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Abstract: The recursion relations that were proposed by Ford and Sidi (1988) for implementing vector extrapolation
methods are used for devising generalizations of the power method for linear operators. These generalizations are
shown to produce approximations to largest eigenvalues of a linear operator under certain conditions. They are similar
in form to the quotient-difference algorithm and share similar convergence properties with the latter. These

convergence properties resemble also those obtained for the basic LR and QR algorithms. Finally, it is shown that the
convergence rate produced by one of these generalizations is twice as fast for normal operators as it is for nonnormal
operators.
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1. Introduction

Let B be a normed li _ca_r spacc over the field of complex numbers, and denote the norm
associated with B by |- |. case B is also an inner product space, we adopt the
convention for the homogenelty property of the inner product: for y, z€ B and «, B complex
numbers, the inner product (-, - ) satisfies (ay, Bz) = aB(y, z). The norm in this case is the one
induced by the inner product, i.e., if x€ B, || x| = y(x, x).
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Let x;,, i=0,1,..., be a sequence in B. We shall assume that
0
R -~ m ac o~ /1 1)
X~ 2 PN asm— . (1.1)
i=1
Here v.. p, are linearlv indenendent vectors in R are distinct scalars ordered cuich that
Here vy, v,, are hnearly mgdependent vectors i £, A, are distinct scalars orgered such that
A= 1A= A5 2 ; (1.2)

and satisfy
A#0, i=1,2,..., No#EN, af i) (1.3)

Also there can be only a finite number of A,’s having the same modulus. The meaning of (1.1) is
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that for any positive integer N there exist a positive constant K and a positive integer m, that
depend only on N, such that for every m = m,,
N—-1

xm - Z Vi}\’lr'l

i=1

<K |[Ay|™ (1.4)

Sequences of the form described above arise naturally, for example, in the matrix iterative
process

X =Ax;, j=0,1,..., (1.5)

in which x, is an arbitrary column vector, and A is a square matrix whose nonzero eigenvalues
have only associated eigenvectors and no principal vectors. In this case, A, A,,... are some or
all of the nonzero eigenvalues of A4, depending on the spectral decomposition of x,, and »,,
v,,... are proportional to its corresponding eigenvectors. Also the infinite sum Y>> ,#,A7 in (1.1)
is now finite, and the asymptotic relation there becomes an equality.

In the next section we present three recursive techniques, which we designate the qd-MMPE,
qd-TEA and qd-MPE algorithms, that are based solely on the vector sequence x4, x;, X»,...,
and that can be used for obtaining approximations to A;, A,, A;,..., in this order. These
techniques generalize the well-known power method and resemble the quotient-difference (qd)
algorithm. In Section 3 we analyze the convergence properties of these techniques and show that
they indeed behave like the qd algorithm. We recall that the qd algorithm is used in approximat-
ing the poles of meromorphic functions in general, and the zeros of polynomials in particular.
For detailed descriptions of the qd algorithm, see, for example, [3, Chapter 7] and [4, Chapter 3].
The convergence rates derived for the methods of the present work are also very similar to those
derived for the basic LR and QR algorithms, see, for example, [5].

In Section 4 we will analyze one of the recursive techniques of Section 2, namely the qd-MPE
algorithm, in conjunction with vector sequences x,,, m =0, 1,..., that are generated by iterating
with a normal operator, and we will show that the rate of convergence for this case is twice that
obtained for an arbitrary nonnormal operator that has the same spectrum.

Finally, we mention that the recursive techniques developed in this work are based on the
recursive algorithms that were developed in [2] for implementing some vector extrapolation
methods, such as the modified minimal polynomial extrapolation (MMPE), the topological
epsilon algorithm (TEA), and the minimal polynomial extrapolation (MPE), from which their
names are derived. The methods of proof relating to the convergence of these techniques are
similar to those that were used in [6,8] in the analysis of the above-mentioned vector extrapola-
tion methods, and in [7] in the analysis of some other recent extensions of the power method as
they are applied to normal operators. We also mention that the scalar and vector epsilon
algorithms of [9,10] can also be used as generalizations of the power method and produce results
similar to the ones given in Section 3 of the present work. This has been shown in [1].

2. Development of the algorithms

In this section we follow very closely the developments and notation of [2].
In all three methods that we develop in this section we assume that the vector sequence x,, X,
X,,..., is given. We also assume that a sequence of scalar quantities w), m, n>0, is given.
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These quantities are determined in different forms from the vectors x;. Their exact definition will
be given later in this section. In addition, we denote by b an arbitrary sequence by, by, by, ... .
Thus g’/ stands for the sequence pf, pf, pi,... .

We define G»™ to be the determinant

m m m
Pn | S e Pt k-1
m+1 m+1 m+1
nu‘n lu’n+1 e p‘n+k—1
Gl = ) ) ) , (2.1)
m+k—1 m+k-1 m+k—1
Kn Bria e Bnsr-1

and f;>™(b) to be the determinant

bn bn+1 T bn+k
m B [ Hos i
fem(b) = . . . (2.2)
A AR i

We also define
Gy™=1 and f""(b)=0b,. (2.3)
Finally, we let

n.m n’m(b)
TP"(b) = é;rl—m‘ (2:4)
Note that by (2.3) and (2.4),
Ty""(b) = b, (2.5)

2.1. The qd-MMPE algorithm

Let Q,, Q,, ... be a sequence of linearly independent bounded linear functionals on B, and let
“‘rnn=Qm+l(xn)a m, n>0 (26)
We recall that in case B is a complete inner product space, each Q; has a unique representer g;
in B in the sense that Q,(z) = (g, z) for all z in B.
As is shown in [2, Theorem 2.1], the quantities T7(b) = T, °(b) satisfy the three-term
recursion relation
Tk"(b)=T,f_1(b)—d,’(’Tk"_+ll(b), (2-7)
where
dr= 'Tkn—l(uk_l)
k Tkn:Jr I( ”_k —"1)

Note that d7 = u® /u%,, from (2.5) and (2.8). Note also that T (p/) =0 for 0 <j <k —1.

(2.8)
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As will be shown in Section 3, for the vector sequences x,, Xx;, X,,... described in the
beginning of Section 1, 1/d; — A, as n — oo under certain conditions. Thus the developments
P P T tankhat +lh o - 1A QeI ~ ) )Y thic ~Ardar

dbUVVU PIUVIUC u> Wll.ll a LC\/IHIIL‘UC u1a|. can l)r UUL«C aPPlUMlllallUllS tU /\1, 1\2, “esy 111 Ll].lb uvlidvel.,
This technique is summarized below.

qd-MMPE algorithm _
Given the sequence x,, X,, X,..., compute u7, m, n >0, by (2.6), and set T;"(u’) = pJ. For
k=1,2,..., use (2.8) to compute d;, and then use (2.7) to compute T(u’), j > k.

We note that d} is constructed from the k + 1 vectors x,,, X, 1,..., X, 4.

Finally, we observe that 1/d}' = p%,,/p° = Q:(x,.1)/0Q:(x,), which is exactly the approxima-
tion provided by the power method for A,, the largest eigenvalue in modulus of a linear operator,
provided this eigenvalue is simple and satisfies [A;| > |A,|. In this sense the qd-MMPE
algorithm generalizes the power method.

pn=0(Xpsn), m,n>0. (2.9)

Again, in case B is a complete inner product space, Q has a unique representer ¢ in B in the
sense that Q(z) =(gq, z) for all z in B. The rest is exactly as in the qd-MMPE algorithm. We
only have to observe that d; now is determined by the 2k vectors x,, X, 1,..., X,420_1- WE
also observe that for k =1 the qd-TEA and qd MMPE algorithms are the same when Q = Q,.

Consequently, as with the qd-MMPE algorithm, also with the qd-TEA algorithm the power
method is obtained for k = 1. Hence the qd-TEA algorithm also generalizes the power method.

2.3. The qd-MPE algorithm

The scalar quantities u) are now defined by
l‘"n_(Am3 -"n)3 ., n>0 (2_10)

As is shown in [2, Theorem 3.1], the quantities 7,'(b) = T,*"(b) and T7(b) = T"~(b) satisfy
the coupled recursion relations

Tkn(b)=Tkn—l(b)_ n+1(b) n>0’ PPN
- {2.11)
Tkn(b)=Tkn—1(b)_ nH(b) n>1,
where
dar T;_}(M”+k‘1l n>0 2’ 7:,:'_1(}.!,"_1) nx1 (212)
k Tknjll(uﬁk—l > Tknjll(un 1)

a very g fou

T2(b), T2 *(5) and T¢7(b), sce [2]. Note that df = /i ., 7
from (2.5) and (2.12). Note also that 7;'(p’) =0 for n<j<
n—-1<jgsn+k-2.
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As will be shown in Section 3, for the vector sequences x,, X;, X,,..., described in the
beginning of Section 1, 1 / d} > A, and 1/d; — A\, as n — oo under certain conditions. Thus, the

ucvcwpmcmb above plov1uc us with y€i another wuuuquc that can pluuuu: appluz&uuauuub to
Ay, A,,..., in this order. This technique is summarized below.

qd-MPE algorithm

Given the sequence x,, X;, X,,..., compute p7, m, n>0, by (2.10), and set Ty'(p/) =pl =
To(w’). For k=1,2,..., use (2.12) to compute d; and d?, and then use (2.11) to compute
T'(p’), j<n—1, j=n+k, and T(p’), j<n—2, j2n+k—1.

Observe that d7 and d are constructed from the k + 2 vectors Xx,,_1, X,, X,11---» Xp15 only.

Finally, we observe that 1/d{ =’ ., /W), = (x,, x,.1)/(x,, x,), which is exactly the Rayleigh
quotient that provides an approximation to A,, the largest elgenvalue in modulus of a linear
operator, provided this eigenvalue is simple and satisfies |A;| > |A,|. In this sense the qd-MPE
algorithm generalizes the power method (the Rayleigh quotient). It is known that in case the
vector sequence Xx,, X;, X,,... 1S generated by a normal operator, the Rayleigh quotient
converges to A, twice as quickly as it does for a nonnormal operator.

So far we have shown that the three algorithms above generalize the power method for a linear
operator. We would now like to explain why they are of the quotient-difference type. First, the
algorithms are somewhat similar in form to the quotient -difference method. Second, as is shown

o wm o carti~i {can e 2 IANN el o IN Ao oS PUSGTUPURPUEY Y . SR [ IR S P

in the next section (see (3.20) and (3.24)), the d}} are all expressed in terms of four determinants
the way the quantities in the quotient-difference method are. Furthermore, again as will be

shown in the next section, these determinants have asymntotic exnansions verv similar in form to

SLIVVVAL 1AL WL DAVAL SV AURL, VATOV MCALILANINGIEW LAVY QO Uy VAP QIUIGIVILS VUL Y S1iliGl ik iV W

those obtained for the determinants involved in the quotient-different method. We note in
passing that the determinants that appear in the quotient-difference algorithm are Hankel
determinants. The same holds true for the qd-TEA algorithms as will be clear in the next section,
although the indices of these determinants are different in the two methods.

3. Convergence analysis of the algorithms

We now state the main convergence results for the qd-type algorithms that were devised in the
previous section.
The following assumption is common to all three methods:

[Ag—1] > |Axl > |Arsq| for some integer k > 1, A= 0. (3.1)
Let us also define

A | !
Ek=max(‘A

), k>1. (3.2)

=
|
-

Thus, €, < 1.
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Theorem 3.1. In the gd-MMPE algorithm denote

Ql(Vl) Ql(”j)
S=1 S J=12,0 (3.3)
Qj(”l) Qj(Vj)
Provided (3.1) holds, and
Se_1#0 and S,+0, (3.4)
we have
diz=>\k+o(eg) as 1 - 0. (3.5)

Theorem 3.2. In the qd-TEA algorithm, provided (3.1) holds and

k

I_"[lQ(vi) #0, (3.6)
(3.5) is satisfied.

Theorem 3.3. In the qd-MPE algorithm, provided (3.1) holds, (3.5) is satisfied. Equation (3.5) is
satisfied also when d; is replaced by d.

Note. In relation to Theorem 3.3 we realize that if the sequence x,, x;, x,,... is generated by the
matrix 4 in the way x;,,=4x;, j=0,1,..., x, being arbitrary, then the qd-MPE algorithm
performs asymptotically like the qd-MMPE and qd-TEA algorithms, although it does not require
additional conditions like (3.4) and (3.6).

In the proofs of Theorems 3.1-3.3 we shall make use of the following results, which are of
interest in themselves.

Lemma 34. Let 0,, 0,,... and {), {,,... be two sequences of nonzero scalars, such that the o, are
distinct, and
1612181 ---. (3.7)

Assume, furthermore, that there can be only a finite number of ¢ ’s having the same modulus.
Consider the determinant

uy D
(n) ,(n) (n)
Urg Uszi crt Uz
4/:‘1 = . . f‘ ) (3‘8)

w® o u ™

r,0 r,or—1
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in which

z; , being some scalars. Define

S50 U A B Jir

Zijl Zj2,2 T Zj'z,’
Shodrsende LT : .

Zj1  Zi2 Zjr

ML tn L " — | AU v UL I
1nen 'q/r, j rn— 00, Nnas ine Wympiouc expansion
= [ ..\
7 ~ T« V/o 0 o N 7T g-‘;
4 2 i i WOgps Ogreees ,)kll 1,,}’
1<ji<p< < p=1

r—1
1 a - a
. 1 oa, - ad!
Viay,...,a,)=].
1 a, a,”’

(When ~ is replaced by = in (3.9), ~ is replaced by = in (3.11) too.) If, in addition,

1§01 > 1841 and Z,, ,#0,

o
Iyl
)
~
o~

n

+
-

/—\
~
I
—
s
——

)J asn— .

267

o~~~
W
\O

—

—~
W
—
[

~—

—
(%)
i
[

—

(3.12)

(3.13)

—_—
(%)
;—l
F

S

Lemma 3.4 can be obtained from [7, Lemmas 2.2 and 2.3], whose technique is a generalization

of that employed in [8, Theorem 3.2].

Lemma 3.5. Let §,, {,,... be a sequence of nonzero scalars exactly as described in Lemma 3.4.

Consider the determinant . as given in (3.8), but with

o0 0
u;"jé)"v Z Z zijg.in+p-1§;+q asn— oo,
i=1j=1

(3.15)
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z;; being some scalars. Define

Zi1j1 Zivjy o Ziljr
Zin- Zigjy Fan T Fiy 316
SN Al B : Sk (3.16)
Zijy Zijs Zij

Then {7, for n — oo, has the asymptotic expansion

[e e} e 0}
i~ X X Zyy
l<ih<ip< - <i, 1<j<p<- - <
x V(& ,E,,,)V(gﬁ,...,g,,)( 155)( nlg;;). (3.17)
P= p=

(When ~ is replaced by = in (3.15), ~ is replaced by = in (3.17) too.) If, in addition,
1$,1> 1§41 and Zi: ] #0, (3.18)

-----
n)

Lemma 3.5 can be proved exactly as in [6, Lemma 3.2 and Theorem 3.1].

then

r 2n

2 H;j £’+_1
j=1

+
10§r

4/:’— ..... r'V(g‘l, . ag’r)l

.....

asn-— 0. (3.19)

Proof of Theorem 3.1. Combining (2.8) with (2.4), (2.2) and (2.1), and recalling that 7,/(b) =
T;°(b), we obtain

Gn OGn+20
k

d;: G;:+1 OGn+1 0 - (3'20)
Now by (2.6) and (1.1) we have
o0
~ Y Q9N asn— 0. (3.21)

j=1
Substituting (3.21) in the determinant expression for G;°, we see that Gp° is simply ¢ of
Lemma 3.4 with u{") = pZ7 ], thus z; ,= Q,(¥), {;=A; and o;=A,. Furthermore, S; in (3.3) is

n+q°

Z,, .. ;in Lemma 3.4. Therefore, Lemma 3.4 applies, and we have
k A n
G,’("°=SkV()\1,...,)\k)(n>\'} 1+0 ‘—{ﬂ ) as n— 0. (3.22)
| i

Treating G7*1°, G2*1° and G7*#° similarly, and combining the results in (3.20), we obtain (3.5).
O
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Proof of Theorem 3.2. We observe that by (2.9) and (2.1)

0
wr~ ¥ [Qr)N7|N; as n— oo. (3.23)
j=1
The rest of the proof is exactly the same as that of Theorem 3.1, with Q,, 1(¥;) in the latter being
replaced by Q(»;)A7 now. On account of this, Z, now becomes [[T/_,Q(#)IV(A,..., A)).
We leave out the rest of the details. O

Here we note that G7° for the qd-TEA algorithm is a Hankel determinant. Thus the qd-TEA
algorithm resembles very strongly the qd algorithm. Furthermore, when the sequence x,, xi,
X,,... is one of scalars, then the qd-TEA algorithm can still be employed by picking the
functional Q to be the identity operator, in which case p) = x,,, ,. Thus for scalar sequences
satisfying all the conditions mentioned in Section 1 of this work the qd-TEA algorithm provides
another form of the qd algorithm.

Proof of Theorem 3.3. Combining (2.12) with (2.4), (2.2) and (2.1), and recalling that 7;7(b) =
T;"(b) and T;'(b) = T;""~'(b), we obtain

., GZ nGn+2n - Glrc' ,n— lGn+2n
dk = G n+1, nGn+1 n° dk Gn+1 n— lGn+1 n° (324)
Substituting (2.10) in (2.1), and comparing with (3.8), we see that Gp"** =y} with u(")—
y'},ﬁ”” V= (Xptstp-1> ,,+q) Invokmg now (1.1), we see that u{") is of the form (3.15), *with
= (¥, ¥))X; and {;=A,. Also ZL’_'_';; % in Lemma 3.5 now becomes
k ( Y15 Vl) e (Vl, Vk) k
Z}:::::,’:=( X-) : = (Hii-)vl ..... - (3.25)
i=1 i=1
(Vk’ ) o (e )
Since the vectors »,, »,,... in (1.1) are assumed to be linearly independent, the Gram

. of the vectors »,,..., », is positive. Thus Z}'--'§ # 0. Consequently, Lemma

k n
| A AN ZSE WIS 5 Y |

as n— 0. (3.26)
Invoking (3.26) in (3.24), we obtain the required result. [

determinant U;
3.5 applies, and we obtain

2n
A

1+0 N,

4. The qd-MPE algorithm for normal operators

As we have shown in Theorem 3.3, the convergence rate of the qd-MPE algorithm is the same
as those of the qd-MMPE and qd-TEA algorithms, in general. When the vectors »,, »,,... in the
expansion (1.1) are orthogonal with respect to the inner product (-, - ), however, the convergence
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rate of the qd-MPE method becomes twice that given in Theorem 3.3, as will be shown shortly in
Theorem 4.1. When the vector sequence x,, xi,... is generated by the matrix iterative process
Xj41=4x;, j=0,1,..., with x, arbitrary, then, as we mentioned in the Introduction, x,,
satisfies (1.1), with A, there being nonzero eigenvalues of A that possess only eigenvectors and no
principal vectors, and »; there being proportional to the corresponding eigenvectors. Now, when
A is a normal operator, it has only eigenvectors, and these form an orthogonal set with respect to
the inner product. We recall that Hermitian and anti-Hermitian operators are normal. Thus
Theorem 4.1 applies to vector sequences generated by matrix iterative processes with normal
matrices and with the Euclidean inner product.

Theorem 4.1. In the qd-MPE algorithm, provided (3.1) holds and the vectors vy, v,,... in (1.1)
satisfy

(v, v,) =2;8,;, (thusz;>0), (4.1)
we have
dil,c,=>\k+0(e,2(”) asn— . (4.2)

When \;>0, j=1,2,..., (42) can be refined considerably. (In this case, the condition in (3.1)
is automatically satisfied.) If Ay, 1/Ae> N /N _y, then

1
di

}\ 2n

~}\k—,8k( i“) as n— oo, some B, >0, (4.3)
k

ie., the sequence {1/d;}7_, converges to A, monotonically from below, and if A, /A<

Ai/A._1, then

}\ 2n
i,,~}\k+yk — asn— o0, some y, >0, (4.4)
dy A1

1.e., the sequence {1/d} }_, converges to A, monotonically from above. B, and v, are given in the

proof below. _
All the results above hold when d; is replaced by dy, though with different B, and v,.

Proof. We saw in the proof of Theorem 3.3 that G}"** =y} with u},',’,;f(x,,ﬂﬂ_l, Xptq)e
Invoking now (1.1) and (4.1), we see that u{") is of the form (3.9), z; ,=z,X;"?"!, o,=A, and

p.q
§=1A;|% Also Z, , in Lemma 3.4 becomes
k k
Zjl ~~~~~ jk=(Elsz)(glk}p)l/()\h"”’)\J'k)' (45)

Substituting all this in (3.11), we obtain for n — oo

(4.6)

k k
RN N 0§ AT WL
<y \p=1 p=1
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)

as n— oo. (4.7)

Invoking (4.7) in (3.24), (4.2) follows.

Now when the A;’s are all real, from (4.6) and (4.1), we see that Gp"te,s=0, £2, £4,...,
as n — oo, are all real and positive, and when the A ’s are all positive, G+ are positive for all
s. If the vectors x are generated by the matrix iterative process given in (1.5), then this holds for

all n, and not only as n — co. In case all A;’s are positive, (1.2) and (3.1) become

N> DM N> A > (4.8)

Consequently, all the conditions of Lemma 3.4 are satisfied, and

k 2n

1A,

J=1

>\k+1

1+0 AL

k k
G,:’"”z(-n] 3)(1_[12;)|m1,...,xk)|2
Jj= J=

so that (3.1) is automatically satisfied now. The two most dominant terms in the summation in
(4.6) are those with the indices jy,..., ji = 1,2,....k and ji,..., k=1,2,...,k—1, k+1
Thus

k
Gonts = (nzj) [V(AL, -5 Ak) |2( 1_[1>‘21'n+s)
j=

j=1
2n
(}\;“) )] as n— oo, (4.9)
k

}\ 2n+s
X[1+ak( "”) +0
2 _ 2
o = Zr+1 V(A Mgt >\k+1) _ Zgs pant, }‘k+1_}‘j >0

= Tz | VAL Aee1s AR) A=A, '

where

4.10
<] (4.10)

Consequently, for n — oo,
Neer |
1+
dn~ 1 [ ak( A ) _

k }\k }\k+1 2n+1 }\k 2n+1

1+ o Ak 1+o, 4 'X-k_—l
1 Newt \[Mier ) Ax A VT

~—>q|:1+ak(1— xk )( Ak ) 1—(!k_1(1— A]{_])(}\k_l)

1 Mot V[ Mear )" A\ AT
I e e I (R Pt I SCED

The rest of the proof can now be completed easily. We only note that

>\k 2n+2
1+ ak_l(———}‘k—l )
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in (4.3), and
v = {1 _ Ak \[ Ak
Tk uk_l\L A } Aioa
in(44). O
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