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Abstract: The generalized Koenig’s theorem and de Montessus’s theorem are two classical results concerning the 
convergence of the rows of the Pad& table for meromorphic functions. Employing a technique that was recently 
developed for the analysis of vector extrapolation methods, refined versions of these theorems are proved in the 
present work. Specifically, complete expansions for the numerators and denominators of PadC approximants are 
derived. These expansions are then used to obtain (1) precise asymptotic rates of convergence of the poles of the PadC 
approximants to the corresponding poles, simple or multiple, of the meromorphic function in question, and (2) the 
precise asymptotic behavior of the error in the relevant Pad& approximants. One important feature of the asymptotic 
results derived in this work is that these are expressed in terms of a very small number of parameters. Approximations 
of optimal accuracy to multiple poles and the principal parts of the corresponding Laurent expansions are also 
constructed. In addition, the convergence problem for the case in which the only singularities on the circle of 
meromorphy are poles is solved completely through the solution of a nonlinear integer programming problem. 

Keywords: PadC approximants, meromorphic functions, generalized Koenig’s theorem, de Montessus’s theorem, row 
convergence, intermediate rows, generalized Dirichlet series. 

1. Introduction 

Suppose that we are given a power series E~COcizl representing a function f(z), so that 
00 

f(z) = c CiZi. (1.1) 
i=O 

The (m/k) Pad6 approximant associated with f(z), if it exists, is defined to be the rational 
function 

m 

P,,(z) :oaizi 
f,dz) = Q,,(Z) = 5 biZ; ’ bo = l’ O-2) 

i=O 

* Most of the results of this work were presented at the workshop on Constructive Approximation Theory and 
Applications, Jerusalem, Israel, 1988. 
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that satisfies 
m+k 

A. Sidi / Pad6 approximation 

fmk(z) = C cizi + O(Z”+~+‘) as z + 0. 
i=O 

It then follows that fmk(z) has the representation 

f,k(z) = 
D,k(zk~m-k(z), zk-l&,-k+,(z),~~~,~o$,(z)) 

&k(zk, zk-l,...,Zo) 

where Dmk(cr,,, ul,..., ak) is the determinant 

00 (Jl 

cm-k+l cm-k+2 

D,,(u,, ul,. . . , uk) = ‘m-.k+2 ‘yk+3 

Cm C m+l 

and 

s,(z) = i CiZi, j=o, 1,2,. . . . 
i=O 

For details see, for example, [1,2]. 

. . . uk 

. . . C m+1 

. . . C WI+2 

. . . C m+k 

(1.3) 

(1-4) 

(1.5) 

(l-6) 

There are two classical theorems concerning the convergence of the rows of the PadC table, i.e., 
of those fmk( z) with fixed k and increasing m, in case the function f(z) is meromorphic in a 
neighborhood of z = 0. These are the generalized Koenig’s theorem and de Montessus’s theorem. 
We state them below as Theorems 1.1 and 1.2. 

Theorem 1.1 (generalized Koenig’s theorem). Let f (z) be meromorphic in the disk K = { z : 1 z 1 < 

R}, and let it have exactly k poles, zl,. . . , zk, not necessarily distinct, in this disk. Let 

IZll G *** < I zk I < UR < R, and let Q(z) = n,“,,(l - z/zi) = cf=oqizi, q,, = 1. Write Qmk(z) 
= ~IC_Oq~~.k)Zi, qhmVk) = 1, where Qmk( z) is the denominator polynomial of fmk( z) as in (1.2). 

Then (1) q!“Sk’ = qi + o(um) as m + 00, and (2) Qmk(z) = Q(z) + o( am) as m + 00. 

The case k = 1, i.e., that of a single simple pole, of this theorem was given by Koenig [12]. The 
theorem also follows from a closely related theorem of Hadamard [7], and it was proved also in 
[3] and, more recently, in [6]. Proofs of Theorem 1.1 for the case of k simple poles can also be 
found in [4,8]. The technique employed in the present work, in fact, generalizes that used in [4] to 
account for multiple poles. An excellent source of information concerning the generalized 
Koenig’s theorem is [9]. For Hadamard’s theory of meromorphic functions and its consequences 
see also [5]. 

Theorem 1.2 (de Montessus’s theorem). With the notation and conditions of Theorem 1.1, 
lim m+oofmk(Z) =f(Z)Y infact lim SUPm+m If(z) -fmk(Z) I1’m < I z/R 1, uniformly in every com- 

pact subset of the set K\ { z,, . . . , zk } . 

This theorem was originally proved by de Montessus de Ballore [13] and is a consequence of 
Hadamard’s work [7]. Different proofs of it have been given in [1,2,11,16]. Another proof, for the 



A. Sidi / Pad& approximation 259 

special case of simple poles, has also been given in [4], and it also includes a refinement over all 
previous proofs. It is important to note that the proof given in [16] deals with the general rational 
interpolation problem, the PadC approximants being special cases of this. The techniques of [16] 
are similar to those used in [15] in the analysis of row convergence of Walsh arrays for 
meromorphic functions. 

In Section 3, we shall restate and refine Theorems 1.1 and 1.2 as Theorems 3.1 and 3.3, 
respectively, allowing f(z) to have additional poles in the annulus { z : 1 zk 1 -c 1 z 1 -c R }. We 
shall supplement Theorems 3.1 and 3.3 with some new constructive results in Theorem 3.5. The 
proof of Theorem 3.1 is given in Section 4, and those of Theorems 3.3 and 3.5, in Section 5. We 
mention that the result of Theorem 3.3 of the present work is qualitatively in the spirit of some 
of the results given in a series of papers by Wilson [20-221, in which extensions of de 
Montessus’s theorem to cover the Pad& approximants fm,k+l( z), fm,k+2(~), . . . are also given. In 
Section 6 of the present work we shall look at the same problem, and characterize those rows of 
the Pad& table that converge to f(z) through the solution to a nonlinear integer programming 
problem. Results analogous to those of [20-221 have been given for Walsh arrays in [15]. In this 
connection we also mention the related work by Parlett [14], in which the convergence of the 
basic QR algorithm has been analyzed in detail for a defective Hessenberg matrix. Multiple poles 
of a meromorphic function f(z) correspond to defective eigenvalues of a matrix, and the 
convergence rate O(s-‘) derived in [14] for the basic QR algorithm seems to be analogous to that 
given in (6.4), Theorem 6.1 of the present work, for denominators of intermediate rows of the 
PadC table. 

The obvious implication of Theorem 1.1 is that the zeros of Qmk( z) approach those of Q(z) as 
m + cc. In Theorem 3.1 this observation is refined considerably in that results concerning the 
precise rates of convergence of the zeros of Qmk( z) to the corresponding zeros of Q(Z) are 
obtained. For example, under the conditions stated in Theorem 1.1, we show that if i is a pole of 
f(z) of multiplicity w, and if z^i( m), . . . , .2,(m) are the corresponding zeros of Qmk( z) that tend 
to z^ as m --+ co, then 

n l/w 

(1) limsupIi,(m)-Ell’m< i 
M’CO I I 

, l<i<w. 

It is clear that when w > 1, the convergence of the Zi( m) to z^ is not optimal. We can, however, 
use the T,(m) to construct an approximation to z^ that has an optimal rate of convergence. In 
fact, we show that 

(4 limsup +,2,?,(m)-i 
m-a, I=1 

In addition, we show that the (w - 1)st derivative with respect to { of the polynomial lkQmk( 5-l) 
has exactly one zero, l/z”(m) say, that satisfies 

(3) limsup~~(m)-z^~l’m< i . 
m+m I I 

In case there are additional poles zk+ 1, zk+ 2, . . . in the annulus {z: ]zkl < ]zl CR}, Theorem 
3.1 provides a more interesting version of (1). Roughly speaking, il( m), . . . , 2,(m) are uniformly 
distributed over the boundary of a disk with center at i and radius that tends to zero at the rate 
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of ma 1 I?/z~+~ 1 m/u as m + cc, where 1 zk 1 -c I zk+ 1 I G I zk+ 2 ) G - - . -c R, (Y being a nonnega- 
tive integer. Theorem 3.1 also provides improved versions of (2) and (3). 

Similarly, the presence of additional poles in the annulus { z : ( zk I < I z I < R } gives rise to an 
interesting behavior of the error 

f(z) -fm&) = 
Qndz) f(z) - &n,(z) 

Qmic (4 
in de Montessus’s theorem, which is borne out by Theorem 3.3. The asymptotic result of 
Theorem 3.3 reduces to that given in [4] for the special case in which all the poles are assumed to 
be simple and to satisfy 1 zk I < I zkfl I < I z~+~ (. 

An important feature of the results stated in Theorems 3.1 and 3.3 is that these are 
quantitative in nature, and are expressed in terms of only a few parameters. This is made 
possible by the representation chosen for f(z) in (4.1) and by Lemmas 4.1 and 5.1 concerning 
the dependence of c, and S,(z) on m. 

We note that the technique employed in the proof of Theorem 3.3 is identical to that used in 
the proof of Theorem 3.1. It involves the complete expansion of Qmk( z) and Q,&z)f( z) - 
Pmk(z), and the analysis of the most dominant terms in these expansions. As is shown in 
Theorems 4.2 and 5.2, roughly speak&g, these expansions are of the form Czo=,pi( m, z) yim for 
Q,,(z), and of the form C~i&i(z)&(m)(~izJ~ for Q,&z)f(z) - Pmk(z), in case f(z) has an 
infinite number of poles. Here &( m, z) and &(m) are polynomials in m, and & (m, z) are also 
polynomials in z. The yi and yi can be very simply expressed in terms of the zj, j = 1, 2,. . . . 

The &( m, z) and pi< m) are independent of m in case f(z) has only simple poles. 
The techniques employed in the proof of Theorems 3.1 and 3.3 of the present work are based 

in part on those of Sidi et al. [19], Sidi [17] and Sidi and Bridger [18] that were developed for the 
analysis of vector extrapolation methods. 

Finally, in Theorem 3.5 we show how fmk( z) can be used in constructing an approximation to 
the principal part of the Laurent expansion of f(z) about the pole z^. This approximation has an 
optimal rate of convergence, i.e., the error associated with it tends to zero like 0( I i/R’ I “) as 
m -+ cc, where R’ = R - E, c > 0 arbitrarily close to 0. 

In Section 7 we show that Theorems 3.1 and 3.5 are applicable to the problem of determining 
some of the important parameters in generalized Dirichlet series. 

We begin our treatment by giving some technical preliminaries in Section 2. 

2. Technical preliminaries 

The following lemma, whose proof can be found in [19], will be very useful. 

Lemma 2.1. Let i,, i,, . . . , i, be positive integers, and assume that the scalars v~,,~, ___, ,k are odd 
under an interchange of any two indices i,, i,, . . . , i,. Let oi, i 2 1, and ti3j, i >, 1, ‘1 <j < k, be 

scalars. Define 

I k,N= 5 ; .-. 
i,=l i,=l 

i$luio( fil ‘ip,p) ‘i0.i,....,ik (2-l) 
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J k,N = c 
lgi,,<i,c ... ii,<N 

(Ji, q, . . . ui 
A 

tio,l ti,,l . . . ti A.1 

ti,,2 ti,,2 . . * t,,,2 IJ. 
I”,, ,,.__, i,’ 

tr,,k ti,,k -. . tl,,k 

(2.2) 

Then 

(2.3) I JkN’ k,N= , 

For Definitions 2.2 and 2.3 and Lemma 2.4 below see [18]. 

Definition 2.2. Let the nonnegative integers pj, j = 1, 2,. . . , be given, and let ji be an ordered 
pair of integers, such that j > 1 and 0 < i < pj. For two such pairs ji and j’i’ we will write 

ji <j’i’ if (j<j’ or (j=j’ and i K i’)), (2.4) 

ji =j’i’ if (j=j’ and i=i’), (2.5) 

ji < j’i’ if either (2.4) or (2.5) holds. (2.6) 

This implies the lexicographic ordering 10, 11,. . . , lp,, 20, 21,. . . ,2p,, 30, 31.. . of these pairs. 

Definition 2.3. Let (;) denote the binomial coefficients. Define 

to be the M X A4 determinant, whose s th row is 

and 

the g,,j 

Lemma 

Then 

(&,l> gs,27--*, gM) forq+l<.sGM, 

being arbitrary. 

2.4. Let n,, . . . , n4 be arbitrary nonnegative integers, and let 

yl’...., nY= y n1 

ii i 
o A-7 

yn I,.... nq = yo ,..., 0, 

(FJP >..., ( qgqA~~, gq+l ,...> h). (2.7) 

(2.8) 
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i.e., y”I3,‘.9 nq is independent of n,, . . . , n 4. In particular, if p,, . . . , p, are nonnegative integers such 
that C:,,( pi + 1) = M, then 

= r%q’“+‘“2 F(X,, pl; A,, p2; ._,; A,, p,), 
i i j=l 

(2.9) 

where 

W,, p1; . . .; A,, p,) = l--I (Xi - h,)(p,+l)(fi+l), (2.10) 
1 G&J<’ 

is the generalized Vandermonde determinant. (The ordinary Vandermonde determinant is obtained 
by setting pj = 0, j = 1,. . . , r.) 

The following perturbation lemma seems to be of interest in itself. 

Lemma 2.5. Let the polynomial ‘k,(X) be given by 

?&(A) = ; di(6)(A - i)i, some fixed A, 
i=O 

such that 

(2.11) 

d,(S)= 
/%I d,(6) i 

0 for O<i<o-1, 

d, forw+l<i<k, 

with d;, # 0. 
(a) Then \k,(A) h as w zeros, X,(S), 1 < I < w, that tend to i as 8 + 0. 
(b) If, in addition, 

d,(a) =O(do(‘)) as6-+0, forl<i,(o-1, 

then X,(6), 1 c 1~ w, can be ordered such that 

(2.12) 

(2.13) 

where 

and 

(2.15) 

(2.16a) 

+ 0, for fi # 0. (2.16b) 

(2.14) 
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(c) Furthermore, whether (2.13) is satisfied or not, ‘k,‘“-“(A) has a unique zero, x(6), that 

tends to L, which satisfies 

i;(S) _ fi _ L dd(6) 
Q d,(S) 

as S+O. 

Proof. The proof of part (a) follows from the fact that (2.11) and (2.12) imply 

i=w+1 

(2.17) 

(2.18) 

For the proof of part (b) we proceed as follows: from (2.11) and ‘k,(X,(6)) = 0 we have 

CL-1 

c d,(~)(h(~) - fi)i 
-(X,(8)-X)“= i=” 

c di(S)(X,(S) - ,)i-W 
i=w 

(2.19) 

By the fact that h,(6) - i = o(1) as S + 0, and the assumption in (2.13), it follows that the 
right-hand side of (2.19) is asymptotically equivalent to d,(S)/d,(8) as 6 + 0. From this and 
from (2.23) below we obtain (2.14) with (2.15). 

Let us denote the remaining zeros of ‘kb( X) by A -(a), w + 1 <j G k. Then lim,,,A,(S), 
w + 1 <j < k, being the zeros of the polynomial 1 + E~x,+,~i( A - i)i-w, are different from A. 
We now consider the polynomial +a( r) = C;k,odi( 8) TV. The zeros of &s(r) are T( 8) = Xj( 8) - A, 
1 <j G k. Thus lim s_0rJ8)=0, l<j<w, and lims,O~(S)=tj#O, w+l<j<k. Let 

To@; rr,..., rk) = 1, and denote 

T,(6; rl,...,rk) = c fi ‘i%(S), P = ‘>**., k> (2.20) 
Igi, <i,< <r,,<k s=l 

i.e., T,(6; 7r,. . . , TV) is the sum of all possible products of p of the ~(a), 1 <j < k. It can be 
shown that 

As is known 

T,(S; q,...,Q) = (-l)P 
dk-pw 

dkW ’ 
O<p<k. (2.22) 

Combining (2.21) and (2.22), and invoking (2.13), in the order p = k, k - 1, . . . , k - w + 1, 
results in 

as a-+0, l<q<o. (2.23) 
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Recalling that T( 8) = Xj( 6) - & 1 <j G k, and employing (2.23) with q = 1, (2.16a) follows. 
Assume now that & # 0, and consider 

L(S) = $qq -Pt. (2.24) 

After some tedious manipulations it can be shown that 

(2.25) 

Employing (2.23) in (2.25), we obtain 

from which (2.16b) follows easily. 
As for the proof of part (c), we first note that 

ep-“(A) 
5 ( i 

(w-l)! =,=w_-l w-l 
)d,(6)(X-i)‘-“t’. 

By (2.12) 

!qy”( A) 

sll-mo w!d,(6) 

(2.26) 

(2.27) 

(2.28) 

From this it follows that \k, (‘+‘)(X) 
(2.27) and !Pj”-l’(x(S)) = 0 we have 

has exactly one zero, x(S), that tends to i as 6 + 0. By 

(2.29) 

(2.17) now follows from (2.29) in the same way (2.14) follows from (2.19). q 

Note 2.6. (2.14) implies that, to lowest order, h,(6), 1 G 1 G w, are uniformly distributed over a 
circle with center i and with radius that is shrinking to zero. 

Corollary 2.7. in (2.12) let 

(2.30) 

Then, whether (2.13) is satisfied or not, 

X,(6)=A+O(I1s)““) as6-+0, l<i<w, 

and 
(2.31) 

as a-+0, (2.32a) 

i 
$..A,‘(l)jl=fiiO(S) as 6 + 0, for fi # 0, (2.32b) 
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and 

Proof. 

X(8)=X+0(6) asS+O. 

Left to the reader. 0 

For future use we rewrite (1.5) in the form 

uk 

Z n+k,l 

Z n+k.2 

‘n,k Z n+l,k ... Z ntk,k 

with 

n=m-k+l and z~~-c,,+~_~. 

In the next sections we shall use both m and n interchangeably. 

265 

(2.33) 

(2.34) 

(2.35) 

3. New statements of Theorems 1.1 and 1.2 

Let the function f(z) that has the power series representation given in (1.1) be meromorphic 
inthediskK={z: lzl<R}.Let5,~‘,j=1,2 ,,.., Y, be the distinct poles of f(z) in K, whose 
respective multiplicities are pj + 1 = wj, j = 1, 2,. . . , v. Let the S, be ordered so that 

0<({;‘161{;r/< 0.. 6({;1j<<-1<R, (3.la) 

< being arbitrary otherwise, and 

Pj>-p,+r when J!C,~‘I=JS,~~r~. (3.lb) 

Take t to be a positive integer, such that 

either (t = V) or (t < v and Is;‘) < ){lLII I). (3.2) 

When v > t, without loss of generality, we assume 

jGI= *** =IC/ -+ZY+11G *** c/x;‘I (3.3a) 

and 

P=PpI+1= ... =Pt+r’P,+p+l~ ... >PPt+r. (3.3b) 

(When t + Y = v in (3.3a) or I_L = r in (3.3b), equalities are assumed to prevail throughout.) By the 
assumption that {,T * is a pole of order wj, we also have 

Ajp, = lim (1 - {,z)“‘f(z) # 0, 
Z-z; 

j = l,..., v. (3.4) 
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Define 

and 

and let 

c,= k (p,+l)= $ cd,, 

j=l j=l 

s 

‘J=+pj(pj+ I), j=l, 2,..., ‘SC C uj, s=l, 2,..., 
j=l 

QCz)=,~l(l-S,r)” and 7~ = fi Sj”/, 
j=l 

(3.5a) 

(3.5b) 

k = i?t = i oj 
j=l 

(3.5c) 

in fmk( z), the (m/k) PadC approximant to f(z). The assumptions and definitions above will be 
used throughout the remainder of this work. Only in Section 6 we shall use values of k other 
than that in (3.5~). 

Theorem 3.1 (generalized Koenig’s theorem). Let the functio? f(z) be us described aboue. 
(a) Then for z # SI-l, 1 <j G t, Dmk(zk, zkpl,. . . , z”) = Dmk(z) has the dominant asymptotic 

behavior 

&,(z) = D,,(zk, zk-‘, . . . , 2”) = WW[Q(z) +0(<(n))] as n + 

WC (++“I 

I 
5 n 

nn T I I if v > t , a some nonnegative integer, 

c(n) = 

5” 
(3.8) 

I I s; 
if v=t. 

Actually, LY = I; if the poles whose mo$uli are I[,-’ ) are simple. 

(b) Part (a) above implies that Dmk( z) has w, = p, + 1 zeros &l(n), . . . , S,.:(n) that tend to 

&- l as n+oo, for 1 G s G t. Actually, lSr( n), 0 < 1 <pS, 1 < s < t, are the k zeros of the 
polynomial in [, Em,({) = Dmk(So, 3’, . . . , Sk). Also thep,th derivative of ij,&([) with respect to [ 
has exactly one zero, cS( n) say, that tends to [, as n -+ 00. For these we have 

S,,(n) = S, + 0(6,(n)“us) us n + 00, 0 < 1 Gp,, 

$ ,$oLh) = L + Ws(4) asn-+c0, 

lS(n) = S, + 0(&(n)) as n + 00, (3.9) 
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where 

s,(n) = lS I 
s n t+1 nP - I I if v>t, 

Ln 

I I L 
if v=t. 

(3.10) 

Also (3.9) remains true when all the l’s there are replaced by their reciprocals. 
When v > t the first of the results in (3.9) can be made more quantitative and interesting in 

nature. In this case let 

Now the sequence { N,(n)} h as a convergent subsequence { N,( n ,)} with a nonzero limit fi$. The 

lS,( n) then satisfy 

S’,,(n,) - S, + ti&(n,)liw’ as q+ 00, 0 d l<p,, (3.12) 

where fiS,, are the w, th roots of gS. From (3.12) it follows that 

{$;l(n,) - SC’ - ~;21?Sr8S(n,)1’U’ as q-+ co. 

Needless to say, for w, = 1, lSo(n) = 5, + N,(n)G,(n) + 0(8,(n)) as n -P CO. 

Note 3.2. Roughly speaking, the results in Theorem 3.1 imply that 
if 5,’ and &’ have the same multiplicity and / {rl 1 -c 1 {.vT1 1, then the &‘(n), the (1) 

(2) 

(3) 
(4) 

approximations to & ‘, will have more accuracy than- the l,-;,‘(n), the approximations to 

G1,;‘; 
if 1c;‘I = Ic,I’I and c,-’ has multiplicity smaller than that of S,I ‘, then cST’( n) will have 
more accuracy than S,I,‘( n); 
in general, the accuracy of the S,:‘(n) for fixed j increases with increasing k; 
if w, > 1, fJ( n), the average of the l,,(n), 0 < 1 G p,, converges to {,, w, times more quickly 
than the individual S,,(n), i.e., fS( n) converges to 5, at the rate SSO( n) would converge to [, 
if l, were a simple zero of bm,({). 

Theorem 3.3 (de Montessus’s theorem). Let the function f(z) be as in Theorem 3.1. Then for 
q=O, 1, 2,... lim m-rcof~o(Z) =f’q’(4 uniformly in any compact subset of { z : I z I < p } \ 

{s;-‘, . . ..S.-‘}, wherep= ISt-,‘, I when v > t, and p = R when v = t. Actually, for all q = 0, 1, 2,. . . 

(3.13) 

uniformly in any compact subset of K\ { [[ ‘, . . .,{i’}. Furthermore, when v> t, f(z) -fmk(z) has 
dominant asymptotic behavior 

f(z) -fmk(4 = $ h~~lGh(4(lh4’+2k + o(np lSt+lz I”> a.9 n + ~0, (3.14) 
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uniformly in any compact subset of K\ { cc’, . . . , l,’ }, where 

Q(s,-'1 2 +h(‘)=& Q(z) * 
[ 1 (3.15) 

The o( nii ([,+,z ( “) term in (3.14) is, in fact, O(nP-’ 1 l,+lz I”) when j > 0, O(nP’+r+’ ) St+r+lz I”) 

whenj=O(p=r) andt+r<v, ando(ItzI”) whenj=O(p=r) andt+r=v. 

Note 3.4. As will become clear in the next sections, the proofs for the case in which f(z) has only 
simple poles is not very difficult technically. The presence of the multiple poles, however, 
complicates every stage of the proofs considerably. 

Theorem 3.5 below shows how one can use only fmk( z) and the lSr( n) to construct good 
approximations to the coefficients HS,, 0 6 q G p,, of the principal part of the Laurent expansion 

of f(z) about [;‘, 

f(Z)= f Hsq 
q=o (z - &-‘)q+l 

+ f:(z), f:(z) analytic at 5:‘. 

Theorem 3.5. Define 2,(n) by either 

or 

Let H,,,,(n) be the residue of the rational function (z - i,( n))qf,,,k( z) at l,;‘(n), and let 

i 

3 t+l l-l A,= 5s 
if v> t, 

I{$-’ if v= t. 

Then 

lim sup 5 H,,,,(n) - Hsq 

l/n 

<A, 
n+m I=0 

4. Proof of Theorem 3.1 

(3.16) 

(3.17a) 

(3.17b) 

(3.19) 

(3.18) 

o<q<p,. 

We begin by observing that the function f(z) has the representation 
PI 

Aji 

f(z) = ,$ ;Fo (I- s;z)i+’ + g(z), (4.1) 
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where A,, are as defined in (3.4), and g(z) is analytic in the disk K. Then g(z) has the power 
series representation 

g(z) = E diZi, convergent for z E K. (4.2) 
i=O 

Of course, when g(z) is a polynomial, i.e., the series in (4.2) has a finite number of terms, f(z) is 
a rational function. Note that Hji( -{j)i+l = Aji with H,i as defined prior to the statement of 
Theorem 3.5. 

Lemma 4.1. Define 

and AAji,, = c A;, s;s-‘. 
I=i 

Consequently, 

lijp I’ s = A;,{;-’ = AjP,{;-’ # 0. 

Then the coefficient c, in f(z) = C~=ociz’ has the expansion 

where 

4, =+T t)Y’, IA”(% 0 I @f(5) = , y, I g(z) I. 
2 

Consequently, z,,, defined in (2.35) has the expansion 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

where 

a,(,, 6) =k(n +s - 1, t)E”-‘. (4.8) 

Proof. (4.6) follows from the Cauchy inequalities for analytic functions. The rest of the proof can 
be accomplished by expanding f(z) - g(z) about z = 0 and then employing the well-known 
identity 

The details are left to the interested reader. 0 

Theorem 4.2. Let < = l/z, and denote 

(4.9) 

4?&(S) = QdJs”, l1 ,..Jk) =z-“bm,(z). (4.10) 



270 

Denote also 

A. Sidi / Pad6 approximation 

(4.11) 

Then fi,,,,( {) has the expansion 

&z,(s) = 

i 10~j,I,~j,lz~ “. <jklk6vp, 

+ E,,(~, t), (4.12) 

where Emk( 5, <) is the only term in this expansion that depends on g(z) and thus on .$. When g(z) 
is a polynomial Emk( 5, 5) = 0 f or m >, k + deg g(z). The exact form of Emk(<, <) will be described 

through an example at the end of the proof of this theorem. 

Proof. For the sake of simplicity we shall first assume tha: g(z) in (4.1) is a polynomial. This 
implies that A”( m, 5) = 0 in (4.5) for m > deg g(z) and A,(n, 5) = 0 in (4.7) for n + s - 1 > 
deg g(z). Substituting now (4.7) in (2.34) with uj = SJ, j = 0,. . . , k, there, we obtain 

so 
k 

Ca,,l,.l( K )lJ ~ijlil,l( “:I: 1 jC+’ I’. ~Aj~~~31(’ j A 

J,!, 

yk p 

b,,k({) = z’J2/2,*( L)li cAj2/2,,(” :,‘)[I” -‘* 

JZlZ 

$2Aj2~2v2(n t” j’i+k 

(4.13) 

where EJr denotes C’J=~C~L~. Using the multilinearity property of determinants and Definition 
2.3, (4.13) can be expressed as 

(4.14) 
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Since the product 
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is odd under an interchange of any two of the pairs of indices jIZ,, . . . , j,l,, we can apply Lemma 
2.1 to the multiple sum of (4.14). This results in (4.12) with em,<{, 4) = 0. 

(4.12) with Emk(l, 5) + 0 is obtained by adding the term A,(n + i, ()E”” to the correspond- 
ing term 

in (4.13). A cursory look at the resulting determinant shows that Emk(l, [) too is a sum of 
determinants similar in form to the Y determinants in the multiple sum of (4.12). To make this 
point absolutely clear we shall work out the example in which Y = 3, p1 = 1, p2 = 0, p3 being 
arbitrary. Pick t = 2 so that k = ( p1 + 1) + ( p2 + 1) = 3. Then 

where 

Note that in case f(z) is a rational function with only simple poles {r-t,. . . , c;‘, v > k, which 
we write in the form f(z) = C~=,A,/(l - S,z) + g(z), the result in (4.12) reduces to that given in 
[4], and it reads 

(4.12’) 
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for m>k+deg g(z). Here V(Xi,__., hk) = f( Xi, 0;. . . ; A,, 0) is the ordinary Vandermonde 
determinant. We have used the fact that 

which follows from (4.11). 

Proof of Theorem 3.1. We begin by observing that the determinants Y in the expansion (4.12) are 
polynomials in n. Therefore, the asymptotic behavior of the multiple sum in (4.12) is determined 
by the products (I-&,~~). Thus, the most dominant term in this sum is that for which 

j,Z,, j,l,, . . . , j,l, = 10, 11,. . . , lpi, 20,. . . ,2p,, . . . , tpt, 

and it is given by 

Z 10.11,.__, zp, y(($q;)sP, (‘l)ip ,...> (;JLo ,..., (;)s;o,..-,(;,)cJ)c (4.15) 

with 7r as defined in (3.5b). Substituting the expression given for a,,,, in (4.3) in the determinant 
representation of Z,,,. _, tP , . I and performing elementary column transformations, and finally 
invoking (4.4) (see also Appendix A), we obtain 

(4.16) 

Substituting (4.16) in (4.15), and applying Lemma 2.4 to the Y determinant in (4.15), we obtain 
the dominant term given in (3.6) and (3.7). 

When Y = t the multiple sum in (4.12) contains only one term, namely, the dominant term 
discussed in the previous paragraph. 

When Y > t the next dominant term in this multiple sum is the sum of those terms with indices 

jil,,..., j,l, = 10,. ..,lp, ,..., s0 ,..., s(i - l), s(i + l),.. ., sps ,..., t0 ,..., tpt, jl 

= [si; jZ], (4.17) 

0 < 1 <p,, t + 1 <j G t + Y, cf. (3.3a), and 0 G i <p,, all s for which ) l, 1 = 1 S; I. It is easy to see 
that all these terms are of order n7a”(lt+,/S;)” for n + co, for some nonnegative integers y. 
Now let (Y be the maximum of the y ‘s. 

A careful analysis of the terms that form Enlk({, E) shows that they grow at most like 
n%f”(</S,)” for n -+ co, where p is a nonnegative integer. But since < is arbitrary, we can set 
/3 = 0 by choosing a slightly larger value for 5. 

Combining all the above, we obtain the 0(<(n)) term in (3.6). The validity of the claim that 
(Y = SJ if all poles having modulus equal to 1 St-’ 1 are simple will become clear through the 
discussion that leads from (4.22) to (4.24) below. This completes the proof of part (a) of Theorem 
3.1. 
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The proof of (3.9) and (3.10) is much more involved and requires a careful analysis of bm,( 5) 

in the neighborhood of {,, 1 G s < t. We start by noting that 

; $Mi) 

(4.18) 

Let us now substitute S = S, in (4.18), and determine the precise asymptotic nature of 
(l,‘i!)(d’/d~‘)&,&,). 0 ur main aim is to establish first 

forp,+l<i<k, 

where F,(n) is as defined in (3.10) and 

(4.19) 

(4.20) 

When 5 = [, the term with the indices jrl,, . . . , j,l, = 10, 11,. . . , tpt in the multiple sum on the 
right-hand side of (4.18) vanishes for 0 < i <p,, and is most dominant for i = o, = p, + 1 and 
i = k, and possibly most dominant for w, + 1 < i < k - 1. To see this we first analyze the Y 
determinant of this term, namely, 

which, by Lemma 2.4, is equal to 

For 0 G i G p, this last Y determinant has two identical rows and thus vanishes. For i =p, + 1, 
however, it is equal to 

By (2.9) and (2.10) and (4.16), we see that for i =p, + 1 the most dominant term in the multiple 
sum on the right-hand side of (4.18) is 

Cp,+r(n) = (-l)“‘z,o,...,,,~~--“‘ 

(4.21) 
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and this term is nonzero. For i = k the left-hand side of (4.18) is simply the coefficient of Sk in 
bmk({), which, by (3.6) and (3.7), is exactly O(7r”) as n *co. For p,+2<i<k-1, we see 
easily that the multiple sum in (4.18) is of the order of 7~” at most, and this observation is 
sufficient for our purposes. 

We now go back to the case 0 < i <p,. When v = t the multiple sum in (4.18) contains only 
one term, and this term vanishes as has been shown above. When Y > t the most dominant term 
in this multiple sum is the sum of the terms whose indices are j,Z,, . . . , j,J, = [si; jr], cf. (4.17), 
0 < 1 <pi, 1 + 1 <j < t + Y, i.e., 

By the fact that (7) = n’/l! + O(n’-‘) as n --, co, it follows that 

(4.23) 

Thus C,(n), for 0 < i < p,, has the dominant asymptotic behavior 

asn+ca, 

cf. (3.3b), i.e., C,(n) = O(~~a,(n)) as n + cc. 

(4.24) 

We finally analyze the contribution of (l/i!)(d’/d[‘)&k(~,). A careful analysis, similar to the 
one for the multiple sum in (4.18), shows this term to be at most of order nP17Y( c/S,)” as n + 00 
for 0 G i up,, and of order nP2rr”(</St)” as n + 00 for p, + 1 G i G k. Here /3, and & are some 
nonnegative integers. Since ,$ is arbitrary, we can set & = & = 0 by choosing a slightly larger 
value for 5. Thus this term is of order Y?(</[,)” as n + co for 0 G i up,, and of order T~([/S~)~ 
as n + co for p, + 1 < i < k. 

Combining all the above, we see that (4.19) 

with C,(n) as given in (4.24). We also obtain 

1 d“‘s - 
w,! ~kk(ss) - Cq(n> as n + O”, 

is true. We furthermore obtain 

when v>t,O<i<p,, (4.25) 

(4.26) 

with C,J n) as given in (4.21), and this shows that (4.20) holds, providing I” at the same time. 
Thus Corollary 2.7 applies with d,(S) = (l/i!)(di/d{‘)~Mk(~~) and S = S,(n), and this proves 
(3.9) and (3.10). (3.11) and (3.12) follow from part (b) of Lemma 2.5 and the fact that 

-&(Q/&@) - N,(n), as n -+ co. The last asymptotic relation follows from (4.16), 

x ml, p1; . . .; L-l, ps-l; !L, Ps-l, 5,+1, ps+l;--.; L> Pti i-d% 

(4.27) 
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and (2.10) in conjunction with (4.25) and (4.26). The proof of (4.27) is very similar to that of 
(4.16). The only thing that remains to be shoAwn is that the sequence {N,(n)} has a convergent 
subsequence { N, ( n ,)} with a nonzero limit N,. First, we note that N,(n) is a trigonometric sum 
of the form T(n) = Cg= _Jaj exp(ipjin) with distinct real p,, 0 < pj < 2a, and ‘Y~ # 0, -J <j <J. 

It can be shown that lim n j J(n) = 0 if and only if aj = 0, -J <j G J. Therefore, if not $1 (Y, 
are zero, then the sequence { r(n)} has a convergent subsequence with a nonzero limit r, for 
otherwise all convergent subsequences of {r(n)} would have a zero limit, implying that 

lim ,I _ ,r( n) = 0, which is impossible. This then proves the assertion above. Since now i?V f 0, 
ultimately all members of the subsequence 
guarantees that N,( n4) is the most dominant 
as q-+co. 

This completes the proof of Theorem 3.1. 

( Ai,( are bounded away from zero, and this 
term in the asymptotic behavior of (l,,( n4) - {,)“s 

0 

Note that in all of the dominant terms described in Theorem 3.1, of all AJi, 0 G i up,, 

j=l, 2 ,..., onlyA,,, 1 <j < t + p, are present. 

5. Proofs of Theorems 3.3 and 3.5 

In order to achieve the proof of Theorem 3.3 we need some additional auxiliary results. 
We start by noting that the numerator of fmk( z) in (1.4) can be replaced by 

D(zkS,(z), zkPISq+r(z),..., z’S,+~(Z)) with any q, m- k<q<m, (5 4 

by (1.3). We choose to take q = m - k + 1 = n. This is not essential, but it simplifies things a 
little. 

Next, the error f(z) - fmk( z) has the determinant representation 

f(z) -fm/Az) 

= %k(Z”[f(4 - %(Z)l? z k-‘[f(4 - &+l(41Y.~ z”[f(z) - G+,(z)l) 

D,,(z”, zy..., z”) 

= t?,(z) - A 

Q?&>~ 

Lemma 5.1. Define 

ijl(Z) = ZA,;i,( :r;)( $$+‘. z#S,-1, 1 <j< V. 
i=l 

h;,(z) can be expressed in terms of the Aeji in the form 

i?,,(z) =K,,q+ 5 K,,(q+ l&T-‘, 
Sjz 

o<r<p,-1, l_$=--- 
q=l+ 1 

1 -s;z’ 

(5.2) 

(5.3) 

gjp, (z) = a,,$$ = Aj& # 0. (5.4) 
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Then f(z) - S,,(z) has the expansion 

where 

Rn, E, z)(W = g(z) - i d;z’, 
i=O 

with M(c) as defined in (4.6). 

Proof. (5.6) follows by bounding the right-hand side of 

( 1 f 
n+l 

g(z) - i 4zi= j$/;h,=*_,dv h _ z dh. 
i=O 

The proof of (5.5) is based on the observation that 

(l-z)-i-l=;~(l_z)-L;~ yzs ; I;“:’ 
. ‘[ s=o 1 

=~o(“~i)z~+[~o(n+~+l,(f-)i-s+l]z~. 

(5.7) 

(5.8) 

Now, apply the identity in (4.9) to (n+i+‘) in (5.8) with a=n and p=i+l. Next, replace z in 
(5.8) by ljz, multiply both sides of the resulting equality by Aji and sum over j and i, 0 < i < pi, 
1 <j G Y. By appropriate interchange of summations (5.5) now follows. To prove (5.4) we start 
by replacing the summation index s in (5.3) by the index q, where i - s = q. The binomial 
coefficient (1::) then becomes ( ilc?,). Now interchange the summations over i and q, and 
invoke the identity 

(5.4) follows from this by recalling (4.3). The details are left to the reader. 0 

Theorem 5.2. Denote 

fijol,(z) ij,l,(z) ..- 'jkl,tZ) 1 
'jolo, 'j,*,,l . . . 'j,J, ,l 
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Then &,,(z), the numerator determinant on the right-hand side of (5.2), has the expansion 

277 

&,(z) = Zn+k c X J&,,,l I,..., At,(z) 
10<jolo<j,I,-z ... -cjLI,gvp,. 

where Gmk(z, 5) is the only term in this expansion that depends on g(z) and thus on 5. When g(z) 
is a po&nomiat Gmk(Z, 0 = 0 f or m > deg g(z). The exact form of Gmk( z, 6) will be described 
through the example considered in the proof of Theorem 4.2. Note that the multiple sum in (5.10) is 
empty when v = t. 

Proof. For the sake of simplicity, again we shall first assume ihat g(z) is a polynomial. This 
implies that B(n, 4, z) = 0 for n > deg g(z) in (5.5), as well as A,(n, 5) = 0 for n + s 2 deg g(z) 
in (4.7). Substituting now (4.7) and (5.5) in the determinant representation of &,(z), and 
assuming that v > t, we obtain 

‘ 

... 

(5.11) 

where, as before, Cjl denotes CI=lC$o. Using the multilinearity property of determinants, (5.11) 
can be expressed as 

(5.12) 

(5.10) with Gmk(z, 5) = 0 now follows from (5.12) by employing Lemma 2.1. 
The result with Gmk( z, 5) f 0 is obtained by adding i( n + i, 5, z)(<z)“+’ and a( n + i, t),$“+’ 

to the appropriate entries in (5.11). Again Gmk( z, [) is a sum of determinants similar in form to 
the Y determinants in (5.10). For the example considered in the proof of Theorem 4.2 we have 

Z -“-3Gm3(Z, 6) 
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+ c 
10 <joh<J’,l, <J;l, G 3P? 

+ c 
10~~olo~jIII <jzlz93p, 

, etc. 0 

In case f(z) is a rational function with only simple poles CT’, . . . , (;‘, Y > k, which we write in 
the form f(z) = C~=,AJ(l - S;z) + g(z), the result in (5.10) reduces to 

&,(z) = (-l)kz2k 
I<J-,<ji< ..' -CJ,QV 

for m 2 k + deg g(z). This result follows from the fact that XjOl,,j,l,,.,., jA,A( z) in (5.10) for this 
case is simply T(ljO, {,,, . . . , ~j~; z) defined and analyzed in Appendix A to this work, cf. 
(A.ll)-(A,13). Co_mbining now (4.12’) with (5.10’) we have a complete expansion of f(z) - 

fmk(z) = Fmk(z)/Dmk(z) for this case. 

Proof of Theorem 3.3. With the preliminary result in Theorem 5.2 the proof of Theorem 3.3 is 
almost identical to that of Theorem 3.1. 

We first treat the case in which v > t. For this case the most dominant part of the multiple 
sum on the right-hand side of (5.10) is the sum of those terms with indices 

jolo, j,l,,.. ., j,l, = 10, 11,. . .,lp,, 20,. ..,2p,,. . ., to,. . ., tpt, jl, 

0 G I <pj, t + 1 <j G t + Y. By (4.23), a term with the indices above is of order n’r” 1 1,+1 I”. 

Therefore, the most dominant behavior of the sum above is determined by those terms with 
t + 1 <j < t + p, I =j, cf. the discussion covering (4.22)-(4.24). Consequently, the most domi- 
nant part of &,(z) - Gmk( z, t) is given by 

f+P 

H(n~ z, = y7rnZn+k C 
'bl 

XIO,ll,...,tp,,j~ 

j=t+l 

cz)Y((~jsP,...,(~tj~~,(~j~~jT;. (5.13) 

As stated in Theorem 5.2, the multiple sum is empty when Y = t. (This is consistent with the 
fact that &k(z) -f(Z) f or all m sufficiently large, when f(z) is a rational function with degree 
of denominator equal to k.) 
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A careful analysis of the terms that form Gmk( z, E) shows that they grow at most like ‘rr”( 5~)" 
for n + cc. 

Combining all the above, we see that when Y > t, y( n, z) is the dominant part of &(z) and 
is of order (rS;+rz)” for n -+ 00, and when v = t, Fmk(z) is of order (m(z)” for n + cc. This, 
combined with (3.6), results in (3.13) with q = 0. (3.14) and (3.15) follow by combining (5.13) and 
(3.6) and invoking (3.7) and (A.18) from Appendix A. 

The assertions about uniform convergence of j&(z) and uniformness of (3.13) with q = 0 and 
of (3.14) are seen to be valid by the Lacts that B,,(z) are uniformly bounded in any compact 
subset of K\ { [r-l,. . . , I,‘} and that B(n, 5, ) . z IS uniformly bounded in any compact subset of 
K and for all n, cf. (5.6). 

Finally, the assertions about uniform convergence of fAz)( z), and uniformness of (3.13) with 
q= 1, 2,... can be seen to be valid by a cursory analysis of 

(5.14) 

in the light of Theorems 4.2 and 5.2. The details are left to the reader. 
This completes the proof of Theorem 3.3. q 

Proof of Theorem 3.5. For 1 < s < t let K, = { z : 1 z - CL1 1 < y }, with y chosen sufficiently 
small to ensure that K, contains none of the S,-’ with j # S. By Theorem 3.1, for n sufficiently 
large, K, contains only &O’(n), . . . , l$( n). Let aK, d enote the boundary of K, traversed in the 
counterclockwise direction. 

From Theorem 3.3 

,$f; 1 ftz) -f,k(z> 1 = o(a,(n)) as n - O”, (5.15) 

where 

i 

n”[ IS,+, I( IL-‘+v)]” 
8s(n)= [<( I{Jl+y)]” 

if v> t, 

if v=t. 

For the proof of (3.19), we begin by noting that 

fcq=& ( 
71 

z - L-l) “f(z) dz, 
aK\ 

5 H,,,,(n) = &I, (z -‘%(n))qfm,(z) dz, 
I=0 

(5.16) 

(5.17) 

for n sufficiently large. Now 

A,,(Z) = (Z-;,(n))‘&(z) - (z - l~-‘)“f(~) 
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The first term on the right-hand side of (5.18) is 0( Js(n)) as n 4 cc uniformly on aK,. Also, 

q-1 
(~-~~(n))“-(Z--5;~)q=(I,‘-~~(~));~I(z-;,(~))~(~-~~~)q-il=O(F,(n)) 

asn+co, (5.19) 

since {s-l -Z,(n) = 0(4(n)) as n * cc by (3.9). Consequently 

,rn;; IA,,(z) 1 = O(gs(n)) as n -+ co. (5.20) 

Taking now the difference between the two equalities in (5.17), and using (5.20), and finally 
recalling that y and 5-l can be taken arbitrarily close to 0 and R respectively, (3.19) follows. 

0 

We note that the technique employed in the proof of Theorem 3.5 can be used in obtaining 

lim sup Ii,(n) - 5:’ I1’n < A,, 
n-m 

which is a weaker version of Z,(n) - SF’ = 0( S,( n)) as n + 00 with Z,(n) as in (3.17). In this 
case observe that, for K, sufficiently small, 

1 
-w,Js*’ = - J 2lTi aK, 

Zilf’(z) 

f(z) 
dz and - &;‘(n)=& j 

I=0 aK\ 
zT1# dz. 

mk Z 

Now continue as in the proof of Theorem 3.5. 

6. Analysis of intermediate rows 

In the previous sections we took k to be the total number of poles of f(z), counted according 
to their multiplicities, that are contained in an open disk with its center at the origin. In this 
section we shall consider intermediate values of k. Specifically, we shall assume that v > t, 

C)“,:,, ] w. > 1, and consider C:=,oj < k c X:.2:,, ,. w. (Here we can also assume t = 0 and replace 
C>=,wj by 0 in this case.) The problem with intermediate values of k is that not for all such k do 
the rows {f,,(z)},“+, have to converge. In this respect we recall the result of [ll], which, 
roughly speaking, states that there is a subsequence of { fmk(z)}~=O that converges to f(z) 
uniformly in any compact subset of { z : ( z ) < 1 lt;1l I} \ { &‘, . . . , S;-‘, z;, . . . , zi }, where 
z;, . . . ) z: are limit points of the poles of those fmk( z) in this subsequence. 

As can be seen from the proofs of Theorems 3.1 and 3.3, whether lim, ~ mfmk( z) exists or not, 
depends on whether lim, ~ memk( z) exists or not. Therefore, we shall concentrate on the 
question for what intermediate values of k lim, _ ,_&,,&( z exists. The main result of this section ) 
is stated in the next theorem. 

Theorem 6.1. Let f(z) be as in Theorem 3.1, and let k be as in the first paragraph of this section. 
Denote 

f 

r=k- cwj. 
j=l 

(6.1) 



A. Sidi / Pad& approximation 281 

Designate by IP( r) the nonlinear integer programming problem 

maximize C ( 0~0; - 0;) 
%+I. . . . . o,+, jzt+* 

subject to c aj = T andO<uj<wj, t+l<j<t+r. (6.2) 
j=r+1 

Then lim mdmQmk(z) exists if IP(-r) h as a unique solution. When it exists, denote the unique 
solution of IP( 7) by a,*, t + 1 <j < t + r, and let 

f-t?- 

p*= c (cdjU+q2). (6.3) 
j=r+l 

Then 

hm,(z) = W’np* ( ~j~I{,?*]‘[ ‘+’ Q(z)_I~+~ (I- S;z)‘* + o(n-‘) ] asn+ m, (6.4) 

where 

x [ml, p1; . . . . s,, pt; St+19 * a*+1 - 1; . . . . 5;+,, q:r- 1)12 

(j-l)! 

x lh I?1 (pt+i-u,*+i+j)! #O 
a,:,+0 

(6.5) 

with K = u, + C)“,:+,u,F, u,* = +a,*( uj* - l), t + 1 <j < t + r, i.e., b,,,(z) has exactlyAa, zeros 
that tend to 5;r1, 1 <j < t, and exactly uj* zeros that tend to S,I1, t + 1 <j < t + r, and Dmk( z) = 

O(nS*# I{,+, 1 Tn) as n + 00. (In (6.5) and below whenever a,:; = 0 for some i, 1 < i < r, all 
reference to cl+, is to be deleted.) 

Denote by Cj, t + 1 <j G t + r, any solution-not necessarily unique-of IP( -r + l), and let 

fir 
p= c (Uj”/_$). (6.6) 

j=1+1 

(Note that p is the same for all solutions of IP( r + l).) Let CS,( n), 0 < I< p,, and fS( n), 1 G s G t, 

be exactly as defined in Theorem 3.1. Then (3.9) holds with S,(n) = ngPp* I[,+,/~, 1 n now. Also, if 
we let S,T(n), 1 < I < u,*, be the approximations to lS, t + 1 < s < t + r, then 

$+XQ=~S+WP’i asn+oo, t+l<s<t+r. (6.7) 

Again (3.9) with the new 6,(n), and (6.7), hold also when the l’s there are replaced by their 
reciprocals. 
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Finally, fmk( z) converges to f(z) uniform& in any compact subset of { z : ( z 1 < ( {,L”, ( } \ 

{S,‘,... ) s;- l} . Actually, 

f(z)-fmk(z)=O(nPPP*IS;+,zl”) asn+co, (6.8) 

uniformly in any compact subset of K\ {[c’, . . . ,I, ’ }. In addition, Theorem 3.5 holds with no 

changes for this k. 

Note 6.2. An algorithm for the solution of IP( 7) has been given in [14]. A different algorithm has 
recently been proposed by Karninski and Sidi [lo]. 

Let (I;, t + 1 <_j G t + r, be a solution of IP(7). 

(1) 
(2) 

(3) 

(4) 

D,! = wj - D;, t + 1 <j < t + r, is a solution of IP( 7’) with 7’ = C)“,:+,U~ - 7. 
If wj, = wjJt for some j’, j”, t + 1 Gj’, j" , < t + r, and if ujr = a,, ujfr = 8, in a solution to 
IP( 7), 8, # S,, then there is another solution to IP( 7) with uj, = a,, uJJ, = 8,. Consequently, 
a solution to IP( 7) cannot be unique unless ujf = a,~!. One implication of this is that for 
tit+1 = ... =u*+, =W>l, IP(7) has a unique solution only for T=qr, q=l,...,W-1, 
and in this solution uj* = q, t + 1 6 j < t + r. For tit+1 = . . - = at+,. = 1 no unique solu- 
tion to IP( 7) exists with 1 < 7 < r - 1. Another implication is that for tit+, = . . . = w~+~ 

’ q+p+l 2 I. * 2 q+r, p < r, no unique solution to IP( 7) exists for 7 = 1, . . . , p - 1, and 
a unique solution exists for 7 = p, this solution being u,*,~ = . . . = a,$, = 1, a,* = 0, 
t+p+l<j<t+r. 
A unique solution to IP( T) exists when wj, t + 1 <j G t + r, are all even or all odd, and 
T=qr+ +C)“,:+, Cwj- wz+r>, O G 4G Wt+r* This solution is given by uj* = q + i( uj - ulfr), 
t+l<j<t+r. 
Obviously, when r = 1 a unique solution to IP( 7) exists for all possible 7. When r = 2 and 
o1 + o2 is odd a unique solution to IP( 7) exists for all possible 7, as shown in [lo]. 

Proof of Theorem 6.1. A careful analysis of the terms in the expansion of Em,({) in Theorem 4.2 
reveals that the dominant ones are those having the indices 

jlll,..., jJ,=lO, II,...,tpr, qlil, q2i2,...,q7i7= {qlil,...,q,i,) 

subject to the condition 

(t + 1)O < qlil < q2i2 < . - - -c q,i, < (t + r)pl+,. 

Each one of these terms has the form 

(6.9) 

(6.10) 

0 1 ? s,q > ’ 1, 

(6.11) 

so that it is of order rzp ( T$:+ 1 ( n for n -+ 00, for some nonnegative integer p. Now we can write 

qli,,-.., qTi7=(t+1)Z11, (t+l)l**,...,(t+l)Ila,+,, (t+2)l,1,...,(t+2)120,+2,..., 

(t + r)lrl,. . . , (1 + r)lro,+,, (6.12) 
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for some integers ljj and a,,, satisfying 

O<lir<li,< .*’ <lia,+,~pI+i, l<i<r, 

t+r 
O~U~+~~W,+~, l<i<r, C u,=r. 

j=t+l 

(6.13) 

Of course, if a,,, = 0, for some i, then (t + i)l,j are absent from (6.12), and all reference to S;+; 
below is to be deleted. By Appendix B, (6.12), and (2.9) and (2.10), the term in (6.11) is exactly 

(6.14) 

with 

p= i grij- $Jt+i(ut+,- 1) 
i 

(6.15) 
i=l J=l 

With the a,,, fixed for the moment, the largest value of p is obtained when the lij take their 
maximum values consistent with (6.13), i.e., when Zij =~t+~ - at,, +j, 1 <j G a,,,. For these I,, 
we have 

t+r 

(6.16) 

and 

*&Lb.. .>‘iq+,)= ,IJ Yi 
(j-l)! 

o,+,zo j=r (Pt+r - ut+i +A! 

zo (6.17) 

by (B.9), and 

z(qli, ,..., q,r,) = Cml)” (fiG/)( ,&%)( fiv)( ,f&) 

where 
x f’(s1, p1;...; St, pt; &+I, q+,-I;...; St+r, q+,-1)+0, (6.18) 

t+r 

+‘=q+ c u;, U;=:u,(u,-l). (6.19) 
j=t+l 

So far we have shown that the dominant part of bm,(z) for n + 00 is 

R(n, z) = c (6.20) 
~,+I....%?+, 

0<0,6w,,f+l<i~t+r, 

none of C(u, z) = Qu,,,, . . . , q+,, z) in this summation being zero. The dominant behavior of 
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R(n, z) is determined by the maximum value of P(a) in (6.16), since 1 ~rIfz:+~[/” ) = ) a[;+1 \ 

for all the terms of the sum in (6.20). If IP( T) has a unique solution a,*, t + 1 <j G t + r, then 
P(a*) = ,B*, and 

R(n, z) = &r*, z)nP* ( rjEiV*) “[1+ o(n-i)] asn+cc, (6.21) 

and this proves (6.4) with (6.5). 
The rest of the proof can be accomplished exactly like those of Theorems 3.1, 3.3 and 3.5. 0 

Note 6.3. When IP( 7) does not have a unique solution, then the dominant part of R( n, z) in 
(6.20) has at least two terms of order nP*(, ll,+i I’)“, thus R(n, z) = nB* I a<;+1 I “Q(z)[U(n, z) 
+ 0( n-l)] as n + cc, where U( n, z) is a polynomial in z and a trigonometric sum in n. Now 
U( n, z) f 0, in general, although we do not have a rigorous proof of this at present. That 
U( n, z) f 0 can be shown in some special cases like that in which oj = 1, t + 1 <j G t + r. From 
this we conclude that when IP( 7) does not have a unique solution and U( n, z) f 0, 
lim m _,Qmk(z) does not exist, only a subsequence of { Qmk( z)}zCO converges, the limit 
polynomial being of th,e form Q(z)nT=i(l - c,!z) for 
For this subsequence Dmk(z) = 0(n$*~~ I{,+, I’“) 

some l,:, 1 <j < 7, not necessarily distinct. 
as n + cc, and consequently (6.8) holds (for 

the same subsequence) uniformly in any compact subset of K\ { 3; ‘, . . . , c; ‘, l/l;, . . . , l/l: }. 
Under the assumption that U( n, z) f 0 always when IP( 7) does not have a unique solution, we 

see that {Q,,(z)}~=, and hence {fmk(z)}Z=o converge if and only if IP( 7) has a unique 
solution, and this is a stronger result than 
rigorous proof of U( n, z) f 0 exists so far. 

Theorem 6.1. As mentioned above, however, no 

7. Application to generalized Dirichlet series 

Let c,, m = 0, 1,2,. . . be a sequence of 
asymptotic expansion 

asm+cc, 

real or complex scalars. Assume that c, has the 

(7.1) 

where P,(m) are polynomials in m of degree pj = uj - 1, which we choose to write as 

Pj(m) = 5 A;I( ;I)> ijp, + OY 
I=0 

(7.2) 

and [I are distinct nonzero scalars ordered such that 

IS11 2 l!r*la Ii-312 **-- (7.3) 

In addition, assume that there can be only a finite number of lj having the same modulus. 
Without loss of generality, assume that 

Pj>-Pj+l if ISJ = IS;+, I. (7 -4) 

Note that the infinite series C~=lP,(m){,~ in (7.1) is a generalized Dirichlet series. The 
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interpretation of (7.1) is as follows: for any positive integer v there exist a positive constant C 
and a positive integer m, that depend only on v, such that for every m >, m,, 

c, - i: P,(m){? < C m*n+l 1 lvtl 1 m. (7.5) 
j=l 

As a consequence, if we write 

c,= kP/(m)&Y+A(m, [)grn, t= Ilr+,I+e, r>OarbitrarilyclosetoO, (7.6) 
j=l 

and take (7.6) as the definition of i( m, [), then for all m = 0, 1, . . . , 

I i(m, t> I GM(E), SOme M(5) > 0. (7.7) 

When we compare (7.6), (7.2) and (7.7) with (4.5) and (4.6) we realize that they are identical in 
form. This implies that, with c, as given above, the infinite series C~==,cjz’ represents a function 

f(z) that is meromorphic in any compact subset of the complex plane. Thus, Theorems 3.1 and 
3.5 provide us with a method, by which we can obtain approximations to the largest of the S, and 
the corresponding Ji, from the knowledge of the c, only. For convenience we restate Theorems 
3.1 and 3.5 for generalized Dirichlet series. The notation is exactly as before. 

Theorem 7.1. Let the sequence c,, m = 0, 1, 2,. . . , be as described above. Then there exist positive 
integers t, r, and p, for which 

15112 *.. 2 I!3 ’ IL+1 I = *-. = IL+,1 ’ IL+,+, 12 **-2 (7.8) 

and 

P-P*+l= **. =Pt+p’P*+pL+I> .** aPI+,. (7.9) 

As before, ,u = r implies that equalities prevail throughout (7.9). Pick k = Xi.=,< pj + 1) = C:,,w,. 
(a) For [ # lj, 1 <j < t, the determinant Dmk(l) = Dmk(co, I’, . . . , Sk), which is a polynomial in 

[ of degree at most k, satisfies 

asn+oo, 

a some nonnegative integer, n = m - k + 1. 

Actually, (Y =ji =pt+, if the [, whose mod& are I 5; I are all simple. 

(b) Let SJo(n>,..., , lsp (n) be the zeros of Dmk( [> that converge to [, as n 

l<sst, 

In fact, if we let 

(7.10) 

00. Then, for 

(7.11) 

(7.12) 
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then the sequence { N,(n)} has a convergent subsequence { N,( n,)} with a nonzero limit tiJ,. 

The l,,(n) then satisfy 

asq+m, O<l<p,, (7.13) 

where gSc, 0 < 1~ p,, 
,Y 

are the w, th roots of N,. Furthermore, 

asn-+c0. (7.14) 

Also the p,th derivative of b,,,,( [) has exactly one zero s”,(n) that converges to lS as n -+ 00, 
and satisfies 

asn+oo. (7.15) 

Cc) Let the %,.t(n) b e as constructed in Theorem 3.5, and let 

(7.16) 
I=0 

and 

O<l<p,, (7.17) 

cf. (4.3). Then A”,,(n) is an approximation to i,t satisfying 

O<l<p,. (7.18) 

Theorem 6.1 can similarly be restated for generalized Dirichlet series. We leave the details to 
the interested reader. 

Appendix A. Analysis of XI,,,, ,..., tp,,hp,(Z) 

From (5.9) XIO,,,,, , rp,,hph( z) = X,(z) has the columnwise partition 

X,(z) = det[x&) Ix&> I - I-%&) I -.a I%&) I --- Ix&) I+&)]~ (A-1) 

where 

x,j(z) = (isi( A”si,r, asr,2>.**, Asi,k)T. (A-2) 

Substitute now in (A.2) the represemations of h’,(z) and afi,q in terms of the A,, from (5.4) and 
(4.3), respectively. Note that both BTi(z) and Asi,q depend only on A”,,, i < 1 <p,. 

Let us now concentrate on the columns x,,J z), x,r( z), . . . , x,Jz). First, we have 
T 

x,&) = a,, ___ 1, s,, s,‘,..., s:-’ 
1 

=x$?(z), (A-3) 
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thus we can factor out K, from the x,Jz) column. We can now use the x,Jz) column to 
eliminate A”,, from the x,/(z) column to obtain the new column x$‘(z) for I= 0, 1,. . . , p, - 1. 
The resulting new x,,~~_~( z) column is 

(A.41 

thus we can factor out A”,, 
eliminate Al,.,, 1 

from this column too. We can now use the x:tj,_,( z) column to 
from the xi;’ column to obtain the new column x,if’( z), for I = 0, 1,. . . , p, - 2. 

Continuing in this way, we obtain 

X,(z) =det[xrO(z) l . . . ~x:{~‘(z) lxifs-‘j(z) l . . . l~~~&~(z) 1x$(z) l 

where, for 1 < i < p,, 

. . . I X&) I Xh&)] 2 

Now, it is easy to verify that 

u,i(u, + 1) = (lsz)’ 
(1 - s;rzy+l 

=5:;-$& ) i=l, 2,... . 
. z=s, 

Combining (A.3), (A.6) and (A.7), we obtain, for 0 < i <ps, 

(A-5) 

(A-6) 

(A-7) 

(A-8) 

4*,,( z)- Let us now order the columns q,,(z) such that they appear in the order q,,,(z), qsl( z), . 

This requires Cf:,i = ip,( p, + 1) = u, column interchanges. 
Performing similar elementary column transformations on the remaining columns of X,(z), 

we finally obtain 

X,(z) =(-1)“’ fix A ( i=l ,A) hn,(fi V) Q,(z), (A.9) 

with 

Q,(z) = d+,,(z) I .-. I a&) I ... I adz) I ... I q,,(z) I adz)]. (A.10) 

We note that the proofs of (4.16) for Z,O,,,.,rp, and of (4.27) for ZIsO;hp,l can be achieved by going 
through exactly the same steps that lead to (A.9) and (A.lO). 

Surprisingly, the determinant expression for Qh(z) that is given in (A.lO) can be simplified 
further. 
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Consider first the determinant 

x,z hPZ 
l-X,2 ... 1 - x,z 

T(A,, A,,...,h,; z) = ; 
1 

1:: ; 
(I 

xy . . . A’“-* 
P 

(A.ll) 

Adding the 2nd row to the 1st in this determinant, we see that the 1st row becomes ((1 - 
h,z)_‘, (1 -h*Z)_l,..., (1 - h,z)-‘). Now factoring out (1 - hjz)-’ from the jth column, 
j= l,..., p, we obtain 

[$(l +z)]r(h,,...,h,: z>= 

1 . . . 1 
1 -A,z . . . 1 - h,z 

x, -x;z . . . h, - q&z (A.12) 

A’-* - x”-‘z 
1 1 . . . 

A”-* _ x”-‘z 
P P 

Subtract the 1st row from the 2nd, and factor out ( -z) to obtain the new 2nd row (X,, h,, . . . , A,,). 

Next, subtract the new 2nd row from the 3rd, and factor out (-z) to obtain the new 3rd row 

(A:, &..., At). Continuing in this way, we finally obtain 

TO 1,“‘, A,; z) = ( -l)“-lz”-’ 
I/‘(&, ~,,...J,) 

,h c1 - ‘jz) ’ 

(A.13) 

where V( X,, . . . , Xp) = ?( h,, 0;. . . ; h,, 0) is the ordinary Vandermonde determinant. 
We now go back to (A.lO). Since q,,(z) = (l/i!)( a’/t3{~)q,,(z) by (A.8), we can write 

Q,(z) = [fi fi i #(ii z) 6,,=~,,1~1~~,,*~,~’ 
(A.14) 

where 

PSI, Sll,...&,, L, ~21,...,S2pZ,...‘Str L,...&,> L. 

By the fact that 

(A.15) 

i 

f(S,, p,;...; S,, Pt; Sh,O) ifP,!'Pj, lGj<t, = (~-16) 
0 if p,! -c pj for some j, 1 <j,C t, 
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(A-14) reduces to 

Substituting (A.17) in (A.9), and employing (2.10) we finally obtain 

Appendix B. Analysis of Y(( ;,)A’, 

We start by observing that for 

; s;? P,) 
A hp, 

1 -s;Iz 

j=l 

‘(chz) k- 

q the h th row of the determinant 

gq+l’. . .? gM) ‘y(n) is given as the row vector 

By the identity 

(B-1) can be expressed as 

Rh= ;so( 1, !! ih)( ( :)A’> ( th)A1~ ( ~)~2,...,( “I, ‘)~“-l). 
Consequently, y(n) has the expansion 

289 

(A.17) 

(A.18) 

(B-1) 

03.2) 

(B-3) 

We note that the upper limits I,, . . . , I, of the multiple sum in (B.3) can all be replaced by L, 

where 

L=max{l,, I, ,..., 14}, (B-4) 

since (y)=O for i-co. We also note that the determinant Y(($X’,...,(pp)h’, gq+r,...,gM) in 
(B.3) is odd under an interchange of any two of the indices i,, . . . , i,. Consequently, we can apply 
Lemma 2.1 to the multiple sum in (B.3). As a result we obtain 
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(B-6) 

Now the determinant C~;..;..;/J(PZ) is the sum of the products 

(*)( llyih,)( lzfih2) *‘* ( l,ri,.)> 

{ h,, . . -3 h, } being a permutation of { 1,. . . , q } . Thus each of these products is a polynomial in n 
of degree d = Cy=,( lj - i, ) = Cq,,/, - Cg,,i,. As a result C, ,,,.,,! 4 ‘l*...,!q(n) is a polynomial in n of 
degree at most d. The maximum value of d is attained when i,, z2,. . . , i, take on their smallest 
possible values, and these are i, = 0, i, = 1,. . . , i, = q - 1. In this case d = C~=,L,. - tq( q - 1) = 

d *. Consequently, by the fact that (I) = nj/j! + 0( n j-r), it follows that y(n) is a polynomial in 
n of degree at most d *, and that 

y(n) = C(&., I~)Y((~)~~,(~)~~,...,(qol)~~, g,+,,...,g,)nd*+O(nd.-l)~ 
I 

(B.7) 
where 

C(I,,...,I,) = 

i 

(,,-;+l)! *** (l,-qfl)! 

(B-8) 

Note that the first q rows of the Y determinant in (B.7) are linearly independent. Thus the 
coefficient of nd* cannot vanish on account of these q rows. Also note that when I,, I,, . . . , I, 

take on consecutive values, C( I,, . . . , 14) in (B.7) is nonzero provided I, 2 0. In fact, 

C(~,,..., g= fi G-l)! 
i=l (p-q+i)!’ forl;=p-q+i, l<i<q. (B-9) 

d*=(p+l)q-q2, 

For C(1, ,..., 14) in (B.9), see, for example, [2, pp. 11-121. 



A. Sidi / Pad& approximation 291 

References 

[l] G.A. Baker, Jr., Essentials of Pad& Approximants (Academic Press, New York, 1975). 
[2] G.A. Baker, Jr. and P. Graves-Morris, Pad& Approximants, Part I: Basic Theory, in: Encyclopedia Math. Appl. 13 

(Addison-Wesley, London, 1981). 
[3] M. Golomb, Zeros and poles of functions defined by Taylor series, Bull. Amer. Math. Sot. 49 (1943) 581-592. 
[4] W.B. Gragg, The Pad& table and its relation to certain algorithms of numerical analysis, SIAM Rev. 14 (1972) 

l-62. 

[5] W.B. Gragg, On Hadamard’s theory of polar singularities, in: P.R. Graves-Morris, Ed., Pade Approximants and 
Their Appitsations (Academic Press: London, 1973) 117-123. 

[6] W.B. Gragg and A.S. Householder, On a theorem of Koenig, Numer. Math. 8 (1966) 465-468. 
[7] J. Hadamard, Essai sur l’etude des fonctions donnees par leur developpement de Taylor, J. Math. Pures Appl. (4) 

8 (1892) 101-186. 
[8] A.S. Householder, Principles of Numerical Analysis (McGraw-Hill, New York, 1953). 
[9] A.S. Householder, The Numerical Treatment of a Single Nonlinear Equation (McGraw-Hill, New York, 1970). 

[lo] M. Kaminski and A. Sidi, Solution of an integer programming problem related to convergence of rows of Pad& 
approximants, Tech. Report 565, Comput. Sci. Dept., Technion, Haifa, 1989. 

[ll] J. Karlsson and H. Wallin, Rational approximation by an interpolation procedure in several variables, in: E.B. 
Saff and R.S. Varga, Eds., Pad; and Rational Approximation (Academic Press, New York, 1977) 83-100. 

[12] J. Koenig, Ueber eine Eigenschaft der Potenzreihen, Math. Ann. 23 (1884) 447-449. 
[13] R. de Montessus de Ballore, Sur les fractions continues algebriques, Bull. Sot. Math. France 30 (1902) 28-36. 
[14] B. Parlett, Global convergence of the basic QR algorithm on Hessenberg matrices, Math. Comp. 22 (1968) 

803-817. 

[15] E.B. Saff, On the row convergence of the Walsh array for meromorphic functions, Trans. Amer. Math. Sot. 146 
(1969) 241-257. 

[16] E.B. Saff, An extension of Montessus de Ballore’s theorem on the convergence of interpolating rational functions, 
J. Approx. Theory 6 (1972) 63-67. 

[17] A. Sidi, Convergence and stability properties of minimal polynomial and reduced rank extrapolation algorithms, 
SIAM J. Numer. Anal. 23 (1986) 197-209. 

[18] A. Sidi and J. Bridger, Convergence and stability analyses for some vector extrapolation methods in the presence 
of defective iteration matrices, J. Comput. Appl. Math. 22 (1) (1988) 35-61. 

[19] A. Sidi, W.F. Ford and D.A. Smith, Acceleration of convergence of vector sequences, SIAM J. Numer. Anal. 23 

(1986) 178-196. 

[20] R. Wilson, Divergent continued fractions and polar singularities, Proc. London Math. Sot. 26 (1927) 159-168. 

[21] R. Wilson, Divergent continued fractions and polar singularities II. Boundary pole multiple, Proc. London Math. 
Sot. 27 (1928) 497-512. 

[22] R. Wilson, Divergent continued fractions and polar singularities III. Several boundary poles, Proc. London Math. 
Sot. 28 (1928) 128-144. 


