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APPLICATION OF VECTOR EXTRAPOLATION METHODS TO CONSISTENT 
SINGULAR LINEAR SYSTEMS 

Avram SIDI 
Computer Science Department, Technion - Israel Institute of Technology, Haifa 32000, Israel 

Consider the linear system of equations Bx = f, where B is an N x N singular matrix, but the system is 
consistent. In this work we show that iterative techniques coupled with vector extrapolation methods can be 
used to obtain (approximations to) a solution of Bx = f. We do this by extending the results of some previous 
work on vector extrapolation methods as they apply to nonsingular matrices B. In particular, we show that the 
minimal polynomial, reduced rank, and modified minimal polynomial extrapolation methods, and the scalar, 
topological, and vector epsilon algorithms all produce a solution of Bx = f in at most rank(B) < N - 1 steps, 
and that this solution depends on the initial approximation in a simple way. Asymptotic error estimates and 
error bounds are given for two different limiting procedures that have been considered in previous work. 
Although we demonstrate all our results for Richardson’s iterative method, they are equally valid for any other 
iterative method. 

1. Introduction 

Consider the system of linear equations 

Bx=f, 0.1) 

where B is a complex N x N (not necessarily Hermitian) matrix and f is an N-dimensional 
vector. We are interested in obtaining a solution of (1.1) when B is singular, but the system (1.1) 
is consistent. We recall that in this case (1.1) has an infinity of solutions. 

The purpose of the present work is to show that iterative techniques coupled with vector 
extrapolation methods can be used to obtain (approximations to) a solution of (1.1) when B is 
singular and (1.1) is consistent, under certain conditions. 

The iterative techniques for (1.1) that we consider are all of the form 

xi+i = Axj + b, j = 0, 1,. . . , x0 arbitrary, (I *2) 

in which A = MelQ and B = M - Q for some matrices M (nonsingular) and Q, and b = M-‘f. 

The Jacobi, Gauss-Seidel, and SOR methods and Richardson’s iterative method are but a few 
examples of such techniques. 

Acceleration methods for the problem considered in this work with B symmetric positive- 
semi-definite have been considered before. For example, Hageman and Young [lo, pp. 134-1361 
show that the Chebyshev acceleration method can be applied in a slightly modified form and 
give also a convergence analysis. In his paper, Axelsson [l] proposes a conjugate gradient type 
method and shows that this method is applicable to the problem considered in the present work. 
Recently, Notay [16] has given a treatment of polynomial acceleration methods, including 
steepest descent, conjugate gradients, and Chebyshev acceleration, for the same problem. 
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The extrapolation methods that we consider are the minimal polynomial extrapolation (MPE) 
of Cabay and Jackson [6], the reduced rank extrapolation (RRE) of Eddy [7] and MeSina [15], 
the modified minimal polynomial extrapolation (MMPE) of Sidi, Ford and Smith [21], the scalar 
epsilon algorithm (SEA) of Wynn [24], the vector epsilon algorithm (VEA) of Wynn [25], and the 
topological epsilon algorithm (TEA) of Brezinski [3]. We note that Sidi, Ford and Smith [21] 
provide a general framework within which most of these methods and many new ones can be 
obtained. An extensive survey of vector extrapolation methods has been carried out by Smith, 
Ford and Sidi [22], and some of the convergence and stability properties for MPE, RRE, MMPE, 
and TEA have been given in [18,21], and more recently in [20]. We note that, while in [18,21] the 
iteration matrix A in (1.2) is assumed to be diagonalizable, [20] analyzes the case in which A is 
not necessarily diagonalizable. Furthermore, it is mentioned in [20] that the analysis of TEA 
covers also SEA. In a recent work by Sidi [19] the connections between extrapolation and various 
Krylov subspace methods have been explored, and some new convergence results for them have 
been proved. For the appropriate references pertaining to Krylov subspace methods and more 
details on them, see [19]. Some of the results of [19] pertaining to the equivalence of vector 
extrapolation and Krylov subspace methods have also been given by Beuneu [2], and for TEA by 
Brezinski [4, pp. 186-1891. Different recursive techniques for the implementation of vector 
extrapolation methods such as MPE, RRE, MMPE, TEA, and other related methods have been 
derived by Ford and Sidi in [8], in which a very interesting four-term (lozenge) recursion relation 
for MPE and RRE is also given. Similar recursive techniques, by which methods such as MMPE 
and TEA can be implemented, can also be found in [5]. 

We now give a very brief description of the above-mentioned extrapolation methods, which is 
based on the developments in [18-211. 

Let x0, xi, x2,. . . , be a given sequence of vectors whose limit or antilimit is s. For MPE, 
RRE, MMPE, and TEA, s,,~, the approximation to s, is defined through 

where the Y!“,~) 
J 

are scalars that satisfy the linear equations, 

;: $.k) = 1, k C uijyjn,k) = 0, 0 < i < k - 1, 
j=O j=O 

with 

v u n+i? u,+~) for MPE, 

) for RRE, 

for MMPE, 
0 3 

43 2.4 n+i+j) for TEA. 

Here 

u, = x;+1-x,, wi= Uifl - ui, i=O, l,..., (1.6) 

40, 41,..., are fixed and linearly independent vectors, q is a fixed nonzero vector, and ( *, * ) is 
any inner product with homogeneity property ((my, /3z) = G/3( y, z), (Y, p complex numbers and 
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y, z vectors. For the N-dimensional vectors considered in this work we take (x, y) = x *y, where 
x* denotes the Hermitian conjugate of X. 

An acceleration method almost identical to RRE has been proposed by Kaniel and Stein [12]. 
In this method, x,+, in (1.3) is replaced by x,+,+i, the rest of the method being the same as that 

for RRE. 
If we denote s, k = E;~ in TEA, the following recursion relations may be shown to hold for ~1, 

when the vectors ‘4 and x0, xi,. . . , are real: 

EnI = 0, E;f=X,, n=o, l,..., 

n,k=O, l,..., 

(1.7) 

n+l &l;k+l = &2k-l ‘( 
n+l 

&;k+2 = &2k 

VEA is strictly defined through the recursion relations 

En1 = 0, E;;=X,, n =o, l,..., 

?I+1 
E:+l = Ek-l 

1 
+ 

ntl 
Ek 

n, n,k=O, l,..., 
- Ek 

(1.8) 

where l/z is the Samelson inverse of the vector z, defined through Z/( z, z), where Z = z *T. 
Finally SEA is the result of componentwise application of the Shanks [17] transformation 

ek( S,,) (or its equivalent epsilon algorithm of Wynn [24]) to the vector sequence x0, xl, x2,. . . . 

Numerical results and theoretical considerations suggest that s,,~ for MPE, RRE, and MMPE, 
and &zk for all three epsilon algorithms, have similar convergence properties. In this respect we 

note that s, k 
‘. 

for MPE, RRE, and MMPE are obtained from the vectors x,, x,+ l,. . . , x, +k+ 1, 

whereas &zk m the epsilon algorithms are obtained from x,, x,+~, . . . , x,+~~. 

In Section 2 we first discuss the consistency of (1.1) in terms of the eigenvectors and principal 
vectors of B. Next we give a sufficient condition for the convergence of Richardson’s iteration 
method, which generalizes a known result. 

In Section 3 we show in the light of the results of Section 2 that extrapolation methods can be 
applied to the singular but consistent system (1.1) with no modifications to produce approxima- 
tions to a solution. In particular, we show that, for some k d rank(B) G N - 1, s,,~ is a solution 
of (1.1). We also give convergence results for s,,~ as n + 00 and k is held fixed, and we provide 
error bounds on s, k for fixed n and increasing k. The results of this section are extensions of 
those that were obtained in [18-221. 

2. 

1. 

Theoretical preliminaries 

Consider the linear system in (1.1) with B and f as described in the first paragraph of Section 
There exists a nonsingular matrix I’ such that 

V-‘BV= J= (2.1) 
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where J, are Jordan blocks of dimension r, and have the form 

Pi 1 
P”I 1 0 

J,= . . 
. . 

0 1 
Pi 

If V has the columnwise partition 

3 pi eigenvalue . 

v=[ 011 1012 I . * . I Ulr, I u21 I u22 I . . . I u2r, I . * * I %l I %2 I . . . I k”] > P-3) 
then vi1 is the eigenvector corresponding to the eigenvalue pi, and in case r, > 1, ui2,. . . , uir are 
the principal vectors (or the generalized eigenvectors) corresponding to pLi. We actually have 

%l = P, Oil 7 

BUij = /LiUi, + Ui,-1, j=2 ,..., r, forr,>l. (24 

Let us denote 

Y(B) = span{ u,i,l<j<r,: pi+O}, 

N(B)=span{u;,: p;=O}, nullspaceof B, (2.5) 

A(B)=span{uj,,2<j<ri: pi=O, r,>l}. 

Obviously, the intersection of any two of these subspaces consists of the zero vector only, and 

@N=9’(B)U’-(B)@~(B). 

If r, = 1 for all the eigenvalues pi = 0, A!(B) is defined to be the empty set, and y E&(B) is 
interpreted as y = 0. 

2.1. Consistency of (1.1) in terms of eigenuectors and principal vectors 

It is known that the system in (1.1) is consistent if and only if f is in the column space of B. 
We now give another necessary and sufficient condition for consistency of (l.l), which we state 
in terms of the eigenvectors and principal vectors of B. 

Theorem 2.1. When B is singular, the system in (1.1) has a solution if and only if f can be expanded 
in terms of the columns of the matrix V, excluding the vectors uir, corresponding to zero eigenualues. 
If a solution s exists, then it is of the form s = s’ + s” + s “‘, where s’ E Sf’( B) and s” E k'(B) are 
uniquely determined, and s “I EJP”( B) is nonunique. (Recall that s” = 0 if M(B) is the empty 

set.) 

Proof. Let us expand f in terms of the columns of V. Then 

f = i: 5 pjjuij. 
i=l J=l 

(2.6) 
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A solution s of (1.1) can also be expressed in a similar way, namely, 

Y r, 
s= c 

i=l 

c aijvij. 
/=1 

(2 ..7) 

Substituting (2.6) and (2.7) in (l.l), and invoking (2.4), we obtain the following equations for the 
arij: 

Pi(y~j+(y~~+t=PiJY ‘GjGrlP1, P,%, = P,r,. (2.8) 

For p, # 0 these equations can be solved uniquely for (Y,,, 1 <j G r,. For p, = 0, however, a 
solution exists if and only if pir = 0, and in this solution (Y~, = pii_,, 2 <j < r,, while (~,r is 
arbitrary. This completes the proof. 0 

Corollary. Let the matrix B in Theorem 2.1 be normal. Then any solution s of (1.1) is of the form 
s=s’+s”‘, where s’ E Y(B) and s “’ EN(B). Here s’ = B+f is unique. ( Bf is the Moore- 
Penrose generalized inverse of B.) 

The proof of this corollary makes use of the explicit form of B+ for the case in which B is 
normal. We do not go into the details of the proof. 

2.2. Richardson’s iterative method for (1.1) 

Let o # 0 be a complex number, and consider Richardson’s iterative method for (l.l), namely, 

(2.9) ~~+~=x~+~(f-Bx~), j=O,l,._., 

x0 being an arbitrary initial vector, see [23, p. 141 
method of the form given in (1.2) with 

A=I-wB, b = wf. 

.I. We note tha .t this method is an iterative 

(2.10) 

The following is an extension of a known result concerning Richardson’s iterative method for 
the case in which B is Hermitian positive-semidefinite. 

Theorem 2.2. Assume that 

argpiE(O-$rr, ~+$IT) forp.,#O, some 8, 

O-C 1~1 <(2cos o)/o(B), a=max{ largp,--f31: p,+O}, (2.11) 

arg w= -8, 

where p(B) = max, I p, I is the spectral radius of B. Then the sequence { x,,,}z+ obtained from 
(2.9) converges if and only if (1.1) has a solution s, and x0 is such that x0 - s E Y( B) @N(B). 
(Thus if JZZ( B) is the empty set, no conditions need to be imposed on x0.) When { x, }z+ 
converges, 

lim x,=s*+zO. 
m+oo 
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where s, is the only solution of (1.1) of the form 

s* = s’ + s/I, s’ EY(B), s” CM(B), 

and z0 depends solely on x0 through 

x,=xA+s”+z,, x; ELqB), zo EN(B). 

Proof. Assume that a solution s to (1.1) exists. Then it is easy to show that 

x, - s=Arn(xg-s), m=o, l)...) (2.12) 

with A as in (2.10). Let us expand x0 - s in terms of the columns of the matrix V. We have 

X0 -s=r+y+z, 

r ESP(B), y EM(B), z EN(B). 
(2.13) 

With x0 fixed and s varying, r and y remain fixed, while z varies. Now the eigenvalues of the 
matrix A are Ai = 1 - tipi. The eigenvector and principal vectors of A corresponding to the 
eigenvalue Xi are fiil = u,r and D;, = ( - o) - j+ ‘uij, 2 <j < r,, respectively. Also corresponding to 
pi = 0 we have Xi = 1, hence Au;, = uil for this case. Consequently, 

%?I -s=AA”r+A”y+z. (2.14) 

We recall now that (see, for example, [20, Section 21) 

(2.15) 

thus A”u,~ = 0( Xyrnj-‘) as m + 00. As a result lim, ~ o. Amuij = 0 if and only if 1 Ai 1 < 1. With 
the condition (2.11) on the pi and w, 1 hi 1 < 1 is satisfied for pi # 0, as will be shown at the end 

of this proof. Consequently, lim, ~ o. A”r = 0. Since y EJZ( B), and M(B) is the subspace of the 
principal vectors corresponding to the zero eigenvalues of B, pi = 0, for which Xi = 1, we have 

from (2.15) that, when y Z 0, A”y = 0( mu) as m -+ cc, for some integer u, 1 G u < max{ r, - 1: 
pi = O}. Combining all the above, we see that lim, ~ o. x, exists provided y = 0, and we have 

lim x,=s+z=s,+z, 
m-+oo 

in this case. If y # 0, then x, = 0( mu) as m + 00, i.e., { x, }zZo diverges. 
Assume now that lim, ~ o. x, exists. From (2.9) it follows automatically that (1.1) must have a 

solution, hence we are back to the case treated in the previous paragraph. 
The only thing that remains to be shown is that when pLk f 0 and w are as in (2.11) 

( A, 1 = ]I- wan I -c 1. Now let 

a= IwI exp(i+), pk = I pk I exdi+k)- 

Therefore, we should have 

iA,1 = I(l- IwI Ipkl cos ak)- Ial lpkl sina,] (1, ak-+++k? (2.16) 

(2.17) 

or equivalently 
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This forces 

493 

(2.18) 

Picking C$ = -8, the result follows. •I 

Remarks. 

(1) 

(2) 

(3) 

(4) 

If there is no 8 for which arg pLi E (8 - &T, 8 + &r), all pLi f 0, then there exists no 
complex w for which { x, }zZO converges. Such a situation arises, for example, when B 
has both positive and negative eigenvalues. 
When Re pi > 0 for pi Z 0, we can take 6’ = 0; thus we can choose w to be real, as can be 
seen from (2.11). 
When JH( B) is empty, by picking x0 = f or x,-, = BR, for arbitrary &,, we can cause z0 = 0 
everywhere, and have lim, ~ m x, = s,. If the matrix B is normal, then, from the corollary 
to Theorem 2.1, lim, ~ o. x, = B+f for this choice of x0. 
From Theorem 2.2 we see that when JH( B) is not empty, the sequence { ~~},“=a does not 
converge if y f 0. This implies that when the zero eigenvalues of B have corresponding 
principal vectors, the sequence { x, }zCO will not converge, in general, for arbitrary x,,. 

Before closing this section we mention that any iterative technique of the form (1.2) with 
A = M-IQ and B = M - Q, is a Richardson iterative method with w = 1 for the “precondi- 
tioned” linear system M-‘Bx = M-‘f that is equivalent to Bx = f. Therefore, there is no loss of 
generality in considering only Richardson’s iterative method. We continue to do so in the next 
section. 

3. Application of extrapolation methods 

In this section we show that the vector extrapolation methods mentioned in Section 1 can be 
applied to the sequence { x, }zCO obtained from Richardson’s iterative method for (1.1). We do 
this by extending the results of [l&22]. 

A concept that will be of use in the sequel is that of the minimal polynomial of a matrix with 
respect to a vector. We will call the polynomial 

P(A) = ; c,??, ck= 1, 
i=O 

the minimal polynomial of the matrix A with respect to the vector u if 

P(A)u = 5 c,A’ ( i u=o 
i=O 

and 

k=min{ p: ( ~0&4’)~=0, P,=l). 
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It is known that P(A) exists and is unique. It is also known that if R(X) is another polynomial 
for which R( A)u = 0, then P(h) divides R(h). Consequently, P(h) divides the minimal 
polynomial of A, which in turn divides the characteristic polynomial of A. For details see [ll, 
pp. 18-19; 19, 221. 

Theorem 3.1. Let { x,,,}~=~ be the sequence generated by Richardson’s iterative method (2.9). 
Assume that a solution s for (1.1) exists, and let s* be the ( unique) solution of (1 .l) of the form 

s* = s’ + s”, s’ E.Y(B), s”&?(B). 

Write x,, = xh + x: + z,,, where x; E Y( B), xt E J?(B), and z0 E JV( B). Then for any fixed 
integer n >, 0 a solution s to (1.1) can be constructed from the vectors x,, x,,+~, . . . , x,,+~~+~, where 

k, is the degree of P(X), the minimal polynomial of A with respect to the vector x, - s* - zO, 
provided x[ = s “. Under the same condition, P(X) is also the minimal polynomial of A with respect 
to t&=x,+1-x,. (As mentioned in Theorem 2.2, this condition is automatically satisfied when 
&Z(B) is the empty set.) In fact, if we let 

P(X)= ;cix, ck,=l, (3.1) 
i=o 

be this (unique) polynomial, then 

ko 
s=s*+zo= ccix,+i 

i=O 
(3-4 

Furthermore, 

k,< i r,=N- 6 ri-N<rank(B)<N-l. 
i=l i=l 

P,#O I%=0 

(3.3) 

(Note that % = rank(B) when M(B) is empty.) The problem of determining the ci for the 
construction of s is treated in the proof below. 

Proof. We have that x0 - s* - z0 E Y( B). This with (2.12) implies that x, - x* - z0 E Y( B) for 
any m >, 0. Recall that Y(B) is the subspace spanned by the eigenvectors and principal vectors 
of B (or A) that correspond to the nonzero eigenvalues of B (or to the eigenvalues of A that are 
not unity), hence its dimension is F. Therefore, the minimal polynomial of A with respect to any 
vector in Y(B) has degree < f, and X - 1 is not a divisor of this polynomial. Consequently, 
C$?;c; = P(1) # 0. Now 

(x,-ss*-z,,) =O. 

By (2.12) this is equivalent to 

(3.4) 

~Ci(X.+;-s*-zo)=O. (3.5) 
i=O 
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Equality (3.2) now follows from (3.5). The problem that remains is that of determining the c,. Let 
us multiply (3.4) on the left by A, and invoke (2.12) again. This results in 

&,(X.+;+l-9*-z0)=o. 
i=O 

Subtracting (3.5) from (3.6), we obtain the linear system of equations 

; C;U,+, = 0. 
1=0 

(3.6) 

(3.7) 

With ck, = 1, this system consists of N equations in k, unknowns, hence is overdetermined. 
However, since the c, are known to exist uniquely, this system is consistent. Thus the c, can be 
uniquely determined from this system. Note that (3.2) and (3.7) involve only the vectors x,+~, 
i=o, l,..., k, + 1. Furthermore, by the fact that u,, 1 = Auj, j 2 0, (3.7) can be rewritten as 

P(A)u, = 0. 
Finally, we show that P(X) is the minimal polynomial_of A with respect to u,. Suppose that 

this is not true. Then there exists another polynomial P(X) of degree less than k, such that 
&A) 1.4, = 0. But u, = (A - I)( x, - s* - zO). Consequently, (A - I)f( A)(&x, - s* - zo) = 0. Ob- 
serve that A - I = - oB, so that the last equality is possible if either x” = P( A)( x, - + - to) = 0 
or K = @( A)(x, - s, - zo) E .zV( B). Now 52 = 0 is impossible, since the degree of P(A) is less 

than k,. Also ,Z E JV( B) is impossible since X E sP( B) by the assumption that x0 - s* - z. E 
Y(B). We thus have a contradiction. The result now follows from this, from P(A) u, = 0, and 
from the uniqueness of P(h). This completes the proof. 0 

Remarks. 

(1) 

(2) 

(3) 

In Theorem 3.1 we have assumed all the conditions of Theorem 2.2, with the exception of 
those in (2.11). This means that convergence of Richardson’s iterative method is not 
necessary for Theorem 3.1 to be true. 
It seems that the condition x0 - s* - z0 E 9’( B) is absolutely necessary. We have not been 
able to give a construction of s from the vector sequence { x, }zsO in the absence of this 
condition. We also recall that in the absence of this condition the sequence { x~}:=~ is 
unbounded for any value of w and any spectrum for B. 
In case M(B) is the empty set, we can choose x0 = f or x0 = BR, for some arbitrary vector 
L1 
x0, and cause z. = 0 everywhere in Theorem 3.1. If the matrix B is normal, then the 
left-hand side of (3.2) becomes s = s* = B+f with this choice of x0. This remark also 
applies to Theorem 3.2 and subsequent developments below. 

Another important result follows from (2.12) and can be stated as follows: 

Theorem 3.2. With the sequence { x,,,}~=, exactly as described in Theorem 3.1 with the notation 
therein, for all m sufficiently large we have 

x, =s,+z,+ iPi(rn)AT forsome YGv. 
i=l 

Here hi are complex numbers satisfying 

hi # 0, hi# 1, Ai#hj, ifi#j, 

(34 

(3.9) 
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and they are ordered such that 

The Pi(m) are polynomials in m with vector coefficients, given in the form 

P,(m) = 5 yjj(y), some integer pi > 0, 
j=O 

(3.10) 

(3.11) 

where (7) is the binomial coefficient, and the vectors y,,, j = 0, 1,. . . , pj, i = 1, 2,. . . , Y, form a 
linearly independent set. (Specifically, the hi are distinct nonzero eigenvalues of A corresponding to 
the nonzero eigenvalues p4 of B, and yij are some linearly independent combinations of the 
eigenvectors and principal vectors corresponding to nonzero equal eigenvalues pL4. As a result, the 
integer pi i- 1 is smaller than or equal to the maximum of the r4 for which 1 - “~1.~ = Xi. Also m 
sufficiently large means m >, max{ ri: 1 - wpi = O}.) 

We shall not prove Theorem 3.2. We shall only mention that (3.8)-(3.11) follow from (2.12) 
with the help of (2.15). For the exact details see [20, Section 21. 

The implication of Theorems 3.1 and 3.2 is that all vector extrapolation methods mentioned in 
Section 1 of the present work and their equivalent Krylov subspace methods can be applied, with 
no changes, to the sequence { x~}~=~ of this section to obtain approximations to s, + zo, 
provided x0 - s, - z. E Y( B), which we assume to be satisfied in the sequel. In Section 1, we 
used s, k to denote the approximations obtained employing MPE, RRE, MMPE, and TEA, and 
.& to denote those obtained employing the epsilon algorithms. For convenience we will let s,,~ 
stand also for &. 

3.1. Implications of Theorem 3.1 

3.1.1. S,,k, is a solution 
Employing Theorem 3.1 of the present work in [19, Theorem 2.11 we have 

(3.12) 

for MPE and RRE unconditionally, and for MMPE and TEA under certain mild conditions. 
Equality (3.12) for SEA is very simple to show. Its truth for VEA follows by combining Theorem 
3.1 with McLeod’s theorem. This theorem was originally proved by McLeod [14] for the case in 
which the ci in Theorem 3.1 are real, while the case of complex ci was proved recently by 
Graves-Morris [ 93. 

The implication of (3.12) is that Krylov subspace methods will produce s* + zO, a solution to 
(l.l), in exactly k,, hence in at most 3 < rank(B) < N - 1, steps. (All conjugate gradient type 
methods are Krylov subspace methods.) 

3.1.2. Conditions for existence of s,,~ 
Conditions for the existence of s,,~ with k G k, for MPE, RRE, MMPE, and TEA are given 

in [19, Theorem 2.11 and they apply to the problem treated in the present work with no 
modification. 
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According to this theorem, s,,~ for RRE always exists uniquely for k < k,. The proof of this is 
achieved by showing that det( U * fi) # 0, with fi = (A - I)U, where U is the N X k matrix 
defined by 

u= [% I Un+l I * * * I %+&*I. (3.13) 

Since the argument given in [19] in the proof of det( c * 0) # 0 is not valid when B is singular, 
we need to provide another argument, to which we now turn. First, since k, is the degree of the 
minimal polynomial of A with respect to u,, and k 6 k,, the k columns u,, u,+i,. . . , u,+~_~ of 
U are linearly independent. Consequently, UC # 0 for any 5 # 0, .$ E C k. Consider now I?< = (A 
-I).%& 5 E ck. It is easy to see that det(o*o) # 0 if and only if C*I!?*@= (@)*(@) > 0, 
which is true if and only if @ # 0. But ct = 0 if and only if either .!I< = 0 or U< E JV( B) since 
A - I = - wB (cf. the last part of the proof of Theorem 3.1), both of which are impossible. 
Therefore, @ # 0 for 5 # 0. This completes the proof of det( 0 *g) # 0. 

Following [19, Theorem 2.11 it is mentioned that s,,& with k < k, does not always exist 
uniquely for MPE although it does for RRE. In [19, Theorem 2.21 a sufficient condition is given 
for the unique existence of s,,~ with k < k, for MPE when B is not singular, this condition 
being that the matrix I - A have a positive-definite Hermitian part. When B is singular, this 
condition needs to be modified, and we have that, if the restriction of I -A = wB to the 
subspace Y(B) has a positive-definite Hermitian part, then s,,~ with k < k, exists uniquely for 
MPE. The proof of this is as that of [19, Theorem 2.21 once we recall that Ut ‘y(B), < E UZk. 

Before proceeding further, we mention some useful facts about the restriction B of B to the 
subspace Y(B), as we will need them below. The eigenvalues of i are the nonzero eigenvalues 
pi of B, and its corresponding eigenvectors and principal vectors are precisely uij, 1 <j < ri. If B 
is normal, then so is B. If B is Hermitian, then so is i. 

3.1.3. Error bounds for increasing k 
Bounds on different norms of the errors ek = .s~,~ - s* - z0 can be obtained exactly as in [19, 

Section 41 if the operator C = I - A = wB there is replaced by its restriction c^ to the subspace 
.Y’( B), and all operator norms there are defined in Y(B). The Hermitian part c,, = i( c^ + c^*) 
of k is assumed to be positive-definite. With these changes all the results of [19, Section 41 
remain intact. We elaborate on this below. 

Let us denote the vector I,-norm in CN by ]I x I], x E CN. We will use I] D I] Yc8j to denote the 
operator norm of D in Y(B), induced by the vector I,-norm in CN, i.e., 

II D II Y(B) = 

Obviously, if fi is the 

II h II Y(E) = 

Denote also 

max IIDXII 
XEISP(B) IIXII . 

x#O 

restriction of D to Y(B), then 

(3.14) 

II D II Y(B)* (3.15) 

II x II c&) = \ix*Chx , x &Y’(B). (3.16) 

This is a true vector norm in Y(B), since e,, is assumed to be positive-definite on Y’(B). 
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Let sg = x0 and sk = s~,~, k = 1, 2,. . . . The residual vector for 
r(x) =f - Bx. It is easy to see that r(x) = - B( x - s* - zO). Thus 
quently r( sk) E Y’( B) for k = 0, 1,. . . . 

arbitrary x is defined as 
r( x0) E Y(B), and conse- 

Let us denote by 7rk the set of all polynomials Qk(X) of degree at most k satisfying Qk(0) = 1. 
In view of the above, [19, Theorem 4.21, for the case treated in the present work, reads as 

follows: 

Theorem 3.3. For RRE 

II 4%) II G C II 4%) II9 
where 

(3.17) 

(3.18) 

Similarly, [19;Theorem 4.51 takes the following form: 

Theorem 3.4. For MPE 

11 ek h&) Gi/spk 11 eO h&3), (3.19) 

where pk is exactly as in (3.18), 

i=K-Z, ff = p(C;VJ, Ca = $(C- c^*), (3.20) 

and cond( C,,) is defined to be the ratio of the largest eigenvalue of ch to its smallest eigenvalue. If B 
is a normal operator, then 

11 ekll>(B) Gifk 11 eO l&i?)- (3.21) 

We note that the quantity fk that appears both in (3.17) and (3.19) and (3.21) is used in 
obtaining different bounds for )I r(sk) ]I in RRE and for I] ek ]]$(B) in MPE. For details see [19]. 
A special case is considered in the next paragraph. 

When B is a Hermitian positive-semidefinite operator, then C = wB implies that C is 
Hermitian positive-semidefinite with w = 1. Therefore, C, = C = B. If we now denote the largest 
eigenvalue of B by p,,, and its smallest nonzero eigenvalue by p,,,in, and define K = pmmax/pL,, 

and n = (& - l)/(& + l), then 

]I +k) II G 2~kb-(SO) II for RRE (3.22) 

and 

I] ekII~(,),(217klleOII~(,) for MPEe (3.23) 

Cf. [19, eqs. (4.36) and (4.37)]. We also note that for this case 

IIek]I.&?)= ~bk-&-zO)*B(Sk-S* -'O> . (3.24) 

As is shown in [19, Theorem 2.41, MPE and RRE for this case become equivalent to the method 
of conjugate gradients and the method of conjugate residuals respectively. 

Additional results can be obtained as in [19, Section 41. 
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We also mention that the Chebyshev acceleration method as generalized to the complex plane 
by Manteuffel [13], can be used to obtain approximations to a solution of (l.l), provided the 
ellipse F chosen in this method is taken to contain only the nonzero eigenvalues p, of B in its 
interior. If we start with the vector x0 = x; + s” + zO, and denote by szh the approximation to 
s* + z0 obtained at the k th step, then we have 

(3.25) 

where d is the center of the ellipse F and d f c are its foci. Here d and c are complex numbers. 
T’(X) is the Chebyshev polynomial of order k. The parameters that are needed for the 
Chebyshev acceleration are c and d. 

3.2. Implications of Theorem 3.2: An acceleration result for n + 00 

From Theorem 3.2 we see that the sequence { x~}:=~ is exactly of the form assumed in [20, 
Section 11. Consequently, [20, Theorem 3.11 applies to s,,~ of the present work too, providing a 
powerful convergence acceleration result for k fixed and n + cc for MPE, RRE, MMPE, TEA, 
and SEA. Roughly speaking, provided 

I A, I ’ I &+I I 
in (3.Q and 

k= c (pi+ I), 
i=l 

we have 

S n,k -(s*+zO)=O(na]h,+,]“) asn 

for some nonnegative integer (Y, and also 

lim k ,,J(n,k)Aj = 
n+* 

J=o 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

unconditionally for MPE and RRE, and under some mild conditions for MMPE and TEA. From 
the note at the end of [20, Section 31 it also follows that the above results hold also for SEA 
unconditionally. For the precise statement of these and other related results see [20]. 

Remark. The results concerning the application of VEA to singular systems that are given in the 
present work can be considered a generalization of those given in the paper by C. Brezinski, 
“Some results in the theory of the vector &-algorithm” (Linear Algebra Appl. 8 (1974) 77-86). 
The method MMPE was also defined in [3] as a generalization of the Shanks transformation. The 
paper by B.P. Pugachev, “Acceleration of the convergence of iterative processes and a method of 
solving systems of nonlinear equations” (U.S.S.R. Comput. Math. Math. Phys. 17 (1978) 199-207), 
provides a convergence analysis for MMPE in case the iteration matrix is diagonalizable. This 
analysis is similar to the one given in [21]. The author is grateful to the referee for pointing these 
out to him. 
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