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1 A Generalized Richardson Extrapolation 

Let A(y) be a scalar function of  a discrete or  cont inuous  variable y, defined 
for 0 < y =< b < ~ .  Let there exist constants  A and ~k, k = 1, 2 . . . .  , and functions 
4~k (Y), k = 1, 2 . . . . .  which form an asymptot ic  sequence in the sense that  

(1.1) C~k+l(y)=o(d~k(y)) as y ~ O + ,  

and assume that  A (y) has the asymptot ic  expansion 

(1.2) A(y)..~A+ ~kC~k(y) as y ~ 0 + .  
k = l  

Here A(y) and ~k(Y), k = l ,  2, . . . ,  are assumed to be k n o w n  for 0<y=<b ,  but  
A and ak, k = 1, 2 . . . . .  are unknown.  The problem is to approx imate  A, which, 
in m a n y  cases is lim A(y) when the latter exists. (When lim A(y) does not  

y-*O+ y ~ O +  

exist, A is said to be the antilimit of  A(y) as y ~ 0 +  .) 
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Pick a decreasing sequence y~, I = 0, 1, 2, ..., in (0, b], such that lim y~ = 0. 
| ~ o o  

Then, for each pair (j, p) of nonnegative integers, the solution for A~ of the 
system of linear equations 

P 

(1.3) A(y,)=A~+ ~, ~k ~bk(yt), j<=l<j+p, 
k = l  

is taken as an approximation to A. We note that the equations in (1.3) are 
obtained by truncating the infinite sum in (1.2) at the term c~p ~bp(y), replacing 
A and ~1 . . . . .  ~p by A~, and ~1, --., ~p respectively, treating the latter as unknowns 
(p+ 1 in number), and collocating at the points Yi, YJ+ 1 . . . .  , y~+p to obtain p +  1 
linear equations for these unknowns. The process described by (1.3) is known 
as a generalized Richardson extrapolation process. 

The general setting of (1.1)-(1.3) above can be found in Hart  et al. (1968, 
p. 39). By Cramer's rule it can be shown that A~ has a determinant representa- 
tion. Levin (1973) seems to be the first to point this out explicitly. This representa- 
tion may be used effectively in deriving algorithms for computing the A~, and 
also in analyzing them. As pointed out also by Brezinski (1980), many of the 
known convergence acceleration methods are directly or indirectly related to 
the general setting described above. 

It seems that Schneider (1975) was the first to give a recursive algorithm 
for the implementation of the extrapolation process defined through (1.3) when 
the q~k(Y~) have no particular structure. Using different techniques, the same 
algorithm was later derived by H~tvie (1979), and then by Brezinski (1980), who 
called it the E-algorithm. H~vie (1979) also gave simplified versions of the E- 
algorithm for some special cases. 

Recently Ford and Sidi (1987) derived a different recursive algorithm for 
implementing the same extrapolation process, and their algorithm turns out 
to be computationally more economical than the E-algorithm. Indeed, the E- 
algorithm and the Ford-Sidi algorithm require approximately the same number 
of additions, but the number of multiplications required by the E-algorithm 
is practically twice that required by the Ford-Sidi algorithm. The steps of the 
Ford-Sidi algorithm are summarized below: 

Denote an arbitrary sequence b(/), /=0 ,  1,2, ..., by b. The sequence 
1, 1, 1 . . . . .  will be denoted by 1. Define the sequences gk, k = 1, 2, ..., and a 
by g k ( l ) : ~ ) k ( Y t )  , k =  1, 2, . . . ,  and a(l)=A(yz),/=0, 1, 2 . . . . .  

(1) For  b=a, I, and b=gk, k=2 ,  3, ..., set ~do(b)=b(j)/gl(j),j=O, i, .... 
(2) For  p = l ,  2 . . . . .  let J J +1 j i J+ Dp=~kp-~(gp+x)-~kp-l(gp+l) and ~p(b)=[~k~,_l(b) 

- ~'~-1 (b)]/D~ with b = a, 1, and b = gk, k > p + 1, j = 0, 1, .... 
(3) Set a ~ =  ~g~(a)/~,~(I), all j, p>0 .  

For  details see Ford and Sidi (1987). 
In the problem that is solved by the classical Richardson extrapolation pro- 

cess ~bi(y)= yi, i=  1, 2, ..., and this problem arises, for example, from finite differ- 
ence approximations of derivatives, Euler-Maclaurin expansions for the trapezoi- 
dal rule approximation of finite range integrals of smooth functions, etc. Bulirsch 
and Stoer (1964) consider the case in which ~bi(y ) =y~', i=  1, 2 . . . .  , with arbitrary 
real y~ and yz=yop z, 0 < p < l ,  and give a thorough convergence analysis for 
it. 
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A further generalization of the classical Richardson extrapolation process 
designated G R E P  was formulated in Sidi (1979a). In the same paper  general 
convergence results for G R E P  and several practical examples that are covered 
by the framework of G R E P  are given. We will only mention that the D-transfor- 
mation for infinite integrals and the d-transformation for infinite series of Levin 
and Sidi (1981) are covered by the framework of GREP.  These are some of 
the most  effective convergence acceleration methods for dealing with infinite 
integrals and series of various kinds, and their scope is much larger than most  
other methods of acceleration. The paper of Ford  and Sidi (1987) gives a very 
efficient recursive algorithm for implementing a commonly  occurring form of 
GREP.  For  further details on this and related matters and for more references 
see also the recent survey of Sidi (1988). 

It  is known in some cases and is observed numerically in many  others that, 
for appropriate  choices of Yz, A~, converges to A for j ~ o o  with p fixed or for 
p ~ o o  with j fixed. Furthermore,  for some cases of interest it can be shown 
that 

(1.4) A~--A=O(4)p+I(yj)) as j-~oo, pfixed, 

while better results can be obtained for others. We elaborate on this point 
in some detail in Sect. 4 of the present work. Under  the conditions 

(1.5) lira (ak(Y'+ ~) = bk#: 1, k = 1, 2 . . . . .  
, + ~  4'k(y,) 

and 

(1.6) bj+bk for j + k ,  

Brezinski (1980) shows that 

(1.7) lim A~-A.  O, p = l ,  2 . . . . .  
j~+ A ~ - t - - A  

with A~o=A(yj), j = 0 ,  1 . . . . .  This result says that in case A=l imA(y) ,  A t con- 
y~O 

verges to A a s j ~ o o  more quickly than A~,_ 1, but it does not give any informa- 
tion of the form (1.4), or of some other form, concerning the nature or rate 
of convergence. A result of the form (1.4), under the conditions (1.5) and (1.6), 

but with stringent conditions on the series ~ ct k q~k(Y) in (1.2), was subsequently 
given by Wimp (1981, pp. 189-190). k= 1 

The purpose of the present work is to present a detailed analysis for A t 
f o r j ~  oo with p fixed, under the conditions (1.5) and (1.6), and with no additional 
conditions on (1.2). In fact, in the next section we show that (1.4) holds under 
these conditions. In addition we show that this process is a stable one. We 
also show that the c~ k in (1.3) are valid approximations to the corresponding 
~k in (1.2). We give precise rates of convergence of ~k to ~k for j ~ o o  with 
p fixed. The techniques employed in our proofs are based on those of Sidi 
(1979 a) and Wimp (1981). In Sect. 3 we apply the results of Sect. 2 to the trapezoi- 
dal rule approximat ion of integrals with end point singularities. Finally, in Sect. 4 
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we discuss some convergence results for the T-transformations of Levin (1973) 
in the light of the developments of Sect. 2. These results are taken from Sidi 
(1979b) and Sidi (1980). 

For  simplicity of notation, from here on we let A(yl)=a(l) and Cbk(y~)=gk(l), 
SO that (1.1), (1.2), and (1.3) become 

(1.8) gk+x(n)=o(gk(n)) as n ~ ,  

(1.9) a(n)~A+~akgk(n) as n--*o% 
k = l  

and 

P 

(1.10) a ( / )=A~+ ~, f~kgk(I), j < l < j + p ,  
k = l  

respectively. 
The solution of (1.10) for A t can be expressed as the quotient of two determi- 

nants in the form 

(1.11) A ~ J a J I p =flJ ( )/f/, () ,  

where, for any sequence b( / ) , /=0,  1, ..., 

(1.12) 

g~(j) ... gp(j) b(J) 1 
gp(j+ 1) . �9 b(J+ 1)1, f/(b) = g' (J.+ 1) 

]gl(J '+P)--- gp(J+P) b(j'+p)] 

and the sequence I(/), I=0,  1, ..., is defined such that I( /)= 1 for all I. 

2 Theory 

We assume that (1.5) and (1.6) hold. In terms of the gk(l), (1.5) is expressed as 

(2.1) lim gk(l+l~'=bk+l,l k = l ,  2, .... 
t-~oo gk(l) 

Lemma 2.1. Define the polynomial H~(2) by 

(2.2) 

g l ( J ) - . - g p ( J )  121 
gp(J.+ H~(2) = g '  (J.+ 1) 1) . I Ig~ (j:+P) gp(j+ P) 2P 
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7hen 

(2.3) lim H~(2) = V(b,, b2,. bp, 2), 

i-o~ l-I gi(J) 
i = 1  

where V(~I, ..., ~k) is the Vandermonde determinant defined by 

. . .  1 

(2.4) V(~, . . . . .  Ck) = ~ , - - -  ~k. I-I (~j-~i) .  

Proof Dividing the ith co lumn of  H~(2) by gdJ), i = 1 . . . .  , p, and letting 

(2.5) ~i(s)= g'(j+s) gi(J) ' s = 0 ,  1 . . . . .  

we obta in  

(2.6) 
H~(2) _ ~{11) "'" 1 1 . 
p ... ~ ( 1 )  s 

I~g,(J) Ig{iP)- . .  g~(P) 2p i = 1  

The result follows from 

(2.7) lim ~~ - ~ gl ( s ) -  bl, s = 0, 1 . . . .  , i = 1, 2, . . . ,  
j ~ o o  

which in turn follows from 

(2.8) ~/(s)= g,(j+s) g d j + s - 1 )  g , ( j + l )  
g i ( j + s - 1 )  g , ( j + s - 2 ) " "  g,(j) 

and (2.1). [ ]  

Corollary. 

(2.9) lim 
j ~ o o  

fj(I) 
P 

[ I  gi(J) 
i = 1  

- V ( b l  . . . . .  bp, 1 )30 .  

Proof (2.9) follows from the fact that  f~(I)= H~(1) and from the assumptions 
bi 4: bk for i 4: k and bi 4:1 for all i. [ ]  
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Theorem 2.2. For p fixed A~ satisfies precisely 

(2.10) A~--A"~p+I b gp+l(J) as j ~ .  

Proof. Letting 

(2.11) r(1)=a(l)--A, l=0 ,  1 . . . .  , 

we have 

(2.12) A~ -- A =f~ (r)/f~(l). 

Now if we define %+ 1 (n) by 

P 

(2.13) r(n)= ~ ~kgk(n)+~p+l gp+l(n)[l+ep+l(n)], n=0,  1 . . . . .  
k = l  

then (1.8) and (1.9) imply that 

(2.14) lim/~p+ 1 (n) =0 .  
n-*oo 

Substituting (2.13) in the determinant representation off , ( r) ,  we have 

P 

(2.15) f / ( r ) =  ~ ~kf/(gk)+~p+ 1 f/(gp+l [-1 q-gp+ 1]) 
k = l  

= ~p+l f / ( g p + l  [1 + ~.+ d), 

the last equality following from the fact that f / (gk)=0,  k =  1, ..., p. Dividing 
now the ith column in f / (gp+l  [1 +%+ 1]) by gi(J), i=  1 . . . .  , p +  1, letting j ~ ,  
and employing (2.7) and (2.14), we obtain 

(2.16) lim f~(r) -~ l V(bl . . . . .  bp, bp+ 1)- 
j ~ o o  p + l  

I-I gi(J) 
i = 1  

Substituting (2.16) and (2.9) in (2.12), and employing (2.4), (2.10) follows. []  

Note. Theorem 2.2 shows that under the conditions stated in (1.8) and (1.9) 
and in (2.1) and (1.6), A], tends to A more quickly than A~,_ 1 for j--.o% i.e., 

(2.17) A ~ - A  =o(gP+l(J)] o(1) 
A~- I - -A  k g - - g - ~ )  = as j ~ ,  

which contains (1.7) that was given in Brezinski (1980, Theorem 7). The result 
of Theorem 2.2 has also been obtained by Wimp (1981, pp. 189-190) under 
the additional assumptions that (1.8) holds uniformly in k and I~k]<2 k, k 
= 1, 2, ..., for some 2, in which case a(n) has the convergent expansion a(n) = A 
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+ ~.~ ~k gk(n) and this expansion converges absolutely, and uniformly in n. Thus 
k= l  

our result improves that of Wimp considerably. It should be emphasized that 
in case lim a(n) does not exist, then lim gk(n), at least for k =  1, does not exist. 

n~co n~oo 

In this case A ~ A  as j ~  provided lim gp+~(n)=0, otherwise lim A~ does 
n~oD j~oo 

not exist, although (2.17) always holds. 
We now give a convergence result on the 5k -= ~.k that appear in (1.10). 

Theorem 2.3. For k =  1 . . . .  , P, a~,k ~Ctk a s j ~  with p f ixed;  in fact  

_bp + 1 - 
(2.18) ~ , k - - ~ k ~ % + x  \ bk--1 

i i ~ 1 \ bk --  b, ] ] gk (J) 
as j - ~  (30. 

Proof. Solving (1.10) for ~k by Cramer's rule, we obtain 

[ gl(J) ... gk-l(J) a(j) gk+l(J) .-. gp(J) 
(2.19) oJp, k f / ( I ) =  i . . . .  

g l ( j+p)  ... gk-l"~+P) a( j+p)  gk+l"~+P) ..- gp(J'+P) 

Substituting 

i , 

P 
a (n) = A + ~ c~ k gk (n) + ctp + 1 gp + 1 (n) 1-1 + ep + 1 (n)], 

k = l  
n=0 ,  1, ..., 

cf., (2.13) and (2.14), on the right hand side of (2.19), and expanding the resulting 
determinant with respect to its kth column, and dividing both sides by f/,(I), 
we obtain 

(2.20) ~,k  = ~k + ~p +1 U~,k/f~(I), 

where U~,R is the determinant obtained by replacing a(n), n =j  . . . .  , j + p, on the 
right hand side of (2.19) by gp + 1 (n) [ 1 + ep + 1 (n)], n = j  . . . . .  j + p, respectively. The 
rest of the proof  can now be completed by dividing the ith column of U~,k 
by gi(J), i=1 ,  . . . ,p ,  i,t:k, and its kth column by gp+l(J), and by letting j ~ o o ,  
recalling at the same time (2.7) and (2.3), and (2.4). []  

Note. The result in (2.18) provides a precise rate of convergence for ~,k, to 
C~k, k =  1 . . . . .  p, for j ~  oo. Also for 1 <kx < k 2 < p ,  (2.18) implies 

(2.21) OCJP.'kl--O~kl 0 {gk2(J)~=O(1) as j--*oo, 
Ct~,k2 -- ~k2 \gk, (J)] 

which means that ct~, 1.converges more quickly than ~ ,  2, which in turn converges 
more quickly than ~,,3, etc. It should be emphasized that as j-~oo ~ , k ~ k ,  
1 <--k<p, always. (Recall the statement at the end of the note following the 
proof of Theorem 2.2 concerning lim A~.) 

j~o0 
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As is obvious from (1.11) and as has been observed by many authors, A i 
can be expressed in the form 

P 

(2.22) A i =  ~ Yi,, a(j+i) ,  
i = 0  

where y~,~ are coefficients that depend on gl, ---, gp. Actually Y~,i is the cofactor 
of b ( j+  i) in (1.12) divided by f~(1). It is also obvious that 

P 
J - -  (2.23) ~, 7 , . i -  1. 

i = 0  

Theorem 2.4 below and its corollary show, among other things, that the 
extrapolation process in which p is held fixed and j ~  is stable under the 

P 

conditions assumed in this section, in the sense that sup ~ l~i, il < ~ .  
J i = O  

Theorem 2.4. For p f i xed  lim Yi.~ = ~,  i= O, 1 . . . .  , p, exist, and 
j ~  oo 

(2.24) 
i=o i=1 \1 - -v i i "  j ~ o o  i = 0  

Consequently 

P P 

(2.25) ~. l Yl, il ~ ~ l yll < ~ as j ~  oo, 
i = 0  i = 0  

implying the stability of  A t for  all j sufficiently large. 

Proof  We observe that 

. o~ Hi(2) Hi(2) 
(2.26) ~ 7~,i ,t = f~(I)  = Hi(1 ) " 

i = 0  

The proof  can now be completed by invoking (2.3) and (2.4). []  

Corollary. I f  bk > O, k = 1, . . . ,  p, then Yl, i + 1 71,1 < O, i = O, 1, . . . ,  p - 1, for  all j suffi- 

dent ly large,  and ~l~ i ,  il ~ IeI l + b ,  i=o i=1 1--bi  a s j - - - ~ ~ 1 7 6  
P 

i=0 ,  1, . . . ,  p, for all j sufficiently large, hence ~, I~i, il ~ 1 as j ~ o o .  
i = 0  

Proof  Left to the reader. [ ]  

Note. Through (2.22) A~, with fixed p can be viewed as a summability method, 
which has a banded summability matrix that contains at most p +  1 nonzero 
elements in each row. Invoking (2.23) and Theorem 2.4, it is seen that this matrix 
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satisfies all three condit ions of the Si lverman-Toepli tz  theorem (see PoweU and 
Shah (1972, pp. 23-27)) that  guarantee  that  the summabil i ty  method  in quest ion 
is regular. 

3 An Example 

Let f(x) be infinitely differentiable on [0, 1] and let - l < s < 0  be fixed. Let  
h = l/n, where n is a positive integer. Define the trapezoidal  rule approximat ion  

1 

T(h) to I =  S F(x)dx with V(x)=xSlogxf(x)  by 
0 

n - 1  h 
(3.1) T(h)=h ~_, F(ih)+~ F(1). 

i=1 

Then by a result due to Navo t  (1962) 

(3.2) T(h) ~ I + ~ B2i i= 1 ~ F(2i- 1)(1) h2i 

ftO(O) hi+~+ 1 + ~ [ ( ( - s - i ) l o g h - - ( ' ( - s - i ) ]  
i=O 

as h ~ 0, 

where Bk are Bernoulli  numbers  and ~(t) is the Riemann zeta function and 
('(t) = d r t. 

We note  that,  in general, the asymptot ic  expansion in (3.2) is divergent. 
This may  happen,  for example,  when f (x)  is infinitely differentiable but  not  
analytic on the interval [0, 1]. 

Obviously,  in (3.2) h is the discrete variable corresponding to y in the first 
paragraph  of Sect. 1, and T(h) and I are A(y) and A respectively. Consequent ly ,  

(3.3) tkk (h) = / [ (  ( - s - i + 1) log h - ~'( - s - i + 1)] h i + s, 

L h2k/3, i = k - -  [k/3],  k = 1, 2, 4, 5, 7, 8, . . . ,  

k = 3 , 6 , 9  . . . . .  

It is clear that  (1.1) is satisfied. 
Let t ing now Yt--- hl = h0 pt, 0 < p < 1, we can see that  

(3.4) bk = lim gk(n+ 1) _ lim Ckk(h"+ 1) 
n~oo gk(n)  n~o dpk(h.) 

_Sp i+s, i=k--[k/3], k = 1 , 2 , 4 , 5 , 7 , 8  . . . . .  
--~p2k/a, k = 3 ,  6, 9 . . . .  , 

i.e., bo th  (1.5) (hence (2.1)) and (1.6) are satisfied. Consequent ly ,  when I is approxi-  
mated by A~ as defined th rough  (1.10), with gk(n)= 4ak(hop") and (ak(h) as given 
in (3.3), Theorems  2.2-2.4 hold. F r o m  (3.3) we notice tha t  the zeta function 
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and its derivative are needed for constructing the ~bk(h). The computat ion of 
~ ( - s - i ) ,  i=0 ,  1 . . . . .  can be achieved by computing if(z) for z > l ,  and then 
using the reflection formula relating ~ ( 1 - z )  to if(z). Once {(z) can be computed 
for all real z, ~ ' ( - s - i ) ,  i=0 ,  1, .. . ,  can be approximated with high accuracy 
by using an appropriate  numerical differentiation formula. 

Other examples involving integrals of functions F(x) having more than one 
singularity can also be considered. This is left to the reader. 

4 The T-Transformation Revisited 

In the introduction we mentioned that only (1.4) can be shown to hold in 
some cases, while better results can be obtained for others. We now elaborate 
on this point by considering the T-transformation of Levin (1973), of which 
the t- and u-transformations are two special cases. The t- and u-transformations 
have proved to be very efficient for some classes of infinite sequences. For  
detailed convergence analyses of these methods see Sidi (1979 b) and Sidi (1980). 

For  a given sequence A1, A2, A3, ..., the T-transformation is defined by 

~ . ( - - 1 F  (n+j)k-l A,,+JR.+j 
(4.1) T k , =  j=~ k > 0 ,  n > l ,  

' k ' - -  - -  

j = O  

for some sequence R1, R2, R3 . . . . .  We recall that for the t- transformation one 
takes R1 =A1, R ,=A , - -A ,_ I ,  r = 2 ,  3, ..., whereas for the u-transformation R1 
=A1, R,=r(A,--  A,_ O, r = 2 ,  3 . . . . .  We note that the T-transformation is one 
of the simplest forms of GREP.  In addition, it is also a generalized Richardson 
extrapolat ion process of the form considered in the present work, for which 

(1) A(y)~--~Ar, thus y,-+r-1, hence y is a discrete variable that takes on the 
values 1, 1/2, 1/3 . . . . .  

(2) ~)i(y),--+ R,r  -'+ 1, i= 1, 2, . . . .  
(3) A~,-+Te, j for j > l ,  with y t =  l/l, l= 1, 2 . . . . .  (Ao, Ro, and Yo are simply 

not defined in this case, and this is possible as they are not needed for A t, 
j >  1, see (1.3).) 

The following results for the T-transformation are true: 

Theorem 4.1. Let the sequence Ax, A2, ..., be such that 

(4.2) A , = A + R , f ( r ) ,  r = l ,  2, .. . ,  

where f (r) and R, have Poincar&type asymptotic expansions of the forms 

(4.3) f(r),,~ ~,lJ.Jr i as r--+oo, ~8o=I=0 , 
i = 0  
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and 

(4.4) R , ~  ~ 6Jr *+i as r--+c~, a > 0 ,  304=0. 
i = 0  

"lhen, when tip 4: 0, 

(4.5) 

and 

A~_ A _  3, ~ j - ,  -* 
(-;) as j---. oo , 

(4.6) OJ, k--flk_l=O(j -p+k-1) as j--*oo, l<_k<_p, 

and 

P 

(4.7) lim ~ I~,.,I = 00. 
j ~ o o  i = 0  

Note that under the conditions flo4:0 and 604:0 stated in (4.3) and (4.4), 
a > 0  is necessary and sufficient for lim Ar=A to hold. It is clear that A t in 

r ~ a o  

Theorem 4.1 satisfies (1.4) exactly since (4.5) with (4.4) imply that 

(4.5)' A ~ - A ~  cpp+l(y~) as j ~ .  

Consequently, (2.17) is also satisfied. Similarly, (4.6) with (4.4) imply that 

(4.6)' J O (q~" +1 (Y~)~ %,k--i lk_l= \ ~-~y~ ] as j ~ o o ,  l < k < p ,  

which, qualitatively speaking, is the result in (2.18). The result in (4.7), however, 
is the opposite of that given in Theorem 2.4. We note that for the case in consid- 
eration 

(4.8) lim CPk(Y~ + 1) _ 1, k = i, 2 . . . .  , 
,~| q~(yz) 

so that neither (1.5) nor (1.6) is satisfied. 
An example of sequences satisfying the conditions in Theorem 4.1 is one 

for which At= ~ ai, r =  1, 2, ..., with r a , ~  ~ 7ir - i - `  as r~oo ,  a > 0 .  Here R, 
i = 1  i = O  

= rar is appropriate, thus the T-transformation reduces to the u-transformation. 
Sequences of this form are said to be logarithmically converging. 

For Theorem 4.1 see Sidi (1979b, Theorems 4.2, 4.3, and 5.2). 
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Theorem 4.2. In Theorem 4.1 let R, have the expansion 

oo 

(4.9) R , , , , z ' ~ f l / r  i+* as r~oo, z4=l, 60+-0, 
i = 0  

everything else remaining the same. Then, when tip 4: O, 

(4.10) A~--A 6oflpp! 
( i - - l ~ "  =jj-2,,-~ as 

j - ,~ .  

(4.6) holds also for this case, and 

l + l / I z [  p 
(4.11) lim ~ 17~,,[= ~ �9 

j ~ o o  i = 0  

Note  tha t  l imAr  exists and  is equal  to A if and  only if I z [ < l ,  in which 
r ~ o t )  

case lim A ~ =  A always. W h e n  I zt = 1 but  z Oe 1, lim A, exists and is equal  to 
j ~ c ( 3  r ~ c o  

A if and only if a > 0 .  Also lim A~=A for this case if 2 p + a > 0 .  When  Izl> 1, 
j--* oo 

nei ther  l im A, nor  l im A~, p = 1, 2 . . . .  , exist. In any  case (4.10) with (4.9) imply  
tha t  "~ ~ J~ ~ 

(4.10)' A~- A flPP! j~  ( l ~ - z )  p dpp+l(Yi)y; as ~ ,  

which is a bet ter  result than  the one in (1.4). (2.17) for this case is improved  
to 

(4.12) A~--A 0 ([g,+ 1 (j)]2 ~ A { _ I _ A  \ [  gp(j) j ] as j ~ o o .  

(4.6)' is seen to hold t rue for this case too. We note  that  for the case in considera-  
t ion 

q~k (Yl + 1) (4.13) l im z 4: 1, k = 1, 2 . . . .  , 
t ~  4)k(y3 

so tha t  (1.5) is satisfied, but  (1.6) is not. 
A n  example  of  sequences satisfying the condi t ions  in T h e o r e m  4.2 is one 

for which A , =  ~ a i z  i, r = l ,  2, . . . ,  with a,~  ~ ? i  r- i -o  as r ~ .  Here  R,=a ,z  r 
i = 1  i = 0  

is appropr ia te ,  thus the T- t ransformat ion  reduces to the t - t ransformat ion .  
Sequences of  this form,  when they converge,  are said to be l inearly converging.  

F o r  (4.10) and (4.6) in T h e o r e m  4.2 see Sidi (1980, T h e o r e m s  3.1 and 3.2). 
The  result in (4.11) is new and  can be ob ta ined  by using the techniques of  
Sidi (1980). 
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