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Abstract: The recursion relations that were proposed by Ford and Sidi (1988) for implementing vector extrapolation 
methods are used for devising generalizations of the power method for linear operators. These generalizations are 
shown to produce approximations to largest eigenvalues of a linear operator under certain conditions. They are similar 
in form to the quotient-difference algorithm and share similar convergence properties with the latter. These 
convergence properties resemble also those obtained for the basic LR and QR algorithms. Finally, it is shown that the 
convergence rate produced by one of these generalizations is twice as fast for normal operators as it is for nonnormal 
operators. 
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1. Introduction 

Let B be a normed linear space over the field of complex numbers, and denote the norm 
associated with B by 11 . 11. In case B is also an inner product space, we adopt the following 
convention for the homogeneity property of the inner product: for y, z E B and (Y, p complex 
numbers, the inner product (a, - ) satisfies (ary, pz) = Zp( y, z). The norm in this case is the one 

induced by the inner product, i.e., if x E B, 11 x 11 = J/X). 
Let xi, i = 0, 1,. .., be a sequence in B. We shall assume that 

x, - E VJY asm+cc. (1.1) 
i=l 

Here vl, vz,... are linearly independent vectors in B. Xi are distinct scalars ordered such that 

IX,1 > 1x,1 2 lh,l> ‘.., (1.2) 

and satisfy 

hi#O, i=l,2 ,..., A, # hi if i # j. (1.3) 

Also there can be only a finite number of A, ‘s having the same modulus. The meaning of (1.1) is 
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that for any positive integer N there exist a positive constant K and a positive integer m, that 
depend only on N, such that for every m > m,, 

xm - (14 

Sequences of the form described above arise naturally, for example, in the matrix iterative 
process 

x,+~ =Axj, j=O, I,..., (1.5) 

in which x0 is an arbitrary column vector, and A is a square matrix whose nonzero eigenvalues 
have only associated eigenvectors and no principal vectors. In this case, A,, X,, . . . are some or 
all of the nonzero eigenvalues of A, depending on the spectral decomposition of x0, and vi, 
VI,... are proportional to its corresponding eigenvectors. Also the infinite sum C~!iviX~ in (1.1) 
is now finite, and the asymptotic relation there becomes an equality. 

In the next section we present three recursive techniques, which we designate the qd-MMPE, 
qd-TEA and qd-MPE algorithms, that are based solely on the vector sequence x0, xi, x2,. . . , 

and that can be used for obtaining approximations to hi, h,, A,, . . . , in this order. These 
techniques generalize the well-known power method and resemble the quotient-difference (qd) 
algorithm. In Section 3 we analyze the convergence properties of these techniques and show that 
they indeed behave like the qd algorithm. We recall that the qd algorithm is used in approximat- 
ing the poles of meromorphic functions in general, and the zeros of polynomials in particular. 
For detailed descriptions of the qd algorithm, see, for example, [3, Chapter 71 and [4, Chapter 31. 
The convergence rates derived for the methods of the present work are also very similar to those 
derived for the basic LR and QR algorithms, see, for example, [5]. 

In Section 4 we will analyze one of the recursive techniques of Section 2, namely the qd-MPE 
algorithm, in conjunction with vector sequences x,, m = 0, 1,. . . , that are generated by iterating 
with a normal operator, and we will show that the rate of convergence for this case is twice that 
obtained for an arbitrary nonnormal operator that has the same spectrum. 

Finally, we mention that the recursive techniques developed in this work are based on the 
recursive algorithms that were developed in [2] for implementing some vector extrapolation 
methods, such as the modified minimal polynomial extrapolation (MMPE), the topological 
epsilon algorithm (TEA), and the minimal polynomial extrapolation (MPE), from which their 
names are derived. The methods of proof relating to the convergence of these techniques are 
similar to those that were used in [6,8] in the analysis of the above-mentioned vector extrapola- 
tion methods, and in [7] in the analysis of some other recent extensions of the power method as 
they are applied to normal operators. We also mention that the scalar and vector epsilon 
algorithms of [9,10] can also be used as generalizations of the power method and produce results 
similar to the ones given in Section 3 of the present work. This has been shown in [l]. 

2. Development of the algorithms 

In this section we follow very closely the developments and notation of [2]. 
In all three methods that we develop in this section we assume that the vector sequence x0, x1, 

x2,..., is given. We also assume that a sequence of scalar quantities p:, m, n >, 0, is given. 
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These quantities are determined in different forms from the vectors xi. Their exact definition will 
be given later in this section. In addition, we denote by b an arbitrary sequence b,, b,, b,, . . . . 

Thus pj stands for the sequence pJ0, pi, ~4,. . . . 

We define G[,“’ to be the determinant 

and fi,m( b) to be the determinant 

f;,“‘(b) = 

We also define 
G,“,“’ = 1 and ft,m( b) = b, 

Finally, we let 

Note that by (2.3) and (2.4), 

Gn3”(b) = b,. 

. . . b n+k 

. . . 
p;+k 

. . (2.2) 

(2.3) 

(2 4 

(2.5) 

2.1. The qd-MMPE algorithm 

Let Q,, Q2,. . . be a sequence of linearly independent bounded linear functionals on B, and let 

PY = Qmtl(~,), m, n > 0. (24 
We recall that in case B is a complete inner product space, each Qj has a unique representer qj 
in B in the sense that Qj(z) = (qj, z) for all z in B. 

As is shown in [2, Theorem 2.11, the quantities T,f( b) = TLvo( 6) satisfy the three-term 
recursion relation 

T,“(b) = T;_l(b) - dk”Tkn_+ll(b), (2 3 

where 

dk” = 
.T,“_,(F’-~) 

T;n_+ll( /L’-‘) . 

Note that d,” = p~/p~+I from (2.5) and (2.8). Note also that TJ(pj) = 0 for 0 <j < k - 1. 
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As will be shown in Section 3, for the vector sequences x0, xi, x2,. . . described in the 
beginning of Section 1, l/d,” + h, as n + cc under certain conditions. Thus the developments 
above provide us with a technique that can produce approximations to Xi, h,, . . . , in this order. 
This technique is summarized below. 

qd-MMPE algorithm 
Given the sequence x0, xi, x2,. . . , compute II:, m, n 2 0, by (2.6), and set T,“(pj) = pi. For 
k = 1, 2,. . . , use (2.8) to compute d[, and then use (2.7) to compute 7’.‘.(pj), j 2 k. 

We note that dl is constructed from the k + 1 vectors x,, x,+i,. . . , x,+~. 

Finally, we observe that l/d: = &+i/& = Qi(x,+i)/Qi(x,), which is exactly the approxima- 
tion provided by the power method for hi, the largest eigenvalue in modulus of a linear operator, 
provided this eigenvalue is simple and satisfies 1 A, 1 > 1 A, I. In this sense the qd-MMPE 
algorithm generalizes the power method. 

2.2. The qd-TEA algorithm 

Let Q be a bounded linear functional on B, and let 

K = Q(x~+~), m, n 2 0. (2.9) 

Again, in case B is a complete inner product space, Q has a unique representer q in B in the 
sense that Q(z) = (q, z) for all z in B. The rest is exactly as in the qd-MMPE algorithm. We 
only have to observe that d: now is determined by the 2k vectors x,, x,+i, . . ., ~,+*~_i. We 
also observe that for k = 1 the qd-TEA and qd-MMPE algorithms are the same when Q = Q,. 
Consequently, as with the qd-MMPE algorithm, also with the qd-TEA algorithm the power 

method is obtained for k = 1. Hence the qd-TEA algorithm also generalizes the power method. 

2.3. The qd-MPE algorithm 

The scalar quantities pz are now defined by 

pr=(x,, xn), m, n>O. (2.10) 

As is shown in [2, Theorem 3.11, the quantities T[( b) = T,f3n( b) and f[( b) = T[,“-‘( b) satisfy 
the coupled recursion relations 

T;(b) = Tk”_l(b) - dk”$?;(b), n > 0, 

p;(b) = Tk”_l(b) -@f;?++(b), 
(2.11) 

n 2 1, 

where 

d,, = 

k (2.12) 

In fact, there exists a very interesting four-term (lozenge) recursion relation among Ti+l( b), 

T,“(b), T,“+‘(b) and Tk”_:l(b), see [2]. Note that d,” = pt/pE+1, n 2 0, and 2: = &!-l/&;:, n > 1, 
from (2.5) and (2.12). Note also that T,J(p’) = 0 for n <j < n + k - 1, and fz(pcl’) = 0 for 
n-l<j<n+k-2. 
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As will be shown in Section 3, for the vector sequences x,,, xi, x2,. . . , described in the 
beginning of Section 1, l/d,” + A, and l/J: + A, as n + cc under certain conditions. Thus, the 

developments above provide us with yet another technique that can produce approximations to 

A,, &..., in this order. This technique is summarized below. 

qd-MPE algorithm 
Given the sequence x0, xi, x2,. . . , compute pz, m, n >, 0, by (2.10), and set TO”(pLi) = pL$ = 
fz( pLj). For k = 1, 2,. . . , use (2.12) to compute dz and 22, and then use (2.11) to compute 
T’(pj), j<n-1, j>,n+k,and f:(pj), j<n-2, j>n+k-1. 

Observe that dz and 2: are constructed from the k + 2 vectors x,_ i, x,, x,, i, . . . , x, +k only. 
Finally, we observe that l/d,” = pE+i/pt = (xn, x,+,)/(x,, x,,), which is exactly the Rayleigh 

quotient that provides an approximation to A,, the largest eigenvalue in modulus of a linear 
operator, provided this eigenvalue is simple and satisfies 1 A, 1 > 1 A, I. In this sense the qd-MPE 
algorithm generalizes the power method (the Rayleigh quotient). It is known that in case the 
vector sequence x0, xi, x2,. . . is generated by a normal operator, the Rayleigh quotient 
converges to hi twice as quickly as it does for a nonnormal operator. 

So far we have shown that the three algorithms above generalize the power method for a linear 
operator. We would now like to explain why they are of the quotient-difference type. First, the 
algorithms are somewhat similar in form to the quotient-difference method. Second, as is shown 
in the next section (see (3.20) and (3.24)), the dz are all expressed in terms of four determinants 
the way the quantities in the quotient-difference method are. Furthermore, again as will be 
shown in the next section, these determinants have asymptotic expansions very similar in form to 
those obtained for the determinants involved in the quotient-different method. We note in 
passing that the determinants that appear in the quotient-difference algorithm are Hankel 
determinants. The same holds true for the qd-TEA algorithms as will be clear in the next section, 
although the indices of these determinants are different in the two methods. 

3. Convergence analysis of the algorithms 

We now state the main convergence results for the qd-type algorithms that were devised in the 
previous section. 

The following assumption is common to all three methods: 

IX,_,1 > IX,1 > IX,+,1 forsomeintegerk>l, A,- 00. (3.1) 

Let us also define 

(3.2) 

Thus, ek < 1. 
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Theorem 3.1. In the qd-MMPE algorithm denote 

Provided (3.1) holds, and 

S,_,#O and S,#O, 

we have 

1 
-=AXk+O(ct) asn+oo. 
dkn 

3 j=l,2 )... . 

Theorem 3.2. In the qd-TEA algorithm, provided (3.1) holds and 

I? Q(Vi) +O, 
i=l 

(3.5) is satisfied. 

(3 -3) 

(3.4) 

(3.5) 

(34 

Theorem 3.3. In the qd-MPE algorithm, provided (3.1) holds, (3.5) is satisfied. Equation (3.5) is 
satisfied also when dJ is replaced by dl. 

Note. In relation to Theorem 3.3 we realize that if the sequence x0, x1, x2,. . . is generated by the 
matrix A in the way xi+1 = Axj, j = 0, 1,. . . , x0 being arbitrary, then the qd-MPE algorithm 
performs asymptotically like the qd-MMPE and qd-TEA algorithms, although it does not require 
additional conditions like (3.4) and (3.6). 

In the proofs of Theorems 3.1-3.3 we shall make use of the following results, which are of 
interest in themselves. 

Lemma 3.4. Let q, a2,. . . and S1, 12,. . . be two sequences of nonzero scalars, such that the ai are 
distinct, and 

&I> 15212 ***. (3.7) 

Assume, furthermore, that there can be only, a finite number of lj’s having the same modulus. 
Consider the determinant 

(n) 
ul,o 1 

&’ . . . (n) 
%,r-1 

Z.&o’ @1’ . . . 

4: = .’ .’ 
Up;-1 , 

. 3 (3.8) 



A. Sidi, W.F. Ford / Generalizations of the power method 

in which 

ug; - : zj,pupsi” asn+ca, 
j=l 

zj,r being some scalars. Define 

‘A21 'j,,2 .** ‘il.r 
'j,,l 'j, 2 

zjI.j2....,j,= . 1' 

* ' * 'j2,r 

'j,,l 'jr,2 * * . 'jr.7 

Then #!, for n + 00, has the asymptotic expansion 

G- 5 , 'j, j>,..., jrvCujl, uj2y***, 'jr) Ii lz 3 

l<j,<j,< ... cj, i i p=l 

where V( a,, . . . , a,) is the Vandermonde determinant defined by 

V(a,,..., a,) = 

1 a, * * - ai-’ 

1 a2 -0. r-1 a2 
. . 
. . 
. . 

1 a, *.. a:-’ 

267 

(3-9) 

(3.10) 

(3.11) 

(3.12) 

(When - is replaced by = in (3.9), - is replaced by = in (3.11) too.) If, in addition, 

ISA > 15,+1 I and Zl,2,...,,+% (3.13) 

then 

(3.14) 

Lemma 3.4 can be obtained from [7, Lemmas 2.2 and 2.31, whose technique is a generalization 
of that employed in [S, Theorem 3.21. 

Lemma 3.5. Let 5;, 12, . . . be a sequence of nonzero scalars exactly as described in Lemma 3.4. 
Consider the determinant $J: as given in (3.8), but with 

Uzi- C C Zijf~+p-l{~+q as n + 00, (3.15) 
i-1 j=l 
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. . . 
zi,j, 

. . . 
zid r 

. . 

. . . 
‘iX 

Then #Y, for n + 00, has the asymptotic expansion 

C- E 
l<ii,<iz< ... <i, l<j,<j,< ... <jr 

(When - is replaced by = in (3.19, - is replaced by = in (3.17) too.) If, in addition, 

IL;1 > IS,+, I and Z,‘;::::l#O, 

Lemma 3.5 can be proved exactly as in [6, Lemma 3.2 and Theorem 3.11. 

Proof of Theorem 3.1. Combining (2.8) with (2.4), (2.2) and (2.1), and recalling 
TFT”( b), we obtain 

dk” = 
G;,OGj:_+?.O 

G”+‘,OG,“f;,O . 
k 

Now by (2.6) and (1.1) we have 

PZ’- E Qm+,(vj>“J asn+co. 
J=l 

Substituting (3.21) in the determinant expression for Gi”, we see 
Lemma 3.4 with ~2: = p,P;i, thus zj,P = Q,(v~), cj = Xj and uj = Aj. 

z., 1 2 _, , j in Lemma 3.4. Therefore, Lemma 3.4 applies, and we have 

that Gz,’ is simply I& of 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

that T,“(b) = 

(3.20) 

(3.21) 

Furthermore, Sj in (3.3) is 

G;,O = (3.22) 

Treating Gi+r,‘, GzTl*’ and Gz?:” similarly, and combining the results in (3.20), we obtain (3.5). 
0 
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Proof of Theorem 3.2. We observe that by (2.9) and (2.1) 

(3.23) 

The rest of the proof is exactly the same as that of Theorem 3.1, with Q,+,<vi) in the latter being 
replaced by Q( vi) X’J! now. On account of this, Z,,. ,,, j now becomes [lJ;=rQ( Vj)]V( hi,. . . , Ai)* 

We leave out the rest of the details. 0 

Here we note that Gz*’ for the qd-TEA algorithm is a Hankel determinant. Thus the qd-TEA 
algorithm resembles very strongly the qd algorithm. Furthermore, when the sequence x0, x1, 
X2,... is one of scalars, then the qd-TEA algorithm can still be employed by picking the 
functional Q to be the identity operator, in which case py = x,+,. Thus for scalar sequences 
satisfying all the conditions mentioned in Section 1 of this work the qd-TEA algorithm provides 
another form of the qd algorithm. 

Proof of Theorem 3.3. Combining (2.12) with (2.4), (2.2) and (2.1), and recalling that 7”(b) = 
T’,“(b) and f:(b) = T,“,“-‘(b), we obtain 

(3.24) 

Substituting (2.10) in (2.1), and comparing with (3.8), we see that Gi,n+s = $i with ~gi = 

iJ 
n+s+p-1 _ 
n+q -(X n+s+p-l?Xn+q ). Invoking now (l.l), we see that $i is of the form (3.15), with 

zij = (vi, vj)pi and ci = Xi. Also Zi::::;, ’ in Lemma 3.5 now becomes 

(3.25) 

Since the vectors vi, v2,. . . in (1.1) are assumed to be linearly independent, the Gram 
determinant U,,,.,, k of the vectors vi,. . . , vk is positive. Thus Zi;:;::,k # 0. Consequently, Lemma 
3.5 applies, and we obtain 

asn+cc. 

Invoking (3.26) in (3.24), we obtain the required result. 0 

4. The qd-MPE algorithm for normal operators 

(3.26) 

As we have shown in Theorem 3.3, the convergence rate of the qd-MPE algorithm is the same 
as those of the qd-MMPE and qd-TEA algorithms, in general. When the vectors vi, v2,. . . in the 
expansion (1.1) are orthogonal with respect to the inner product ( -, - ), however, the convergence 
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rate of the qd-MPE method becomes twice that given in Theorem 3.3, as will be shown shortly in 
Theorem 4.1. When the vector sequence x0, xi,. . . is generated by the matrix iterative process 
Xj+i=Axi, j=O,l,..., with x0 arbitrary, then, as we mentioned in the Introduction, X, 
satisfies (l.l), with Ai there being nonzero eigenvalues of A that possess only eigenvectors and no 
principal vectors, and vi there being proportional to the corresponding eigenvectors. Now, when 
A is a normal operator, it has only eigenvectors, and these form an orthogonal set with respect to 
the inner product. We recall that Hermitian and anti-Hermitian operators are normal. Thus 
Theorem 4.1 applies to vector sequences generated by matrix iterative processes with normal 
matrices and with the Euclidean inner product. 

Theorem 4.1. In the qd-MPE algorithm, provided (3.1) holds and the vectors vl, v2,. . . in (1.1) 
satisfy 

(vi, vj) = zj6,,, (thus zj > 0), (4.1) 

we have 

-& =x, + o(eP) asn+co. (4.2) 

When Aj > 0, j = 1, 2,. . . , (4.2) can be refined considerably. (In this case, the condition in (3.1) 
is automatically satisfied.) If X,+,/X, > X,/X,_,, then 

i.e., the sequence {l/d,“}~CP=, converges to hk monotonically from below, and if A,+&!, < 

A&&,, then 

asn+oo, some yk> 0, (4.4 

i.e., the sequence { l/d;}~=‘=, converges to xk monotonically from above. Pk and yk are given in the 
proof below. 

All the results above hold when d$ is replaced by di, though with different Bk and yk. 

Proof. We saw in the proof of Theorem 3.3 that G;,“+$ = $z with ugj r (~,+,+~_i, x,+~). 
Invoking now (1.1) and (4.1), we see that ~2: is of the form (3.9) z~,~ = zjFj+p-l, uj = hj and 
lj = 1 A, 1 2. Also Zj,, _, jk in Lemma 3.4 becomes 

zjl,...,jk= ( filzjp)( ~~p)v(xjl~---~*jk)~ 

Substituting all this in (3.11), we obtain for n + 00 

(4.5) 

(4.6) 
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Consequently, all the conditions of Lemma 3.4 are satisfied, and 

asn+oo. 

Invoking (4.7) in (3.24), (4.2) follows. 

(4.7) 

Now when the Xj’s are all real, from (4.6) and (4.1), we see that Gi,“+‘, s = 0, f 2, f 4,. . . , 
as n + CO, are all real and positive, and when the Xj’s are all positive, GE,“+’ are positive for all 
S. If the vectors xj are generated by the matrix iterative process given in (1.5), then this holds for 
all n, and not only as n * 00. In case all Xj’s are positive, (1.2) and (3.1) become 

+-A,> *.* >X,_,>X,>A,+,> .-a, (4.8) 

so that (3.1) is automatically satisfied now. The two most dominant terms in the summation in 
(4.6) are those with the indices j,, . . . , j, = 1, 2,. . . , k and j,, . . . , j, = 1, 2,. . . , k - 1, k + 1. 

Thus 

where 

oL 
k 

P-9) 

(4.10) 

Consequently, for n -+ 00, 

The rest of the proof can now be completed easily. We only note that 
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in (4.3), and 
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yk = (Yk-1 1 - ( x&)x& 
in (4.4). 0 
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