/2 K(x~, x),ix, after some tedious manipula t ions  we obta in  jx i -h /2  

1/3,I(x3 ~ hHa (x~, xi) log(n/e) 

+ ~ 6u, E(Xi) + 6. l(x~) og ~ e x p  h zu+a .=1 ' 2 / z + 1  as h ~ 0 ,  

(2.17) 
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where 

2-2u [- (~2~ 

a.,q(x,)-(2;+ 1 
Consequently,  

I(xi) -- I3,1(xi) 

hill  (xl, xi)f(xl) log(It/e) 

h 
+ ~ l  {~ -- [(~u,2(x,) + 6u ,1(x , ) log(~exp(  

as h--* 0. 

This implies that  

q = i ,  2 .  (2.18) 

1))1 } 2# + 1 f(xi)  h2U+l 

(2.19) 

I(xi) -- I3'I(xi) = O(h) as h ~ 0. (2.20) 

When  we specialize (2.19) to the kernel K(t, x) given in (1.10), we see that  Hi(t, x) =- 1 
as ment ioned  below, thus 6u. 1 (xi) = 0, # = 1, 2 . . . . .  This results in an expansion of 
the form 

I(xi) - I3'I(xl) ".~ ~ pu(xl)h 2u+l a s  h ~ 0. 
#=0 

In any case, we note that  as for the formula  I)(x~), for I3'I(x~) too the exact nature  
of the expansion for I ( x i ) -  I)'1(xi) is likely to change if the integrals Li are 
computed  only approximate ly .  

As for the formula  I3'U(xO, we proceed by showing that  it can be obta ined f rom 
I2(xi). For  the kernel K(t ,x)  in (1.10), it is not  difficult to see that  Hi(t, t) = 1 and 
Hz(t, t) = log[~'( t)  2 + rl'(t) 2 ] 1/2. Thus  Hz(x~, x~) = log s~, where s~ is as defined fol- 
lowing (1.12). Also n is even for I3'II(xi). Thus, for this case (1.7) becomes 

r2(x~) = 2(b - h ~ "  loglkh[ + h logs[ .  (2.21) 
k = --n/2 

k r  

C o m p a r i n g  (2.21) with (1.12), we see that  for this case 

h h 2 
r2(x,) =ria 'U(x~)-3~ n = r3'U(x~) - --'3T (2.22) 

This, as explained following (2.15), results in 

I ( x , ) -  I3 'U(x l )~  ~ %(xi)h z u + l -  f(x~) ~, 7uh 2u a s  h ~ 0, (2.23) 
/t=l 1.=2 

which implies that  

I(xi) - I3'U(xi) = O(h 3) as h --r 0, (2.24) 

the coefficient of h 3 being the same as that  in l(xO - I4(xi), namely  c~1(x~). Thus 
I(x i) - I3'II(xi) ~ l(xi) -- 14(xi) as h ~ 0. 
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We note here that 1,3'~(xi) and 1,3,n(xi) have been observed to produce errors of 
order h and h 3 respectively in the numerical solution of some integral equations of 
the kind mentioned in the introduction, see [2]. Our analyses above, the results in 
(2.20) and (2.24) in particular, provide the justification for this. 

3. Discussion of results 

We now compare the different formulas that were analyzed in Section 2 in view of 
their costs, errors, and possibilities of their being used in conjunction with Romberg- 
type integration. 

We note again that the difference between the various methods stems from the 
different ways in which r.(xl) are computed. For I. ~ (xi) and I3"X(x~) the computation 
of r.P(xi) involves the determination of the integrals Ji= ~ K(xi, x)dx and L i = 
[x,+h/2 Ktx x~ dx with sufficient accuracy, and this increases the cost of I.l(xi) and x i - h / 2  ~ i, ! 

1,3'X(xi). 

As far as the accuracy of the methods is concerned, the error in I3,'1(xi) is O(h), while 
the errors for I,l(xi), 1,3'U(xi), and I4(xi) are all O(h3). The error in 12(x0 is O(h2), 
but with a minor change in rZ(xi), can be made O(h3). 

Next, the errors in 1,3'I(xi) (for the kernel in (1.10)), 1,1(x0, and 1,4(xi) have only the 
odd powers of h in their expansions, while those of I2(xO and 1,3'U(x~) have both 
even and odd powers of h in their expansions. The existence of well defined asym- 
ptotic expansions for the errors in the different formulas I,P(x~) immediately suggests 
that the accuracy of these formulas can be improved by applying to them the 
Richardson extrapolation. This idea has been proposed and successfully imple- 
mented in [4] in conjunction with 1,4(xi). The amount of work in setting up the 
appropriate Romberg-type integration procedures is directly proportional to the 
number of terms eliminated from the asymptotic expansions of I(x~) - I,P(xi). In 
view of this we see that for a given amount of effort in setting up the Romberg-type 
integration formulas, more accuracy can be obtained for I.~(x~) and I4(x~) than can 
be obtained for 1,3'U(xO. For example, if we wish to eliminate v terms from their 
asymptotic expansions, we will obtain O(h 2v+3) accuracy for the former, while 
O(h v+3) accuracy is obtained for the latter. 

When all the factors of cost, error, and efficiency of use with Richardson extrapo- 
lation are taken into account, it is seen that the formula I,*(x~) of [-4] is the most 
advantageous of all the formulas considered here. 

The numerical quadrature formula Iff(xi) has been employed in [4] in the solution 
of periodic Fredholm integral equations with logarithmically singular kernels re- 
sulting in errors of order h 3 in the numerical solutions, as suggested by (1.16). 
Romberg-type numerical quadrature formulas obtained by applying the Richard- 
son extrapolation process to 1,4(x~) through the expansion in (1.14) have been 
observed to produce errors of orders h 5, h 7, etc., in the numerical solutions of the 
same integral equations, thus implying the correctness of (1.14). These results are 
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documented in detail in [4], where a brief account of the relevant extrapolation 
methods is also provided. 

4. A numerical example 

;/ Consider the integral I( t )= K(t,x)f(x)dx, with K(t , x )=  log 2c sin 

and f(x) = cosx. We have I ( t )= - n c o s t  for all c > 0. For  the kernel K(t,x) in 
consideration we have H~(t, t) = 1 and H2(t, t) =-logc. Also K(t,x) is of the form 
given in (1.10) with ~(t) = c c o s t  and ~/(t) = c sin t, 0 _< t _< 2n. 

Below we present some numerical results obtained for I(t) by employing the rules 
I 3 ' "  and 14. As will become clear, these results verify the theoretical results of 
Section 2 and justify the conclusion of Section 3. In all our computations we have 
set c = ~fe  and t = 0. 

Tables 1-3 give some of the results obtained for I(t) above by the rules 14 and I 3 ' "  
with the Richardson extrapolation applied to the sequences T k = I~(t), k = 1, 2 . . . . .  
A short description of the Richardson extrapolation and its generalizations can be 
found in [4, Appendix]. We shall only mention that the approximations resulting 
from the application of the Richardson extrapolation can be arranged in a table of 
the form 

T~l) = T1 

= r2  

= % T2( 1 ) 

T2 (2) T (1) 

(4.1) 

Table 1. Comparison of the rules 1.4(t) and 1 3 " ' ( t )  as they are 
applied to I( t ) .  The last column contains ~1 (t) h3, the dominant 

term in the asymptotic expansions of I(t) -- 1 4 ( 0  and l ( t )  - 13 'u ( t ) .  

n 

2 1.2135795+00 
4 1.2478648 -- 01 
8 1.4953355 - 02 

16 1.8501693--03 
32 2.3068588 - 04 
64 2.8817510--05 

128 3.6016197--06 
256 4.5018468 - 07 
512 5.6272530-08 

1024 7.0340489--09 
2048 8.7925557-10 
4096 1.0990693--10 
8192 1.3738366-11 

I ( t )  - 1.4(t) l ( t )  - I . S " ( t )  ~l(t)h s 

1.1993050+00 
1.2376241 -- 01 
1.4886343 -- 02 
1.8459270--03 
2.3041986--04 
2.8800870--05 
3.6005795--06 
4.5011967--07 
5.6268466--08 
7.0337949--09 
8.7923970--10 
1.0990594--10 
1.3738304--11 

9.4409328 
1.1801166 
1.4751458 
1.8439322 
2.3049152 
2.8811440 
3.6014301 
4.5017876 
5.6272345 
7.0340431 
8.7925539 
1.0990692 
1.3738365 

- -  01 
--01 
- -  02 
- -  03 
- -04 
- -  05 
- -  0 6  

- -  0 7  

- -  0 8  

- -  0 9  

- -  1 0  

- -  I0 
--11 
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Here each column converges to I ( t )  more quickly than the ones preceding it, and 
the diagonals converge more quickly than the columns. 

Table I contains the errors e~( t )  = I ( t )  - I~( t )  and the dominant term in their asym- 

ptotic expansion for n ~ oe, namely, a j  ( t )h  3 = ~ ' ( -2 ) f " ( t )  . Here, ~ ' ( -2 )  = 

-0.030448457 . . . .  The closeness of e4(t) ,  e3'n(t), and al(t)h 3 for large n is in 
accordance with the results of Section 2. 

Table 2a gives the errors I ( t )  - Tj ~~ for the rule/,4. From Table 2b it is seen that the 
second column behaves h 5, the third column like h 7, etc., as implied by the expansion 
in (1.14). 

Table 3a gives the errors l ( t )  - Ti(~ for the rule 13,H. From Table 3b it is seen that 
the second column behaves like h 4, the third column like h 5, etc., as implied by the 
expansion in (2.23). 

Table 2a. Errors eJ ~ = I ( t )  - Tj ~~ in the Richardson extrapolation applied to the 
sequence Tk = I~ ( t ) ,  k = 1, 2 . . . . .  for l( t) .  eJ. i~ appears in the same location as Tjll) 

in the table in (4.1). The lack of improvement  at the end of the last three 
columns is due to the finite precision arithmetic being used. 

1.21 + 00 
1.25 - 01 - 3 . 0 8  - - 0 2  
1 . 5 0 - 0 2  - 7 . 3 7 - 0 4  2 . 3 1 - 0 4  
1 . 8 5 - 0 3  - 2 . 1 7 - 0 5  1 . 3 6 - 0 6  - 4 . 4 8 - 0 7  
2 . 3 1 - 0 4  - 6 . 6 9 - 0 7  9 . 9 9 - 0 9  - 6 . 5 7 - 1 0  2 . 1 8 - 1 0  
2 . 8 8 - 0 5  - 2 . 0 8 - 0 8  7 . 6 9 - 1 1  - 1 . 2 0 - 1 2  7 . 9 9 -  14 
3 . 6 0 - 0 6  - 6 . 5 0 - 1 0  5 .98 - -13  - 2 . 3 1 - 1 5  3 . 6 6 - 1 7  
4 . 5 0 - 0 7  - 2 . 0 3 - I 1  4 . 6 7 - 1 5  - 4 . 5 0 - 1 8  1 . 7 6 -  20 
5 . 6 3 - 0 8  - 6 . 3 5 - 1 3  3 . 6 5 -  17 - 8 . 7 8 - 2 1  8 . 5 5 - 2 4  
7 . 0 3 - 0 9  - 1 . 9 8 -  14 2 . 8 5 - 1 9  - 1 . 7 1 - 2 3  4 . 1 7 - 2 7  
8 . 7 9 - 1 0  - 6 . 2 0 - 1 6  2 . 2 3 - 2 1  - 3 . 3 5 - 2 6  - 9 . 0 8 - 3 1  
1 . 1 0 - 1 0  - 1 . 9 4 -  17 1 , 7 4 - 2 3  - 7 . 1 5 - 2 9  - 6 . 0 7 - 3 0  
1 . 3 7 - 1 1  - 6 . 0 5 - 1 9  1 . 3 6 - 2 5  - 1 . 2 1 - 2 9  - 1 . 2 0 - 2 9  

- 2 . 6 6  - 14 
- 2 . 4 4  - 18 
- 2 . 7 9  - 22 
- 3 . 3 5  - 26 
- 5 . 6 5  - 30 
- 2 . 9 5  - 30 
- 6 . 0 7  - 30 
- 1 . 2 0  - 29 

Table 2b, The ratios v! ~ = e~0/e! ~+l) with e~ ~ as in Table 
2a. v) i) appears in the same iocation as eJlfin Table 2a. 

The entries that  are omitted are those corresponding to 
the eJ i) that  suffer from loss of significance due to the 

finite precision arithmetic being used. 

9.7 
8.3 41.7 
8.1 33.9 169.7 
8.0 32.5 136.3 
8.0 32.1 130.0 
8.0 32.0 128.5 
8.0 32.0 128.1 
8.0 32.0 128.0 
8.0 32.0 128.0 
8.0 32.0 128.0 
8.0 32.0 128.0 
8.0 32.0 128,0 

681.7 
545.9 2729.7 
520.1 2184.3 
514.0 2080.5 
512.5 2056.0 
512.1 2050.8 
512.0 --4591.8 
468.6 

10921.7 
8737.9 
8321.8 
5927.7 
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Table 3a. Er rors  e} i) = I ( t )  - 7~ ~I) in the Richardson  ex t rapola t ion  appl ied to the 
sequence Tk = 13~'(t),  k = 1, 2, _. . ,  for l ( t ) .  e} ~ appears  in the same locat ion as Tj (~) 

in the table in (4.1). 

1.20 + 00 
1.24 - 01 - 2 . 9 9  - 02 
1.49 - 02 - 6 . 6 7  - 04 1.28 - 03 
1.85 - 03 - 1.70 - 05 2.64 - 05 - 1.41 - 05 
2.30 - 04 - 3 . 6 7  - 07 7.41 - 07 - 8 . 5 4  - 08 1.37 - 07 
2.88 - 05 - 1.84 - 09 2.25 - 08 - 6 . 9 4  - 10 6.51 - 10 
3.60 - 06 5.38 - 10 6.97 - 10 - 6 . 3 5  - 12 4.57 - 12 
4.50 -- 07 5.40 -- 11 2.17 -- 11 --6.47 -- 14 3.51 -- 14 
5.63 --  08 4.01 -- 12 6,78 -- 13 - -7 .40 -- 16 2.75 -- 16 
7.03 - - 0 9  2 . 7 0 -  13 2.12 - 14 - - 9 . 4 4 -  18 2.15 - 18 
8.79 - 10 1.75 - 14 6.61 - 16 - 1 . 3 1  - 19 1.68 - 20 
1.10 - 10 1.11 - 15 2.07 - 17 --1.92 - 21 1.32 -- 22 
1.37 -- 11 7.03 -- 17 6.49 -- 19 - 2 . 8 9  -- 23 1.03 -- 24 

- 4 . 2 1  - 10 
- 5 . 2 2  - 13 
- 5 . 5 8  - 16 

3 . 3 4 -  19 
5.79 - 21 
3.09 - 23 
1.37 - 25 
5.52 -- 28 

Table 3b. The  rat ios v} i) = e}')/e} i+1) with e} i) as in 
Table  3a. v} ~ appears  in the s ame  locat ion as e) i) 

in Table  3a. 

9.7 
8.3 44.8 
8.I 39.3 48,6 
8.0 46.3 35.6 164.9 
8.0 199.1 33.0 123.1 
8.0 -- 3.4 32.3 109.3 
8.0 10.0 32.1 98.2 
8.0 13.5 32.0 87.4 
8.0 14.8 32.0 78.4 
8.0 15.4 32.0 72.1 
8.0 15.7 32.0 68.3 
8.0 15.9 32.0 66.2 

210.2 
142.5 806.4 
130.0 936.4 
127.8 -- 1670.4 
127.7 57.7 
127.8 187.2 
127.9 226.4 
127.9 247.2 

Acknowledgment 

The author wishes to thank Professor Rainer Kress for the stimulating discussions 
that led to the development of the formula I2(xi) and the writing of this note. The 
computations reported in this paper were performed on an IBM 370 computer using 
extended double precision arithmetic. 

References 

[1] C . T . H .  Baker,  The  Numer ica l  T r e a t m e n t  of  In tegra l  Equat ions ,  C la rendon  Press, Oxford  1977. 
[2] S. Christ iansen,  Numer i ca l  solut ion of  an  integral  equa t ion  with a logar i thmic  kernel,  BIT,  11 

(1971), pp. 276-287.  
[3]  I. Navo t ,  A fur ther  extension of  the Eu le r -Mac laur in  s u m m a t i o n  formula ,  J. Ma th .  an d  Phys., 4 I  

(1962), pp. 155-163.  
[4] A. Sidi and  M. Israeli, Q u a d r a t u r e  me thods  for per iodic  s ingular  an d  weakly  singular  F r e d h o l m  

integral  equat ions ,  J. Sci. Comp. ,  3 (1988), pp. 201-231.  

A v r a m  Sidi, C o m p u t e r  Science De pa r tme n t ,  Technion- Is rae l  Inst i tute  of Technology,  Hai fa  32000, 

Israel 


