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Abstract 

Sidi, A., Efficient implementation of minimal polynomial and reduced rank extrapolation methods, Journal of 
Computational and Applied Mathematics 36 (1991) 305-337. 

The minimal polynomial extrapolation (MPE) and reduced rank extrapolation (RRE) are two very effective 
techniques that have been used in accelerating the convergence of vector sequences, such as those that are 
obtained from iterative solution of linear and nonlinear systems of equations. Their definitions involve some 
linear least-squares problems, and this causes difficulties in their numerical implementation. In this work 
timewise efficient and numerically stable implementations for MPE and RRE are developed. A computer 
program written in FORTRAN 77 is also appended and applied to some model problems, among them a 
hypersonic flow problem involving chemical reactions. 

Keywork Extrapolation, convergence acceleration, minimal polynomial extrapolation, reduced rank extrapola- 
tion, vector sequences, linear and nonlinear systems, fixed-point iterative techniques, least squares, QR 
factorization. 

1. Introduction 

The minimal polynomial extrapolation (MPE) of Cabay and Jackson [2] and the reduced rank 
extrapolation (RRE) of Eddy [3] and MeSina [9] are two methods used in accelerating the 
convergence of a large class of vector sequences. In particular, they are employed for accelerating 
the convergence of fixed-point iterative techniques for linear or nonlinear systems of equations, 
such as those that arise in the discrete solution of continuum problems. 

A unified treatment of these and other extrapolation methods has been given in the survey 
paper [19], where some numerical testing for them is also provided. Detailed convergence 
analyses for MPE and RRE have been presented in [12,13,16], and we shall mention some of the 
results that follow from these analyses later in this work. Also, both MPE and RRE are very 
closely related to some well-known Krylov subspace methods when they are applied to linearly 
generated vector sequences, and this subject is explored in detail in [13]. In fact, MPE and RRE 
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are equivalent to the Arnoldi method and generalized conjugate residuals (GCR), respectively, 
when they are all applied to linear systems of equations starting with the same initial approxima- 
tion. For the method of Amoldi, see [lo], and for GCR, see [4]. We also mention that the 
conjugate gradient type method of [l], the method of [22] that has been called ORTHODIR, and 
the recent generalized minimal residual method (GMRES) of [ll] are all equivalent to GCR, and 
are used in solving linear equations. Recursion relations that exist among various approximations 
that are obtained from both methods are discussed in [6], where the existence of an interesting 
four-term lozenge recursion is shown. MPE and RRE have been employed successfully in [17] in 
accelerating the convergence of some finite-difference solution techniques in large-scale compu- 
tational fluid dynamics problems. Finally, the application of MPE and RRE and other vector 
extrapolation methods to the iterative solution of consistent singular linear systems has been 
considered in [15], where this approach is shown to be sound theoretically, and precise 
convergence analyses are also provided. 

The definitions of MPE and RRE involve the solution of a linear least-squares problem, the 
number of equations in this problem being equal to the dimension of the vectors in the given 
sequence. Since, in general, this dimension may be very large, as it is, for example, in 
three-dimensional computational fluid dynamics problems, the matrix of the least-squares 
problem may be very large. Thus, if standard linear least-squares packages are used, the time and 
core memory requirements in the implementation of MPE and RRE may become prohibitive. To 
circumvent this problem, the solution of the linear least-squares problem was achieved in [17] by 
solving the corresponding normal equations that is much less costly than using least-squares 
packages. This approach proves to be quite efficient when the amount of extrapolation is not 
very large. When the amount of extrapolation is increased, however, the accuracy decreases, as 
the normal equations become very ill-conditioned. 

In the present work we propose new implementations for MPE and RRE, which are very 
inexpensive as far as both time and core memory requirements are concerned, and are stable 
numerically as the amount of extrapolation is increased. These implementations are also quite 
interesting mathematically, as they allow one to compute exactly (or estimate) the accuracy 
achieved in the extrapolation process without actually computing the residuals at each stage. This 
can be employed to further reduce the cost of implementation. 

The plan of this paper is as follows. In Section 2 we briefly review the definitions of MPE and 
RRE. In Section 3 we consider the application of MPE and RRE to vector sequences that are 
generated by iterative solution of linear systems as this provides the motivation for different 
modes of usage of the methods. We devote Sections 4-6 to the development of the new 
implementations of MPE and RRE and the description of the mathematical features of these 
implementations. In Section 4 we give the details of the new implementations. One of the crucial 
ingredients of these implementations is the efficient solution of the least-squares problems by use 
of QR factorization. In Section 5 we show how, in these new implementations, the &-norms of 
the residuals can be computed exactly for linear systems (or estimated for nonlinear systems) 
without doing extra vector computations. This enables us to assess the accuracy of the 
extrapolation without actually carrying it out, and can be used to reduce the amount of 
computation drastically. In Section 6 we discuss the operation counts and the storage require- 
ments for the new implementations. In Section 7 we discuss some practical matters concerning 
the efficient use of MPE or RRE or any other vector extrapolation methods. Finally, in Section 8 
we give some numerical results obtained by applying MPE and RRE through their new 
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implementations to three model problems. Two of these problems are linear, and the third is a 
nonlinear problem arising from finite-difference approximation of a two-dimensional hypersonic 
flow problem involving the Navier-Stokes equations with chemical reactions. A computer 
program written in FORTRAN 77 that implements MPE and RRE is provided in Appendix B. 

2. Review of MPE and RRE 

Let x0, x1, x2,... be a given sequence of N-dimensional column vectors, and denote its limit 
or antilimit by s. The vectors xj are assumed to be complex, in general. Define 

ui = Axi = xi+1 - xi and y = A2xi, i=o,1,2 )... . (24 

Define the N X ( j + 1) matrices U$n) and win) by 

q@)= [4%+1l**. IG+j] (2.2) 

and 

TJ”)= [M&vn+* I . . . Iw,+J. (23 

2.1. Definition of MPE 

For MPE the approximation s,,~ to s, the desired limit or antilimit, is defined by 

s n,k= i YjXn+j, (24 

j=O 

where the yj are determined as follows. 
(i) Use the least-squares method to solve the overdetermined and, in general, inconsistent 

linear system 

u,(“,,c = - u,,k, (2.5) 

where c = (co, cl,.. .) Ck_I)T. 
(ii) Set ck = 1, and compute the yj by 

‘j 
Yj = cfxoci 7 O GjG kY 

assuming that C~zocj # 0. When this condition is not satisfied, s,,k does not exist. 

(2.6) 

2.2. Definition of RRE 

For RRE the approximation s,,k to s, the desired limit or antilimit, is defined by 
k-l 

s 
n,k =xn + C Si”n+iY (2.7) 

i=O 

where the Ei are determined by solving the overdetermined and, in general, inconsistent linear 
system 

W,‘l’,.$ = -24 n, (2.8) 
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with 5=(to, t1,...,5k-1)T, using the least-squares method. Since a least-squares solution to (2.8) 
always exists, s,,~ always exists. In particular, s,,~ exists uniquely when the matrix I@!\ has full 
rank, i.e., rank( IV,‘!!\) = k, or, equivalently, when the vectors w,,, w,+i, . . . , w,,+~_~ are linearly 
independent. It can easily be shown that rank(W,(!\) = k, thus s,,~ exists uniquely, when 
rank(U,‘“‘) = k + 1. 

There exists an equivalent formulation of RRE that seems to be more suitable for computer 
implementation. It also has the advantage of unifying most of the algorithmic aspects of MPE 
and RRE. In this formulation s, k is of the form given in (2.4); only this time the yj are obtained 
by the least-squares solution of the overdetermined and, in general, inconsistent linear system 

u/yy = 0 3 tw 
where v=(uo, Ye,..., yk)=, subject to the constraint 

5 y,=l. (2.10) 
j=O 

(Note that the y, in MPE satisfy (2.10) automatically, as can easily be seen from (2.6).) 

Remarks. (1) It is important to realize that the yj in s,,~ = CS=oyj~n+j depend solely on 

x x,+1>-.., x,+k+l* 

“i2) I n most applications, N, the dimension of the vectors xi, is much larger than k, so that the 
matrices UJ”’ have many more rows than columns. Therefore, there is great need to reduce the 
amount of’numerical work with the columns of the matrices Ujcn). 

3. Application of MPE and RRE to linear systems 

Consider the linear nonsingular N-dimensional system 

x=Ax+b, (3-I) 

where A is an N X N matrix and b is an N-dimensional column vector. Pick an initial vector x0, 
and generate the vectors xi, x2,. . . by the iterative scheme 

xi+1 =Ax,+b, i=O, l)... . (3.2) 

The solution s of (3.1) is now the limit of the sequence x0, x1, x2,. . . , when the latter converges, 
otherwise, s is the antilimit. 

Let k, be the degree of the minimal polynomial of the matrix A with respect to the vector 

XII - s. Then the following statements are true. 

(i) % k , o is uniquely defined both for MPE and RRE, and 

S n,k, = S. (3.3) 

Also the linear systems in (2.5), (2.8) and (2.9) are consistent for k = k,, even though they may 
be overdetermined. This is a consequence of the fact that the vectors u~+~, 0 <j < k, - 1, are 
linearly independent, and u, +k, lies in their span. (See [13, Section 2.21.) 

(ii) For k < k,, s,,k is uniquely defined for RRE. For MPE, however, s,,k may fail to exist 
when k < k,. When the matrix C = I - A has positive definite Hermitian part, s,,~ exists 
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uniquely for MPE also for k < k,. (See [13, Section 2.21.) More generally, s,,~ exists uniquely for 
MPE also for k < k,, if the eigenvalues of C all lie on one side of a straight line through the 
origin in the complex plane, or, equivalently, if they all lie in an open sector S = { CL: 1 arg p - 6’ 1 -C 

$rr } , for some 8, --71< 8 < T. This result can be proved exactly as [13, Theorem 2.21 with C there 
replaced by e-“C. 

(iii) When the Arnoldi method and GCR are used in solving the linear system Cx = b, where 
C = I - A, with x, as the initial vector, they become equivalent to MPE and RRE, respectively. 
Specifically, the approximations obtained from the Amoldi method and GCR are exactly 
s s,z,... n,l, that are produced by MPE and RRE, respectively. (See [13, Section 2.31.) 

(iv) ‘If the distinct nonzero eigenvalues of A are denoted hj, j = 1, 2,. . . , and are ordered such 
that 

(A, 1 >, 1 A, I > I A, I 2 * * * ) 

then, provided 

IhI ’ Ihk+l I) 
and A is diagonalizable, we have 

(3.4) 

(3.5) 

both for MPE and RRE. (The coefficient of I hk+l I n on the right-hand side of (3.6) becomes 

large when the largest eigenvalues hi, A,, . . . are close to 1.) In view of the fact that x, - s = 
0( 1 A, I “), as n + co, we conclude that MPE and RRE are both true acceleration methods. 
Under the same conditions, if s,,~ - s is precisely 0( I A,,, I “) as n -+ co, then the yj for MPE 
and RRE are such that 

k x-x. h n 
Pk(h) = ; yju= ,Ql, +o q il Ii ) asn+oo, 

j=O I 
(3.7) 

i.e., for fixed k and for all sufficiently large n, the polynomial P’“,k’(h) has precisely k zeros 
that tend to Xi, X2,..., h,. Furthermore, if we denote the zero of P’“,k’(X) that tends to Xj by 

Xj( n), then 

hj(n)-Xj=O , asn+co, l<j<k. 

The proofs of (3.6) and (3.7) have been given in [12, Sections 3 and 41. The proof of (3.8) will be 
published in the future. In case the matrix A in (3.2) is normal, the right-hand sides of (3.7) and 

(3.8) can be replaced by 0( I Xk+,/hk I 2n) and 0( 1 Xk+l/hj I  2n), respectively. (The result in (3.6) 
remains the same, however.) This implies that when A is normal, the rates of convergence of 
J’c”,k)( X) and its zer o s hj( n) are twice those that can be achieved otherwise. These results follow 
from the corresponding results of [14]. 

For the most general case in which the matrix A is not diagonalizable, the results in 
(3.6)-(3.8) need to be modified considerably. For a complete treatment of this case see [16, 
Sections 2, 3 and 51, where modifications of (3.6) and (3.7) are given. The modification of (3.8) 
will be published in the future. 

A direct consequence of the result given in (3.6) is that better accuracy may be obtained if 
extrapolation is preceded by a number of fixed-point iterations. This has indeed been observed 
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numerically both for linear and nonlinear problems. We shall comment on this again in Section 
7. 

(v) Let us denote C = I - A. Then s is the solution to Cx = b. Denote by ?z, the set of all 
polynomials Qk( X) of degree at most k that satisfy Qk(0) = 1. Consider now s,,~ as obtained by 
applying MPE or RRE to the vector sequence x0, x1,. . . . Then 

II +,,d II G ($& II Q,(C) II) II d-d IIT for RR6 (3 3 

where r(x) = Ax + b - x = b - Cx = - C(x - s) is the residual for x, and ]I . II is the I,-vector 
norm, or the matrix norm induced by it. (In fact, I] T(s,,~) (1, k = 0, 1, 2,. . . , is a monotonically 
decreasing sequence for RRE.) Similarly, if C, = $( C + C * ), the Hermitian part of C, is positive 
definite, then 

where 

i 

L, if C is normal, 

p = L/w, otherwise, 

(3.10) 

(3.11) 

with L = 1 I C, ‘/‘CC, ‘I2 11 2 1. Note that both I] Y(X) ]I and ]I Cg’(x - s) I] are true norms for 
x - s. Two types of bounds for mineA E_ I] Qk( C) I], in case C, is positive definite, are given in 
[13, Section 41, and these can be used to derive upper bounds for ]I T(s,,~) ]I and I] C~2(s,,, - s) ]I 
for fixed n and increasing k. For details see [13]. These bounds are employed in [17] to justify 
the use of the extrapolation strategy that has been called “cycling” in [19] and all subsequent 
publications. 

Finally, analogous and almost identical results exist for the case in which the system in (3.1) is 
singular but consistent, so that it has an infinity of solutions. In this case the limit or antilimit 
depends on x,, in a very specific manner. For details, see [15]. 

Remark. The various Krylov subspace methods like the Arnoldi method and GCR and others 
can be applied only to linear systems. Acceleration methods such as MPE and RRE, however, 
can be applied to nonlinear systems as well as linear ones. The reason for this is that, unlike the 
Krylov subspace methods, MPE and RRE are defined exclusively in terms of the given vector 
sequence, which may be generated, for example, by an iterative method. Whether the vector 
sequence is generated linearly or nonlinearly is irrelevant to the definitions of MPE and RRE 
and other vector extrapolation methods. This is a very important property of vector extrapola- 
tion methods. 

4. Implementation of MPE and RRE 

4.1. General considerations 

As we have seen in Section 2, both MPE and RRE entail linear least-squares problems in their 
definitions. There is, therefore, an immediate need for the efficient solution of these problems. 
We propose to solve these problems by applying the QR factorization to the matrices I$~). 
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To keep the notation simple we shall set n = 0 everywhere, and denote the matrices C$J”) by 
C$. This amounts to simply renaming x, and calling it x0. 

We assume that the vectors uo, ul,. . . , uk are linearly independent so that the N X (k + 1) 

matrix U, is of full rank k + 1. The case in which uo, ui,. . . , uk are linearly dependent will be 
discussed later in this section. We recall that for the linear system in (3.1) this assumption is valid 
when k -c ko, where k. is the degree of the minimal polynomial of the matrix A with respect to 
the vector x0 - s. Therefore, there is a unique N X (k + 1) matrix Qk, 

whose columns qi satisfy 

(qi, qj) = qi*qj = sijV 

and a unique (k + 1) X (k + 1) upper triangular matrix R,, 

roa r01 ro2 --* ‘Ok 

r11 r,, a-. rlk 

R,= 
r,, e-0 r2k 

3 

0 rkk 

(4.1) 

P-2) 

(4.3) 

with rji > 0, i = 0, l,..., k, such that 

uk = QkRk. (4.4 

This QR factorization amounts to orthonormalizing the vectors uo, ui, u2,. . . , in this order. It 
is important to retain this order, as this enables us to form the QR factorization of uk+ 1 by 
appending one additional column to Qk to obtain Qk+ 1, and a corresponding column to R, to 
obtain Rk+,. 

QR factorization can be performed in different ways. The simplest way is the Gram-Schmidt 
(GS) process for orthonormalization of uo, ui, u2,. . . . This process is very unstable, however, in 
the sense that the computed vectors qo, ql, q2,. . . are very far from being orthogonal. The 
modified Gram-Schmidt (MGS) process, on the other hand, seems to be quite stable, and is the 
one that we have preferred. We recall that MGS is entirely equivalent to GS mathematically, and 
requires the same number of arithmetic operations as GS. The two methods are different 
numerically, however. For details, see, e.g., [7, pp. 218, 2191. 

For the sake of completeness we describe MGS for the case in which the vectors uo, ul, u2,. . . 

are introduced one by one and in this order. 

Algorithm MGS 
Step (1) Read uo, and compute the scalar roe and the vector q. according to 

r, = (uo, ulP2 and q. = uo/r,. 
Step (2) for k = 1, 2,. . . do 

read uk, and set ulp’ = uk 
for j=O to k- 1 do 
‘jk,=(q. up’) J’ 

(J+l) = 
uk 

.j/ - rikqj 

end 
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compute rkk and qk according to 
rkk = ( uik’, uik))“* and qk = uik)/rkk 

end 

(Here (y, z) stands for the Euclidean inner product y*z, as before.) 
It is easy to see that, when implementing MGS on a computer, up’, ui’), . . . , ukk’, and qk can 

all be made to occupy the same storage locations. As we shall see in the next paragraph, the 
computation of Sg,k can be based on the qj without the need to save either the xj or the uj. We 
can thus let uk occupy the same storage locations as the uy). 

QR factorization can also be achieved by using Householder transformations. Although the 
computed matrices Qk produced in this approach are closer to unitary than those produced by 
MGS when the I,-condition number of Uk is large, the amount of computing in this approach is 
about twice that required by MGS. We shall elaborate on this further in Section 7. 

We now recall from the definitions of MPE and RRE, that the approximations so,k for both 
methods can be expressed in the form 

k k 

s o,k = c YjXj, with c yj = 1. (4.5) 
j=O J=o 

Assuming that yo, yi, . . . , yk have been determined, let us COmpUte to, 51,. . . , [k_ l from 

<o=l-yo and .$j=(j_l-yj, l<j<k-1. (4.6) 

Then, we can re-express so,k in the form 
k-l 

SO,k = X0 + C 5iUi = X0 + uk-l’$, 

i=O 

where 5=Go, &,..., (k_l)T. Substituting now &_i = Qk_lRk_l in (4.7), we obtain 
k-l 

(4.7) 

where 

SO,k =XO f Q/c-,(Rk-,O =XO -f C Vjqj> 
j=O 

(4.8) 

qj = (j + 1)st component of the column vector R,_,(, j = 0, 1,. . . , k - 1. (4.9) 

This approach to the computation of Sg,k is very advantageous, as it enables us to overwrite 
x1, x2,--- and uo, ui,. . . , and thus saves a lot of storage. 

4.2. Determination of the yj when rank(&) = k + I 

The only thing that remains to be done now is to determine the y,, and this requires separate 
treatments for MPE and RRE. 

4.2.1. Determination of the yj for MPE 
As mentioned in Section 2, in order to determine the yj for so,k in MPE we first solve the 

overdetermined system 

&_ic= -uk (4.10) 
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by least squares. Since we also assume that the rank of U, is k + 1, we conclude that c is the 

unique solution of the normal equations 

u,*_,u,_,c = - Uk?,U,. (4.11) 

Upon invoking U,_, = Q,_,R,_, in (4.11) and using the fact that Qz_lQk_l = IkXk (the k X k 

identity matrix), and the fact that R,_, is a nonsingular matrix, we obtain 

R,_,c = - Q,*_,u,. (4.12) 

It is easy to see that 

Q,Luk=h, qk,...,~k-&~=~k, (4.13) 

so that (4.12) becomes 

R,_,c = -pk. (4.14) 

This is a linear system of k equations in the k unknowns co, ci, . . . , ck__l, and its matrix R,_, is 
upper triangular. Hence its solution can be achieved easily by back substitution. 

Once co, ci,. . 

c;=(=c; # 0. 
. , c&l are determined, we set ck = 1, and compute the yj from (2.6), provided 

4.2.2. Determination of the yj for RRE 
Again as we mentioned in Section 2, the yj for fo,k in RRE can be determined by solving the 

overdetermined system 

u,y = 0 (4.15) 

by least squares subject to the constraint 

; yj=l. (4.16) 
j=O 

This amounts to minimizing the positive definite quadratic form y*U,*U,y subject to (4.16). 
Consequently, the Lemma in Appendix A applies, and the yj can be obtained by solving the 
linear system of k + 2 equations 

‘&* uky = AZ, i Yj=l, 
j=O 

for yo, Ye,..., yk and h. Here 

z= (1, l)...) 1)‘. 

As is stated in the same lemma, X turns out to be strictly positive, and is given by 

(4.17) 

(4.18) 

A = y * uk* uky , at the sohhm. (4.19) 

The yj can be obtained by first solving the linear system 

U,*U,d = e”, 

for d = (do, d,, . . . , dk)T, and letting 

(4.20) 

(4.21) 
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and finally setting 

y=Ad. (4.22) 

As far as the solution of the system in (4.20) is concerned, we accomplish this again by using 
the QR factorization of U,. Again by Q$Qk = I~k+ljx(k+lj (the (k + 1) X (k + 1) identity 
matrix), we can rewrite (4.20) in the form 

R,*R,d = e”. (4.23) 

This system can be solved by forward and back substitution as the matrix R, is upper triangular. 

4.3. Treatment of the case rank(&) = k 

Up to this point we discussed the case in which the vectors ua, ui,. . . , uk are linearly 
independent. Since these vectors are being introduced one by one, we can view this case as 
adding the vector uk to the linearly independent set { u,,, ui, . . . , uk_ 1 } and obtaining the linearly 
independent set { u,,, ui, . . . , uk >. We now consider the case in which { ua, ui, . . . , u&_~} is a 
linearly independent set, but { uo, ui, . . . , uk } is not, i.e., rank(U,) = k. This exhibits itself 
through r,, = 0 in the QR factorization step. 

If we apply MPE, then we can compute the yj by solving the (nonsingular) system in (4.14) 
and employing (2.6), provided Cf=,ci # 0 there. We then compute s~,~. 

If we apply RRE, we can compute so,k as follows. First, by the linear dependence of 
uo, u1,***, u.4, there exist constants ao, al,. . . , ak, not all zero, such that Cf=(=,oliui = 0. This 
implies that the linear system in (4.15) is consistent. Also we can write U, = C&R,, where Qk and 
R, are as in (4.1)-(4.3), qo, qi,.. ., qk_l are uniquely determined and qk is arbitrary in (4.1), and 
rkk = 0 in (4.3). Multiplying both sides of (4.15) by Q$, and using the fact that QzQk = 
I (k+l)x(k+l), we obtain the system of k + 2 equations 

R,y=O and i y,=l. (4.24) 
j=O 

Now, by rkk = 0, this system actually consists of the k + 1 inhomogeneous equations 

(4.25) 
j=O 

in the k+ 1 unknowns yo, yi,..., yk. Since a least-squares solution for the linear system in (2.8) 
always exists, a solution for the yj always exists too. Consequently, the equations in (4.25) always 
have a solution for RRE. Once we determine a set of yj’s, we compute s~,~. 

Comparing (4.25) with (4.14) and (2.6), we see that if so,k exists for MPE when rank(U,) = k, 
then it iS equal t0 Sg,k for RRE. 

If the vector sequence x0, xi, x2,. . . is generated as in (3.2), then, as explained in Section 3, 
rank( Uk) = k + 1 for k -C k,, where k, is the degree of the minimal polynomial of A with respect 
to x0 - s. The smallest value of k for which rank( Uk) = k is k,, and at k = k, we already reach 
the solution, i.e., s~,~, = s. That iS the first time rkk = 0 occurs, we have so k = s, and stop. 

If the vector sequence x0, xi, x2,. . . is not generated linearly, and’ rank(Uk_i) = k, but 
rank(l/,) = k -C k + 1, then we can compute so,k first, and then take so,k or a nearby vector as x0, 
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and restart the computation. Other strategies for continuing the computation can likewise be 
devised, but we shall not pursue this matter further. 

It should be mentioned, however, that, due to round-off, the chances of encountering the case 
rank( U,) < k + 1 in practice are extremely small. We have thus not included the treatment of this 
case in the computer program given in Appendix B. 

4.4. Summary of implementations 

We now summarize the major steps of the implementations, as they have been described 
above. We assume that all the matrices U, have full rank. 

Suppose that, starting with x0, we have constructed the matrices Qk_1 and R,_,. 
We now read xk+, and compute uk = xk+i - xk. Following this, using MGS, we compute the 

scalars rOk, rlk,. . . , r,, and the orthonormal vector qk, which we use to augment the matrices 
Qk_ 1 and R,_ 1 to give Qk and Rk, respectively. 

We next proceed to the computation of the yj. For MPE, we first solve the upper triangular 
k x k system in (4.14) for ca, ci, . . . , c~__~ by back substitution, and then use (2.6) to obtain the 
yj. For RRE, we solve the (k + 1) X (k + 1) system in (4.23) for d, and then determine the yj by 
(4.21) and (4.22). The solution of the system in (4.23) can be achieved very simply by forward 
and back substitution as R, is upper triangular. 

Once the yj have been determined, we compute the tj by (4.6) and the qj by (4.9), and finally, 

~0.k by (4.8). 
Next we read x~+~, and proceed similarly, until a suitable stopping criterion is met. 
It should be noted that, strictly speaking, neither rkk nor qk is needed for determining s~,~, 

and their computation can be completed after x~+~ has been introduced. In the computer 
program that we give in Appendix B, though, we chose to compute rkk and qk before the 
computation of s~,~. 

Finally, it is not difficult to see that these implementations are very appropriate for vector 
computers as their handling of the xi, ui, and q,. can be entirely vectorized. The computer 
program given in Appendix B has been written to take full account of this. 

5. Estimation of residual norms 

5.1. General considerations for linear and nonlinear systems 

Let s be the solution of the linear or nonlinear system of equations 

x = F(x), (5.1) 

and let us define the residual for an arbitrary vector x by 

r(x) = P(x) -x. (5.2) 

Let x0 be a given initial approximation, and generate the sequence of vectors xi, x2,. . ., 

according to the fixed-point iterative method 

xi+1 =F(xj), j=o, 1)“. . (5 *3) 
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Consequently, the residual for xj is given by 

r(xj) = F(Xj) - xi = xi+1 - xi = uj, 

thus is readily available. 

(5 -4) 

Let us assume that MPE or RRE is applied to the sequence x0, x1, x2,. . . , and that we are 
computing the sequence s,,~, s,,~, . . . . Let us assume also that we would like to stop the 
computation as soon as some norm of r(+) becomes < e for some k, c > 0 being a preassigned 
level of accuracy. The most direct way of doing this would be by actually computing the vectors 
s PI.19 r(s,,l), s,,~, r(~,,~), . . . , which is very costly. 

Indeed, the computation of s,,~ involves about k vector additions and k scalar-vector 
multiplications, that of Y(s,,~), by (5.2), amounts to one additional fixed-point iteration and one 
vector addition, and the computation of the norm of r(~,,~) requires an additional inner product. 
In addition, the number of the vector operations increases with increasing k. In view of this, the 
most desirable situation is one that enables us to estimate some norm of r(~,,~) without having 
to compute either .s,,~ or ~(s,,~). 

5.2. Residual computation for linear systems 

We now devise a strategy by which the I,-norms of the residuals r(.+) can be obtained 
exactly without the need to compute either s,,~ or r(s,,k), when the sequence x0, xi, x2,. . . is 
being generated linearly by the iterative method in (3.2), i.e., when F(x) = Ax + b in (5.3). The 
case in which F(x) is nonlinear will be considered at the end of this section. 

When F(x) = Ax + b, the residual for an arbitrary vector x, by (5.2), becomes 

r(x) =Ax+b-x. 

Consequently, by (2.10), (3.2) and (2.1), we have 
k 

+O,k) = C Yj"j = U,Y, 
j=O 

and the I,-norm of r(so,k) is thus 

11 +O,k) 11 = bbO,kh r(s0.k))1’2 = (Y*“,*ukd1’2* 

By invoking U, = Q,R, in (5.7), we obtain 

lP+O,k) II = (Y*Rk*RkY)1'2. 
We now analyze y*RzR,y for MPE and RRE separately. 

5.2.1. l-,-norm of residual with MPE 
Let us compute R,y first. By (4.12)-(4.14) we have 

[Rk-&)k][;] =O. 

By dividing both sides of (5.9) by CfSocj with ck = 1, and invoking (2.6), we obtain 

[R,-,IP,]Y=~. 

(5.5) 

(5 4 

(5.7) 

(5 -8) 

6% 

(5.10) 
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Substituting (5.10) in R,y, we finally have 

R,Y = (0, 0,. . . ,O, rkk~k)=, 

from which we obtain 

(Y *%%Y )1’2 = r,c,c I yk I. 

Consequently, for linearly generated sequences 

11 r&k) 11 = rkk 1 Yk I 

exactly, with r(x) as defined in (5.5). 

(5.11) 

(5.12) 

(5.13) 

5.2.2. l,-norm of residual with RRE 
By (4.19) we immediately have 

(y*u,*u,y)“2 = JT;, (5.14) 

with h as determined from (4.23) and (4.21). Consequently, for linearly generated sequences 

11 r(SO,k) II = Ji; (5.15) 

exactly, with r(x) as defined in (5.5). 

The results given in (5.13) and (5.15) assume exact arithmetic. Due to round-off errors, 
however, the actually computed residual norms may be getting farther from (5.13) and (5.15), 
especially when k is increasing. In this case it may be appropriate to compute s,,~ and the norm 
of its residual every once in a while to make sure that round-off has not started to dominate the 
computations. Although such a test is not included in the computer program given in Appendix 
B, it is quite easy to incorporate it there. 

5.3. Practical residual estimation in extrapolation for nonlinear systems 

We now consider the problem of error estimation for the case in which F(x) in (5.1) is 
nonlinear. Let us assume that the sequence x0, x1, x2,. . . is convergent, its limit, of course, being 
s, the solution of (5.1). Therefore, for n sufficiently large, x,, x,+r, . . . are all very close to s, and 
we have 

X n+1 -s = F’(s)(x, -s) + en, (5.16) 

where F’(x) is the Jacobian matrix of the vector-valued function F(x), and z, is a vector whose 
norm is 0( 11 x, - s II 2, as n + CO. This implies that the sequence x0, xi, x2,. . . behaves linearly 
at infinity, in the sense that 

x~+~ = F’(s)x, + (s - F’(s)s), (5.17) 

for all sufficiently large j. Thus, for n sufficiently large, we can take 

+,,k) = Uk(% (5.18) 

cf. (5.6), and 

II rbn,k) 11 = (Y*R’,“‘*R’,“‘-Y)~‘~, (5.19) 



318 A. Sidi / Implementation of extrapolation methodr 

cf. (5.8), where we have retained the index n in U,,n) and Uk(“) = Qp’@“). The norm in (5.19) is 
the I,-norm as before. Consequently, we can take (5.19) as an estimate for the I,-norm of the 
residual T(S, k) without having to compute either s,,~ 
MPE and by’(5.14) for RRE. 

or T(s,+), since it is given by (5.12) for 

In case n is not large enough, (5.19) may not be very realistic. In this case we may choose to 
compute s,,~ and T(s,*~) not for all k, but for k = p, 2p, 3p,. . . , say, for some integer p > 1. 
This obviously reduces the cost. 

When we use MPE or RRE in the cycling mode, which is one of the best modes of usage, 
things become simpler if we recall (5.4). To see this let us recall how cycling can be performed. 

Step (1) Fix the integer k. Pick si = x0 and set q = 0. 
Step (2) Generate xi by (5.3). If 11 r(@)) 11 = 11 x1 - x0 11 = II u. I( < f, then stop. Otherwise, 

generate x2 ,..., x~+~ by (5.3). 
Step (3) Compute si9+i) = so k by MPE or RRE. 
Step (4) Replace x0 by sp+‘j, and q by q + 1, and go to Step (2). 

Consequently, no extra computation for residuals is necessary, as u. is the true residual for the 
previous cycle. 

6. Operation count and storage requirements 

In most applications, N, the dimension of the vectors, is extremely large, while k takes on 
very small values. Consequently, the major part of the computational effort is spent in handling 
the large vectors, the rest being negligible. 

As we can easily see, most of the vector computations take place in the QR factorization. At 
the kth stage that leads to so,&, the vector x~+~ is provided first. Starting with this, we need one 
vector addition to form uk = xk+ 1 - xk, and, following that, k vector additions, k + 1 scalar- 
vector multiplications and k + 1 inner products to form the orthonormal vector qk and the 
scalars rOk, r,,, . . . , rkk by MGS. The computation of s~,~, if desired, requires k vector additions 
and k scalar-vector multiplications by (4.8). The computation of the y;, & and vi is negligible, as 
it involves work with k x k or (k + 1) x (k + 1) triangular matrices for very small values of k. 

As for the storage requirements, it is clear that x0 needs to be saved. At the kth stage qk 
needs to be saved, in addition to the previously saved qo, ql,. . . , qk_ 1. We also need two or three 
more auxiliary vectors of dimension N. Similarly the elements of the matrix R, all need to be 
saved, but their storage requirements are negligible. 

In view of the above, if only sO,K is needed for some preassigned K, then, recalling that the 
vector qK need not be computed, the total operation count is :( K2 + 5K + 2) vector additions, 
i(K2+5K)s ca ar 1 - vector multiplications and +( K2 + 3K + 2) inner products, which amounts to 
- 2K2N floating-point operations (scalar additions and multiplications). As for the storage 
requirements, we need (K + 1) N storage locations for x0, qo, ql,. . . , qK_l, and 2 N storage 
locations for two additional auxiliary vectors. No additional storage locations are required for 
s~,~ as sO,K can overwrite x0 at the end of the computation. 

In many cases it turns out that the accuracy that can be achieved with m cycles of MPE or 
RRE, each cycle being of width K, is comparable to that obtained for s~,~~. If we compare the 
computational costs of each of these strategies, we see that, roughly speaking, the former is m 
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times less expensive computationally than the latter, and requires m times less storage. Thus, as a 
computational strategy, cycling possesses important advantages. 

It is very instructive to compare the implementations for MPE and RRE, as they are given in 
this work, with the vector epsilon algorithm (VEA) of [21]. VEA is defined recursively by 

e?i==O and eg’=x,, n=o, l,..., 

(6.1) 

where Aep) = cjcn+‘) - ep) and Z = (Z, E,)T if z=(zi,..., z~)~. Thus, the computation of 
ep) for k > 2 requires two vector additions, one scalar-vector multiplication and one inner 
product. For 6;“’ only one vector addition is required. Now as is suggested by experience and as 
can be justified heuristically, for given K, rioi for VEA and so,K for MPE or RRE would have 
comparable performance. The total operation count for determining ei”i is 4K2 vector ad- 
ditions, 2K2 + K scalar-vector multiplications and 2K2 + K inner products, which amounts to 
- lOK*N floating-points operations (scalar additions and multiplications). As for the storage 
requirements, we need (2K + 1)N storage locations to save egK), aide-‘), . . . , c$‘i, and 2N 
storage locations for two auxiliary vectors. Consequently, VEA is about five times more 
expensive than either MPE or RRE as far as operation counts are concerned. As far as storage 
requirements are concerned, VEA is about twice as expensive as either MPE or RRE. In 
addition, since x0, x1,. . . , xZK are needed for E$‘A, whereas only x0, x1,. . . , x~+~ are needed for 
either MPE or RRE, VEA is about twice as expensive as MPE or RRE with respect to the 
number of vectors they utilize. 

We note that, in the epsilon family of vector extrapolation methods, VEA seems to be the 
most advantageous as far as the operation count, storage requirements and numerical stability 
are concerned. For more details, see [19]. 

7. Some practical considerations for enhancing convergence and stability 

In this section we would like to make a few remarks, which we believe are of practical 
importance with regard to enhancing the convergence and stability of vector extrapolation 
methods as they are applied to iterative procedures. Most of these remarks are based on the 
known theoretical results concerning vector extrapolation methods, some of which have been 
discussed in Section 3. 

7.1. Effect of iteration before extrapolation 

In most problems of interest the vector sequence x0, xi,. . . converges extremely slowly so that 
there is not much difference between 11 X, - s 11 and 11 x0 - s I] even for appreciably large values 
of n. The result in (3.6) however, suggests that there may be a large difference between 

(1% k -sll and (lx,,---s(I (hence 11x,,-sl]) ‘f 1 n is sufficiently large. If the vectors xi are 
pro&iced by an iterative procedure such as (3.2), then this implies that it may be very useful to 
start the extrapolation procedure after a number of iterations with (3.2). One heuristic argument 
in favor of this strategy runs as follows. The initial error x0 - s, in general, has components in 
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the direction of all eigenvectors and principal vectors of A. After a few iterations the components 
in the direction of those eigenvectors and principal vectors corresponding to zero eigenvalues of 
A are totally eliminated, while those corresponding to the eigenvalues that are close to zero are 
diminished. Consequently, the error vector x, - s has mostly contributions from the eigenvectors 
and principal vectors corresponding to the large eigenvalues. Precisely these contributions are 
now diminished by the extrapolation procedure. 

7.2. A simple “averaging” of the iteration process and its effect on convergence and stability 

Assume that (3.2) or (5.3) result from the discrete solutions of continuum problems. Then, for 
a convergent scheme, the largest eigenvalues of A or of F’(s), the Jacobian matrix of F(x) at 
x = s, may be very close to 1 in the complex plane in some cases. This may cause the 
extrapolation process not to be very effective. The process may even suffer from a large amount 
of numerical instability. 

One way of dealing with this problem is by applying extrapolation methods not to the 
sequence x0, xi, x2,. . . , but to y,, y,, y,, . . . , where yi = xjp, for some positive integer p. This 
strategy has been successfully implemented in [17]. 

Another way would be by changing (5.3), in general, to read 

(7.1) 
where w is a scalar different than 1. (The sequence generated by taking w = 1 is the one 
generated by (5.3).) Thus xj+i is now a weighted “average” of xi and F(xj), in which the 
weights 1 - w and w need not be both positive. 

By picking w appropriately we can cause the spectrum of the Jacobian matrix of (1 - w)x + 
oF( x) at x = s, namely, (1 - w)l+ wF’(s), to be increasingly favorable to s,+ for large values 
of n. 

Let us take a look at the following example. Suppose the eigenvalues of F’(s) are all positive 
and lie in the interval [E, 1 - 111, for some c > 0 and n > 0 close to zero. Consequently, the 
sequence x0, xi,. . . obtained from (5.3) converges, provided x0 is sufficiently close to s in case 
F(x) is nonlinear, and unconditionally in case F(x) is linear. If we pick w = 2, then the 
eigenvalues of (1 - o)l + oF’(s) lie in the interval [ - 1 + 2e, 1 - 2771 so that the sequence 
obtained from (7.1) also converges. (If e = 77, then this sequence converges more quickly than the 
one obtained from (5.3).) The new spectrum has two important properties relevant to vector 
extrapolation methods. (1) The largest positive eigenvalue of F’(s), namely 1 - 9, has moved 
away from 1. (2) Negative eigenvalues close to - 1 have been created. Both of these properties 
enhance the stability of vector extrapolation processes both mathematically and numerically. 
(This follows from [12, Theorem 4.11, [16, Theorem 3.21 and [18, Theorems 4.1 and 5.21.) It 
should be noted that 2 is also that value of o for which the spectral radius of (1 - w)l + oF’( s) 
is minimal when E = n. 

7.2.1. Special considerations for linear systems 
When F(x) = Ax + b, and the vector sequence is generated by the iterative procedure in (7.1), 

the approximations s~,~ are independent of w, as has been shown in [8]. That is to say, the 
convergence properties of the s~,~ are not changed by varying w. Nevertheless, varying w may 
influence the stability properties of the numerical implementations. 
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First, if the sequence obtained from (3.2) is divergent, then all the computations leading to ~a,~ 
will suffer a large loss of accuracy, especially for increasing k. By changing w in (7.1) 
appropriately, we can cause the sequence to converge (or diverge very slowly), thus avoiding the 
numerical problem caused by the unboundedness of the original sequence. 

Next, if the sequence obtained from (3.2) is slowly converging on account of the largest 
eigenvalues of A all being very close to 1 in the complex plane, then the vectors z+,, ui, u2,. . . 

are near being linearly dependent. Consequently, the /,-condition number of the matrices U, 
may be very large. This may have a negative influence on the QR factorization of U, by MGS 
that we have chosen for our implementation. This influence exhibits itself in the computed 
matrices Qk being far from unitary and the computed s~,~ not being very accurate. If, by picking 
w appropriately in (7.1) we can change the spectrum in such a way that it now contains both 
positive and negative large eigenvalues, then the vectors uO, ui, u2,. . . will be far from being 
linearly dependent numerically. This will result in better conditioned matrices U,, which, in turn, 
will result in the computed matrices Qk being closer to unitary and the computed s,,~ being quite 

accurate. 
The numerical aspects of MGS and its use in the solution of least-squares problems and the 

comparison of these with the Householder QR factorization and least-squares solutions are 
discussed at length in [7, Sections 5.2.8, 5.2.9 and 5.3.61. 

7.2.2. Application to Jacobi iteration for consistently ordered matrices 
The observations above can be used very effectively in the solution of linear systems whose 

matrices are consistently ordered. Such matrices arise frequently, for example, in the finite-dif- 
ference solutions of elliptic equations. 

Suppose iterative methods of the form (3.2) are used in the solution of such a system. If the 
method used is the Jacobi iteration method, then it is known that the nonzero eigenvalues of A 
come in pairs of the form +p, see, e.g., [20, Chapter 41. Consequently, if the eigenvalues of A are 
real, then they are in the interval [ - 1 + 8, 1 - 61 for some 6, 0 < 6 < 1, provided p(A) -C 1. As a 
result, the nonzero eigenvalues of A2 are in the interval [z, 1 - q], for some E > 0, where 
1 - n = (1 - s)2 = 1 - 28 if 6 -=x 1. Furthermore, if 2M is the number of the distinct nonzero 
eigenvalues of A, then the number of the distinct nonzero eigenvalues of A2 is M whether the 
eigenvalues of A are real or not. 

This implies that the approximation s:,,~~ obtained from the Jacobi iterative method and the 
approximation ~,2,~ obtained from the double Jacobi iterative method 

y=Axj+b, 

xi+1 =Ay+b, j=O, l,..., (7.2) 

have the same asymptotic behavior as n --) co. In addition, since the largest eigenvalues of A2 are 
twice as far from 1 as those of A, s& is more stable than si,, 2k as n -+ cc both mathematically 
and numerically. 

We can now couple the double Jacobi iteration method with the simple averaging procedure 
that was discussed above. Tha new iteration procedure then is 

(7 -3) 
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for some o # 0. As explained before, by varying w we can cause the spectrum of the iteration 
matrix of (7.3), namely, (1 - w)l+ tiA2, to become favorable to s,,~. In particular, by picking 
w = 2 we can cause this spectrum to lie in the interval [ - 1 + 2~,1- 2n]= [ - 1 + 2e, 1 - 46 + 
S2]. This enlarges the distance of the largest positive eigenvalue of the Jacobi iteration matrix A 
from 1 even further, and introduces negative eigenvalues close to - 1. This causes sz k to become 
more stable. Furthermore, if e >, 6, the convergence rate of x, from (7.3) with w = 2 ‘is as good as 
that of X, from (7.2). 

We note, incidentally, that the iterative method of (7.3) with w = 2 is known as Abramov’s 
method, see [5, p.5141. It is quite easy to see that, in this case, 

Xj+l - S = (2A2 - I)(Xj - S) = T2( A)(Xj - S), 

where T2( X) = 2X2 - 1 is the Chebyshev polynomial of degree two. It should be emphasized that 
this is not Chebyshev acceleration, however. 

8. Numerical examples 

We have applied MPE and RRE through their new implementations described in the previous 
sections to several linear and nonlinear systems of equations. This has been done by employing 
the computer program that is provided in Appendix B. Some of the results obtained this way will 
be reported in this section. 

We have picked real linear systems of equations whose matrices are symmetric or nonsymmet- 
ric. Numerical results for two of these systems, one symmetric and the other nonsymmetric, are 
included in this work. We have also treated nonlinear systems arising from finite-difference 
solutions of fluid mechanics problems. Numerical results for a hypersonic flow problem with 
chemical reactions are given in this paper. 

Example 1. Consider the vector sequence obtained from (3.2), where A is a 1000 X 1000 
septadiagonal matrix symmetric with respect to both of its main diagonals, and is given by 

52 11 
263 11 
136 3 11 

A=0*06x 1 1 3 6 3 1 1 
11 3 6 3 11 

The vector b is such that the exact solution s of (3.1) is (1, 1,. . . , l)T. 
All eigenvalues of A are in (0, l), the smallest and the largest being 4.7279.. . X lop6 and 

0.95999.. . ) respectively. Consequently, the matrix C = I - A is symmetric positive definite. Also, 
there is a large amount of clustering of eigenvalues near the smallest and the largest ones. 

Taking x0 = 0, we generated the vectors xi, x2,. . . by (7.1) once by taking w = 1 and once by 

taking w = 2, and then applied MPE to these two sequences. We also applied the method of 
conjugate gradients (CG) to the linear system Cx = b starting again with x0 = 0. The results of 
these computations are shown in Table l(a). 
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Table l(a) 
Numerical results for Example 1, starting with x0 = 0 

k MPE CG 

0 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

w=l w=2 

rkk 1 yk 1 

1.46.10’ 
1.92.10-l 
1.98.10-’ 
2.51~10-~ 
4.51.10-4 
1.58.10-4 
6.27.10-5 
2.49.10-5 
6.37.10-6 
7.90.10-6 
9.49.10-’ 

IISO,k --sII rkk 1 yk 1 

3.16.10’ 2.92.10’ 
1.17*10° 3.83.10-l 
1.53*10-’ 3.96.10-2 
2.03.10-* 5.01.10- 3 
3.70.10-3 6.63.10-4 
4.43.10-3 8.78.10-5 
2.44.10-3 1.15.10F5 
6.08. 1o-4 1.53.10-6 
3.34.10-4 5.16.10-’ 
3.66.10-5 7.31.10F8 
1.30.10-4 3.17.1o-8 

11 dSO,k) 11 11 SO.k - s 11 11 =k --sII 
2.92.10’ 3.16.10’ 3.16. lo1 
3.83.10-’ 1.17.1oo 1.17.10° 
3.96.10-2 1.53.10-l 1.53.10-l 
5.01.10-3 2.02.10-2 2.02.10-2 
6.63.10-4 2.68.10-3 2.68.10-3 
8.78.lo-’ 3.52.10-4 3.52~10-~ 
1.15.10-5 4.63.10-5 4.63.10-5 
1.53.10-6 6.53.10-6 6.11.10-6 
5.30.10-’ 1.64.10-6 8.03.10-’ 
1.29.10-’ 1.27.10-6 1.06.10-’ 
4.29.10-* 1.85.10-’ 1.39.10-* 

Recall that the Arnoldi method becomes equivalent to CG when C is a symmetric matrix, and 
MPE, when applied to a linearly generated sequence, becomes equivalent to the Arnoldi method. 

Also ~,,,k, when applied to a sequence generated linearly as in (7.1), is independent of w. 
Consequently, s~,~, both for w = 1 and w = 2, obtained from MPE, and zk, obtained from CG, 
are all the same mathematically. This is verified in Table l(a) at least for k i 10. The differences 
between the w = 1 and w = 2 MPE computations for k > 10 can be explained exactly as 
described at the end of Section 7.2.1. Again, as can be seen from Table l(a), the w = 2 MPE 
computation differs from the CG computation starting with k = 40 approximately. Since CG 
involves orthogonalization with respect to only one vector, its absolute accuracy is guaranteed. 
On the other hand, MPE involves orthogonalization with respect to an ever increasing number of 
vectors at each stage, thus it cannot be absolutely accurate. In spite of this, the present 
implementation of MPE seems to be very stable in the sense that 11 sO.k - s 11 seems to be 

Table l(b) 
MPE applied to Example 1 in the cycling mode; starting with the zero vector, first 20 iterations are performed; 
following that MPE is applied in the cycling mode with k = 10; the I,norm of the error in the initial (zero) vector is 
3.16.10’; the vectors are obtained by “averaging” the iterative process (3.2) with w = 2 

i II a9 II l)$)-sll 

0 4.75.10-l 5.91.100 
1 2.00*10-4 6.94.10-4 
2 2.90.10-6 8.78.10-6 
3 4.17.10-a 1.74.10-’ 
4 9.27.10-lo 3.70.10-9 
5 2.18. lo- l1 9.11.10-” 
6 5.49.10-13 2.83.10-l* 
7 4.26.10-14 1.77.lo-‘3 
8 6.16.10_‘5 9.46.10-14 
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constantly decreasing with increasing k. Indeed, we have verified this by going up to k = 100 in 
both the w = 1 and w = 2 MPE computations. 

Our purpose in presenting Table l(a) was to demonstrate the good stability properties of the 
new MPE implementation for large values of k. Otherwise, CG is the method we would normally 
use for this example, since its operation count and storage requirements are extremely small. 

In Table l(b) we present the results obtained for the same example with w = 2 first performing 
20 iterations and then using MPE in the cycling mode with k = 10, as explained at the end of 
Section 5. The remarkable effectiveness of this strategy is obvious. 

Example 2. Consider the linear nonsymmetric system of equations & = d, where c” is the 
block-tridiagonal matrix 

cc 

I 

B -Z 
-I B -I 

-Z B -I 
-Z 

-I B 

with B = 

and a = - 1 + 6, fi = - 1 - 8, 6 # 0. (See [lo, p.1221.) Again, the vector b” is such that the exact 

solution s is (1, 1,. . . , l)T. The iterative method that we pick for this system is Jacobi’s method, 
sothat A=Z-+C”. 

Now the matrix c” is consistently ordered. Thus the suggestions put forth in Section 7.2.2 can 
be successfully employed in this case. 

In our numerical experiments we took 6 = 0.2. The matrices B and Z in c” were all 10 x 10 
and d was 200 X 200, exactly as in [lo]. The extrapolation method for which we give numerical 
results is RRE. We first applied RRE in the cycling mode in conjunction with Jacobi iteration. 
The vector obtained at the end of each cycle is denoted St). Next we applied RRE in the cycling 
mode in conjunction with double Jacobi iteration. The vector obtained at the end of each cycle is 
denoted 9:” now. Finally, we applied RRE in the cycling mode extended as follows. The vector 
sequence is generated by the iterative procedure of (7.3) with o = 2, i.e., by the “averaged” 
double Jacobi iteration with w = 2. In each cycle nj + kj + 1 such iterations are performed, and 
extrapolation is applied to the last kj + 2 of the vectors, i.e., in each cycle s,,,k, is computed. The 
vector obtained at the end of each cycle now is denoted f,$f,‘k ,. The index i denotes the cycle 
number in each case. 

In Table 2 we give the I,-norms of the errors S:‘) - s (k = 20), $-” - s (k = 10) and .$$k, 
(ni=5, ki=5 all i). Th us the number of basic Jacobi iterations performed to obtain the 
approximations Ski), if’ and $f,i, in each cycle is 21, 22 and 22, respectively. We see that S$,) 
and f$,’ have comparable accuracy, as expected. The number of vector operations for S$,), 
however, is over three times that for s;‘$. Also the storage requirement for SiL) is about twice that 
for $6’. The performance of s;‘3 is only slightly inferior. The number of vector operations for s;‘Ij 
is about one tenth that for $A), while its storage needs are about one third those of $a. 
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Table 2 
RRE applied to Example 2 in the cycling mode; the initial vector is zero, and the /,-norm of the error associated with 

it is 1.41.10’ 

1 6.66.10-2 7.47.10-2 1.34.10-l 
2 2.02.10-4 2.36.10-4 !~86.10-~ 
3 2.53.10-7 4.26.10-7 1.14.10-5 
4 2.90.10-lo 2.05.10-9 3.04.10-s 
5 2.03.10-” 5.96.10-12 2.15.10-lo 
6 1.35.10-‘3 6.48.10-14 1.07.10-‘2 
7 3.61.10-14 3.13.10-14 1.75-10-14 

Example 3. One practical area in which extrapolation methods have been used successfully is that 
of computational fluid dynamics. See, e.g., [17] and the references therein. Vector extrapolation 
methods are coupled with iterative techniques that arise from the finite-difference approxima- 
tions of the partial differential equations governing the flows. In most of the applications so far 
the equations considered have been those of compressible inviscid flows (the Euler equations). 

We would now like to present some results obtained for a hypersonic compressible turbulent 
flow problem that also involves chemical reactions. 

The physical problem considered is that of combustion of a premixed stoichiometric hydro- 
gen-air hypersonic (Mach number 4) flow over a compression corner. The compression corner 
creates a shock wave, the temperature behind this shock wave being high enough to initiate a 
combustion process. The coupling between the combustion process and the shock wave results in 
a coupled shock-deflagration wave. 

The physics is described by the two-dimensional Reynolds-averaged Navier-Stokes equations 
with nonequilibrium chemistry, i.e., the global continuity equation is replaced by all the species 
continuity equations. A 7-species 8-step reaction mechanism for hydrogen-oxygen combustion is 
adopted. The Baldwin-Lomax algebraic eddy viscosity turbulence model is also included. 

The numerical method uses the LU-SSOR implicit factorization scheme and a second-order 
symmetric TVD scheme. Thus the number of the dependent variables is ten. The dependent 
variables are the two momenta per unit volume, the seven species densities and the total energy 
per unit mass. The number of the mesh points is approximately 4,000. As a result, the vectors in 
this problem are of dimension 40,000 approximately. 

For the full details of the physical problem, the governing equations and the iterative scheme 
used in their solution, we refer the interested reader to [23]. 

The single-precision version of the computer program in Appendix B was incorporated in the 
fluid mechanics code that implemented the iterative scheme mentioned above. The combined 
code was run on a CRAY Y-MP computer at NASA-Lewis Research Center, Cleveland, OH. 

This code was first run without chemical reactions as a Navier-Stokes solver with turbulence. 
Figure l(a) contains some of the residual history obtained by applying RRE in the cycling mode 
with k = 20 after 80 and 200 initial iterations. As can be seen, better results are obtained for this 
problem by employing RRE early on. This seems to be true for nonlinear problems in general. 
Figure l(b) contains some of the residual history obtained by using RRE again in the cycling 
mode with k = 10, 20, 30 after 80 initial iterations. The CPU-time for performing 500 iterations 
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Fig. 1. Residual history with and without convergence. acceleration for the hypersonic flow problem in Example 3 with 
no chemical reactions. 

without extrapolation is about 464 seconds. The overhead due to extrapolation turns out to be 
1% or less. 

The code was next run with chemical reactions. Figure 2 gives the convergence history 
obtained by using RRE in the cycling mode with k = 10 after 200 initial iterations. The 
CPU-time for performing 1000 iterations without extrapolation is about 1284 seconds. The 
overhead due to extrapolation turns out to be less than 0.05%. 

We note that the reason for the negligible cost of extrapolation in this example lies in the fact 
that the iterative scheme has a high cost, which is due to the following: (1) the complexity of the 
physical problem (viscous, turbulent, chemically reacting flows); (2) the TVD scheme which is 
necessary in this case for capturing the shock waves with the best possible resolution; (3) the 
implicit LU-scheme that is required to retain a high CFL number, which is particularly 
important in viscous calculations. Finally, we mention that very similar performance was 
observed with MPE. 

10-8 
d 
‘$ 10-10 

10-16 

10-18 

_ No extrapolation 

RRE (NO=ZOO. KtdAX=lO) 

I I I I I 

0 400 800 1200 

Iteration 

Fig. 2. Residual history with and without convergence acceleration for the hypersonic flow problem in Example 3 with 
chemical reactions. 
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Appendix A 

Lemma. Let T be an m x m Hermitian positive definite matrix, and let zl, z2, 
variables. Denote z = ( zl, z2,. . . , z,,,)=. Then the solution to the problem 

minimize z*Tz, 

subject to 2 zi = 1, 
i=l 

can be obtained by solving the linear system of m + 1 equations 

Tz = M, fzi=l, 
i=l 

where zl,. . . , z, and h are unknowns, and 

Z= (1, l,..., l)=. 

The unknown A turns out to be real and positive, and is given by 

A=z*Tz, at the solution. 

The solution of (A.2) can be achieved by first solving the system 

Th = 6-, 

forh=(hl,..., h,,,)=, and letting 
-1 

A= ihi , 
i i i=l 

and finally setting 

z=Xh. 

z, be complex 

Proof. We start by expressing the problem in terms of real variables. Let us write T in the form 

T=M+iN, M and N real m X m matrices. (A.81 

Then, by the assumption that T is Hermitian, it follows that 

MT=M and NT= -N. (A.91 
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Writing 

z=x+iy, x and y real m-dimensional vectors, 

and invoking (A.8) and (A.9) in z * Tz, we have 

z*Tz = x=Mx +y=M-y + 2y=Nx. 

Now the constraint Cy=,zj = 1 in (A.l) is equivalent to two real constraints, namely, 

gxi=l and i$lyi = 0. 
i=l 

(A.10) 

(A.ll) 

(A.12) 

We now use the method of Lagrange multipliers to minimize (A.ll) subject to (A.12). Introduc- 
ing the Lagrange multipliers - 2~ and - 2v for the constraints Cy&xi = 1 and Cy=iyi = 0, 
respectively, and taking derivatives with respect to the xi and y,, we obtain the linear system of 
equations 

Mx-Ny-/_@=o, My+Nx-&?=o, (A.13) 

which, upon letting X = p + iv, becomes equivalent to Tz = AZ. We have thus shown the truth of 
(A.2). Multiplying Tz = Ae” on the left by z*, and using CyXizi = 1, we obtain (A-4). Obviously, X 
has to be strictly positive. For if X were zero, then z = 0 would have to be the solution as T is 
Hermitian positive definite, but this would contradict the constraint Cy!izi = 1. The rest of the 
proof follows easily from (A.2), and we shall omit it. •I 

Appendix B 

In this appendix we give a computer code written in standard FORTRAN 77 that implements 
MPE and RRE as described in the present work. 

The implementation of MPE and RRE is done in SUBROUTINE MPERRE that forms the 
heart of this code. 

Use of MPE and RRE in the cycling mode is made possible by SUBROUTINE CYCLE. 
The vector sequence for extrapolation is generated by calling SUBROUTINE VECTOR, 

which, in the present code provides the iteration sequence of Example 1 with w = 2 weighting. 
The driving program in the present code is the one that generates some of the results shown in 

Table l(b). 
We give no further explanations about the code and its use, as the different parts of the code 

are documented in detail. 

C***********************************************************************AAAooo10 

C IMPLEMENTATION OF MPE AND RRE WITH QR FACTORIZATION FOR LEAST AAA00020 
C SQUARES. (QR PERFORMED BY MODIFIED GRAM-SCHMIDT PROCESS) AAAooo30 
C MPE AND RRE ARE APPLIED IN THE CYCLING MODE. AAA00040 
C****t**************~~~~~~~~~~~~*~~~~~~~~~~~~~~*~~~~~~~~~~~~~~~~~~~~~~~~*AOOO~O 

C THE COMPONENTS OF THE INITIAL VECTOR X, NAMELY, X(I),I=l,...,NDIM, AAAOOO60 
C CAN BE PICKED RANDOMLY. WE ACHIEVE THIS, E.G., BY INVOKING THE AAAooo70 
C IMSL VERSION 10 SUBROUTINE DRNUN THAT GENERATES PSEUDORANDOM 1dAOO080 
C NUMBERS FROM A UNIFORM (0,l) DISTRIBUTION. AAAooo90 
C OTHER CHOICES FOR X(l),. ..,X(NDIM) ARE POSSIBLE, SUCH AS X(1)=0, AAA00100 
c I=l,..., NDIM. IN THIS CASE REPLACE THE STATEMENT AAAOOllO 
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C CALL DRNUN(NDIM,X) AAAoo120 
C BY THE DO LOOP AAAoo130 
C DO 10 I=l,NDIM AAAoo140 
C X(I)=0 AAAoo150 
C 10 CONTINUE AAAOO160 
C***********************X***********************************************AAA~~~~O 

IMPLICIT DOUBLE PRECISION (A-H,O-2) AAAOO180 
PARAMETER (METHOD=1,NO=20,N=0,KMAX=l0,NCYCLE-15,NDIM=l000) AAAoo190 
PARAMETER (EPSC=lD-10,IPRES=l,IPRESl=l) AAAoo200 
DIMENSION X(NDIM),S(NDIM),Y(NDIM),Z(NDIM) AAAoo210 
DIMENSION Q(NDIM,O:KMAX-l),R(O:KMAX,O:KMAX) AAAoo220 
DIMENSION C(O:KMAX),GAMMA(O:KMAX),XI(O:KMAX-1) AAAOO230 
EXTERNAL VECTOR AAAOO240 

C AAAOO250 
C INITIAL VECTOR DETERMINATION. AAAOO260 
C AAAOO270 
C CALL DRNUN(NDIM,X) AAAOO280 

DO 10 I=l,NDIM AAAoo290 
X(I)=0 AAAoo300 

10 CONTINUE AAAoo310 
C AAAOO320 
C END OF INITIAL VECTOR DETERMINATION. AAAoo330 
C mAoo340 

CALL CYCLE(METHOD,X,S,NO,N,KMAX,NCYCLE,NDIM,Y,Z,VECTOR,Q,R, ?&?+A00350 
*C,GAMMA,XI,RESC,EPSC,IPRES,IPRESl) AAAOO360 
STOP AAAoo370 
END AAAOO380 

AAAoo390 
SUBROUTINE CYCLE(METHOD,X,S,NO,N,KMAX,NCYCLE,NDIM,Y,Z,VECTOR,Q,R, AAA00400 

*C,GAMMA,XI,RESC,EPSC,IPRES,IPRESl) AAAoo410 
C*******************~~~~*~~~~~~~~~~~~~~***~~~~~~~*~~~~~~~~~~~*~~~~~~~~~~-00420 

C THIS SUBROUTINE APPLIES MPE AND RRE IN THE CYCLING MODE. -00430 
C MPE AND RRE ARE INVOKED BY CALLING SUBROUTINE MPERRE. -00440 
C***************************************************************************~00450 

C THE ARGUMENTS METHOD,NDIM,Y,Z,VECTOR,Q,R,C,GAMMA,XI,IPRES,IPRESl AAAOO460 
C ARE AS IN SUBROUTINE MPERRE. -00470 
C -00480 
c x : INITIAL VECTOR. INPUT ARRAY OF DIMENSION NDIM. (DOUBLE AAAoo490 
C PRECISION) AAAoo500 
c s : THE FINAL APPROXIMATION PRODUCED BY THE SUBROUTINE. OUTPUT AAAoo510 
C ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) AAAOO520 
C NO : NUMBER OF ITERATIONS PERFORMED BEFORE CYCLING IS STARTED, AAAoo530 
C I.E., BEFORE MPE OR RRE IS APPLIED FOR THE FIRST TIME. AAAoo540 
C INPUT. (INTEGER) AAAoo550 
C N : NUMBER OF ITERATIONS PERFORMED BEFORE MPE OR RRE IS APPLIED AAAOO560 
C IN EACH CYCLE AFTER THE FIRST CYCLE. INPUT. (INTEGER) AAAoo570 
c KMAX : WIDTH OF EXTRAPOLATION. ON EXIT FROM SUBROUTINE MPERRE IN AAAOO580 
C EACH CYCLE, THE ARRAY S IS, IN FACT, THE APPROXIMATION AAAoo590 
C S(NO,KMAX) IN THE FIRST CYCLE,AND S(N,KMAX) IN THE FOLLOWING AAAOO600 
C CYCLES. INPUT. (INTEGER) AAAOO610 
C NCYCLE: MAXIMUM NUMBER OF CYCLES ALLOWED. INPUT. (INTEGER) -00620 
C RESC : L2-NORM OF THE RESIDUAL FOR S AT THE END OF EACH CYCLE. -00630 
C RETRIEVED AT THE END OF THE NEXT CYCLE. OUTPUT. (DOUBLE AAAOO640 
C PRECISION) AAAOO650 
C EPSC : AN UPPER BOUND ON RESC/RESP, SOME RELATIVE RESIDUAL FOR S, AAAOO660 
C USED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM AAAOO670 
C OF THE RESIDUAL FOR S(NO,KMAX) AT THE END OF THE FIRST -00680 
C CYCLE, I.E., ON EXIT FROM SUBROUTINE MPERRE THE FIRST TIME. AAAOO690 
C IF RESC.LE.EPSC*RESP AT THE END OF SOME CYCLE, THEN ONE mA00700 
C ADDITIONAL CYCLE IS PERFORMED, AND THE CORRESPONDING AAAoo710 
C S(N,KMAX) IS ACCEPTED AS THE FINAL APPROXIMATION, AND THE -00720 
C SUBROUTINE IS EXITED. INPUT. (DOUBLE PRECISION) -00730 
C***********************~~~~~~~~~~*~~~*~~~~*~~~~~~~~~~~~*~~~~~~~~~~~~~~~-00740 

IMPLICIT DOUBLE PRECISION (A-H,O-2) -00750 
PARAMETER (EPS-0) -00760 
DIMENSION X(NDIM),S(NDIM),Y(NDIM),Z(NDIM) -00770 
DIMENSION Q(NDIM,O:KMAX-l),R(O:KMAX,O:KMAX) -00780 
DIMENSION C(O:KMAX),GAMMA(O:KMAX),XI(O:KMAX-1) AAAoo790 
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EXTERNAL VECTOR 
DO 40 IC-l,NCYCLE 
IF (IPRES.EQ.l.OR.IPP.ESl.EQ.1) THEN 
WRITE(6,lOl) IC 
FORMAT(/,' CYCLE NO. ',13) 
END IF 
NN-N 
IF (IC.EQ.l) NN-NO 
IF (IPRES.EQ.l.OR.IPRESl.EQ.1) THEN 
WRITE(6,102) NN 
FOF@lAT(/,' NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS ',13) 
WRITE(6,103) KMAX 
FORMAT(/,' WIDTH OF EXTRAPOLATION IS ',13) 
END IF 
DO 20 J-O,NN-1 
CALL VECTOR(X,Y,NDIM) 
DO 10 I-1,NDIM 
X(1)-Y(I) 
CONTINUE 
CONTINUE 
CALL MPERRE(METHOD,X,S,KMAX,KOUT,NDIM,Y,Z,VECTOR,Q,R,C, 
*GAMMA,XI,RES,RESl,EPS,IPRES,IPRESl) 
IF (IC.EQ.l) RESP-R(o,O) 
RESC-R(O,o) 
IF (RESC.LE.EPSC*RESP) RETURN 
DO 30 I-l,NDIM 
X(1)-S(I) 
CONTINUE 
CONTINUE 
RETURN 
END 

SUBROUTINE MPERRE(METHOD,X,S,KMAX,KOUT,NDIM,Y,Z,VECTOR,Q,R,C, 

AAAOO800 
AAAOO810 
AAAOO820 
AAAOO830 
AAAOO840 
AAAOO850 
AAAOO860 
AAAOO870 
AAAOO880 
AAAOO890 
AAAoo900 
AAAoo910 
AAAoo920 
AAAoo930 
AAAoo940 
AAAoo950 
AAAOO960 
AAAoo970 
AAAOO980 
AAAoo990 
AAA01000 
AAAOlOlO 
AAAo1020 
AAAo1030 
AAAo1040 
AAAo1050 
AAAO1060 
AAAo1070 
AAAO1080 
AAAo1090 
AAAOllOO 
AAAOlllO 
AAAo1120 

*GAMMA,XI,RES,RESl,EPS,IPRES,IPRESl) AAAo1130 
C***********************************************************************~oll40 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c*1’ 
C 
C 
C 
C 

THIS SUBROUTINE APPLIES THE MINIMAL POLYNOMIAL EXTRAPOLATION (MPE) 
OR THE REDUCED RANK EXTRAPOLATION (RRE) METHODS TO A VECTOR 
SEQUENCE X0,X1,X2,..., THAT IS OFTEN GENERATED BY A FIXED POINT 
ITERATIVE TECHNIQUE. 
BOTH MPE AND RRE ARE ACCELERATION OF CONVERGENCE (OR EXTRAPOLATION) 
METHODS FOR VECTOR SEQUENCES. EACH METHOD PRODUCES A TWO-DIMENSIONAL 
ARRAY S(N,K) OF APPROXIMATIONS TO THE LIMIT OR ANTILIMIT OF THE 
SEQUENCE IN QUESTION. 
THE IMPLEMENTATIONS EMPLOYED IN THE PRESENT SUBROUTINE GENERATE 
THE SEQUENCES S(O,O)-XO,S(O,l),S(0,2),... . 
r***************************************~~~~~*~~**~*~*~~*~*~~*~~~*~~~ 

AUTHOR : AVRAM SIDI 
COMPUTER SCIENCE DEPARTMENT 
TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY 
HAIFA 32000,ISRAEL 

AAAo1150 
AAAO1160 
AAAo1170 
AAAOllEO 
AAAo1190 
AAAo1200 
AAAo1210 
AAAo1220 
AAAO1230 
AAAO1240 
*AAAO1250 
AAAO1260 
AAAO1270 
AAAO1280 
AAAo1290 

C E-MAIL ADDRESS: CSSSIDI@TECHNION.BITNET AAAo1300 
C***********************************************************************~ol3lo 
C METHOD: 
C 
c x 
C 
c s 
C 
C 
c KMAX : 
C 
C 
C KOUT : 
C 
C 
C 
C NDIM : 
c Y 

IF METHOD.EQ.l, THEN MPE IS EMPLOYED. IF METHOD.EQ.2, THEN 
RRF, IS EMPLOYED. INPUT. (INTEGER) 
THE VECTOR X0. INPUT ARRAY 0~ DIMENSION NDIM. (DOUBLE 
PRECISION) 
THE APPROXIMATION S(o,K) PRODUCED BY THE SUBROUTINE FOR 
EACH K. ON EXIT, S IS S(O,KOUT). OUTPUT ARRAY OF DIMENSION 
NDIM. (DOUBLE PRECISION) 
A NONNEGATIVE INTEGER.THE MAXIMUM WIDTH OF EXTRAPOLATION 
ALLOWED. THUS THE NUMBER OF THE VECTORS X0,X1,X2,..., 
EMPLOYED IN THE PROCESS IS KMAX+2 AT MOST. INPUT. (INTEGER) 
A NONNEGATIVE INTEGER. KOUT IS DETERMINED BY A SUITABLE 
STOPPING CRITERION, AND DOES NOT EXCEED KMAX.THE VECTORS 
ACTUALLY EMPLOYED BY THE EXTRAPOLATION PROCESS ARE 
x0,x1,x2 ,..., XP, WHERE P=KOUT+l. OUTPUT. (INTEGER) 
DIMENSION OF THE VECTORS. INPUT. (INTEGER) 
WORK ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) 

AAAO1320 
AAAo1330 
AAAoi340 
AAAo1350 
AAAO1360 
AAAo1370 
AAAO1380 
MO1390 
AAAo1400 
AAAo1410 
AAAO1420 
AAAo1430 
AAAo1440 
AAAo1450 
MO1460 
AAAo1470 
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c 2 
c VECTORi 
C 
C 
C 
C 
C 
C 
C 
C Q : 
C 
C 
C 
C 
C 
C R 
C 
C 
C 
c c 
C 
C 
C GAMMA: 
C 
C 
C 
C 
C 
c XI : 
C 
C 
C 
C RES : 
C 
C 
C 
C RESl : 
C 
C 
C 
C EPS : 
C 
C 
C 
C 
C 
C 
C IPRES : 
C 
C IPRESl: 
C 

WORK ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) 
A USER-SUPPLIED SUBROUTINE WHOSE CALLING SEQUENCE IS 

CALL VECTOR(Y,Z,NDIM): Y,NDIM INPUT,2 OUTPUT. 
Y,Z,NDIM ARE EXACTLY AS DESCRIBED ABOVE.FOR A FIXED POINT 
ITERATIVE TECHNIQUE FOR SOLVING THE LINEAR OR NONLINEAR 
SYSTEM T-F(T), DIM(T)=NDIM, Y AND Z ARE RELATED BY Z-F(Y). 
THUS Xl=F(XO), X2-F(Xl), ETC. 
VECTOR SHOULD BE DECLARED IN AN EXTERNAL STATEMENT IN THE 
CALLING PROGRAM. 
WORK ARRAY OF DIMENSION (NDIM,o:KMAX-1). FOR EACH K, ITS 
ELEMENTS ARE THOSE OF THE ORTHOGONAL MATRIX OBTAINED FROM 
QR FACTORIZATION OF THE MATRIX U 

U = ( UO I Ul I . . . I UK ), K-0,1,2,..., 
WHERE UO-X1-X0, Ul-X2-X1, U2=x3-X2, ETC. OUTPUT. (DOUBLE 
PRECISION) 
WORK ARRAY OF DIMENSION (o:KMAX,o:KMAX). FOR EACH K, ITS 
ELEMENTS ARE THOSE OF THE UPPER TRIANGULAR MATRIX OBTAINED 
FROM QR FACTORIZATION OF THE MATRIX U DESCRIBED ABOVE. 
OUTPUT. (DOUBLE PRECISION) 
WORK ARRAY OF DIMENSION (o:KMAX). FOR EACH K, C FOR MPE IS 
THE LEAST SQUARES SOLUTION OF THE SYSTEM U*C-o SUBJECT TO 
THE CONSTRAINT C(K) -1. (DOUBLE PRECISION) 
WORK ARRAY OF DIMENSION (o:KMAX). FOR EACH K, THE GAMMA'S 
ARE SUCH THAT 
S(O,K)=GAMMA(o)*XO+GAMMA(l)*Xl+...+GAMMA(K)*XK. 
FOR EACH K, GAMMA FOR RRE IS THE LEAST SQUARES SOLUTION OF 
THE SYSTEM U*GAMMA=O SUBJECT TO THE CONSTRAINT 
GAMMA(O)+GAMMA(l)+...+GAMMA(K)=l. (DOUBLE PRECISION) 
WORK ARRAY OF DIMENSION (o:KMAX-1). FOR EACH K, THE XI'S 
APE SUCH THAT 
S(O,K)-XO+XI(O)*UO+XI(l)*Ul+...+XI(J)*UJ, J-K-1. 
(DOUBLE PRECISION) 
LP-NORM OF THE RESIDUAL FOR S(0.K) FOR A LINEAR SYSTEM 
T=A*TfB (OR AN ESTIMATE FOR IT FOR A NONLINEAR SYSTEM 
T-F(T)) FOR EACH K. ON EXIT, THIS K IS KOUT. OUTPUT. 
(DOUBLE PRECISION) 
L2-NORM OF THE RESIDUAL ACTUALLY COMPUTED FROM S(O,K) FOR 
EACH K. (THE RESIDUAL VECTOR FOR ANY VECTOR VEC IS TAKEN 
AS (F(VEC)-VEC).) ON EXIT, THIS K IS KOUT. OUTPUT. 
(DOUBLE PRECISION) 
AN UPPER BOUND ON RES/R(O,O), THE RELATIVE RESIDUAL FOR S, 
USED IN THE STOPPING CRITERION. NOTE THAT R(O,o)=L2-NORM 
OF THE RESIDUAL FOR X0, THE INITIAL VECTOR. IF, FOR SOME K, 
RES.LE.EPS*R(o,o), THEN THE CORRESPONDING S(O,K) IS ACCEPTED 
AS THE FINAL APPROXIMATION, AND THE SUBROUTINE IS EXITED 
WITH KOUT-K. IF S(O,KMAX) iS NEEDED, THEN EPS SHOULD BE 
SET EQUAL TO ZERO. INPUT. (DOUBLE PRECISION) 
IF IPRES.EQ.l, THEN RES IS PRINTED FOR ALL K, K-0,1,... . 
OTHEWISE, IT IS NOT. INPUT. (INTEGER) 
IF IPRESl.EQ.1, THEN RFSl IS COMPUTED AND PRINTED FOR ALL 
K, K-0,1,... . OTHERWISE, IT IS NOT. INPUT. (INTEGER) 

AAAO1480 
AAAo1490 
AAAo1500 
AAAOlSlO 
AAAo1520 
mAo1530 
AAAo1540 
AAAol.550 
AAAO1560 
AAAo1570 
AAAO1580 
AAAo1590 
AAAO1600 
AAAO1610 
AAAO1620 
AAAO1630 
AAAO1640 
AAAO1650 
AIuO1660 
a01670 
AAAO1680 
AAAO1690 
AAAo1700 
AAAo1710 
AAAO1720 
AAAo1730 
AAAo1740 
AAAo1750 
AAAO1760 
AAAo1770 
AAAO1780 
-01790 
AAAOl800 
AAAO1810 
AAAO1820 
AAAO1830 
AAAo1040 
AAAoia50 
AAAO1860 
AAAO1870 
AAAO1880 
AAAO1890 
AAAo1900 
AAAo1910 
AAAo1920 
AAAo1930 
AAAo1940 
AAAo1950 
AAAO1960 
AAAo1970 
AAAO1980 

~***********************************************************************AAAo1990 
C THE ABOVE MENTIONED QR FACTORIZATION IS PERFORMED BY EMPLOYING AAAo2000 
C THE MODIFIED GRAM-SCHMIDT PROCESS. AAAo2010 
c************t**********************************************************AAA02020 

301 

302 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
PARAMETER (EPSl-lD-32,EPS2=1D-16) 
DIMENSION X(NDIM),S(NDIM),Y(NDIM),Z(NDIM) 
DIMENSION Q(NDIM,O:KMAX-l),R(o:KMAX,o:KMAX) 
DIMENSION C(O:KMAX),GAMMA(O:KMAX),XI(o:KMAX-1) 
IF (IPRES.EQ.l.AND.IPRESl.EQ.1) THEN 
WRITE(6,301) 
FORMAT(/,' K RES RESl') 
ELSE IF (IPRES.EQ.l.AND.IPRESl.NE.1) THEN 
WRITE(6,302) 
FORMAT(/,‘ K RES’ ) 
ELSE IF (IPRFS.NE.l.AND.IPRESl.EQ.1) THEN 
WRITE(6,303) 

-02030 
AAAO2040 
AAAO2050 
-02060 
AAAO2070 
AAAO2080 
AAAo2090 
AAAo2100 
AAAo2110 
-02120 
-02130 
-02140 
-02150 
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303 FORMAT(/,' K RESl') 
END IF 
DO 10 I=l,NDIM 
Y(I)=X(I) 

10 CONTINUE 
DO 250 K=O,KMAX 

COMPUTATION OF THE VECTOR XJ, J-K+l, FROM XK, AND COMPUTATION OF UK 
C 

CALL VECTOR(Y,Z,NDIM) 
DO 20 I=l,NDIM 
Y(I)=Z(I)-Y(1) 

20 CONTINUE 

b DETERMINATION OF THE ORTHONORMAL VECTOR QK FROM UK BY THE MODIFIED 
C GRAM-SCHMIDT PROCESS 
C 

30 

40 
50 

60 

70 

304 

C 

DO 50 J-0,K-1 
SUM-O 
DO 30 I-l,NDIM 
SUM=SUM+Q(I,J)*Y(I) 
CONTINUE 
R(J,K)=SUM 
DO 40 I=l,NDIM 
Y(I)-Y(I)-R(J,K)*Q(I,J) 
CONTINUE 
CONTINUE 
SUM-0 
DO 60 I=l,NDIM 
SUM=SUM+Y(I)**2 
CONTINUE 
R(K,K)=DSQRT(SUM) 
IF (R(K,K).GT.EPSl*R(O,O).AND.K.LT.KMAX) THEN 
HP=lDO/R (K, K) 
DO 70 I-1,NDIM 
Q(I,K)-HP*Y(I) 
CONTINUE 
ELSE IF (R(K,K).LE.EPSl*R(O,O)) THEN 
EEE=EPSl 
WRITE(6,304) K,K,EEE 
FORMAT(/,' R(',I3, ',.',13,') .LE.',lP,D8.1,'*R(O,O).',/) 
END IF 

C END OF COMPUTATION OF THE VECTOR QK 
C 

IF (METHOD.EQ.l) THEN 
C 
C COMPUTATION OF THE GAMMA'S FOR MPE 
C 

80 

90 

100 

311 

DO 90 I=K-1,0,-l 
CI=-R(I,K) 
DO 80 J-I+l,K-1 
CI-CI-R(I,J)*C(J) 
CONTINUE 
C(I)=CI/R(I,I) 
CONTINUE 
C(K)=lDO 
SUM-0 
DO 100 I-O,K 
SUM=SUM+C(I) 
CONTINUE 
IF (DABS(SUM).LE.EPS2) THEN 
WRITE(6,311) K 
FORMAT(/; S( 0,', 13,') IS NOT DEFINED.',/) 
GO TO 250 
END IF 
DO 110 I-0,K 
GAMMA(I)-C(I)/SUM 

'AAAO2160 
AAAO2170 
AAAO2180 
wiAo2190 
AAAo2200 
AAAo2210 
AAAo2220 
AAAO2230 
AAAo2240 
AAAo2250 
AAAO2260 
AAAO2270 
AAAO2280 
AAAo2290 
AAAO2300 
MO2310 
AAA02320 
AAAO2330 
AAAO2340 
AAAO2350 
AAAO2360 
AAAO2370 
AAAO2380 
AAAo2390 
AAAO2400 
AAAO2410 
AAAO2420 
AAAO2430 
AAAO2440 
AAAO2450 
AAAO2460 
AAAO2470 
AAAO2480 
AAAo2490 
AAAO2500 
mAO25l.O 
AAAO2520 
AAAO2530 
AAAO2540 
AAAO2550 
AAAO2560 
AAAO2570 
AAAO2580 
AAAo2590 
AAAO2600 
AAAO2610 
AAAO2620 
AAAO2630 
AAAO2640 
AAA02650 
AAAO2660 
AAAO2670 
AAAO2680 
AAAO2690 
AAAO2700 
Au02710 
AAAO2720 
AAAO2730 
AAAO2740 
AAAO2750 
AAAO2760 
AAAO2770 
AAAO2780 
AAAo2790 
AAAO2800 
AAAO2810 
AAAO2820 
AAAO2830 
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110 CONTINUE 
RFS=R(K,K)*DABS(GAMMA (K)) 

C 
C END OF COMPUTATION OF THE GAMMA'S FOR MPH 
C 

ELSE IF (METHOD.EQ.2) THEN 
C 
C COMPUTATION OF THE GAMMA'S FOR RRE 

DO 130 I=O,K 
CI-1DO 
DO 120 J=O,I-1 
CI=CI-R(J,I)*C(J) 

120 CONTINUE 
C(I)-CI/R(I,I) 

130 CONTINUE 
DO 150 I=K,O,-1 
CI-C(1) 
DO 140 J=I+l,K 
CI-CI-R(I,J)*GAMMA(J) 

140 CONTINUE 
GAMMA(I)=CI/R(I,I) 

150 CONTINUE 
SUM-O 
DO 160 I=O,K 
SUM-SUM+GAMMA(I) 

160 CONTINUE 
DO 170 I=O,K 
GAMMA(I)==GAMMA(I)/SUM 

170 CONTINUE 
RES-lDO/DSQRT(DAHS(SUM)) 

END OF COMPUTATION OF THE GAMMA'S FOR RRE 
C 

END IF 
KOUT-K 
IF (IPRES.EQ.l.AND.IPRESl.NE.1) THEN 
WRITE(6,321) K,RES 

321 FORMAT(I3,2X,lP,D15.2) 
END IF 
IF (RES.LE.EPS*R(O,O).OR.R(K,K).LE.EPSl*R(O,O) 

* .OR.K.EQ.KMAX.OR.IPRESl.EQ.l) THEN 

: COMPUTATION OF THE APPROXIMATION S(O,K) 
C 

180 

190 

200 

210 
220 

C 

XI(O)=lDO-GAMMA(O) 
DO 180 J-l,K-1 
XI(J)=XI(J-I)-GAMMA(J) 
CONTINUE 
DO 190 I=l,NDIM 
S(I)=X(I) AAAo3340 
CONTINUE AAAo3350 
DO 220 J=O,K-1 
HP-O 
DO 200 I=J,K-1 
HP=HP+R(J,I)*XI(I) 
CONTINUE 
DO 210 I=l,NDIM 
S(I)-S(I)+HP*Q(I,J) 
CONTINUE 
CONTINUE 

C END OF COMPUTATION OF THE APPROXIMATION S(O,K) 
C 

END IF 
IF (IPRESl.EQ.l) THEN 

C 
C EXACT COMPUTATION OF RESIDUAL LZ-NORM. 

AAAO2840 
MA02850 
AAAO2860 
AAAO2870 
AAAO2880 
AAAO2890 
AAAo2900 
AAAo2910 
WA02920 
AAAo2930 
AAAo2940 
AAAo2950 
AAAO2960 
AAAo2970 
MO2980 
AAAo2990 
AAAo3000 
AAAo3010 
AAAO3020 
Au03030 
AAAo3040 
AAAo3050 
AAAO3060 
AAAo3070 
AAAO3080 
AAAo3090 
AAAo3100 
AAAo3110 
AAAO3120 
AAAo3130 
AAAo3140 
a03150 
AAAO3160 
AAAo3170 
AAAO3180 
AAAo3190 
AAAO3200 
Am03210 
AAAO3220 
AAAO3230 
AAAO3240 
AAAO3250 
AAAO3260 
AAAO3270 
AAAO3280 
AAAo3290 
AAAo3300 
AAAo3310 
AAA03320 
AAAo3330 

AAAO3360 
-03370 
AAAO3380 
Aao3390 
AAAo3400 
AAAo3410 
AAAO3420 
AAAo3430 
mo3440 
AAAo3450 
MO3460 
mo3470 
AAAO3480 
AAAo3490 
AAAo3500 
AAAo3510 
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C AAAO3520 
CALL VECTOR(S,Y,NDIM) AAAo3530 
RESl-0 AAAo3540 
DO 230 I=l,NDIM AAAo3550 
RESl=RESl+(Y(I)-S(I))**2 AAAO3560 

230 CONTINUE AAAo3570 
RESl=DSQRT(RESl) AAAO3580 

C AAAo3590 
C END OF EXACT COMPUTATION OF RESIDUAL L2-NORM. AAAO3600 
C Am03610 

IF (IPRES.EQ.l) THEN AAAO3620 
WRITE(6,331) K,RES,RESl MO3630 

331 FORMAT(I3,2X,lP,2D15.2) AAAO3640 
ELSE IF (IPRES.NE.l) THEN AAAO3650 
WRITE(6,332) K,RESl AAAO3660 

332 FORMAT(I3,2X,lP,D15.2) MO3670 
END IF MO3680 
END IF AAAO3690 
IF (RES.LE.EPS*R(O,O).OR.R(K,K).LE.EPS1*R(O,O))-RETURN AAAo3700 
DO 240 I=l,NDIM zu+Ao3710 
Y(I)=E(I) AAAO3720 

240 CONTINUE AAAo3730 
250 CONTINUE AAAo3740 

RETURN AAAo3750 
END AAAO3760 

Am03770 
SUBROUTINE VECTOR(X,Y,NDIM) AAAO3780 

C*******************~~~~~~~~~~~~~~~~***~~~~~~**~~~~~~~~*~~~~~~~~~~~~*~*~-O3790 

C THIS SUBROUTINE GENERATES THE VECTOR Y FROM THE VECTOR X BY USING, AAAO3800 
C E.G., A FIXED POINT ITERATION TECHNIQUE. AAAO3810 
C***********************************************************************AAAO3820 
C IN THE PRESENT EXAMPLE THE ITERATIVE TECHNIQUE IS OF THE FORM AAAO3830 
C Y=Al*X+Bl. HERE Al IS AN NDIM*NDIM SEPTADIAGONAL MATRIX SYMMETRIC MO3840 
C WITH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS AAAO3850 
C Al=(l-OMEGA)*I+OMEGA*A,WHERE OMEGA IS A SCALAR, I IS THE AAAO3860 
C IDENTITY MATRIX, AND A IS THE MATRIX NO3870 
C AAAO3880 
C 15211 AAAO3890 
C 126311 I AAAo3900 
C 1136311 AAAo3910 
C A = 0.06*1 1 1 3 6 3 1 1 I. IaAo3920 
C I 1136311 I AAAo3930 
C I 1136311 I AAAo3940 
C I . . . . . * . AAAo3950 
C -03960 
C Bl IS THE VECTOR DEFINED AS Bl=OMEGA*B, THE VECTOR B BEING CHOSEN AAAo3970 
C SUCH THAT THE SOLUTION OF THE SYSTEM T=A*T+B IS THE VECTOR AAAO3980 
c (l,l,...,l). AAAo3990 
C THE ITERATIVE TECHNIQUE USED IS THUS RICHARDSON'S ITERATIVE AAAo4000 
C METHOD APPLIED TO THE SYSTEM (I-A)*T-B. AAA04010 
C***************************************O4020 

IMPLICIT DOUBLE PRECISION (A-H,O-2) AAAo4030 
PARAMETER (OMEGA=ZDO,TAU=lDO-OMEGA) AAAo4040 
DIMENSION X(NDIM),Y(NDIM) AAAo4050 
N=NDIM AAAO4060 
Y(1)=(5*X(1)+2*X(2)+X(3)+X(4))*6D-2+46D-2 mo4070 
~(2)=(2*X(1)+6*X(2)+3*X(3)+X(4)+X(5))*6D-2+22D-2 AAAO4080 
~(3)=(~(1)+3*X(2)+6*X(3)+3*X(4)+X(5)+X(6))*6D-2+lD-l AAAo4090 
DO 10 1=4,N-3 AAAo4100 
~(I)=(X(I-~)+X(I-~)+~*X(I-~)+~*X(I)+~*X(I+~)+X(I+~)+X(I+~~)*~D-~ AAA04110 
* +4D-2 AAAO4120 

10 CONTINUE AAAo4130 
y(N-2)=(X(N)i.3*X(N-l)+6*X(N-2)+3*X(N-3)+X(N-4)+X(N-5))*6D-2+1D-l AAAo4140 
y(N-1)=(2*X(N)+6*X(N-l)+3*X(N-2)+X(N-3)+X(N-4))*6D-2+22D-2 AAAo4150 
Y(N)=(S*X(N)+2*X(N-l)+X(N-2)+X(N-3))*6D-2+46D-2 AAAO4160 
DO 20 I=l,N AAAo4170 
Y(I)=TAU*X(I)+OMEGA*Y(I) AAAO4180 
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20 CONTINUE 
RETURN 
END 

CYCLE NO. 1 

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 20 

WIDTH OF EXTRAPOLATION IS 10 

K RES RESl 
0 4.75D-01 4.75D-01 

: 
5.36D-01 5.36D-01 
1.52D-02 1.52D-02 

3 1.93D-02 1.93D-02 
4 4.23D-03 4.23D-03 
5 3.79D-03 3.79D-03 
6 1.41D-03 1.41D-03 
7 l.OOD-03 l.OOD-03 
8 5.16D-04 5.16D-04 
9 3.04D-04 3.04D-04 

10 2.00D-04 2.00D-04 

CYCLE NO. 2 

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0 

WIDTH OF EXTRAPOLATION IS 10 

K 
0 

RES 
2.00D-04 
9.57D-05 
9.59D-05 
4.58D-05 
4.42D-05 
1.68D-05 
1.91D-05 
6.49D-06 

RESl 
2.00D-04 
9.57D-05 
9.59D-05 
4.58D-05 
4.42D-05 
1.68D-05 
1.91D-05 
6.49D-06 

8 7.22D-06 7.22D-06 
9 2.56D-06 2.56D-06 

10 2.90D-06 2.90D-06 

CYCLE NO. 3 

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0 

WIDTH OF EXTRAPOLATION IS 10 

K RES RESl 
0 2.90D-06 2.90D-06 
1 l.l8D-06 l.l8D-06 
2 1.38D-06 1.38D-06 
3 6.20D-07 6.20D-07 
4 6.64D-07 6.64D-07 

2.43D-07 2.43D-07 
2.63D-07 2.63D-07 
8.58D-08 8.58D-08 
9.15D-08 9.15D-08 

9 3.95D-08 3.95D-08 
10 4.17D-08 4.17D-08 

CYCLE NO. 4 

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0 

WIDTH OF EXTRAPOLATION IS 10 

K RES RESl 
0 4.1713-08 4.17D-08 

mAo4190 
MAO4200 
AAAO4210 
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8 
9 

10 

2.44D-08 2.44D-08 
2.40D-08 2.40D-08 
1.29D-08 1.29D-08 
1.24D-08 1.24D-08 
5.49D-09 5.49D-09 
5.39D-09 5.39D-09 
1.95D-09 1.95D-09 
1.96D-09 1.96D-09 
8.71D-10 8.71D-10 
9.27D-10 9.27D-10 

CYCLE NO. 5 

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0 

WIDTH OF EXTRAPOLATION IS 10 

K RES RESl 
0 9.27D-10 9.27D-10 
1 5.14D-10 5.14D-10 
2 5.46D-10 5.46D-10 
3 2.74D-10 2.74D-10 
4 2.71D-10 2.71D-10 
5 l.l7D-10 l.l7D-10 
6 l.O9D-10 l.O9D-10 
7 4.64D-11 4.64D-11 
8 4.28D-11 4.28D-11 
9 2.07D-11 2.07D-11 

10 2.19D-11 2.18D-11 

CYCLE NO. 6 

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0 

WIDTH OF EXTRAPOLATION IS 10 

K 
0 

2 
3 
4 

2 

ii 
9 

10 

RES RESl 
2.18D-11 2.18D-11 
1.25D-11 1.25D-11 
1.26D-11 1.26D-11 
7.23D-12 7.23D-12 
6.32D-12 6.32D-12 
3.29D-12 3.28D-12 
2.85D-12 2.85D-12 
1.27D-12 1.28D-12 
l.l5D-12 l.l5D-12 
5.79D-13 5.67D-13 
5.67D-13 5.49D-13 
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