Efficient implementation of minimal polynomial and reduced rank extrapolation methods

Avram Sidi
Computer Science Department, Technion-Israel Institute of Technology, Haifa 32000, Israel

Received 1 June 1990
Revised 4 December 1990

Abstract

Sidi, A., Efficient implementation of minimal polynomial and reduced rank extrapolation methods, Journal of Computational and Applied Mathematics 36 (1991) 305-337. The minimal polynomial extrapolation (MPE) and reduced rank extrapolation (RRE) are two very effective techniques that have been used in accelerating the convergence of vector sequences, such as those that are obtained from iterative solution of linear and nonlinear systems of equations. Their definitions involve some linear least-squares problems, and this causes difficulties in their numerical implementation. In this work timewise efficient and numerically stable implementations for MPE and RRE are developed. A computer program written in FORTRAN 77 is also appended and applied to some model problems, among them a hypersonic flow problem involving chemical reactions.

Keywords: Extrapolation, convergence acceleration, minimal polynomial extrapolation, reduced rank extrapolation, vector sequences, linear and nonlinear systems, fixed-point iterative techniques, least squares, QR factorization.

1. Introduction

The minimal polynomial extrapolation (MPE) of Cabay and Jackson [2] and the reduced rank extrapolation (RRE) of Eddy [3] and Mešina [9] are two methods used in accelerating the convergence of a large class of vector sequences. In particular, they are employed for accelerating the convergence of fixed-point iterative techniques for linear or nonlinear systems of equations, such as those that arise in the discrete solution of continuum problems.

A unified treatment of these and other extrapolation methods has been given in the survey paper [19], where some numerical testing for them is also provided. Detailed convergence analyses for MPE and RRE have been presented in [12,13,16], and we shall mention some of the results that follow from these analyses later in this work. Also, both MPE and RRE are very closely related to some well-known Krylov subspace methods when they are applied to linearly generated vector sequences, and this subject is explored in detail in [13]. In fact, MPE and RRE
are equivalent to the Arnoldi method and generalized conjugate residuals (GCR), respectively, when they are all applied to linear systems of equations starting with the same initial approximation. For the method of Arnoldi, see [10], and for GCR, see [4]. We also mention that the conjugate gradient type method of [1], the method of [22] that has been called ORTHODIR, and the recent generalized minimal residual method (GMRES) of [11] are all equivalent to GCR, and are used in solving linear equations. Recursion relations that exist among various approximations that are obtained from both methods are discussed in [6], where the existence of an interesting four-term lozenge recursion is shown. MPE and RRE have been employed successfully in [17] in accelerating the convergence of some finite-difference solution techniques in large-scale computational fluid dynamics problems. Finally, the application of MPE and RRE and other vector extrapolation methods to the iterative solution of consistent singular linear systems has been considered in [15], where this approach is shown to be sound theoretically, and precise convergence analyses are also provided.

The definitions of MPE and RRE involve the solution of a linear least-squares problem, the number of equations in this problem being equal to the dimension of the vectors in the given sequence. Since, in general, this dimension may be very large, as it is, for example, in three-dimensional computational fluid dynamics problems, the matrix of the least-squares problem may be very large. Thus, if standard linear least-squares packages are used, the time and core memory requirements in the implementation of MPE and RRE may become prohibitive. To circumvent this problem, the solution of the linear least-squares problem was achieved in [17] by solving the corresponding normal equations that is much less costly than using least-squares packages. This approach proves to be quite efficient when the amount of extrapolation is not very large. When the amount of extrapolation is increased, however, the accuracy decreases, as the normal equations become very ill-conditioned.

In the present work we propose new implementations for MPE and RRE, which are very inexpensive as far as both time and core memory requirements are concerned, and are stable numerically as the amount of extrapolation is increased. These implementations are also quite interesting mathematically, as they allow one to compute exactly (or estimate) the accuracy achieved in the extrapolation process without actually computing the residuals at each stage. This can be employed to further reduce the cost of implementation.

The plan of this paper is as follows. In Section 2 we briefly review the definitions of MPE and RRE. In Section 3 we consider the application of MPE and RRE to vector sequences that are generated by iterative solution of linear systems as this provides the motivation for different modes of usage of the methods. We devote Sections 4-6 to the development of the new implementations of MPE and RRE and the description of the mathematical features of these implementations. In Section 4 we give the details of the new implementations. One of the crucial ingredients of these implementations is the efficient solution of the least-squares problems by use of QR factorization. In Section 5 we show how, in these new implementations, the l_{2}-norms of the residuals can be computed exactly for linear systems (or estimated for nonlinear systems) without doing extra vector computations. This enables us to assess the accuracy of the extrapolation without actually carrying it out, and can be used to reduce the amount of computation drastically. In Section 6 we discuss the operation counts and the storage requirements for the new implementations. In Section 7 we discuss some practical matters concerning the efficient use of MPE or RRE or any other vector extrapolation methods. Finally, in Section 8 we give some numerical results obtained by applying MPE and RRE through their new
implementations to three model problems. Two of these problems are linear, and the third is a nonlinear problem arising from finite-difference approximation of a two-dimensional hypersonic flow problem involving the Navier-Stokes equations with chemical reactions. A computer program written in FORTRAN 77 that implements MPE and RRE is provided in Appendix B.

2. Review of MPE and RRE

Let $x_{0}, x_{1}, x_{2}, \ldots$ be a given sequence of N-dimensional column vectors, and denote its limit or antilimit by s. The vectors x_{j} are assumed to be complex, in general. Define

$$
\begin{equation*}
u_{i}=\Delta x_{i}=x_{i+1}-x_{i} \quad \text { and } \quad w_{i}=\Delta^{2} x_{i}, \quad i=0,1,2, \ldots \tag{2.1}
\end{equation*}
$$

Define the $N \times(j+1)$ matrices $U_{j}^{(n)}$ and $W_{j}^{(n)}$ by

$$
\begin{equation*}
U_{j}^{(n)}=\left[u_{n}\left|u_{n+1}\right| \ldots \mid u_{n+j}\right] \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{j}^{(n)}=\left[w_{n}\left|w_{n+1}\right| \ldots \mid w_{n+j}\right] . \tag{2.3}
\end{equation*}
$$

2.1. Definition of MPE

For MPE the approximation $s_{n, k}$ to s, the desired limit or antilimit, is defined by

$$
\begin{equation*}
s_{n, k}=\sum_{j=0}^{k} \gamma_{j} x_{n+j} \tag{2.4}
\end{equation*}
$$

where the γ_{j} are determined as follows.
(i) Use the least-squares method to solve the overdetermined and, in general, inconsistent linear system

$$
\begin{equation*}
U_{k-1}^{(n)} c=-u_{n+k} \tag{2.5}
\end{equation*}
$$

where $c=\left(c_{0}, c_{1}, \ldots, c_{k-1}\right)^{\mathrm{T}}$.
(ii) Set $c_{k}=1$, and compute the γ_{j} by

$$
\begin{equation*}
\gamma_{j}=\frac{c_{j}}{\sum_{i=0}^{k} c_{i}}, \quad 0 \leqslant j \leqslant k \tag{2.6}
\end{equation*}
$$

assuming that $\sum_{i=0}^{k} c_{i} \neq 0$. When this condition is not satisfied, $s_{n, k}$ does not exist.

2.2. Definition of $R R E$

For RRE the approximation $s_{n, k}$ to s, the desired limit or antilimit, is defined by

$$
\begin{equation*}
s_{n, k}=x_{n}+\sum_{i=0}^{k-1} \xi_{i} u_{n+i} \tag{2.7}
\end{equation*}
$$

where the ξ_{i} are determined by solving the overdetermined and, in general, inconsistent linear system

$$
\begin{equation*}
W_{k-1}^{(n)} \xi=-u_{n} \tag{2.8}
\end{equation*}
$$

with $\xi=\left(\xi_{0}, \xi_{1}, \ldots, \xi_{k-1}\right)^{\mathrm{T}}$, using the least-squares method. Since a least-squares solution to (2.8) always exists, $s_{n, k}$ always exists. In particular, $s_{n, k}$ exists uniquely when the matrix $W_{k-1}^{(n)}$ has full rank, i.e., $\operatorname{rank}\left(W_{k-1}^{(n)}\right)=k$, or, equivalently, when the vectors $w_{n}, w_{n+1}, \ldots, w_{n+k-1}$ are linearly independent. It can easily be shown that $\operatorname{rank}\left(W_{k-1}^{(n)}\right)=k$, thus $s_{n, k}$ exists uniquely, when $\operatorname{rank}\left(U_{k}^{(n)}\right)=k+1$.

There exists an equivalent formulation of RRE that seems to be more suitable for computer implementation. It also has the advantage of unifying most of the algorithmic aspects of MPE and RRE. In this formulation $s_{n, k}$ is of the form given in (2.4); only this time the γ_{j} are obtained by the least-squares solution of the overdetermined and, in general, inconsistent linear system

$$
\begin{equation*}
U_{k}^{(n)} \gamma=0, \tag{2.9}
\end{equation*}
$$

where $\gamma=\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k}\right)^{\mathrm{T}}$, subject to the constraint

$$
\begin{equation*}
\sum_{j=0}^{k} \gamma_{j}=1 \tag{2.10}
\end{equation*}
$$

(Note that the γ_{j} in MPE satisfy (2.10) automatically, as can easily be seen from (2.6).)
Remarks. (1) It is important to realize that the γ_{j} in $s_{n, k}=\sum_{j=0}^{k} \gamma_{j} x_{n+j}$ depend solely on $x_{n}, x_{n+1}, \ldots, x_{n+k+1}$.
(2) In most applications, N, the dimension of the vectors x_{i}, is much larger than k, so that the matrices $U_{j}^{(n)}$ have many more rows than columns. Therefore, there is great need to reduce the amount of numerical work with the columns of the matrices $U_{j}^{(n)}$.

3. Application of MPE and RRE to linear systems

Consider the linear nonsingular N-dimensional system

$$
\begin{equation*}
x=A x+b, \tag{3.1}
\end{equation*}
$$

where A is an $N \times N$ matrix and b is an N-dimensional column vector. Pick an initial vector x_{0}, and generate the vectors x_{1}, x_{2}, \ldots by the iterative scheme

$$
\begin{equation*}
x_{i+1}=A x_{i}+b, \quad i=0,1, \ldots . \tag{3.2}
\end{equation*}
$$

The solution s of (3.1) is now the limit of the sequence $x_{0}, x_{1}, x_{2}, \ldots$, when the latter converges, otherwise, s is the antilimit.

Let k_{0} be the degree of the minimal polynomial of the matrix A with respect to the vector $x_{n}-s$. Then the following statements are true.
(i) $s_{n, k_{0}}$ is uniquely defined both for MPE and RRE, and

$$
\begin{equation*}
s_{n, k_{0}}=s . \tag{3.3}
\end{equation*}
$$

Also the linear systems in (2.5), (2.8) and (2.9) are consistent for $k=k_{0}$, even though they may be overdetermined. This is a consequence of the fact that the vectors $u_{n+j}, 0 \leqslant j \leqslant k_{0}-1$, are linearly independent, and $u_{n+k_{0}}$ lies in their span. (See [13, Section 2.2].)
(ii) For $k<k_{0}, s_{n, k}$ is uniquely defined for RRE. For MPE, however, $s_{n, k}$ may fail to exist when $k<k_{0}$. When the matrix $C=I-A$ has positive definite Hermitian part, $s_{n, k}$ exists
uniquely for MPE also for $k<k_{0}$. (See [13, Section 2.2].) More generally, $s_{n, k}$ exists uniquely for MPE also for $k<k_{0}$, if the eigenvalues of C all lie on one side of a straight line through the origin in the complex plane, or, equivalently, if they all lie in an open sector $S=\{\mu$: $|\arg \mu-\theta|<$ $\left.\frac{1}{2} \pi\right\}$, for some $\theta,-\pi<\theta \leqslant \pi$. This result can be proved exactly as [13, Theorem 2.2] with C there replaced by $\mathrm{e}^{-\mathrm{i} \theta} C$.
(iii) When the Arnoldi method and GCR are used in solving the linear system $C x=b$, where $C=I-A$, with x_{n} as the initial vector, they become equivalent to MPE and RRE, respectively. Specifically, the approximations obtained from the Arnoldi method and GCR are exactly $s_{n, 1}, s_{n, 2}, \ldots$ that are produced by MPE and RRE, respectively. (See [13, Section 2.3].)
(iv) If the distinct nonzero eigenvalues of A are denoted $\lambda_{j}, j=1,2, \ldots$, and are ordered such that

$$
\begin{equation*}
\left|\lambda_{1}\right| \geqslant\left|\lambda_{2}\right| \geqslant\left|\lambda_{3}\right| \geqslant \cdots, \tag{3.4}
\end{equation*}
$$

then, provided

$$
\begin{equation*}
\left|\lambda_{k}\right|>\left|\lambda_{k+1}\right| \tag{3.5}
\end{equation*}
$$

and A is diagonalizable, we have

$$
\begin{equation*}
s_{n, k}-s=\mathrm{O}\left(\left|\lambda_{k+1}\right|^{n}\right), \quad \text { as } n \rightarrow \infty \tag{3.6}
\end{equation*}
$$

both for MPE and RRE. (The coefficient of $\left|\lambda_{k+1}\right|^{n}$ on the right-hand side of (3.6) becomes large when the largest eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$ are close to 1 .) In view of the fact that $x_{n}-s=$ $O\left(\left|\lambda_{1}\right|^{n}\right)$, as $n \rightarrow \infty$, we conclude that MPE and RRE are both true acceleration methods. Under the same conditions, if $s_{n, k}-s$ is precisely $O\left(\left|\lambda_{k+1}\right|^{n}\right)$ as $n \rightarrow \infty$, then the γ_{j} for MPE and RRE are such that

$$
\begin{equation*}
P^{n, k}(\lambda)=\sum_{j=0}^{k} \gamma_{j} \lambda^{j}=\prod_{i=1}^{k} \frac{\lambda-\lambda_{i}}{1-\lambda_{i}}+\mathrm{O}\left(\left|\frac{\lambda_{k+1}}{\lambda_{k}}\right|^{n}\right), \quad \text { as } n \rightarrow \infty, \tag{3.7}
\end{equation*}
$$

i.e., for fixed k and for all sufficiently large n, the polynomial $P^{(n, k)}(\lambda)$ has precisely k zeros that tend to $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Furthermore, if we denote the zero of $P^{(n, k)}(\lambda)$ that tends to λ_{j} by $\lambda_{j}(n)$, then

$$
\begin{equation*}
\lambda_{j}(n)-\lambda_{j}=\mathrm{O}\left(\left|\frac{\lambda_{k+1}}{\lambda_{j}}\right|^{n}\right), \quad \text { as } n \rightarrow \infty, 1 \leqslant j \leqslant k . \tag{3.8}
\end{equation*}
$$

The proofs of (3.6) and (3.7) have been given in [12, Sections 3 and 4]. The proof of (3.8) will be published in the future. In case the matrix A in (3.2) is normal, the right-hand sides of (3.7) and (3.8) can be replaced by $\mathrm{O}\left(\left|\lambda_{k+1} / \lambda_{k}\right|^{2 n}\right)$ and $\mathrm{O}\left(\left|\lambda_{k+1} / \lambda_{j}\right|^{2 n}\right)$, respectively. (The result in (3.6) remains the same, however.) This implies that when A is normal, the rates of convergence of $p^{(n, k)}(\lambda)$ and its zeros $\lambda_{j}(n)$ are twice those that can be achieved otherwise. These results follow from the corresponding results of [14].

For the most general case in which the matrix A is not diagonalizable, the results in (3.6)-(3.8) need to be modified considerably. For a complete treatment of this case see [16, Sections 2, 3 and 5], where modifications of (3.6) and (3.7) are given. The modification of (3.8) will be published in the future.

A direct consequence of the result given in (3.6) is that better accuracy may be obtained if extrapolation is preceded by a number of fixed-point iterations. This has indeed been observed
numerically both for linear and nonlinear problems. We shall comment on this again in Section 7.
(v) Let us denote $C=I-A$. Then s is the solution to $C x=b$. Denote by π_{k} the set of all polynomials $Q_{k}(\lambda)$ of degree at most k that satisfy $Q_{k}(0)=1$. Consider now $s_{n, k}$ as obtained by applying MPE or RRE to the vector sequence x_{0}, x_{1}, \ldots. Then

$$
\begin{equation*}
\left\|r\left(s_{n, k}\right)\right\| \leqslant\left(\min _{Q_{k} \in \pi_{k}}\left\|Q_{k}(C)\right\|\right)\left\|r\left(x_{n}\right)\right\|, \quad \text { for RRE } \tag{3.9}
\end{equation*}
$$

where $r(x)=A x+b-x=b-C x=-C(x-s)$ is the residual for x, and $\|\cdot\|$ is the l_{2}-vector norm, or the matrix norm induced by it. (In fact, $\left\|r\left(s_{n, k}\right)\right\|, k=0,1,2, \ldots$, is a monotonically decreasing sequence for RRE.) Similarly, if $C_{\mathrm{H}}=\frac{1}{2}\left(C+C^{*}\right)$, the Hermitian part of C, is positive definite, then

$$
\begin{equation*}
\left\|C_{11}^{1 / 2}\left(s_{n, k}-s\right)\right\| \leqslant \beta\left(\min _{Q_{k} \in \pi_{k}}\left\|Q_{k}(C)\right\|\right)\left\|C_{\mathrm{H}}^{1 / 2}\left(x_{n}-s\right)\right\|, \quad \text { for MPE } \tag{3.10}
\end{equation*}
$$

where

$$
\beta= \begin{cases}L, & \text { if } C \text { is normal } \tag{3.11}\\ L \sqrt{\operatorname{cond}\left(C_{\mathrm{H}}\right)}, & \text { otherwise }\end{cases}
$$

with $L=\left\|C_{\mathrm{H}}^{-1 / 2} C C_{\mathrm{H}}^{-1 / 2}\right\| \geqslant 1$. Note that both $\|r(x)\|$ and $\left\|C_{\mathrm{H}}^{1 / 2}(x-s)\right\|$ are true norms for $x-s$. Two types of bounds for $\min _{Q_{k} \in \pi_{k}}\left\|Q_{k}(C)\right\|$, in case $C_{\mathbf{H}}$ is positive definite, are given in [13, Section 4], and these can be used to derive upper bounds for $\left\|r\left(s_{n, k}\right)\right\|$ and $\left\|C_{\mathrm{H}}^{1 / 2}\left(s_{n, k}-s\right)\right\|$ for fixed n and increasing k. For details see [13]. These bounds are employed in [17] to justify the use of the extrapolation strategy that has been called "cycling" in [19] and all subsequent publications.

Finally, analogous and almost identical results exist for the case in which the system in (3.1) is singular but consistent, so that it has an infinity of solutions. In this case the limit or antilimit depends on x_{0} in a very specific manner. For details, see [15].

Remark. The various Krylov subspace methods like the Arnoldi method and GCR and others can be applied only to linear systems. Acceleration methods such as MPE and RRE, however, can be applied to nonlinear systems as well as linear ones. The reason for this is that, unlike the Krylov subspace methods, MPE and RRE are defined exclusively in terms of the given vector sequence, which may be generated, for example, by an iterative method. Whether the vector sequence is generated linearly or nonlinearly is irrelevant to the definitions of MPE and RRE and other vector extrapolation methods. This is a very important property of vector extrapolation methods.

4. Implementation of MPE and RRE

4.1. General considerations

As we have seen in Section 2, both MPE and RRE entail linear least-squares problems in their definitions. There is, therefore, an immediate need for the efficient solution of these problems. We propose to solve these problems by applying the QR factorization to the matrices $U_{k}^{(n)}$.

To keep the notation simple we shall set $n=0$ everywhere, and denote the matrices $U_{j}^{(0)}$ by U_{j}. This amounts to simply renaming x_{n} and calling it x_{0}.

We assume that the vectors $u_{0}, u_{1}, \ldots, u_{k}$ are linearly independent so that the $N \times(k+1)$ matrix U_{k} is of full rank $k+1$. The case in which $u_{0}, u_{1}, \ldots, u_{k}$ are linearly dependent will be discussed later in this section. We recall that for the linear system in (3.1) this assumption is valid when $k<k_{0}$, where k_{0} is the degree of the minimal polynomial of the matrix A with respect to the vector $x_{0}-s$. Therefore, there is a unique $N \times(k+1)$ matrix Q_{k},

$$
\begin{equation*}
Q_{k}=\left[q_{0}\left|q_{1}\right| \ldots \mid q_{k}\right], \tag{4.1}
\end{equation*}
$$

whose columns q_{i} satisfy

$$
\begin{equation*}
\left(q_{i}, q_{j}\right)=q_{i}^{*} q_{j}=\delta_{i j} \tag{4.2}
\end{equation*}
$$

and a unique $(k+1) \times(k+1)$ upper triangular matrix R_{k},

$$
R_{k}=\left[\begin{array}{ccccc}
r_{00} & r_{01} & r_{02} & \cdots & r_{0 k} \tag{4.3}\\
& r_{11} & r_{12} & \cdots & r_{1 k} \\
& & r_{22} & \cdots & r_{2 k} \\
& & & & \vdots \\
0 & & & & r_{k k}
\end{array}\right]
$$

with $r_{i i}>0, i=0,1, \ldots, k$, such that

$$
\begin{equation*}
U_{k}=Q_{k} R_{k} \tag{4.4}
\end{equation*}
$$

This QR factorization amounts to orthonormalizing the vectors $u_{0}, u_{1}, u_{2}, \ldots$, in this order. It is important to retain this order, as this enables us to form the QR factorization of U_{k+1} by appending one additional column to Q_{k} to obtain Q_{k+1}, and a corresponding column to R_{k} to obtain R_{k+1}.

QR factorization can be performed in different ways. The simplest way is the Gram-Schmidt (GS) process for orthonormalization of $u_{0}, u_{1}, u_{2}, \ldots$. This process is very unstable, however, in the sense that the computed vectors $q_{0}, q_{1}, q_{2}, \ldots$ are very far from being orthogonal. The modified Gram-Schmidt (MGS) process, on the other hand, seems to be quite stable, and is the one that we have preferred. We recall that MGS is entirely equivalent to GS mathematically, and requires the same number of arithmetic operations as GS. The two methods are different numerically, however. For details, see, e.g., [7, pp. 218, 219].

For the sake of completeness we describe MGS for the case in which the vectors $u_{0}, u_{1}, u_{2}, \ldots$ are introduced one by one and in this order.

Algorithm MGS

Step (1) Read u_{0}, and compute the scalar r_{00} and the vector q_{0} according to $r_{00}=\left(u_{0}, u_{0}\right)^{1 / 2}$ and $q_{0}=u_{0} / r_{00}$.
Step (2) for $k=1,2, \ldots$ do read u_{k}, and set $u_{k}^{(0)}=u_{k}$
for $j=0$ to $k-1$ do
$r_{j k}=\left(q_{j}, u_{k}^{(j)}\right)$
$u_{k}^{(j+1)}=u_{k}^{(j)}-r_{j k} q_{j}$
end
compute $r_{k k}$ and q_{k} according to
$r_{k k}=\left(u_{k}^{(k)}, u_{k}^{(k)}\right)^{1 / 2}$ and $q_{k}=u_{k}^{(k)} / r_{k k}$
end
(Here (y, z) stands for the Euclidean inner product $y^{*} z$, as before.)
It is easy to see that, when implementing MGS on a computer, $u_{k}^{(0)}, u_{k}^{(1)}, \ldots, u_{k}^{(k)}$, and q_{k} can all be made to occupy the same storage locations. As we shall see in the next paragraph, the computation of $s_{0, k}$ can be based on the q_{j} without the need to save either the x_{j} or the u_{j}. We can thus let u_{k} occupy the same storage locations as the $u_{k}^{(i)}$.

QR factorization can also be achieved by using Householder transformations. Although the computed matrices Q_{k} produced in this approach are closer to unitary than those produced by MGS when the l_{2}-condition number of U_{k} is large, the amount of computing in this approach is about twice that required by MGS. We shall elaborate on this further in Section 7.

We now recall from the definitions of MPE and RRE, that the approximations $s_{0, k}$ for both methods can be expressed in the form

$$
\begin{equation*}
s_{0, k}=\sum_{j=0}^{k} \gamma_{j} x_{j}, \quad \text { with } \sum_{j=0}^{k} \gamma_{j}=1 \tag{4.5}
\end{equation*}
$$

Assuming that $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k}$ have been determined, let us compute $\xi_{0}, \xi_{1}, \ldots, \xi_{k-1}$ from

$$
\begin{equation*}
\xi_{0}=1-\gamma_{0} \quad \text { and } \quad \xi_{j}=\xi_{j-1}-\gamma_{j}, 1 \leqslant j \leqslant k-1 \tag{4.6}
\end{equation*}
$$

Then, we can re-express $s_{0, k}$ in the form

$$
\begin{equation*}
s_{0, k}=x_{0}+\sum_{i=0}^{k-1} \xi_{i} u_{i}=x_{0}+U_{k-1} \xi \tag{4.7}
\end{equation*}
$$

where $\xi=\left(\xi_{0}, \xi_{1}, \ldots, \xi_{k-1}\right)^{\mathrm{T}}$. Substituting now $U_{k-1}=Q_{k-1} R_{k-1}$ in (4.7), we obtain

$$
\begin{equation*}
s_{0, k}=x_{0}+Q_{k-1}\left(R_{k-1} \xi\right)=x_{0}+\sum_{j=0}^{k-1} \eta_{j} q_{j} \tag{4.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta_{j}=(j+1) \text { st component of the column vector } R_{k-1} \xi, \quad j=0,1, \ldots, k-1 \tag{4.9}
\end{equation*}
$$

This approach to the computation of $s_{0, k}$ is very advantageous, as it enables us to overwrite x_{1}, x_{2}, \ldots and u_{0}, u_{1}, \ldots, and thus saves a lot of storage.

4.2. Determination of the γ_{j} when $\operatorname{rank}\left(U_{k}\right)=k+1$

The only thing that remains to be done now is to determine the γ_{j}, and this requires separate treatments for MPE and RRE.

4.2.1. Determination of the γ_{j} for MPE

As mentioned in Section 2, in order to determine the γ_{j} for $s_{0, k}$ in MPE we first solve the overdetermined system

$$
\begin{equation*}
U_{k-1} c=-u_{k} \tag{4.10}
\end{equation*}
$$

by least squares. Since we also assume that the rank of U_{k} is $k+1$, we conclude that c is the unique solution of the normal equations

$$
\begin{equation*}
U_{k-1}^{*} U_{k-1} c=-U_{k-1}^{*} u_{k} \tag{4.11}
\end{equation*}
$$

Upon invoking $U_{k-1}=Q_{k-1} R_{k-1}$ in (4.11) and using the fact that $Q_{k-1}^{*} Q_{k-1}=I_{k \times k}$ (the $k \times k$ identity matrix), and the fact that R_{k-1} is a nonsingular matrix, we obtain

$$
\begin{equation*}
R_{k-1} c=-Q_{k-1}^{*} u_{k} \tag{4.12}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
Q_{k-1}^{*} u_{k}=\left(r_{0 k}, r_{1 k}, \ldots, r_{k-1, k}\right)^{\mathrm{T}} \equiv \rho_{k} \tag{4.13}
\end{equation*}
$$

so that (4.12) becomes

$$
\begin{equation*}
R_{k-1} c=-\rho_{k} \tag{4.14}
\end{equation*}
$$

This is a linear system of k equations in the k unknowns $c_{0}, c_{1}, \ldots, c_{k-1}$, and its matrix R_{k-1} is upper triangular. Hence its solution can be achieved easily by back substitution.

Once $c_{0}, c_{1}, \ldots, c_{k-1}$ are determined, we set $c_{k}=1$, and compute the γ_{j} from (2.6), provided $\sum_{i=0}^{k} c_{i} \neq 0$.

4.2.2. Determination of the γ_{j} for $R R E$

Again as we mentioned in Section 2, the γ_{j} for $s_{0, k}$ in RRE can be determined by solving the overdetermined system

$$
\begin{equation*}
U_{k} \gamma=0 \tag{4.15}
\end{equation*}
$$

by least squares subject to the constraint

$$
\begin{equation*}
\sum_{j=0}^{k} \gamma_{j}=1 \tag{4.16}
\end{equation*}
$$

This amounts to minimizing the positive definite quadratic form $\gamma^{*} U_{k}^{*} U_{k} \gamma$ subject to (4.16). Consequently, the Lemma in Appendix A applies, and the γ_{j} can be obtained by solving the linear system of $k+2$ equations

$$
\begin{equation*}
U_{k}^{*} U_{k} \gamma=\lambda \tilde{e}, \quad \sum_{j=0}^{k} \gamma_{j}=1 \tag{4.17}
\end{equation*}
$$

for $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k}$ and λ. Here

$$
\begin{equation*}
\tilde{e}=(1,1, \ldots, 1)^{\mathrm{T}} \tag{4.18}
\end{equation*}
$$

As is stated in the same lemma, λ turns out to be strictly positive, and is given by

$$
\begin{equation*}
\lambda=\gamma^{*} U_{k}^{*} U_{k} \gamma, \quad \text { at the solution. } \tag{4.19}
\end{equation*}
$$

The γ_{j} can be obtained by first solving the linear system

$$
\begin{equation*}
U_{k}^{*} U_{k} d=\tilde{e} \tag{4.20}
\end{equation*}
$$

for $d=\left(d_{0}, d_{1}, \ldots, d_{k}\right)^{\mathrm{T}}$, and letting

$$
\begin{equation*}
\lambda=\left(\sum_{j=0}^{k} d_{j}\right)^{-1} \tag{4.21}
\end{equation*}
$$

and finally setting

$$
\begin{equation*}
\gamma=\lambda d \tag{4.22}
\end{equation*}
$$

As far as the solution of the system in (4.20) is concerned, we accomplish this again by using the QR factorization of U_{k}. Again by $Q_{k}^{*} Q_{k}=I_{(k+1) \times(k+1)}$ (the $(k+1) \times(k+1)$ identity matrix), we can rewrite (4.20) in the form

$$
\begin{equation*}
R_{k}^{*} R_{k} d=\tilde{e} \tag{4.23}
\end{equation*}
$$

This system can be solved by forward and back substitution as the matrix R_{k} is upper triangular.

4.3. Treatment of the case $\operatorname{rank}\left(U_{k}\right)=k$

Up to this point we discussed the case in which the vectors $u_{0}, u_{1}, \ldots, u_{k}$ are linearly independent. Since these vectors are being introduced one by one, we can view this case as adding the vector u_{k} to the linearly independent set $\left\{u_{0}, u_{1}, \ldots, u_{k-1}\right\}$ and obtaining the linearly independent set $\left\{u_{0}, u_{1}, \ldots, u_{k}\right\}$. We now consider the case in which $\left\{u_{0}, u_{1}, \ldots, u_{k-1}\right\}$ is a linearly independent set, but $\left\{u_{0}, u_{1}, \ldots, u_{k}\right\}$ is not, i.e., $\operatorname{rank}\left(U_{k}\right)=k$. This exhibits itself through $r_{k k}=0$ in the QR factorization step.

If we apply MPE, then we can compute the γ_{j} by solving the (nonsingular) system in (4.14) and employing (2.6), provided $\sum_{i=0}^{k} c_{i} \neq 0$ there. We then compute $s_{0, k}$.

If we apply RRE, we can compute $s_{0, k}$ as follows. First, by the linear dependence of $u_{0}, u_{1}, \ldots, u_{k}$, there exist constants $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}$, not all zero, such that $\sum_{i=0}^{k} \alpha_{i} u_{i}=0$. This implies that the linear system in (4.15) is consistent. Also we can write $U_{k}=Q_{k} R_{k}$, where Q_{k} and R_{k} are as in (4.1)-(4.3), $q_{0}, q_{1}, \ldots, q_{k-1}$ are uniquely determined and q_{k} is arbitrary in (4.1), and $r_{k k}=0$ in (4.3). Multiplying both sides of (4.15) by Q_{k}^{*}, and using the fact that $Q_{k}^{*} Q_{k}=$ $I_{(k+1) \times(k+1)}$, we obtain the system of $k+2$ equations

$$
\begin{equation*}
R_{k} \gamma=0 \quad \text { and } \quad \sum_{j=0}^{k} \gamma_{j}=1 \tag{4.24}
\end{equation*}
$$

Now, by $r_{k k}=0$, this system actually consists of the $k+1$ inhomogeneous equations

$$
\begin{equation*}
\left[R_{k-1} \mid \rho_{k}\right] \gamma=0 \quad \text { and } \quad \sum_{j=0}^{k} \gamma_{j}=1 \tag{4.25}
\end{equation*}
$$

in the $k+1$ unknowns $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k}$. Since a least-squares solution for the linear system in (2.8) always exists, a solution for the γ_{j} always exists too. Consequently, the equations in (4.25) always have a solution for RRE. Once we determine a set of γ_{j} 's, we compute $s_{0, k}$.

Comparing (4.25) with (4.14) and (2.6), we see that if $s_{0, k}$ exists for MPE when $\operatorname{rank}\left(U_{k}\right)=k$, then it is equal to $s_{0, k}$ for RRE.

If the vector sequence $x_{0}, x_{1}, x_{2}, \ldots$ is generated as in (3.2), then, as explained in Section 3, $\operatorname{rank}\left(U_{k}\right)=k+1$ for $k<k_{0}$, where k_{0} is the degree of the minimal polynomial of A with respect to $x_{0}-s$. The smallest value of k for which $\operatorname{rank}\left(U_{k}\right)=k$ is k_{0}, and at $k=k_{0}$ we already reach the solution, i.e., $s_{0, k_{0}}=s$. That is the first time $r_{k k}=0$ occurs, we have $s_{0, k}=s$, and stop.

If the vector sequence $x_{0}, x_{1}, x_{2}, \ldots$ is not generated linearly, and $\operatorname{rank}\left(U_{k-1}\right)=k$, but $\operatorname{rank}\left(U_{k}\right)=k<k+1$, then we can compute $s_{0, k}$ first, and then take $s_{0, k}$ or a nearby vector as x_{0},
and restart the computation. Other strategies for continuing the computation can likewise be devised, but we shall not pursue this matter further.

It should be mentioned, however, that, due to round-off, the chances of encountering the case $\operatorname{rank}\left(U_{k}\right)<k+1$ in practice are extremely small. We have thus not included the treatment of this case in the computer program given in Appendix B.

4.4. Summary of implementations

We now summarize the major steps of the implementations, as they have been described above. We assume that all the matrices U_{k} have full rank.

Suppose that, starting with x_{0}, we have constructed the matrices Q_{k-1} and R_{k-1}.
We now read x_{k+1} and compute $u_{k}=x_{k+1}-x_{k}$. Following this, using MGS, we compute the scalars $r_{0 k}, r_{1 k}, \ldots, r_{k k}$ and the orthonormal vector q_{k}, which we use to augment the matrices Q_{k-1} and R_{k-1} to give Q_{k} and R_{k}, respectively.

We next proceed to the computation of the γ_{j}. For MPE, we first solve the upper triangular $k \times k$ system in (4.14) for $c_{0}, c_{1}, \ldots, c_{k-1}$ by back substitution, and then use (2.6) to obtain the γ_{j}. For RRE, we solve the $(k+1) \times(k+1)$ system in (4.23) for d, and then determine the γ_{j} by (4.21) and (4.22). The solution of the system in (4.23) can be achieved very simply by forward and back substitution as R_{k} is upper triangular.

Once the γ_{j} have been determined, we compute the ξ_{j} by (4.6) and the η_{j} by (4.9), and finally, $s_{0, k}$ by (4.8).

Next we read x_{k+2}, and proceed similarly, until a suitable stopping criterion is met.
It should be noted that, strictly speaking, neither $r_{k k}$ nor q_{k} is needed for determining $s_{0, k}$, and their computation can be completed after x_{k+2} has been introduced. In the computer program that we give in Appendix B, though, we chose to compute $r_{k k}$ and q_{k} before the computation of $s_{0, k}$.

Finally, it is not difficult to see that these implementations are very appropriate for vector computers as their handling of the x_{i}, u_{i}, and q_{i} can be entirely vectorized. The computer program given in Appendix B has been written to take full account of this.

5. Estimation of residual norms

5.1. General considerations for linear and nonlinear systems

Let s be the solution of the linear or nonlinear system of equations

$$
\begin{equation*}
x=F(x) \tag{5.1}
\end{equation*}
$$

and let us define the residual for an arbitrary vector x by

$$
\begin{equation*}
r(x)=F(x)-x \tag{5.2}
\end{equation*}
$$

Let x_{0} be a given initial approximation, and generate the sequence of vectors x_{1}, x_{2}, \ldots, according to the fixed-point iterative method

$$
\begin{equation*}
x_{j+1}=F\left(x_{j}\right), \quad j=0,1, \ldots \tag{5.3}
\end{equation*}
$$

Consequently, the residual for x_{j} is given by

$$
\begin{equation*}
r\left(x_{j}\right)=F\left(x_{j}\right)-x_{j}=x_{j+1}-x_{j}=u_{j}, \tag{5.4}
\end{equation*}
$$

thus is readily available.
Let us assume that MPE or RRE is applied to the sequence $x_{0}, x_{1}, x_{2}, \ldots$, and that we are computing the sequence $s_{n, 1}, s_{n, 2}, \ldots$. Let us assume also that we would like to stop the computation as soon as some norm of $r\left(s_{n, k}\right)$ becomes $\leqslant \epsilon$ for some $k, \epsilon>0$ being a preassigned level of accuracy. The most direct way of doing this would be by actually computing the vectors $s_{n, 1}, r\left(s_{n, 1}\right), s_{n, 2}, r\left(s_{n, 2}\right), \ldots$, which is very costly.

Indeed, the computation of $s_{n, k}$ involves about k vector additions and k scalar-vector multiplications, that of $r\left(s_{n, k}\right)$, by (5.2), amounts to one additional fixed-point iteration and one vector addition, and the computation of the norm of $r\left(s_{n, k}\right)$ requires an additional inner product. In addition, the number of the vector operations increases with increasing k. In view of this, the most desirable situation is one that enables us to estimate some norm of $r\left(s_{n, k}\right)$ without having to compute either $s_{n, k}$ or $r\left(s_{n, k}\right)$.

5.2. Residual computation for linear systems

We now devise a strategy by which the l_{2}-norms of the residuals $r\left(s_{n, k}\right)$ can be obtained exactly without the need to compute either $s_{n, k}$ or $r\left(s_{n, k}\right)$, when the sequence $x_{0}, x_{1}, x_{2}, \ldots$ is being generated linearly by the iterative method in (3.2), i.e., when $F(x)=A x+b$ in (5.3). The case in which $F(x)$ is nonlinear will be considered at the end of this section.

When $F(x)=A x+b$, the residual for an arbitrary vector x, by (5.2), becomes

$$
\begin{equation*}
r(x)=A x+b-x \tag{5.5}
\end{equation*}
$$

Consequently, by (2.10), (3.2) and (2.1), we have

$$
\begin{equation*}
r\left(s_{0, k}\right)=\sum_{j=0}^{k} \gamma_{j} u_{j}=U_{k} \gamma \tag{5.6}
\end{equation*}
$$

and the l_{2}-norm of $r\left(s_{0, k}\right)$ is thus

$$
\begin{equation*}
\left\|r\left(s_{0, k}\right)\right\|=\left(r\left(s_{0, k}\right), r\left(s_{0, k}\right)\right)^{1 / 2}=\left(\gamma^{*} U_{k}^{*} U_{k} \gamma\right)^{1 / 2} \tag{5.7}
\end{equation*}
$$

By invoking $U_{k}=Q_{k} R_{k}$ in (5.7), we obtain

$$
\begin{equation*}
\left\|r\left(s_{0, k}\right)\right\|=\left(\gamma^{*} R_{k}^{*} R_{k} \gamma\right)^{1 / 2} \tag{5.8}
\end{equation*}
$$

We now analyze $\gamma^{*} R_{k}^{*} R_{k} \gamma$ for MPE and RRE separately.

5.2.1. l_{2}-norm of residual with MPE

Let us compute $R_{k} \gamma$ first. By (4.12)-(4.14) we have

$$
\begin{equation*}
\left[R_{k-1} \mid \rho_{k}\right]\left[\frac{c}{1}\right]=0 \tag{5.9}
\end{equation*}
$$

By dividing both sides of (5.9) by $\sum_{i=0}^{k} c_{i}$ with $c_{k}=1$, and invoking (2.6), we obtain

$$
\begin{equation*}
\left[R_{k-1} \mid \rho_{k}\right] \gamma=0 \tag{5.10}
\end{equation*}
$$

Substituting (5.10) in $R_{k} \gamma$, we finally have

$$
\begin{equation*}
R_{k} \gamma=\left(0,0, \ldots, 0, r_{k k} \gamma_{k}\right)^{\mathrm{T}} \tag{5.11}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
\left(\gamma^{*} R_{k}^{*} R_{k} \gamma\right)^{1 / 2}=r_{k k}\left|\gamma_{k}\right| \tag{5.12}
\end{equation*}
$$

Consequently, for linearly generated sequences

$$
\begin{equation*}
\left\|r\left(s_{0, k}\right)\right\|=r_{k k}\left|\gamma_{k}\right| \tag{5.13}
\end{equation*}
$$

exactly, with $r(x)$ as defined in (5.5).

5.2.2. l_{2}-norm of residual with $R R E$

By (4.19) we immediately have

$$
\begin{equation*}
\left(\gamma^{*} U_{k}^{*} U_{k} \gamma\right)^{1 / 2}=\sqrt{\lambda} \tag{5.14}
\end{equation*}
$$

with λ as determined from (4.23) and (4.21). Consequently, for linearly generated sequences

$$
\begin{equation*}
\left\|r\left(s_{0, k}\right)\right\|=\sqrt{\lambda} \tag{5.15}
\end{equation*}
$$

exactly, with $r(x)$ as defined in (5.5).
The results given in (5.13) and (5.15) assume exact arithmetic. Due to round-off errors, however, the actually computed residual norms may be getting farther from (5.13) and (5.15), especially when k is increasing. In this case it may be appropriate to compute $s_{0, k}$ and the norm of its residual every once in a while to make sure that round-off has not started to dominate the computations. Although such a test is not included in the computer program given in Appendix B, it is quite easy to incorporate it there.

5.3. Practical residual estimation in extrapolation for nonlinear systems

We now consider the problem of error estimation for the case in which $F(x)$ in (5.1) is nonlinear. Let us assume that the sequence $x_{0}, x_{1}, x_{2}, \ldots$ is convergent, its limit, of course, being s, the solution of (5.1). Therefore, for n sufficiently large, x_{n}, x_{n+1}, \ldots are all very close to s, and we have

$$
\begin{equation*}
x_{n+1}-s=F^{\prime}(s)\left(x_{n}-s\right)+\epsilon_{n}, \tag{5.16}
\end{equation*}
$$

where $F^{\prime}(x)$ is the Jacobian matrix of the vector-valued function $F(x)$, and ϵ_{n} is a vector whose norm is $\mathrm{O}\left(\left\|x_{n}-s\right\|^{2}\right)$ as $n \rightarrow \infty$. This implies that the sequence $x_{0}, x_{1}, x_{2}, \ldots$ behaves linearly at infinity, in the sense that

$$
\begin{equation*}
x_{j+1} \approx F^{\prime}(s) x_{j}+\left(s-F^{\prime}(s) s\right) \tag{5.17}
\end{equation*}
$$

for all sufficiently large j. Thus, for n sufficiently large, we can take

$$
\begin{equation*}
r\left(s_{n, k}\right) \approx U_{k}^{(n)} \gamma \tag{5.18}
\end{equation*}
$$

cf. (5.6), and

$$
\begin{equation*}
\left\|r\left(s_{n, k}\right)\right\| \approx\left(\gamma^{*} R_{k}^{(n)} * R_{k}^{(n)} \gamma\right)^{1 / 2} \tag{5.19}
\end{equation*}
$$

cf. (5.8), where we have retained the index n in $U_{k}^{(n)}$ and $U_{k}^{(n)}=Q_{k}^{(n)} R_{k}^{(n)}$. The norm in (5.19) is the l_{2}-norm as before. Consequently, we can take (5.19) as an estimate for the l_{2}-norm of the residual $r\left(s_{n, k}\right)$ without having to compute either $s_{n, k}$ or $r\left(s_{n, k}\right)$, since it is given by (5.12) for MPE and by (5.14) for RRE.

In case n is not large enough, (5.19) may not be very realistic. In this case we may choose to compute $s_{n, k}$ and $r\left(s_{n, k}\right)$ not for all k, but for $k=p, 2 p, 3 p, \ldots$, say, for some integer $p>1$. This obviously reduces the cost.

When we use MPE or RRE in the cycling mode, which is one of the best modes of usage, things become simpler if we recall (5.4). To see this let us recall how cycling can be performed.
Step (1) Fix the integer k. Pick $s_{k}^{0} \equiv x_{0}$ and set $q=0$.
Step (2) Generate x_{1} by (5.3). If $\left\|r\left(s_{k}^{(q)}\right)\right\|=\left\|x_{1}-x_{0}\right\|=\left\|u_{0}\right\| \leqslant \epsilon$, then stop. Otherwise, generate x_{2}, \ldots, x_{k+1} by (5.3).
Step (3) Compute $s_{k}^{(q+1)} \equiv s_{0, k}$ by MPE or RRE.
Step (4) Replace x_{0} by $s_{k}^{(q+1)}$, and q by $q+1$, and go to Step (2).
Consequently, no extra computation for residuals is necessary, as u_{0} is the true residual for the previous cycle.

6. Operation count and storage requirements

In most applications, N, the dimension of the vectors, is extremely large, while k takes on very small values. Consequently, the major part of the computational effort is spent in handling the large vectors, the rest being negligible.

As we can easily see, most of the vector computations take place in the QR factorization. At the k th stage that leads to $s_{0, k}$, the vector x_{k+1} is provided first. Starting with this, we need one vector addition to form $u_{k}=x_{k+1}-x_{k}$, and, following that, k vector additions, $k+1$ scalarvector multiplications and $k+1$ inner products to form the orthonormal vector q_{k} and the scalars $r_{0 k}, r_{1 k}, \ldots, r_{k k}$ by MGS. The computation of $s_{0, k}$, if desired, requires k vector additions and k scalar-vector multiplications by (4.8). The computation of the γ_{i}, ξ_{i} and η_{i} is negligible, as it involves work with $k \times k$ or $(k+1) \times(k+1)$ triangular matrices for very small values of k.

As for the storage requirements, it is clear that x_{0} needs to be saved. At the k th stage q_{k} needs to be saved, in addition to the previously saved $q_{0}, q_{1}, \ldots, q_{k-1}$. We also need two or three more auxiliary vectors of dimension N. Similarly the elements of the matrix R_{k} all need to be saved, but their storage requirements are negligible.

In view of the above, if only $s_{0, K}$ is needed for some preassigned K, then, recalling that the vector q_{K} need not be computed, the total operation count is $\frac{1}{2}\left(K^{2}+5 K+2\right)$ vector additions, $\frac{1}{2}\left(K^{2}+5 K\right)$ scalar-vector multiplications and $\frac{1}{2}\left(K^{2}+3 K+2\right)$ inner products, which amounts to $\sim 2 K^{2} N$ floating-point operations (scalar additions and multiplications). As for the storage requirements, we need $(K+1) N$ storage locations for $x_{0}, q_{0}, q_{1}, \ldots, q_{K-1}$, and $2 N$ storage locations for two additional auxiliary vectors. No additional storage locations are required for $s_{0, K}$ as $s_{0, K}$ can overwrite x_{0} at the end of the computation.

In many cases it turns out that the accuracy that can be achieved with m cycles of MPE or RRE, each cycle being of width K, is comparable to that obtained for $s_{0, m K}$. If we compare the computational costs of each of these strategies, we see that, roughly speaking, the former is m
times less expensive computationally than the latter, and requires m times less storage. Thus, as a computational strategy, cycling possesses important advantages.

It is very instructive to compare the implementations for MPE and RRE, as they are given in this work, with the vector epsilon algorithm (VEA) of [21]. VEA is defined recursively by

$$
\begin{align*}
& \epsilon_{-1}^{(n)}=0 \quad \text { and } \quad \epsilon_{0}^{(n)}=x_{n}, \quad n=0,1, \ldots, \\
& \epsilon_{k+1}^{(n)}=\epsilon_{k-1}^{(n+1)}+\frac{\frac{\epsilon_{k}^{(n)}}{\left(\Delta \epsilon_{k}^{(n)}, \Delta \epsilon_{k}^{(n)}\right)}, \quad k \geqslant 0, n \geqslant 0,}{} . \tag{6.1}
\end{align*}
$$

where $\Delta \epsilon_{k}^{(n)}=\epsilon_{k}^{(n+1)}-\epsilon_{k}^{(n)}$, and $\bar{z}=\left(\bar{z}_{1}, \ldots, \bar{z}_{N}\right)^{\mathrm{T}}$ if $z=\left(z_{1}, \ldots, z_{N}\right)^{\mathrm{T}}$. Thus, the computation of $\epsilon_{k}^{(n)}$ for $k \geqslant 2$ requires two vector additions, one scalar-vector multiplication and one inner product. For $\epsilon_{1}^{(n)}$ only one vector addition is required. Now as is suggested by experience and as can be justified heuristically, for given $K, \epsilon_{2 K}^{(0)}$ for VEA and $s_{0, K}$ for MPE or RRE would have comparable performance. The total operation count for determining $\epsilon_{2 K}^{(0)}$ is $4 K^{2}$ vector additions, $2 K^{2}+K$ scalar-vector multiplications and $2 K^{2}+K$ inner products, which amounts to $\sim 10 K^{2} N$ floating-points operations (scalar additions and multiplications). As for the storage requirements, we need $(2 K+1) N$ storage locations to save $\epsilon_{0}^{(2 K)}, \epsilon_{1}^{(2 K-1)}, \ldots, \epsilon_{2 K}^{(0)}$, and $2 N$ storage locations for two auxiliary vectors. Consequently, VEA is about five times more expensive than either MPE or RRE as far as operation counts are concerned. As far as storage requirements are concerned, VEA is about twice as expensive as either MPE or RRE. In addition, since $x_{0}, x_{1}, \ldots, x_{2 K}$ are needed for $\epsilon_{2 K}^{(0)}$, whereas only $x_{0}, x_{1}, \ldots, x_{K+1}$ are needed for cither MPE or RRE, VEA is about twice as expensive as MPE or RRE with respect to the number of vectors they utilize.

We note that, in the epsilon family of vector extrapolation methods, VEA seems to be the most advantageous as far as the operation count, storage requirements and numerical stability are concerned. For more details, see [19].

7. Some practical considerations for enhancing convergence and stability

In this section we would like to make a few remarks, which we believe are of practical importance with regard to enhancing the convergence and stability of vector extrapolation methods as they are applied to iterative procedures. Most of these remarks are based on the known theoretical results concerning vector extrapolation methods, some of which have been discussed in Section 3.

7.1. Effect of iteration before extrapolation

In most problems of interest the vector sequence x_{0}, x_{1}, \ldots converges extremely slowly so that there is not much difference between $\left\|x_{n}-s\right\|$ and $\left\|x_{0}-s\right\|$ even for appreciably large values of n. The result in (3.6), however, suggests that there may be a large difference between $\left\|s_{n, k}-s\right\|$ and $\left\|x_{n}-s\right\|$ (hence $\left\|x_{0}-s\right\|$) if n is sufficiently large. If the vectors x_{j} are produced by an iterative procedure such as (3.2), then this implies that it may be very useful to start the extrapolation procedure after a number of iterations with (3.2). One heuristic argument in favor of this strategy runs as follows. The initial error $x_{0}-s$, in general, has components in
the direction of all eigenvectors and principal vectors of A. After a few iterations the components in the direction of those eigenvectors and principal vectors corresponding to zero eigenvalues of A are totally eliminated, while those corresponding to the eigenvalues that are close to zero are diminished. Consequently, the error vector $x_{n}-s$ has mostly contributions from the eigenvectors and principal vectors corresponding to the large eigenvalues. Precisely these contributions are now diminished by the extrapolation procedure.

7.2. A simple "averaging" of the iteration process and its effect on convergence and stability

Assume that (3.2) or (5.3) result from the discrete solutions of continuum problems. Then, for a convergent scheme, the largest eigenvalues of A or of $F^{\prime}(s)$, the Jacobian matrix of $F(x)$ at $x=s$, may be very close to 1 in the complex plane in some cases. This may cause the extrapolation process not to be very effective. The process may even suffer from a large amount of numerical instability.

One way of dealing with this problem is by applying extrapolation methods not to the sequence $x_{0}, x_{1}, x_{2}, \ldots$, but to $y_{0}, y_{1}, y_{2}, \ldots$, where $y_{j}=x_{j p}$, for some positive integer p. This strategy has been successfully implemented in [17].

Another way would be by changing (5.3), in general, to read

$$
\begin{equation*}
x_{j+1}=x_{j}+\omega\left(F\left(x_{j}\right)-x_{j}\right)=(1-\omega) x_{j}+\omega F\left(x_{j}\right), \quad j=0,1, \ldots, \tag{7.1}
\end{equation*}
$$

where ω is a scalar different than 1 . (The sequence generated by taking $\omega=1$ is the one generated by (5.3).) Thus x_{j+1} is now a weighted "average" of x_{j} and $F\left(x_{j}\right)$, in which the weights $1-\omega$ and ω need not be both positive.

By picking ω appropriately we can cause the spectrum of the Jacobian matrix of $(1-\omega) x+$ $\omega F(x)$ at $x=s$, namely, $(1-\omega) I+\omega F^{\prime}(s)$, to be increasingly favorable to $s_{n, k}$ for large values of n.

Let us take a look at the following example. Suppose the eigenvalues of $F^{\prime}(s)$ are all positive and lie in the interval $[\epsilon, 1-\eta]$, for some $\epsilon>0$ and $\eta>0$ close to zero. Consequently, the sequence x_{0}, x_{1}, \ldots obtained from (5.3) converges, provided x_{0} is sufficiently close to s in case $F(x)$ is nonlinear, and unconditionally in case $F(x)$ is linear. If we pick $\omega=2$, then the eigenvalues of $(1-\omega) I+\omega F^{\prime}(s)$ lie in the interval $[-1+2 \epsilon, 1-2 \eta]$ so that the sequence obtained from (7.1) also converges. (If $\epsilon=\eta$, then this sequence converges more quickly than the one obtained from (5.3).) The new spectrum has two important properties relevant to vector extrapolation methods. (1) The largest positive eigenvalue of $F^{\prime}(s)$, namely $1-\eta$, has moved away from 1. (2) Negative eigenvalues close to -1 have been created. Both of these properties enhance the stability of vector extrapolation processes both mathematically and numerically. (This follows from [12, Theorem 4.1], [16, Theorem 3.2] and [18, Theorems 4.1 and 5.2].) It should be noted that 2 is also that value of ω for which the spectral radius of $(1-\omega) I+\omega F^{\prime}(s)$ is minimal when $\epsilon=\eta$.

7.2.1. Special considerations for linear systems

When $F(x)=A x+b$, and the vector sequence is generated by the iterative procedure in (7.1), the approximations $s_{0, k}$ are independent of ω, as has been shown in [8]. That is to say, the convergence properties of the $s_{0, k}$ are not changed by varying ω. Nevertheless, varying ω may influence the stability properties of the numerical implementations.

First, if the sequence obtained from (3.2) is divergent, then all the computations leading to $s_{0, k}$ will suffer a large loss of accuracy, especially for increasing k. By changing ω in (7.1) appropriately, we can cause the sequence to converge (or diverge very slowly), thus avoiding the numerical problem caused by the unboundedness of the original sequence.

Next, if the sequence obtained from (3.2) is slowly converging on account of the largest eigenvalues of A all being very close to 1 in the complex plane, then the vectors $u_{0}, u_{1}, u_{2}, \ldots$ are near being linearly dependent. Consequently, the l_{2}-condition number of the matrices U_{k} may be very large. This may have a negative influence on the QR factorization of U_{k} by MGS that we have chosen for our implementation. This influence exhibits itself in the computed matrices Q_{k} being far from unitary and the computed $s_{0, k}$ not being very accurate. If, by picking ω appropriately in (7.1), we can change the spectrum in such a way that it now contains both positive and negative large eigenvalues, then the vectors $u_{0}, u_{1}, u_{2}, \ldots$ will be far from being linearly dependent numerically. This will result in better conditioned matrices U_{k}, which, in turn, will result in the computed matrices Q_{k} being closer to unitary and the computed $s_{0, k}$ being quite accurate.

The numerical aspects of MGS and its use in the solution of least-squares problems and the comparison of these with the Householder QR factorization and least-squares solutions are discussed at length in [7, Sections 5.2.8, 5.2.9 and 5.3.6].

7.2.2. Application to Jacobi iteration for consistently ordered matrices

The observations above can be used very effectively in the solution of linear systems whose matrices are consistently ordered. Such matrices arise frequently, for example, in the finite-difference solutions of elliptic equations.

Suppose iterative methods of the form (3.2) are used in the solution of such a system. If the method used is the Jacobi iteration method, then it is known that the nonzero eigenvalues of A come in pairs of the form $\pm \mu$, see, e.g., [20, Chapter 4]. Consequently, if the eigenvalues of A are real, then they are in the interval $[-1+\delta, 1-\delta]$ for some $\delta, 0<\delta<1$, provided $\rho(A)<1$. As a result, the nonzero eigenvalues of A^{2} are in the interval $[\epsilon, 1-\eta$], for some $\epsilon>0$, where $1-\eta=(1-\delta)^{2} \approx 1-2 \delta$ if $\delta \ll 1$. Furthermore, if $2 M$ is the number of the distinct nonzero eigenvalues of A, then the number of the distinct nonzero eigenvalues of A^{2} is M whether the eigenvalues of A are real or not.

This implies that the approximation $s_{2 n, 2 k}^{1}$ obtained from the Jacobi iterative method and the approximation $s_{n, k}^{2}$ obtained from the double Jacobi iterative method

$$
\begin{align*}
& y=A x_{j}+b \\
& x_{j+1}=A y+b, \quad j=0,1, \ldots \tag{7.2}
\end{align*}
$$

have the same asymptotic behavior as $n \rightarrow \infty$. In addition, since the largest eigenvalues of A^{2} are twice as far from 1 as those of $A, s_{n, k}^{2}$ is more stable than $s_{2 n, 2 k}^{1}$ as $n \rightarrow \infty$ both mathematically and numerically.

We can now couple the double Jacobi iteration method with the simple averaging procedure that was discussed above. Tha new iteration procedure then is

$$
\begin{align*}
& y=A x_{j}+b, \quad z=A y+b \\
& x_{j+1}=(1-\omega) x_{j}+\omega z, \quad j=0,1, \ldots \tag{7.3}
\end{align*}
$$

for some $\omega \neq 0$. As explained before, by varying ω we can cause the spectrum of the iteration matrix of (7.3), namely, $(1-\omega) I+\omega A^{2}$, to become favorable to $s_{n, k}$. In particular, by picking $\omega=2$ we can cause this spectrum to lie in the interval $[-1+2 \epsilon, 1-2 \eta]=[-1+2 \epsilon, 1-4 \delta+$ $\left.\delta^{2}\right]$. This enlarges the distance of the largest positive eigenvalue of the Jacobi iteration matrix A from 1 even further, and introduces negative eigenvalues close to -1 . This causes $s_{n, k}^{2}$ to become more stable. Furthermore, if $\epsilon \geqslant \delta$, the convergence rate of x_{n} from (7.3) with $\omega=2$ is as good as that of x_{n} from (7.2).

We note, incidentally, that the iterative method of (7.3) with $\omega=2$ is known as Abramov's method, see [5, p.514]. It is quite easy to see that, in this case,

$$
x_{j+1}-s=\left(2 A^{2}-I\right)\left(x_{j}-s\right)=T_{2}(A)\left(x_{j}-s\right)
$$

where $T_{2}(\lambda)=2 \lambda^{2}-1$ is the Chebyshev polynomial of degree two. It should be emphasized that this is not Chebyshev acceleration, however.

8. Numerical examples

We have applied MPE and RRE through their new implementations described in the previous sections to several linear and nonlinear systems of equations. This has been done by employing the computer program that is provided in Appendix B. Some of the results obtained this way will be reported in this section.

We have picked real linear systems of equations whose matrices are symmetric or nonsymmetric. Numerical results for two of these systems, one symmetric and the other nonsymmetric, are included in this work. We have also treated nonlinear systems arising from finite-difference solutions of fluid mechanics problems. Numerical results for a hypersonic flow problem with chemical reactions are given in this paper.

Example 1. Consider the vector sequence obtained from (3.2), where A is a 1000×1000 septadiagonal matrix symmetric with respect to both of its main diagonals, and is given by

$$
A=0.06 \times\left[\begin{array}{ccccccccc}
5 & 2 & 1 & 1 & & & & & \\
2 & 6 & 3 & 1 & 1 & & & & \\
1 & 3 & 6 & 3 & 1 & 1 & & & \\
1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\
& 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right]
$$

The vector b is such that the exact solution s of (3.1) is $(1,1, \ldots, 1)^{\mathrm{T}}$.
All eigenvalues of A are in $(0,1)$, the smallest and the largest being $4.7279 \ldots \times 10^{-6}$ and $0.95999 \ldots$, respectively. Consequently, the matrix $C=I-A$ is symmetric positive definite. Also, there is a large amount of clustering of eigenvalues near the smallest and the largest ones.

Taking $x_{0}=0$, we generated the vectors x_{1}, x_{2}, \ldots by (7.1) once by taking $\omega=1$ and once by taking $\omega=2$, and then applied MPE to these two sequences. We also applied the method of conjugate gradients (CG) to the linear system $C x=b$ starting again with $x_{0}=0$. The results of these computations are shown in Table 1(a).

Table 1(a)
Numerical results for Example 1, starting with $x_{0}=0$

| k | MPE | | | | | | $C G$$\left\\|z_{k}-s\right\\|$ | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | $\omega=1$ | | | $\omega=2$ | | | |
| | $r_{k k}\left\|\gamma_{k}\right\|$ | $\left\\|r\left(s_{0, k}\right)\right\\|$ | $\left\\|s_{0, k}-s\right\\|$ | $r_{k k}\left\|\gamma_{k}\right\|$ | \|r $r\left(s_{0, k}\right) \\|$ | $\left\\|s_{0, k}-s\right\\|$ | |
| 0 | $1.46 \cdot 10^{0}$ | $1.46 \cdot 10^{0}$ | $3.16 \cdot 10^{1}$ | $2.92 \cdot 10^{0}$ | $2.92 \cdot 10^{0}$ | $3.16 \cdot 10^{1}$ | $3.16 \cdot 10^{1}$ |
| 5 | $1.92 \cdot 10^{-1}$ | $1.92 \cdot 10^{-1}$ | $1.17 \cdot 10^{0}$ | $3.83 \cdot 10^{-1}$ | $3.83 \cdot 10^{-1}$ | $1.17 \cdot 10^{0}$ | $1.17 \cdot 10^{0}$ |
| 10 | $1.98 \cdot 10^{-2}$ | $1.98 \cdot 10^{-2}$ | $1.53 \cdot 10^{-1}$ | $3.96 \cdot 10^{-2}$ | $3.96 \cdot 10^{-2}$ | $1.53 \cdot 10^{-1}$ | $1.53 \cdot 10^{-1}$ |
| 15 | $2.51 \cdot 10^{-3}$ | $2.51 \cdot 10^{-3}$ | $2.03 \cdot 10^{-2}$ | $5.01 \cdot 10^{-3}$ | $5.01 \cdot 10^{-3}$ | $2.02 \cdot 10^{-2}$ | $2.02 \cdot 10^{-2}$ |
| 20 | $4.51 \cdot 10^{-4}$ | $4.53 \cdot 10^{-4}$ | $3.70 \cdot 10^{-3}$ | $6.63 \cdot 10^{-4}$ | $6.63 \cdot 10^{-4}$ | $2.68 \cdot 10^{-3}$ | $2.68 \cdot 10^{-3}$ |
| 25 | $1.58 \cdot 10^{-4}$ | $2.26 \cdot 10^{-4}$ | $4.43 \cdot 10^{-3}$ | $8.78 \cdot 10^{-5}$ | $8.78 \cdot 10^{-5}$ | $3.52 \cdot 10^{-4}$ | $3.52 \cdot 10^{-4}$ |
| 30 | $6.27 \cdot 10^{-5}$ | $1.11 \cdot 10^{-4}$ | $2.44 \cdot 10^{-3}$ | $1.15 \cdot 10^{-5}$ | $1.15 \cdot 10^{-5}$ | $4.63 \cdot 10^{-5}$ | $4.63 \cdot 10^{-5}$ |
| 35 | $2.49 \cdot 10^{-5}$ | $3.19 \cdot 10^{-5}$ | $6.08 \cdot 10^{-4}$ | $1.53 \cdot 10^{-6}$ | $1.53 \cdot 10^{-6}$ | $6.53 \cdot 10^{-6}$ | $6.11 \cdot 10^{-6}$ |
| 40 | $6.37 \cdot 10^{-6}$ | $1.42 \cdot 10^{-5}$ | $3.34 \cdot 10^{-4}$ | $5.16 \cdot 10^{-7}$ | $5.30 \cdot 10^{-7}$ | $1.64 \cdot 10^{-6}$ | $8.03 \cdot 10^{-7}$ |
| 45 | $7.90 \cdot 10^{-6}$ | $5.42 \cdot 10^{-6}$ | $3.66 \cdot 10^{-5}$ | $7.31 \cdot 10^{-8}$ | $1.29 \cdot 10^{-7}$ | $1.27 \cdot 10^{-6}$ | $1.06 \cdot 10^{-7}$ |
| 50 | $9.49 \cdot 10^{-7}$ | $5.29 \cdot 10^{-6}$ | $1.30 \cdot 10^{-4}$ | $3.17 \cdot 10^{-8}$ | $4.29 \cdot 10^{-8}$ | $1.85 \cdot 10^{-7}$ | $1.39 \cdot 10^{-8}$ |

Recall that the Arnoldi method becomes equivalent to CG when C is a symmetric matrix, and MPE, when applied to a linearly generated sequence, becomes equivalent to the Arnoldi method. Also $s_{0, k}$, when applied to a sequence generated linearly as in (7.1), is independent of ω. Consequently, $s_{0, k}$, both for $\omega=1$ and $\omega=2$, obtained from MPE, and z_{k}, obtained from CG, are all the same mathematically. This is verified in Table 1(a) at least for $k \leqslant 10$. The differences between the $\omega=1$ and $\omega=2$ MPE computations for $k>10$ can be explained exactly as described at the end of Section 7.2.1. Again, as can be seen from Table 1(a), the $\omega=2$ MPE computation differs from the CG computation starting with $k=40$ approximately. Since CG involves orthogonalization with respect to only one vector, its absolute accuracy is guaranteed. On the other hand, MPE involves orthogonalization with respect to an ever increasing number of vectors at each stage, thus it cannot be absolutely accurate. In spite of this, the present implementation of MPE seems to be very stable in the sense that $\left\|s_{0, k}-s\right\|$ seems to be

Table 1(b)
MPE applied to Example 1 in the cycling mode; starting with the zero vector, first 20 iterations are performed; following that MPE is applied in the cycling mode with $k=10$; the l_{2} norm of the error in the initial (zero) vector is $3.16 \cdot 10^{1}$; the vectors are obtained by "averaging" the iterative process (3.2) with $\omega=2$

i	$\left\\|r\left(s_{k}^{(i)}\right)\right\\|$	$\left\\|s_{k}^{(i)}-s\right\\|$
0	$4.75 \cdot 10^{-1}$	$5.91 \cdot 10^{0}$
1	$2.0 \cdot 10^{-4}$	$6.94 \cdot 10^{-4}$
2	$2.90 \cdot 10^{-6}$	$8.78 \cdot 10^{-6}$
3	$4.17 \cdot 10^{-8}$	$1.74 \cdot 10^{-7}$
4	$9.27 \cdot 10^{-10}$	$3.70 \cdot 10^{-9}$
5	$2.18 \cdot 10^{-11}$	$9.11 \cdot 10^{-11}$
6	$5.49 \cdot 10^{-13}$	$2.83 \cdot 10^{-12}$
7	$4.26 \cdot 10^{-14}$	$1.77 \cdot 10^{-13}$
8	$6.16 \cdot 10^{-15}$	$9.46 \cdot 10^{-14}$

constantly decreasing with increasing k. Indeed, we have verified this by going up to $k=100$ in both the $\omega=1$ and $\omega=2$ MPE computations.

Our purpose in presenting Table 1 (a) was to demonstrate the good stability properties of the new MPE implementation for large values of k. Otherwise, CG is the method we would normally use for this example, since its operation count and storage requirements are extremely small.

In Table 1(b) we present the results obtained for the same example with $\omega=2$ first performing 20 iterations and then using MPE in the cycling mode with $k=10$, as explained at the end of Section 5. The remarkable effectiveness of this strategy is obvious.

Example 2. Consider the linear nonsymmetric system of equations $\tilde{C} x=\tilde{b}$, where \tilde{C} is the block-tridiagonal matrix

$$
\begin{aligned}
& \tilde{C}=\left[\begin{array}{rrrrrr}
B & -I & & & & \\
-I & B & -I & & & \\
& -I & B & -I & & \\
& & & & & -I \\
& & & & -I & B
\end{array}\right], \\
& \text { with } B=\left[\begin{array}{lllll}
4 & \alpha & & \\
\beta & & & \\
& & & \alpha \\
& & \beta & 4
\end{array}\right],
\end{aligned}
$$

and $\alpha=-1+\delta, \beta=-1-\delta, \delta \neq 0$. (See [10, p.122].) Again, the vector \tilde{b} is such that the exact solution s is $(1,1, \ldots, 1)^{\mathrm{T}}$. The iterative method that we pick for this system is Jacobi's method, so that $A=I-\frac{1}{4} \tilde{C}$.

Now the matrix \tilde{C} is consistently ordered. Thus the suggestions put forth in Section 7.2.2 can be successfully employed in this case.

In our numerical experiments we took $\delta=0.2$. The matrices B and I in \tilde{C} were all 10×10 and \tilde{C} was 200×200, exactly as in [10]. The extrapolation method for which we give numerical results is RRE. We first applied RRE in the cycling mode in conjunction with Jacobi iteration. The vector obtained at the end of each cycle is denoted $\bar{s}_{k}^{(i)}$. Next we applied RRE in the cycling mode in conjunction with double Jacobi iteration. The vector obtained at the end of each cycle is denoted $\hat{s}_{k}^{(i)}$ now. Finally, we applied RRE in the cycling mode extended as follows. The vector sequence is generated by the iterative procedure of (7.3) with $\omega=2$, i.e., by the "averaged" double Jacobi iteration with $\omega=2$. In each cycle $n_{i}+k_{i}+1$ such iterations are performed, and extrapolation is applied to the last $k_{i}+2$ of the vectors, i.e., in each cycle $s_{n_{i}, k_{i}}$ is computed. The vector obtained at the end of each cycle now is denoted $\tilde{s}_{n_{i}, k_{i}}^{(i)}$. The index i denotes the cycle number in each case.

In Table 2 we give the l_{2}-norms of the errors $\bar{s}_{k}^{(i)}-s(k=20), \hat{s}_{k}^{(i)}-s(k=10)$ and $\tilde{s}_{n_{,}, k_{i}}^{(i)}$ ($n_{i}=5, k_{i}=5$ all i). Thus the number of basic Jacobi iterations performed to obtain the approximations $\bar{s}_{k}^{(i)}, \hat{s}_{k}^{(i)}$ and $\tilde{s}_{n_{i}, k_{i}}^{(i)}$ in each cycle is 21,22 and 22 , respectively. We see that $\bar{s}_{20}^{(i)}$ and $\hat{s}_{10}^{(i)}$ have comparable accuracy, as expected. The number of vector operations for $\bar{s}_{20}^{(i)}$, however, is over three times that for $\hat{s}_{10}^{(i)}$. Also the storage requirement for $\bar{s}_{20}^{(i)}$ is about twice that for $\hat{s}_{10}^{(i)}$. The performance of $\tilde{s}_{5,5}^{(i)}$ is only slightly inferior. The number of vector operations for $\tilde{s}_{5,5}^{(i)}$ is about one tenth that for $\bar{s}_{20}^{(i)}$, while its storage needs are about one third those of $\bar{s}_{20}^{(i)}$.

Table 2
RRE applied to Example 2 in the cycling mode; the initial vector is zero, and the l_{2}-norm of the error associated with it is $1.41 \cdot 10^{1}$

i	$\left\\|\bar{s}_{20}^{(i)}-s\right\\|$	$\left\\|\hat{s}_{10}^{(i)}-s\right\\|$	$\left\\|\tilde{s}_{5}^{(i)}-s\right\\|$
1	$6.66 \cdot 10^{-2}$	$7.47 \cdot 10^{-2}$	$1.34 \cdot 10^{-1}$
2	$2.02 \cdot 10^{-4}$	$2.36 \cdot 10^{-4}$	$5.86 \cdot 10^{-4}$
3	$2.53 \cdot 10^{-7}$	$4.26 \cdot 10^{-7}$	$1.14 \cdot 10^{-5}$
4	$2.90 \cdot 10^{-10}$	$2.05 \cdot 10^{-9}$	$3.04 \cdot 10^{-8}$
5	$2.03 \cdot 10^{-12}$	$5.96 \cdot 10^{-12}$	$2.15 \cdot 10^{-10}$
6	$1.35 \cdot 10^{-13}$	$6.48 \cdot 10^{-14}$	$1.07 \cdot 10^{-12}$
7	$3.61 \cdot 10^{-14}$	$3.13 \cdot 10^{-14}$	$1.75 \cdot 10^{-14}$

Example 3. One practical area in which extrapolation methods have been used successfully is that of computational fluid dynamics. See, e.g., [17] and the references therein. Vector extrapolation methods are coupled with iterative techniques that arise from the finite-difference approximations of the partial differential equations governing the flows. In most of the applications so far the equations considered have been those of compressible inviscid flows (the Euler equations).

We would now like to present some results obtained for a hypersonic compressible turbulent flow problem that also involves chemical reactions.

The physical problem considered is that of combustion of a premixed stoichiometric hydro-gen-air hypersonic (Mach number 4) flow over a compression corner. The compression corner creates a shock wave, the temperature behind this shock wave being high enough to initiate a combustion process. The coupling between the combustion process and the shock wave results in a coupled shock-deflagration wave.

The physics is described by the two-dimensional Reynolds-averaged Navier-Stokes equations with nonequilibrium chemistry, i.e., the global continuity equation is replaced by all the species continuity equations. A 7 -species 8 -step reaction mechanism for hydrogen-oxygen combustion is adopted. The Baldwin-Lomax algebraic eddy viscosity turbulence model is also included.

The numerical method uses the LU-SSOR implicit factorization scheme and a second-order symmetric TVD scheme. Thus the number of the dependent variables is ten. The dependent variables are the two momenta per unit volume, the seven species densities and the total energy per unit mass. The number of the mesh points is approximately 4,000 . As a result, the vectors in this problem are of dimension 40,000 approximately.

For the full details of the physical problem, the governing equations and the iterative scheme used in their solution, we refer the interested reader to [23].

The single-precision version of the computer program in Appendix B was incorporated in the fluid mechanics code that implemented the iterative scheme mentioned above. The combined code was run on a CRAY Y-MP computer at NASA-Lewis Research Center, Cleveland, OH.

This code was first run without chemical reactions as a Navier-Stokes solver with turbulence. Figure 1(a) contains some of the residual history obtained by applying RRE in the cycling mode with $k=20$ after 80 and 200 initial iterations. As can be seen, better results are obtained for this problem by employing RRE early on. This seems to be true for nonlinear problems in general. Figure 1(b) contains some of the residual history obtained by using RRE again in the cycling mode with $k=10,20,30$ after 80 initial iterations. The CPU-time for performing 500 iterations

Fig. 1. Residual history with and without convergence acceleration for the hypersonic flow problem in Example 3 with no chemical reactions.
without extrapolation is about 464 seconds. The overhead due to extrapolation turns out to be 1% or less.

The code was next run with chemical reactions. Figure 2 gives the convergence history obtained by using RRE in the cycling mode with $k=10$ after 200 initial iterations. The CPU-time for performing 1000 iterations without extrapolation is about 1284 seconds. The overhead due to extrapolation turns out to be less than 0.05%.

We note that the reason for the negligible cost of extrapolation in this example lies in the fact that the iterative scheme has a high cost, which is due to the following: (1) the complexity of the physical problem (viscous, turbulent, chemically reacting flows); (2) the TVD scheme which is necessary in this case for capturing the shock waves with the best possible resolution; (3) the implicit LU-scheme that is required to retain a high CFL number, which is particularly important in viscous calculations. Finally, we mention that very similar performance was observed with MPE.

Fig. 2. Residual history with and without convergence acceleration for the hypersonic flow problem in Example 3 with chemical reactions.

Acknowledgements

The author gratefully acknowledges the useful conversations he had with Prof. Moshe Israeli in the course of this work. The computations pertaining to the first two examples and reported in this paper were done in double-precision arithmetic on an IBM-370 computer at the Computation Center, Technion-Israel Institute of Technology. The computations for the fluid mechanics example were carried out on a CRAY Y-MP computer by Dr. Shaye Yungster of the Institute for Computational Mechanics in Propulsion at NASA-Lewis Research Center, Cleveland, OH. The author would like to thank him for his kind permission to include some of the results in this work.

Appendix A

Lemma. Let T be an $m \times m$ Hermitian positive definite matrix, and let $z_{1}, z_{2}, \ldots, z_{m}$ be complex variables. Denote $z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)^{\mathrm{T}}$. Then the solution to the problem

$$
\begin{array}{ll}
\text { minimize } & z^{*} T z \\
\text { subject to } & \sum_{i=1}^{m} z_{i}=1, \tag{A.1}
\end{array}
$$

can be obtained by solving the linear system of $m+1$ equations

$$
\begin{equation*}
T z=\lambda \tilde{e}, \quad \sum_{i=1}^{m} z_{i}=1 \tag{A.2}
\end{equation*}
$$

where z_{1}, \ldots, z_{m} and λ are unknowns, and

$$
\begin{equation*}
\tilde{e}=(1,1, \ldots, 1)^{\mathrm{T}} . \tag{A.3}
\end{equation*}
$$

The unknown λ turns out to be real and positive, and is given by

$$
\begin{equation*}
\lambda=z^{*} T z, \quad \text { at the solution. } \tag{A.4}
\end{equation*}
$$

The solution of (A.2) can be achieved by first solving the system

$$
\begin{equation*}
T h=\tilde{e}, \tag{A.5}
\end{equation*}
$$

for $h=\left(h_{1}, \ldots, h_{m}\right)^{\mathrm{T}}$, and letting

$$
\begin{equation*}
\lambda=\left(\sum_{i-1}^{m} h_{i}\right)^{-1} \tag{A.6}
\end{equation*}
$$

and finally setting

$$
\begin{equation*}
z=\lambda h \tag{A.7}
\end{equation*}
$$

Proof. We start by expressing the problem in terms of real variables. Let us write T in the form

$$
\begin{equation*}
T=M+\mathrm{i} N, \quad M \text { and } N \text { real } m \times m \text { matrices. } \tag{A.8}
\end{equation*}
$$

Then, by the assumption that T is Hermitian, it follows that

$$
\begin{equation*}
M^{\mathrm{T}}=M \quad \text { and } N^{\mathrm{T}}=-N . \tag{A.9}
\end{equation*}
$$

Writing

$$
\begin{equation*}
z=x+\mathrm{i} y, \quad x \text { and } y \text { real } m \text {-dimensional vectors, } \tag{A.10}
\end{equation*}
$$

and invoking (A.8) and (A.9) in $z^{*} T z$, we have

$$
\begin{equation*}
z^{*} T z=x^{\mathrm{T}} M x+y^{\mathrm{T}} M y+2 y^{\mathrm{T}} N x \tag{A.11}
\end{equation*}
$$

Now the constraint $\sum_{i=1}^{m} z_{i}=1$ in (A.1) is equivalent to two real constraints, namely,

$$
\begin{equation*}
\sum_{i=1}^{m} x_{i}=1 \quad \text { and } \quad \sum_{i=1}^{m} y_{i}=0 \tag{A.12}
\end{equation*}
$$

We now use the method of Lagrange multipliers to minimize (A.11) subject to (A.12). Introducing the Lagrange multipliers -2μ and -2ν for the constraints $\sum_{i=1}^{m} x_{i}=1$ and $\sum_{i=1}^{m} y_{i}=0$, respectively, and taking derivatives with respect to the x_{i} and y_{i}, we obtain the linear system of equations

$$
\begin{equation*}
M x-N y-\mu \tilde{e}=0, \quad M y+N x-\nu \tilde{e}=0 \tag{A.13}
\end{equation*}
$$

which, upon letting $\lambda=\mu+\mathrm{i} \nu$, becomes equivalent to $T z=\lambda \tilde{e}$. We have thus shown the truth of (A.2). Multiplying $T z=\lambda \tilde{e}$ on the left by z^{*}, and using $\sum_{i=1}^{m} z_{i}=1$, we obtain (A.4). Obviously, λ has to be strictly positive. For if λ were zero, then $z=0$ would have to be the solution as T is Hermitian positive definite, but this would contradict the constraint $\sum_{i=1}^{m} z_{i}=1$. The rest of the proof follows easily from (A.2), and we shall omit it.

Appendix B

In this appendix we give a computer code written in standard FORTRAN 77 that implements MPE and RRE as described in the present work.

The implementation of MPE and RRE is done in SUBROUTINE MPERRE that forms the heart of this code.

Use of MPE and RRE in the cycling mode is made possible by SUBROUTINE CYCLE.
The vector sequence for extrapolation is generated by calling SUBROUTINE VECTOR, which, in the present code provides the iteration sequence of Example 1 with $\omega=2$ weighting.

The driving program in the present code is the one that generates some of the results shown in Table 1(b).

We give no further explanations about the code and its use, as the different parts of the code are documented in detail.


```
        EXTERNAL VECTOR AAA00800
        DO 40 IC=1,NCYCLE AAAOO810
        IF (IPRES.EQ.1.OR.IPRES1.EQ.1) THEN AAAO0820
        WRITE(6,101) IC AAA00830
    101 FORMAT(/,' CYCLE NO. ', I3)
        AAA00840
        END IF
        NN=N
        IF (IC.EQ.1) NN=NO
        IF (IPRES.EQ.1.OR.IPRESI.EQ.1) THEN
        WRITE (6,102) NN
        FORMAT(/,' NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS ',I3)
        WRITE(6,103) KMAX
103 FORMAT(/.' WIDTH OF EXTRAPOLATION IS '.I3)
        END IF
        DO 20 J=0,NN-1
        Y,NDIM)
        O 10 I=1,NDIM
        X(I) =Y (I)
    10 CONTINUE
    20 CONTINUE
        CALL MPERRE (METHOD,X,S,KMAX,KOUT,NDIM,Y,Z,VECTOR,Q,R,C,
        *GAMMA, XI,RES,RES1,EPS, IPRES,IPRES1)
        IF (IC.EQ.1) RESP=R(0,0)
        RESC=R(0,0)
        IF (RESC.LE.EPSC*RESP) RETURN
        DO 30 I=1,NDIM
        X(I)=S (I)
        30 CONTINUE
40 CONTINUE
        RETURN
        END
        AAAO0860
        AAA00880
        AAA00890
        AAAO0900
        AAA00910
        AAA00920
        AAA00930
        AAA00940
        AAA00950
        AAA00960
        AAA00970
    AAA00980
    AAA00990
    AAAO1000
    AAA01010
    AAA01020
    AAA01030
    AAAO1040
    AAA01050
    AAA01060
    AAA01070
    AAA01080
    AAA01090
    AAA01100
    AAA01110
        SUBROUTINE MPERRE (METHOD,X,S,KMAX,KOUT,NDIM, Y, Z,VECTOR,Q,R,C, AAA01120
        *GAMMA, XI, RES,RES1,EPS, IPRES,IPRES1)
    AAA01130
C*****************************************************************************ARAO1140
    THIS SUBROUTINE APPLIES THE MINIMAL POLYNOMIAL EXTRAPOLATION (MPE) AAAO1150
    OR THE REDUCED RANK EXTRAPOLATION (RRE) METHODS TO A VECTOR AAAO1160
    SEQUENCE X0,X1,X2,..., THAT IS OFTEN GENERATED BY A FIXED POINT AAA01170
    ITERATIVE TECHNIQUE. AAAO1180
    BOTH MPE AND RRE ARE ACCELERATION OF CONVERGENCE (OR EXTRAPOLATION) AAA01190
    METHODS FOR VECTOR SEQUENCES. EACH METHOD PRODUCES A TWO-DIMENSIONAL AAAO1200
    ARRAY S (N,K) OF APPROXIMATIONS TO THE LIMIT OR ANTILIMIT OF THE AAAO1210
    SEQUENCE IN QUESTION
    AAA01220
    THE IMPLEMENTATIONS EMPLOYED IN THE PRESENT SUBROUTINE GENERATE ARAO1230
    THE SEQUENCES S (0,0)=X0,S (0,1),S(0,2),... . AAA01240
c*****************************************************************************AAAO1250
    AUTHOR : AVRAM SIDI AAA01260
                    COMPUTER SCIENCE DEPARTMENT AAA01270
                    TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY AAAO1280
                    HAIFA 32000, ISRAEL AAA01290
    E-MAIL ADDRESS: CSSSIDI@TECHNION.BITNET AAA01300
C*****************************************************************************AARO1310
    METHOD: IF METHOD.EQ.1, THEN MPE IS EMPLOYED. IF METHOD.EQ.2, THEN AAA01320
        RRE IS EMPLOYED. INPUT. (INTEGER) AAAO1330
    X : THE VECTOR XO. INPUT ARRAY OF DIMENSION NDIM. (DOUBLE AAAOI340
        PRECISION) AAA01350
    S : THE APPROXIMATION S (O,K) PRODUCED BY THE SUBROUTINE FOR AAAO1360
        EACH K. ON EXIT, S IS S(0,KOUT). OUTPUT ARRAY OF DIMENSION AAA01370
        NDIM. (DOUBLE PRECISION)
    KMAX : A NONNEGATIVE INTEGER.THE MAXIMUM WIDTH OF EXTRAPOLATION AAAO1390
        ALLOWED. THUS THE NUMBER OF THE VECTORS X0,X1,X2,..., AAA01400
        EMPLOYED IN THE PROCESS IS KMAX+2 AT MOST. INPUT. (INTEGER) AAA01410
    KOUT : A NONNEGATIVE INTEGER. KOUT IS DETERMINED BY A SUITABLE AAA01420
        STOPPING CRITERION, AND DOES NOT EXCEED KMAX.THE VECTORS AAAO1430
        ACTUALLY EMPLOYED BY THE EXTRAPOLATION PROCESS ARE AAA01440
        X0,X1,X2,\ldots.,XP, WHERE P=KOUT+1. OUTPUT. (INTEGER) AAA01450
    NDIM : DIMENSION OF THE VECTORS. INPUT. (INTEGER)
    Y : WORK ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) AAA01470
```



```
    303 FORMAT (/,' K RES1') AAA02160
        END IF AAA02170
        DO 10 I=1,NDIM AAA02180
        Y(I)=X(I) AAA02190
    10 CONTINUE
        DO 250 K=0,KMAX
C COMPUTATION OF THE VECTOR XJ, J=K+1, FROM XK, AND COMPUTATION OF UK
C
        CALL VECTOR(Y,Z,NDIM)
        DO 20 I=1,NDIM
        Y(I)=Z(I)-Y(I)
    20 CONTINUE
C
C DETERMINATION OF THE ORTHONORMAI VECTOR QK FROM UK BY THE MODIFIED
C GRAM-SCHMIDT PROCESS
    DO 50 J=0,K-1
    SUM=0
    DO 30 I=1,NDIM
    SUM=SUM+Q(I,J)*Y(I)
    continue
    R(J,K)=SUM
    DO 40 I=1,NDIM
        Y(I) =Y(I)-R(J,K)*Q(I,J)
    CONTINUE
    50 CONTINUE
    SUM=0
        DO }60I=1,NDI
        SUM=SUM+Y(I)**2
        6 0 ~ C O N T I N U E ~
            R(K,K)=DSQRT (SUM)
            IF (R(K,K).GT.EPS1*R(0,0).AND.K.LT.KMAX) THEN
            HP=1D0/R(K,K)
            DO }70\mathrm{ I=1,NDIM
            Q(I,K)=HP*Y(I)
        O CONTINUE (R)
            ELSE IF (R (K,K).LE.EPSI*R(0,0)) THEN ANAO2530
            EEE=EPS1
            EEE=EPSI
304 FORMAT (/,', R(',I3,',',I3,') .LE.',1P,D8.1,'*R(0,0).',/)
    END IF
C END OF COMPUTATION OF THE VECTOR QK
    IF (METHOD.EQ.1) THEN
C
C COMPUTATION OE THE GAMMA'S FOR MPE
    DO 90 I=K-1,0,-1
        CI=-R(I,K)
        DO }80\textrm{J}=\textrm{I}+1,\textrm{K}-
        CI=CI-R(I,J)*C(J)
    80 CONTINUE
        C(I) =CI/R (I,I)
    90 CONTINUE
        C(K)=1D0
        SUM=0
        DO 100 I=0,K
        SUM=SUM+C (I)
100 CONTINUE
        IF (DABS (SUM).LE.EPS2) THEN
        WRITE(6,311) K
```



```
311 FORMAT(/,' S( 0,',I3,') IS NOT DEFINED.',/) AAAO2790
    GO TO 250
END IF
    DO 110 I=0,K
GAMMA (I)=C(I)/SUM A AAAO2830
    AAAO2200
    AAA02210
    AAA02220
    AAAO2230
    AAAO2240
    AAA02250
    AAA02260
    AAA02270
    AAA02280
    20
        AAA02300
        AAAO2310
        AAA02320
        AAAO2330
        AAA02340
        AAAO2350
        AAA02360
        AAAO2370
        AAA02380
        AAA02390
    AAAO2400
    AAA02410
    AAA02420
    AAA02430
    AAA02440
    AAA02450
    AAAO2460
    AAA02470
    AAA02480
    AAA02490
    AAAO2500
    AAAO2510
    AAA02520
    AAAO2540
    AAA02560
    AAAO2570
    AAA02580
    AAA02590
    AAA02600
    AAA02610
    AAA02620
    AAAO2630
    AAA02640
    AAAO2650
    AA.AO2660
    AAA02670
    AAA02680
    AAA02690
    AAA02690
    AAAO2700
    AAA02710
    AAAO2720
    AAA02730
    AAA02740
    AAA02750
AAA02760
AAA02770
AAA02780
AAAO2790
AAA02800
AAA02810
# AAA02820
```

110	CONTINUE $\operatorname{RES}=\mathrm{R}(\mathrm{K}, \mathrm{K})$ *DABS (GAMMA (K))	AAA 02840 AAA 02850
C	RES $=R(\mathrm{~K}, \mathrm{~K})$ *DABS (GAMMA (K))	AAA02850
C END	ND OF COMPUtATION OF the gamma's for mpe	AAA02870
C		AAA02880
	ELSE IF (METHOD.EQ.2) THEN	AAA02890
c		AAA02900
c COM	COMPUTATION OF the GAMMA'S FOR RRE	AAA02910
C		AAA02920
	DO $130 \mathrm{I}=0, \mathrm{~K}$	AAA02930
	CI=1D0	AAA02940
	DO $120 \mathrm{~J}=0, \mathrm{I}-1$	AAA02950
	$\mathrm{CI}=\mathrm{CI}-\mathrm{R}(\mathrm{J}, \mathrm{I}) * \mathrm{C}(\mathrm{J})$	AAA02960
120	CONTINUE	AAA02970
	$C(I)=C I / R(I, I)$	AAA02980
130	Continue	AAA02990
	DO $150 \mathrm{I}=\mathrm{K}, 0,-1$	AAA03000
	CI=C (I)	AAA03010
	DO $140 \mathrm{~J}=\mathrm{I}+1$, K	AAA03020
	CI=CI-R (I, J) *GAMMA (J)	AAA03030
140	CONTINUE	AAA03040
	GAMMA (I) $=$ CI/R (I, I)	AAA03050
150	CONTINUE	AAA03060
	SUM $=0$	AAA03070
	DO $160 \mathrm{I}=0, \mathrm{~K}$	AAA03080
	SUM=SUM+GAMMA (I)	AAA03090
160	Continue	AAA03100
	DO $170 \mathrm{I}=0, \mathrm{~K}$	AAA03110
	GAMMA (I) = GAMMA (I) / SUM	AAA03120
170	CONTINUE	AAA03130
	RES $=1 \mathrm{D} 0 / \mathrm{DSQRT}$ (DABS (SUM))	AAA03140
C		AAA03150
C END	END OF COMPUTATION OF the GAmma's for rre	AAA03160
C		AAA03170
	END IF	AAA03180
	KOUT $=$ K	AAA03190
	IF (IPRES.EQ.1.AND.IPRES1.NE.1) THEN	AAA03200
	$\operatorname{WRITE}(6,321) \mathrm{K}, \mathrm{RES}$	AAA03210
321	FORMAT (I3, 2X, 1P, D15.2)	AAA03220
	END IF	AAA03230
	IF (RES.LE.EPS*R(0,0).OR.R(K,K).LE.EPS1*R(0,0)	AAA03240
	* .OR.K.EQ.KMAX.OR.IPRES1.EQ.1) THEN	AAA03250
c		AAA03260
c COM	COMPUTATION OF THE APPROXIMATION $\mathrm{S}(0, \mathrm{~K})$	AAA03270
c		AAA03280
	XI (0) =1D0-GAMMA (0)	AAA03290
	DO $180 \mathrm{~J}=1, \mathrm{~K}-1$	AAA03300
	XI (J) =XI (J-1)-GAMMA (J)	AAA03310
180	CONTINUE	AAA03320
	DO $190 \mathrm{I}=1$, NDIM	AAA03330
	$\mathrm{S}(\mathrm{I})=\mathrm{X}(\mathrm{I})$	AAA03340
190	CONTINUE	AAA03350
	DO $220 \mathrm{~J}=0, \mathrm{~K}-1$	AAA03360
	$\mathrm{HP}=0$	AAA03370
	DO $200 \mathrm{I}=\mathrm{J}, \mathrm{K}-1$	AAA03380
	$\mathrm{HP}=\mathrm{HP}+\mathrm{R}(\mathrm{J}, \mathrm{I}) * \mathrm{XI}(\mathrm{I})$	AAA03390
200	CONTINUE	AAA03400
	DO $210 \mathrm{I}=1$,NDIM	AAA03410
	$S(I)=S(I)+H P * Q(I, J)$	AAAO 3420
210	CONTINUE	AAA03430
220	CONTINUE	AAA0 3440
C		AAA0 3450
C END	END OF COMPUTATION OF THE APPROXIMATION S ($0, \mathrm{~K}$)	AAA03460
C		AAA03470
	END IF	AAA03480
	IF (IPRESI.EQ.1) THEN	AAA03490
C		AAA03500
C EXA	EXACT COMPUTATION OF RESIDUAL L2-NORM.	AAA03510


```
20 CONTINUE
RETURN
AAA04200
AAA04210
```

CYCLE NO. 1
NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 20
WIDTH OF EXTRAPOLATION IS 10

K	RES	RES1
0	$4.75 \mathrm{D}-01$	$4.75 \mathrm{D}-01$
1	$5.36 \mathrm{D}-01$	$5.36 \mathrm{D}-01$
2	$1.52 \mathrm{D}-02$	$1.52 \mathrm{D}-02$
3	$1.93 \mathrm{D}-02$	$1.93 \mathrm{D}-02$
4	$4.23 \mathrm{D}-03$	$4.23 \mathrm{D}-03$
5	$3.79 \mathrm{D}-03$	$3.79 \mathrm{D}-03$
6	$1.41 \mathrm{D}-03$	$1.41 \mathrm{D}-03$
7	$1.00 \mathrm{D}-03$	$1.00 \mathrm{D}-03$
8	$5.16 \mathrm{D}-04$	$5.16 \mathrm{D}-04$
9	$3.04 \mathrm{D}-04$	$3.04 \mathrm{D}-04$
10	$2.00 \mathrm{D}-04$	$2.00 \mathrm{D}-04$

CYCLE NO. 2
NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0
WIDTH OF EXTRAPOLATION IS 10

K	RES	RES1
0	$2.00 \mathrm{D}-04$	$2.00 \mathrm{D}-04$
1	$9.57 \mathrm{D}-05$	$9.57 \mathrm{D}-05$
2	$9.59 \mathrm{D}-05$	$9.59 \mathrm{D}-05$
3	$4.58 \mathrm{D}-05$	$4.58 \mathrm{D}-05$
4	$4.42 \mathrm{D}-05$	$4.42 \mathrm{D}-05$
5	$1.68 \mathrm{D}-05$	$1.68 \mathrm{D}-05$
6	$1.91 \mathrm{D}-05$	$1.91 \mathrm{D}-05$
7	$6.49 \mathrm{D}-06$	$6.49 \mathrm{D}-06$
8	$7.22 \mathrm{D}-06$	$7.22 \mathrm{D}-06$
9	$2.56 \mathrm{D}-06$	$2.56 \mathrm{D}-06$
10	$2.90 \mathrm{D}-06$	$2.90 \mathrm{D}-06$

CYCLE NO. 3
NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0
WIDTH OF EXTRAPOLATION IS 10

K	RES	RES 1
0	$2.90 \mathrm{D}-06$	$2.90 \mathrm{D}-06$
1	$1.18 \mathrm{D}-06$	$1.18 \mathrm{D}-06$
2	$1.38 \mathrm{D}-06$	$1.38 \mathrm{D}-06$
3	$6.20 \mathrm{D}-07$	$6.20 \mathrm{D}-07$
4	$6.64 \mathrm{D}-07$	$6.64 \mathrm{D}-07$
5	$2.43 \mathrm{D}-07$	$2.43 \mathrm{D}-07$
6	$2.63 \mathrm{D}-07$	$2.63 \mathrm{D}-07$
7	$8.58 \mathrm{D}-08$	$8.58 \mathrm{D}-08$
8	$9.15 \mathrm{D}-08$	$9.15 \mathrm{D}-08$
9	$3.95 \mathrm{D}-08$	$3.95 \mathrm{D}-08$
10	$4.17 \mathrm{D}-08$	$4.17 \mathrm{D}-08$

CYCLE NO. 4
NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0
WIDTH OF EXTRAPOLATION IS 10

K	RES	RES 1
0	$4.17 \mathrm{D}-08$	$4.17 \mathrm{D}-08$

1	$2.44 \mathrm{D}-08$	$2.44 \mathrm{D}-08$
2	$2.40 \mathrm{D}-08$	$2.40 \mathrm{D}-08$
3	$1.29 \mathrm{D}-08$	$1.29 \mathrm{D}-08$
4	$1.24 \mathrm{D}-08$	$1.24 \mathrm{D}-08$
5	$5.49 \mathrm{D}-09$	$5.49 \mathrm{D}-09$
6	$5.39 \mathrm{D}-09$	$5.39 \mathrm{D}-09$
7	$1.95 \mathrm{D}-09$	$1.95 \mathrm{D}-09$
8	$1.96 \mathrm{D}-09$	$1.96 \mathrm{D}-09$
9	$8.71 \mathrm{D}-10$	$8.71 \mathrm{D}-10$
10	$9.27 \mathrm{D}-10$	$9.27 \mathrm{D}-10$
CYCLE NO.		5

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0
WIDTH OF EXTRAPOLATION IS 10

K	RES	RES1
0	$9.27 \mathrm{D}-10$	$9.27 \mathrm{D}-10$
1	$5.14 \mathrm{D}-10$	$5.14 \mathrm{D}-10$
2	$5.46 \mathrm{D}-10$	$5.46 \mathrm{D}-10$
3	$2.74 \mathrm{D}-10$	$2.74 \mathrm{D}-10$
4	$2.71 \mathrm{D}-10$	$2.71 \mathrm{D}-10$
5	$1.17 \mathrm{D}-10$	$1.17 \mathrm{D}-10$
6	$1.09 \mathrm{D}-10$	$1.09 \mathrm{D}-10$
7	$4.64 \mathrm{D}-11$	$4.64 \mathrm{D}-11$
8	$4.28 \mathrm{D}-11$	$4.28 \mathrm{D}-11$
9	$2.07 \mathrm{D}-11$	$2.07 \mathrm{D}-11$
10	$2.19 \mathrm{D}-11$	$2.18 \mathrm{D}-11$

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0
WIDTH OF EXTRAPOLATION IS 10

K	RES	RES1
0	$2.18 D-11$	$2.18 D-11$
1	$1.25 D-11$	$1.25 D-11$
2	$1.26 D-11$	$1.26 D-11$
3	$7.23 D-12$	$7.23 D-12$
4	$6.32 D-12$	$6.32 D-12$
5	$3.29 D-12$	$3.28 D-12$
6	$2.85 D-12$	$2.85 D-12$
7	$1.27 D-12$	$1.28 D-12$
8	$1.15 D-12$	$1.15 D-12$
9	$5.79 D-13$	$5.67 D-13$
10	$5.67 D-13$	$5.49 D-13$

References

[1] O. Axelsson, Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations, Linear Algebra Appl. 29 (1980) 1-16.
[2] S. Cabay and L.W. Jackson, A polynomial extrapolation method for finding limits and antilimits of vector sequences, SIAM J. Numer. Anal. 13 (1976) 734-752.
[3] R.P. Eddy, Extrapolating to the limit of a vector sequence, in: P.C.C. Wang, Ed., Information Linkage between Applied Mathematics and Industry (Academic Press, New York, 1979) 387-396.
[4] S.C. Eisenstat, H.C. Elman and M. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal. 20 (1983) 345-357.
[5] D.K. Faddeev and V.N. Faddeeva, Computational Methods of Linear Algebra (Freeman, San Francisco, 1963).
[6] W.F. Ford and A. Sidi, Recursive algorithms for vector extrapolation methods, Appl. Numer. Math. 4 (6) (1988) 477-489.
[7] G.H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins Univ. Press, Baltimore, MD, 2nd. ed., 1989).
[8] M. Israeli and A. Sidi, An invariance property of some vector extrapolation methods, in preparation.
[9] M. Mešina, Convergence acceleration for the iterative solution of the equations $X=A X+f$, Comput. Methods Appl. Mech. Engrg. 10 (2) (1977) 165-173.
[10] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp. 37 (1981) 105-126.
[11] Y. Saad and M.H. Schultz, A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856-869.
[12] A. Sidi, Convergence and stability properties of minimal polynomial and reduced rank extrapolation algorithms, SIAM J. Numer. Anal. 23 (1986) 197-209.
[13] A. Sidi, Extrapolation vs. projection methods for linear systems of equations, J. Comput. Appl. Math. 22 (1) (1988) 71-88.
[14] A. Sidi, On extensions of the power method for normal operators, Linear Algebra Appl. 120 (1989) 207-224.
[15] A. Sidi, Application of vector extrapolation methods to consistent singular linear systems, Appl. Numer. Math. 6 (6) (1989/90) 487-500.
[16] A. Sidi and J. Bridger, Convergence and stability analyses for some vector extrapolation methods in the presence of defective iteration matrices, J. Comput. Appl. Math. 22 (1) (1988) 35-61.
[17] A. Sidi and M.L. Celestina, Convergence acceleration for vector sequences and applications to computational fluid dynamics, NASA TM-101327, ICOMP-88-17 (August 1988); also: AIAA Paper 90-0338, AIAA 28th Aerospace Sciences Meeting, Reno, NV.
[18] A. Sidi, W.F. Ford and D.A. Smith, Acceleration of convergence of vector sequences, SIAM J. Numer. Anal. 23 (1986) 178-196.
[19] D.A. Smith, W.F. Ford and A. Sidi, Extrapolation methods for vector sequences, SIAM Rev. 29 (1987) 199-233; Correction, SIAM Rev. 30 (1988) 623-624.
[20] R.S. Varga, Matrix Iterative Analysis (Prentice-Hall, New York, 1962).
[21] P. Wynn, Acceleration techniques for iterated vector and matrix problems, Math. Comp. 16 (1962) 301-322.
[22] D.M. Young and K.C. Jea, Generalized conjugate gradient acceleration of nonsymmetrizable iterative methods, Linear Algebra Appl. 34 (1980) 159-194.
[23] S. Yungster, Shock wave/boundary layer interactions in premixed hydrogen-air hypersonic flows: a numerical study, NASA TM-103273, ICOMP-90-22 (November 1990); also: AIAA paper 91-0413, AIAA 29th Aerospace Sciences Meeting, Reno, NV.

