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Abstract. 

The purpose of this work is to complement and expand our knowledge of the convergence theory of 
some extrapolation methods for the accurate computation of oscillatory infinite integrals. Specifically, 
we analyze in detail the convergence properties of the 14"- and/5-transformations of the author as they are 
applied to three integrals, all with totally different behavior at infinity. The results of the analysis suggest 
different convergence and acceleration of convergence behavior for the above mentioned transfor- 
mations on the different integrals, and they improve considerably those that can be obtained from the 
existing convergence theories. 
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1. Introduction. 

In a recent work [3] a nonlinear extrapolation method, the D-transformation, 
was proposed, and this method proved to be very useful in accelerating the conver- 

of infinite integrals t ~ f ( t ) d t ,  a > O, of different kinds. The D-transform- gence 

ation was analyzed for its convergence properties in [4] within the framework of the 
generalized Richardson extrapolation process. Two modifications of the D-trans- 
formation for oscillatory infinite integrals were proposed in [6], which were denoted 
the/5-and/5-transformations.  Another modification, the W-transformation, useful 
for "very oscillatory" infinite integrals was given in [7], and this modification was 
recently extended in [9] to divergent oscillatory infinite integrals that are defined in 
the sense of (Abel) summability. The advantage of these modifications over the 
D-transformation is that they can achieve a given level of accuracy with consider- 
ably less computing than the D-transformation. 

It is not the purpose of this work to go into the details of the transformations 
above, as this has already been done at great length in the appropriate papers. We 
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shall be content with a brief description of extrapolation methods for infinite 
integrals, which will render the developments of this paper easier to follow. 

All the methods of extrapolation mentioned in the first paragraph are based on 

the assumption that the integral f ( t)dt  has a well structured asymptotic expan- 
x 

sion as x --* oo. For  example, in [3] it is shown that for a very large family of 
functionsf(t) (denoted B (m)) that are integrable at infinity, asymptotic expansions of 
the form 

(1.1) f ( t)dt  - = f( t)dt  ~ ~ xP~f(k)(x) ~kix-i  as x --  oo, 
k = 0  i = 0  

exist, where Pk ~ k q- 1 are some integers that depend on f (x) ,  and the flki are 
coefficients that are independent of x. 

Once the existence of such an asymptotic expansion has been established, the 
/ i  

integral j ~ f ( t ) d t  can be approximated by the D-transformation of [3] as follows. 

Pick a sequence of points a < x o < x 1 < x2 < . . . .  such that lim x~ -- oo, and com- 
l ~ o o  

pute the finite integrals l = 0, 1,2 . . . . .  by employing appropriate nu- 

merical quadrature formulas. For  given nonnegative integers j and 
n k, k = 0, 1 . . . . .  m - 1, define the approximation D~ "J) with n - (n o, n I . . . . .  n,,_ 1) to 
be the solution to the linear system of equations 

f l , f ( t ) d t  m-i  ,k (1.2) O~, "J) - = E xfkf(k)(x,) ~ fl~ixf -', J < l < j + N, 
k=O i=O 

m - 1  

where N = 
k = 0  

(n k + 1) and flki are the remaining N unknowns. The D-transform- 

ation can be made more user-friendly by replacing Pk in (1.2) by 
k + 1, 0 < k < m - 1, as suggested in the review paper [10], without affecting its 
accuracy very much. We note that the solution of (1.2) for D~, "J) can be achieved 
recursively and very efficiently by using the W-algorithm of [8] for m = 1, and the 
W(")-algorithm of [1] for all other values of m. 

The limiting process in which the nk are all fixed and j ~ oo is called Process I, 
whereas that in whichj is held fixed and the nk ~ O0 simultaneously is called Process 
I1. Both numerical experiments and the theoretical results of [4], [5], [6], [7], and 
[9] suggest that Process II has more powerful convergence properties than Process 
I. 

Now by picking the xt in a suitable manner we can attain a given level of accuracy 

in D~n rnJ), the approximation t o / - f ( t ) d t '  with less computational effort than r e -  
d a  

quired for arbitrary xt. For  instance, the/5-transformation of [6] achieves this for 
oscillatory integrals by picking xz to be the consecutive zeros of some of f(k)(x), 



ON RATES OF ACCELERATION OF EXTRAPOLATION METHODS... 349 

0 < k < m - 1. This eliminates a large number of the unknowns flki, thus reducing 

the number of equations, and hence the number of the finite integrals f(t)dt, 
substantially. The philosophy behind the /)-transformation of [6] and the 
W-transformation of [7] and [9] is very similar. Consequently, the W- or 
W~m)-algorithms can again be used for implementing the/)- , /)- ,  and W-transform- 
ations. 

Our aim in the present work is to contribute, even in a small way, to our 
understanding of the convergence properties of these transformations for Process II. 
Although all our numerical experience suggests that, when applied properly, the 
methods above have excellent convergence and convergence acceleration properties 
for Process II, the analysis of Process II in [6], [7], and [9] is not complete. The 
reason for this is that the assumptions made in this analysis concerning the analytic 
properties of the integrands f(t) are of a rather general nature. Nevertheless, the 
existing theoretical results on Process H for the W-transformation as applied to very 
oscillatory convergent or divergent integrals are quite useful in that 1) they show 
convergence in all cases, and 2) in cases where the integrand does not decay 
exponentially at infinity (i.e., f(t) = O(t ~) as t -~ oe for some ~) they show very 
meaningful acceleration of convergence. Using an approach that was employed in 
[5, Section 4] for analyzing the T-transformation of Levin [2], we shall treat the 
convergence of Process II for the W- and D-transformations, as they are applied to 
the following three test problems, the first two of which are Fourier cosine integrals: 

EXAMPLEI: f]trcosntdt F ( 7 + l )  . 7n = n~ +~ sm-~-, 7 > - 1 .  

This integral exists in the ordinary sense only for ~ < 0. For ~ > 0, however, it 
does not exist in the ordinary sense since it does not converge at infinity, in which 
case it exists in the (Abel) summability sense (see [9]). For all 7 > - 1 this integral is 
purely oscillatory and behaves like x r at infinity. We shall analyze the convergence 
of Process II for the W-transformation on this integral. 

EXAMPLE 2: f :  e-Ct2/2COS ntdt = ½(7r/c)~exp(-Tz2/c) ,  c > O. 

This integral is also purely oscillatory, but, unlike that in Example 1, it decays 
exponentially at infinity. We shall analyze the convergence of Process II for the 
W-transformation on this integral. 

EXAMPLE 3 f  sin ,j t,2 t 
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Unlike those in Examples 1 and 2, this integral is not purely oscillatory as its 
integrand is nonnegative. In fact, it is the sum of two convergent integrals, one of 
which is purely oscillatory and the other, monotonic, and it behaves like x-1 at 
infinity. We shall analyze the convergence of Process II for the D-transformation on 
this integral. 

We note at this point that the results that we derive on convergence and rate of 
acceleration remain the same when, in Examples 1 and 2, cos 7rt is replaced by sin rtt. 

Note the different nature of the three examples above. Below we shall use a unified 
approach to their treatment. However, as will become clear, the convergence results 
for each of these examples seem to have different characteristics, which are not 
obtained from the convergence analyses available in [6], [7], and [9]. In fact, the 
analysis of the W-transformation for Process II, as presented in [7] and [9] shows 
convergence acceleration for Example 1, only convergence for Example 2, whereas 
the analysis of the D-transformation as presented in [6] is inconclusive for Example 
3 even as far as convergence is concerned. Even when they do show convergence 
acceleration, the above mentioned analyses do not provide us with precise rates of 
acceleration in all cases, this being due to their general nature. 

The purpose of this work is to obtain more precise information on convergence 
and rates of acceleration for the three examples above. It will be shown below that 
a different kind of convergence acceleration is achieved for each example under 
consideration. 

It is hoped that the approach of the present work will stimulate further research 
into the convergence and acceleration questions for the different extrapolation 
procedures. In view of the results of this work, one interesting topic could be the 
classification of those integrals for which rates of acceleration are of the same kind. 

2. Derivation of error expressions 

We first write down the equations defining the necessary approximations to the 
integrals involved. Next, we obtain compact error expressions (involving Laplace 
transforms) that we analyze in the next section. Most of the details are left out; 
therefore, we advise the reader to refer to the original papers. We treat each example 
separately. 

Here is some notation that we shall be using throughout. 

I [ f ]  = f(t)dt,  F(x) = f(t)dt,  
0 (2.1) 

R(x)=,[f]-F(x)=fff(t)dt. 
We assume, of course, that I [ f ]  and R(x) exist in the summability sense when the 

integrals involved do not converge at infinity. 
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The Laplace transform of a function g(¢) will be denoted by 

(2.2) 

when this integral exists. 
Below we shall also be using the notation A ~), B ~r"), B~, and Bd, though very briefly. 

Since we shall not need this notation in the analysis to follow, we refer the reader to 
[3], [5], [6], [7], and [9] for the precise definitions of A t~), B Cm), Be, and Bd. 

EXAMPLE 1 : In the notation of [9], the integrand f ( x )  = x ~ cos n x  is in the family 
B c when l [ f ]  converges (i.e., when ~ < 0), and in the family Bd when I [ f ]  diverges 
(i.e., when y > 0), and has 

(2.3) O(x) = rex = O(x), 49(x) = 0 = (a(x), h(x) = x ' .  

Thus, as shown in [9], for all 7 > - 1 

(2.4) R(x)  = x ~' [(cos rex) b l (x )  + (sin 7zx) b2(x)], 

where bx(x) and bz(x) are in the family A ~°). 
Picking x~, l = 0, 1 . . . . .  to be consecutive zeros of sin O(x) = sin nx, i.e., xt = l + 1, 

l = 0, 1 . . . . .  the approximations W, t j) to l [ f ]  are defined through the set of linear 
equations 

(2.5) W (j) = V(xl) + ~k(xt) ~ fli/xl, j <_ l <<_ j + n + 1, 
i=0 

where W, t j) and fli are unknowns, and 

(2.6) ~(xz) = ( - t )  z x~ ~, l = 0, 1 . . . . .  

An explicit expression for R(x)  involving Laplace transforms can be obtained as 
follows. Assume first that 7 < 0 so that the integral representation for R(x)  in (2,1) 
exists in the ordinary sense. Making the change of variable of integration 
rot = x (n  + z), R(x)  can now be expressed as 

(2.7) R(x)  = (x/rc) ~ + 1 Re e i"x (~ + z) '  e ix~& . 
0 

Viewing the integral S(x) = ~ ~ (r~ + "c)'eiX~dz as a contour integral in the complex 

z-plane with z = z + i~, and rotating the path of integration by 90 °, we obtain 

(2.8) S(x)= if; ( r c + i O ' e - X e d ¢ .  

The integral in (2.8) exists for all 7 > - 1 when x > 0 and is analytic in 7. 
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Consequently, by analytic continuation, 

(2.9) R(x)  = x r+ 1 Re {e i''` £a[co({); x]}, 

where 

(2.10) o9(~) = i(n + i~)VTt ~+ 1, 

for all 7 > - 1. 

(2.11) 

Thus 

(2.12) 

EXAMPLE 2: The integrand f ( x )  = e-CX2/2 cos rex is in the family B e and has 

O(x) = rex = IT(x), c~(x) = - c x 2 / 2  = c~(x), h(x) = 1. 

R(x)  = x -  1 e-cx2/2 [(cos rex) b l ( x  ) + (sin rrx) b2(x)], 

where bl(x)  and b2(x) are in the family A ~°) 
Picking x t, l =  0,1 . . . . .  to be consecutive zeros of sin0(x)= sinrex, i.e., 

xt = 1 + 1, l = 0, 1 . . . . .  the approximations W~ ~ to I [ f ]  are defined through the set 
of linear equations (2.5) with 

(2.13) ~ ! t ( x t ) = ( - - 1 ) t x F l e  -cx~/2, / = 0 , 1  . . . . .  

Making the change of variable of integration t = x + ¢/c in the integral represen- 
tation of R(x)  in (2.1), we obtain 

R(x)  = e -cx2/2 Re { e inx .(~[-(.o(¢); x]}, (2.14) 

where 

(2.15) 

EXAMPLE 3: 

co(i) = c-  1 exp [c -  x (ire~ -- ¢2/2)]. 

In the notation of [3] and [6] the integrand f ( x )  = (sin rex/rex) 2 is in 
the family B (3), and as is shown in [3, Example 4.5] (see also [6, Example 3]), 

(2.16) R(x)  = xf(x) f lo(X)  + f ' ( x ) f l l ( x )  + xf"(x) f l2(x) ,  

with flo(X), i l l(x),  and fl2(x) in A ~°). 
For  the D-transformation we pick xt = l + t, l = 0, 1 . . . . .  so thatf(xt) = f ' (xz)  = O. 

It is easy to show that f " ( x l )  = (2cos 2rexz)/x 2 = 2 / x  2. Thus the approximations 
b~  ) to I [ f ] ,  which we denote by W, °) for the sake of uniformity, are defined through 
the set of linear equations in (2.5) with 

(2.17) ~b(xl) = 2Ix  l, l = O, 1 . . . . .  

In order to express R(x)  in terms of Laplace transforms we proceed as follows: 
First, 

(2.18) R(x)= f ~ l-c°s2ret dt- 2re2 x f ~ c°s 2ret 
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Next, making the change of integration variable 2ut = x(2rc + ~) in the integral on 
the right hand side of (2.18), and then proceeding as in Example 1, we obtain 

(2.19) R(x) = 1/(2~2x) + (2/x) Re {e 2"ix 5e[o)(0; x]} where 

(2.20) m(~) = t/(2ni(Zn + i~)2). 

We now let l + 1 = L, j + 1 = J, and n + 1 = N in (2.5). Consequently, for all 
three examples, xt = L, thus (2.5) can be written as 

N - t  

(2.21) W, (j) = F(L) + ~(L) ~ fli/U, J < L <_ J + N, 
i= 0  

with q4L) = ¢(xl) as in (2.6), (2.13), and (2.17) for Examples 1, 2, and 3, respectively. 
We now note that the equations in (2.21) are identical in form to those defining the 

T-transformation of [2]. Therefore, their solution for Wff ) can be expressed as 

A N ( j N  - 1 F ( J ) / O ( J ) )  

(2.22) W, (j) = AN ( i f _  1/O(j) ) , 

where A is the forward difference operator operating on J; see, for example, [5, 
equations (1.1)-(1.3)]. Consequently, the error in 14'~ (~) can be expressed as 

l [ f ]  - W, (j) = AN (jN- IR( j ) /~( j ) )  
A" (Y'- '/,I,(J)) (2.23) 

Now 

(2.24) R(J) = 

where 

(_  1)J j,+ 1 ~e[g(¢);j] 
( -  1) s exp(- cJ2/2) &a[g(~); j ]  
t/(2rc2J) + (2/,/) ~f[g(~); J] 

for example 1 
for example 2, 

for example 3 

(2.25) g(~) = Re o9(~), ¢ > 0, for all three examples. 

Recall that o9(~) is given by (2.10), (2.15), and (2.20) for Examples 1,2, and 3, 
respectively. 

Combining R(J) with the corresponding q4J), (2.23) can be expressed as 

(2.26) [ I [ f ]  - W,(J'I = 

(2.27) v = { N _ l  

and we have used the fact that 

(2.28) AU (J k) = 0 

IA N (J~ ~[g(~);  J])l 
where 

iA N ( j N  - 1/i//(d)) 1 , 

for Examples 1 and 2 

for Example 3 

f o r k =  O, 1 , . . . , N -  t, 
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in example 3. Finally, following the developments of [5, Section 4], 

(2.29) liE f ]  - W~)I = IAeE(e-¢ - l)Ng(v)(¢); J]l 
IA N ( i f -  x/~(J))l 

The rate of acceleration of W~ c j) is defined to be the quotient 

(2.30) R ? ) =  I [ f ]  -- W, ~ 
I [ f - ] :  F ( J  T N) 

for all three examples, since it is F(1), F(2) . . . . .  F(J + N) that go into the construction 
of the approximation W~ j) to I [ f ] ,  and F(J + N) is asymptotically the best member 
of this sequence in case I [ f ]  converges. 

3. Analysis of I1 f ]  -- I4~ ) for process II 

We now analyze I [ f ]  - W, ~j) for Process II, i.e., for j  fixed and n ~ ~ .  We begin 
this by stating a variation of a result that was proved in [5] in the analysis of Process 
II for the T-transformation. 

LEMMA. Let g(~) be analytic in the half strip S(u) = {¢1 Re ~ _> - u, IIm~l _< u}for 
some u > O, and let gtp)( ~),for some fixed nonnegative integer p, be uniformly bounded 
in S(u). Then for any positive integers m and N, such that p < m < N, we have 

(3.1) IAN ( j I  ~Eg(~); J])I < M (m -- p)! N! 
u m-v Y ( S +  1 ) . . . ( J + N ) '  

where m = sup I9~v)(¢)l. 
~eS(u )  

PROOF. The proof of(3.1) can be achieved by observing that g"(~) - - -  

and proceeding as in the proof of Lemma 4.1 in [5]. • 

a m -  p 

d~' -"  g~P~(~)' 

EXAMPLE 1. We have g(¢)= Re{i(n + i¢)?/n~+l}. There are two cases we may 
consider: 

a) ? = 0 , 1 , 2  . . . . .  
For  this case g(~) is a polynomial of degree < ? in ~, thus jv &~a[g(~); j ]  is a poly- 
nomial of degree < N - 1 in J when N > ? + 1. Consequently, by (2.26) and (2.28), 
W (j) = l [ f ]  for n > ?. 

b) ? :p 0,1,2 . . . . .  
For  this case g(~) has two branch points at ( = + in in the complex ~ plane, but is 
analytic in any half strip S(u) with u < ~. When ? > 0, g(~) is not bounded for 

--. o% but o¢P)(~) is uniformly bounded in S(u) for ? < p < ? + 1. Thus 
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(v - p)! N !  
(3.2) IA N ( j r  Z~a[a(¢); J])l < M 

u v-p J ( J +  1 ) . . . ( J + N )  

in the no ta t ion  of the l emma  above.  When  y < 0, 9(¢) is uniformely bounded  in S(u), 
thus (3.2) holds with p = 0 in this case. Recalling that  v = N for Example  1, and 
using Stirling's formula,  we obtain  

(3.3) IAN(J~£Feg(~);J])] <_ O(N!u-NN -s-p) as N ~ ~ .  

Fo r  bo th  ), > 0 and 7 < 0 we have 

(3.4) IA N ( jN-lAb(j) )  I = ( j  + q)N-1/(j + q)r > LN/2j ( j  + [N/2.j)s-1-~ 
q 

By Stirling's formula  the right hand  side of this inequality becomes 

(3.5) I_N/2J (J + LN/2J)N-I - ,  ~ C N!e N N - ' - I  as N ~ ~ ,  

for some posit ive cons tant  C. Combin ing  all the above  in (2.26), we obtain  

(3.6) Ie f ]  - W, (~) = O((ue)-N N -s-p+r+l) as N --* ~ .  

The  rate of accelerat ion of the W-transformat ion for Example  1 thus satisfies 

(3.7) R u) = I [ f ]  -- Wn (j) N - S - p +  1) 
I l l - I =  -if(f + N )  = O((ue)-N as N ~ co, 

where u = u - 6 for some 6 > 0 arbi trar i ly small, and p, an integer, such tha t  p = 0 
fo r7  < 0 a n d ?  < p  < 7 + 1 f o r ?  > 0. 

EXAMPLE 2: In this case we have g(~) = Re {c-  1 exp [ c -  1 (iu~ - ~2/2)]}. Here  g(~) 
is an entire function, uniformly bounded  in S(u) for any u > 0. Thus,  apply ing  the 
l emma  above,  as in Example  1, we obta in  

IAN(d~,.o~[g(~);J])l = O(N!u-n N -s) as N --* ~ .  

q=O (3.9) 
~ C N! e N N -  1/2 ec(J+N)z/2 as N ~ ~), 

for some positive cons tant  C, the last par t  of  ( 3 . 9 )  following f rom Stirling's formula.  
Combin ing  (3.8) and (3.9) in (2.26), we obta in  

(3.10) I [ f ]  -- Wno)= O ( ( u e ) - N m - J + l / 2 e  -c(J+N)2/2) a s m ~ o o ,  

the rate of  accelerat ion satisfying 

(3.11) R~ ) = I [ f ]  - W2 ~) = O((ue)-NN -s÷3/2) as N --, ~ .  IF : F(J + N) 

( 3 . 8 )  

Also 



356 AVRAM SIDI 

Note that since u for this example can be arbitrarily large, (3.11) implies that 

(3.12) R~ ) = o(e -'N) a s N ~  ~ , f o r a n y c t  > 0. 

This immediately suggests the question whether R~ ) = O ( e x p ( -~N  x +a)) for some 
> 0 and fl > 0, to which we do not have an answer yet. 

EXAMPLE 3: We have g(~)= Re {2~zi(27z + i~)2}-1 Here g(~) has two double 
poles at ~ = + 2rci, thus it is uniformly bounded in S(u) with u < 2re. Consequently, 
applying the lemma, we have 

(3.13) tAN(JVLP[g(~);J])l = O(N!u-~N -s- t )  as N ~ ~ .  

Also 

(3.14) IA n (jn- x/~(j)) I = IAS (jn)l/2 = U!/2. 

Combining (3.13) and (3.14) in (2.26), we finally obtain 

(3.15) I[ f]  - w,~J) = O(u-N N - s ' l )  a s N ~  ~ .  

The rate of acceleration for this case satisfies 

(3.16) R ? ) = [  I[ f]  - W~ ). I [ J ~ Z F ( J  + N) =O(u-NN-S) a s N ~ .  

where u = 2n - 6 for 6 > 0 arbitrarily small. 
Finally, the results stated in (3.6) and (3.7) for Example 1 and those in (3.10) and 

(3.11) for Example 2 remain valid when cos nt in I[ f]  in both examples is replaced 
by sin ra. To see this we observe that the only change in the analysis takes place in 
g(~), with g(~) = Re ~o(~) in (2.25) replaced by g(~) = Im ~o(~) in both examples. The 
rest of the analysis and conclusions remain the same. 

4. Concluding remarks. 

We have analyzed the convergence and rate of acceleration for the W- and 
D-transformations as they are applied to three oscillatory infinite integrals, having 
different behaviors at infinity. We have shown the following: 

(. o~ 
1) For  the W-transformation, as applied to IEf] = J o  tr v(rct)dt, 7 > - 1, where 

v(x) standsforcosxorsinx,  limsup(R~))l/" <(r~e) -1 < 1 a s n ~ .  

2) For  the W-transformation, as applied to l [ f]  = ~ e-"2/Zv(nt)dt, where again 

v(x) stands for cos x or sin x, 

R~ ) = o(e-~") as n ~ ~ ,  for all ~ > 0. 
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Fo r  the D-transformation,  as applied to I [ f ]  = f f (sin 7zt/lrt)2dt, 

lim sup (R~J)) 1/" <_ (2~)- 1 < 1 as n --, oe. 
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All of  these results are much stronger than the ones that  can be obtained by 
applying the existing results in [6],  [7], and [9] as has already been mentioned. 

Indeed, the information that can be extracted from the existing results is 

I [ f ]  - W~ (~) = o(n-~)  as n ~ ~ ,  for all # > 0, 

for Examples 1 and 2, no such information being available for Example 3. F rom this 
it follows that  we can obtain 

R~ i) = o(n ~) as n ~ o~, for all/~ > 0, 

only for Example 1, and no information on the rate of acceleration for Example 2. In 

spite of  the above, however, the results of  the present work are still not  the best 
possible. This is mainly due to our  employing the inequality given in (3.1) in the 
Lemma to bound  the numera tors  in the right hand  side of(2.26). Efforts to improve 
the Lemma have not been successful so far. Fur ther  improvement  in Example 1 can 
be obta ined by using a better lower bound  in (3.4), a l though we shall omit  this here. 
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