
Journal of Computational and Applied Mathematics 36 (1991) 305-337
North-Holland

305

Efficient implementation of minimal
polynomial and reduced rank
extrapolation methods

Avram Sidi

Computer Science Department, Technion-Israel Institute of Technology, Haifa 32000, Israel

Received 1 June 1990
Revised 4 December 1990

Abstract

Sidi, A., Efficient implementation of minimal polynomial and reduced rank extrapolation methods, Journal of
Computational and Applied Mathematics 36 (1991) 305-337.

The minimal polynomial extrapolation (MPE) and reduced rank extrapolation (RRE) are two very effective
techniques that have been used in accelerating the convergence of vector sequences, such as those that are
obtained from iterative solution of linear and nonlinear systems of equations. Their definitions involve some
linear least-squares problems, and this causes difficulties in their numerical implementation. In this work
timewise efficient and numerically stable implementations for MPE and RRE are developed. A computer
program written in FORTRAN 77 is also appended and applied to some model problems, among them a
hypersonic flow problem involving chemical reactions.

Keywork Extrapolation, convergence acceleration, minimal polynomial extrapolation, reduced rank extrapola-
tion, vector sequences, linear and nonlinear systems, fixed-point iterative techniques, least squares, QR
factorization.

1. Introduction

The minimal polynomial extrapolation (MPE) of Cabay and Jackson [2] and the reduced rank
extrapolation (RRE) of Eddy [3] and MeSina [9] are two methods used in accelerating the
convergence of a large class of vector sequences. In particular, they are employed for accelerating
the convergence of fixed-point iterative techniques for linear or nonlinear systems of equations,
such as those that arise in the discrete solution of continuum problems.

A unified treatment of these and other extrapolation methods has been given in the survey
paper [19], where some numerical testing for them is also provided. Detailed convergence
analyses for MPE and RRE have been presented in [12,13,16], and we shall mention some of the
results that follow from these analyses later in this work. Also, both MPE and RRE are very
closely related to some well-known Krylov subspace methods when they are applied to linearly
generated vector sequences, and this subject is explored in detail in [13]. In fact, MPE and RRE

0377-0427/91/$03.50 0 1991 - Elsevier Science Publishers B.V. All rights reserved

306 A. Sidi / Implementation of extrapolation methods

are equivalent to the Arnoldi method and generalized conjugate residuals (GCR), respectively,
when they are all applied to linear systems of equations starting with the same initial approxima-
tion. For the method of Amoldi, see [lo], and for GCR, see [4]. We also mention that the
conjugate gradient type method of [l], the method of [22] that has been called ORTHODIR, and
the recent generalized minimal residual method (GMRES) of [ll] are all equivalent to GCR, and
are used in solving linear equations. Recursion relations that exist among various approximations
that are obtained from both methods are discussed in [6], where the existence of an interesting
four-term lozenge recursion is shown. MPE and RRE have been employed successfully in [17] in
accelerating the convergence of some finite-difference solution techniques in large-scale compu-
tational fluid dynamics problems. Finally, the application of MPE and RRE and other vector
extrapolation methods to the iterative solution of consistent singular linear systems has been
considered in [15], where this approach is shown to be sound theoretically, and precise
convergence analyses are also provided.

The definitions of MPE and RRE involve the solution of a linear least-squares problem, the
number of equations in this problem being equal to the dimension of the vectors in the given
sequence. Since, in general, this dimension may be very large, as it is, for example, in
three-dimensional computational fluid dynamics problems, the matrix of the least-squares
problem may be very large. Thus, if standard linear least-squares packages are used, the time and
core memory requirements in the implementation of MPE and RRE may become prohibitive. To
circumvent this problem, the solution of the linear least-squares problem was achieved in [17] by
solving the corresponding normal equations that is much less costly than using least-squares
packages. This approach proves to be quite efficient when the amount of extrapolation is not
very large. When the amount of extrapolation is increased, however, the accuracy decreases, as
the normal equations become very ill-conditioned.

In the present work we propose new implementations for MPE and RRE, which are very
inexpensive as far as both time and core memory requirements are concerned, and are stable
numerically as the amount of extrapolation is increased. These implementations are also quite
interesting mathematically, as they allow one to compute exactly (or estimate) the accuracy
achieved in the extrapolation process without actually computing the residuals at each stage. This
can be employed to further reduce the cost of implementation.

The plan of this paper is as follows. In Section 2 we briefly review the definitions of MPE and
RRE. In Section 3 we consider the application of MPE and RRE to vector sequences that are
generated by iterative solution of linear systems as this provides the motivation for different
modes of usage of the methods. We devote Sections 4-6 to the development of the new
implementations of MPE and RRE and the description of the mathematical features of these
implementations. In Section 4 we give the details of the new implementations. One of the crucial
ingredients of these implementations is the efficient solution of the least-squares problems by use
of QR factorization. In Section 5 we show how, in these new implementations, the &-norms of
the residuals can be computed exactly for linear systems (or estimated for nonlinear systems)
without doing extra vector computations. This enables us to assess the accuracy of the
extrapolation without actually carrying it out, and can be used to reduce the amount of
computation drastically. In Section 6 we discuss the operation counts and the storage require-
ments for the new implementations. In Section 7 we discuss some practical matters concerning
the efficient use of MPE or RRE or any other vector extrapolation methods. Finally, in Section 8
we give some numerical results obtained by applying MPE and RRE through their new

A, Sidi / Implementation of extrapolation methods 307

implementations to three model problems. Two of these problems are linear, and the third is a
nonlinear problem arising from finite-difference approximation of a two-dimensional hypersonic
flow problem involving the Navier-Stokes equations with chemical reactions. A computer
program written in FORTRAN 77 that implements MPE and RRE is provided in Appendix B.

2. Review of MPE and RRE

Let x0, x1, x2,... be a given sequence of N-dimensional column vectors, and denote its limit
or antilimit by s. The vectors xj are assumed to be complex, in general. Define

ui = Axi = xi+1 - xi and y = A2xi, i=o,1,2)... . (24

Define the N X (j + 1) matrices U$n) and win) by

q@)= [4%+1l**. IG+j] (2.2)

and

TJ”)= [M&vn+* I . . . Iw,+J. (23

2.1. Definition of MPE

For MPE the approximation s,,~ to s, the desired limit or antilimit, is defined by

s n,k= i YjXn+j, (24

j=O

where the yj are determined as follows.
(i) Use the least-squares method to solve the overdetermined and, in general, inconsistent

linear system

u,(“,,c = - u,,k, (2.5)

where c = (co, cl,.. .) Ck_I)T.
(ii) Set ck = 1, and compute the yj by

‘j
Yj = cfxoci 7 O GjG kY

assuming that C~zocj # 0. When this condition is not satisfied, s,,k does not exist.

(2.6)

2.2. Definition of RRE

For RRE the approximation s,,k to s, the desired limit or antilimit, is defined by
k-l

s
n,k =xn + C Si”n+iY (2.7)

i=O

where the Ei are determined by solving the overdetermined and, in general, inconsistent linear
system

W,‘l’,.$ = -24 n, (2.8)

308 A. Sidi / Implementation of extrapolation methods

with 5=(to, t1,...,5k-1)T, using the least-squares method. Since a least-squares solution to (2.8)
always exists, s,,~ always exists. In particular, s,,~ exists uniquely when the matrix I@!\ has full
rank, i.e., rank(IV,‘!!\) = k, or, equivalently, when the vectors w,,, w,+i, . . . , w,,+~_~ are linearly
independent. It can easily be shown that rank(W,(!\) = k, thus s,,~ exists uniquely, when
rank(U,‘“‘) = k + 1.

There exists an equivalent formulation of RRE that seems to be more suitable for computer
implementation. It also has the advantage of unifying most of the algorithmic aspects of MPE
and RRE. In this formulation s, k is of the form given in (2.4); only this time the yj are obtained
by the least-squares solution of the overdetermined and, in general, inconsistent linear system

u/yy = 0 3 tw
where v=(uo, Ye,..., yk)=, subject to the constraint

5 y,=l. (2.10)
j=O

(Note that the y, in MPE satisfy (2.10) automatically, as can easily be seen from (2.6).)

Remarks. (1) It is important to realize that the yj in s,,~ = CS=oyj~n+j depend solely on

x x,+1>-.., x,+k+l*

“i2) I n most applications, N, the dimension of the vectors xi, is much larger than k, so that the
matrices UJ”’ have many more rows than columns. Therefore, there is great need to reduce the
amount of’numerical work with the columns of the matrices Ujcn).

3. Application of MPE and RRE to linear systems

Consider the linear nonsingular N-dimensional system

x=Ax+b, (3-I)

where A is an N X N matrix and b is an N-dimensional column vector. Pick an initial vector x0,
and generate the vectors xi, x2,. . . by the iterative scheme

xi+1 =Ax,+b, i=O, l)... . (3.2)

The solution s of (3.1) is now the limit of the sequence x0, x1, x2,. . . , when the latter converges,
otherwise, s is the antilimit.

Let k, be the degree of the minimal polynomial of the matrix A with respect to the vector

XII - s. Then the following statements are true.

(i) % k , o is uniquely defined both for MPE and RRE, and

S n,k, = S. (3.3)

Also the linear systems in (2.5), (2.8) and (2.9) are consistent for k = k,, even though they may
be overdetermined. This is a consequence of the fact that the vectors u~+~, 0 <j < k, - 1, are
linearly independent, and u, +k, lies in their span. (See [13, Section 2.21.)

(ii) For k < k,, s,,k is uniquely defined for RRE. For MPE, however, s,,k may fail to exist
when k < k,. When the matrix C = I - A has positive definite Hermitian part, s,,~ exists

A. Sidi / Implementation of extrapolation methods 309

uniquely for MPE also for k < k,. (See [13, Section 2.21.) More generally, s,,~ exists uniquely for
MPE also for k < k,, if the eigenvalues of C all lie on one side of a straight line through the
origin in the complex plane, or, equivalently, if they all lie in an open sector S = { CL: 1 arg p - 6’ 1 -C

$rr } , for some 8, --71< 8 < T. This result can be proved exactly as [13, Theorem 2.21 with C there
replaced by e-“C.

(iii) When the Arnoldi method and GCR are used in solving the linear system Cx = b, where
C = I - A, with x, as the initial vector, they become equivalent to MPE and RRE, respectively.
Specifically, the approximations obtained from the Amoldi method and GCR are exactly
s s,z,... n,l, that are produced by MPE and RRE, respectively. (See [13, Section 2.31.)

(iv) ‘If the distinct nonzero eigenvalues of A are denoted hj, j = 1, 2,. . . , and are ordered such
that

(A, 1 >, 1 A, I > I A, I 2 * * *)

then, provided

IhI ’ Ihk+l I)
and A is diagonalizable, we have

(3.4)

(3.5)

both for MPE and RRE. (The coefficient of I hk+l I n on the right-hand side of (3.6) becomes

large when the largest eigenvalues hi, A,, . . . are close to 1.) In view of the fact that x, - s =
0(1 A, I “), as n + co, we conclude that MPE and RRE are both true acceleration methods.
Under the same conditions, if s,,~ - s is precisely 0(I A,,, I “) as n -+ co, then the yj for MPE
and RRE are such that

k x-x. h n
Pk(h) = ; yju= ,Ql, +o q il Ii) asn+oo,

j=O I
(3.7)

i.e., for fixed k and for all sufficiently large n, the polynomial P’“,k’(h) has precisely k zeros
that tend to Xi, X2,..., h,. Furthermore, if we denote the zero of P’“,k’(X) that tends to Xj by

Xj(n), then

hj(n)-Xj=O , asn+co, l<j<k.

The proofs of (3.6) and (3.7) have been given in [12, Sections 3 and 41. The proof of (3.8) will be
published in the future. In case the matrix A in (3.2) is normal, the right-hand sides of (3.7) and

(3.8) can be replaced by 0(I Xk+,/hk I 2n) and 0(1 Xk+l/hj I 2n), respectively. (The result in (3.6)
remains the same, however.) This implies that when A is normal, the rates of convergence of
J’c”,k)(X) and its zer o s hj(n) are twice those that can be achieved otherwise. These results follow
from the corresponding results of [14].

For the most general case in which the matrix A is not diagonalizable, the results in
(3.6)-(3.8) need to be modified considerably. For a complete treatment of this case see [16,
Sections 2, 3 and 51, where modifications of (3.6) and (3.7) are given. The modification of (3.8)
will be published in the future.

A direct consequence of the result given in (3.6) is that better accuracy may be obtained if
extrapolation is preceded by a number of fixed-point iterations. This has indeed been observed

310 A. Sidi / Implementation of extrapolation methods

numerically both for linear and nonlinear problems. We shall comment on this again in Section
7.

(v) Let us denote C = I - A. Then s is the solution to Cx = b. Denote by ?z, the set of all
polynomials Qk(X) of degree at most k that satisfy Qk(0) = 1. Consider now s,,~ as obtained by
applying MPE or RRE to the vector sequence x0, x1,. . . . Then

II +,,d II G ($& II Q,(C) II) II d-d IIT for RR6 (3 3

where r(x) = Ax + b - x = b - Cx = - C(x - s) is the residual for x, and]I . II is the I,-vector
norm, or the matrix norm induced by it. (In fact, I] T(s,,~) (1, k = 0, 1, 2,. . . , is a monotonically
decreasing sequence for RRE.) Similarly, if C, = $(C + C *), the Hermitian part of C, is positive
definite, then

where

i

L, if C is normal,

p = L/w, otherwise,

(3.10)

(3.11)

with L = 1 I C, ‘/‘CC, ‘I2 11 2 1. Note that both I] Y(X)]I and]I Cg’(x - s) I] are true norms for
x - s. Two types of bounds for mineA E_ I] Qk(C) I], in case C, is positive definite, are given in
[13, Section 41, and these can be used to derive upper bounds for]I T(s,,~)]I and I] C~2(s,,, - s)]I
for fixed n and increasing k. For details see [13]. These bounds are employed in [17] to justify
the use of the extrapolation strategy that has been called “cycling” in [19] and all subsequent
publications.

Finally, analogous and almost identical results exist for the case in which the system in (3.1) is
singular but consistent, so that it has an infinity of solutions. In this case the limit or antilimit
depends on x,, in a very specific manner. For details, see [15].

Remark. The various Krylov subspace methods like the Arnoldi method and GCR and others
can be applied only to linear systems. Acceleration methods such as MPE and RRE, however,
can be applied to nonlinear systems as well as linear ones. The reason for this is that, unlike the
Krylov subspace methods, MPE and RRE are defined exclusively in terms of the given vector
sequence, which may be generated, for example, by an iterative method. Whether the vector
sequence is generated linearly or nonlinearly is irrelevant to the definitions of MPE and RRE
and other vector extrapolation methods. This is a very important property of vector extrapola-
tion methods.

4. Implementation of MPE and RRE

4.1. General considerations

As we have seen in Section 2, both MPE and RRE entail linear least-squares problems in their
definitions. There is, therefore, an immediate need for the efficient solution of these problems.
We propose to solve these problems by applying the QR factorization to the matrices I$~).

A. Sidi / Implementation of extrapolation methods 311

To keep the notation simple we shall set n = 0 everywhere, and denote the matrices C$J”) by
C$. This amounts to simply renaming x, and calling it x0.

We assume that the vectors uo, ul,. . . , uk are linearly independent so that the N X (k + 1)

matrix U, is of full rank k + 1. The case in which uo, ui,. . . , uk are linearly dependent will be
discussed later in this section. We recall that for the linear system in (3.1) this assumption is valid
when k -c ko, where k. is the degree of the minimal polynomial of the matrix A with respect to
the vector x0 - s. Therefore, there is a unique N X (k + 1) matrix Qk,

whose columns qi satisfy

(qi, qj) = qi*qj = sijV

and a unique (k + 1) X (k + 1) upper triangular matrix R,,

roa r01 ro2 --* ‘Ok

r11 r,, a-. rlk

R,=
r,, e-0 r2k

3

0 rkk

(4.1)

P-2)

(4.3)

with rji > 0, i = 0, l,..., k, such that

uk = QkRk. (4.4

This QR factorization amounts to orthonormalizing the vectors uo, ui, u2,. . . , in this order. It
is important to retain this order, as this enables us to form the QR factorization of uk+ 1 by
appending one additional column to Qk to obtain Qk+ 1, and a corresponding column to R, to
obtain Rk+,.

QR factorization can be performed in different ways. The simplest way is the Gram-Schmidt
(GS) process for orthonormalization of uo, ui, u2,. . . . This process is very unstable, however, in
the sense that the computed vectors qo, ql, q2,. . . are very far from being orthogonal. The
modified Gram-Schmidt (MGS) process, on the other hand, seems to be quite stable, and is the
one that we have preferred. We recall that MGS is entirely equivalent to GS mathematically, and
requires the same number of arithmetic operations as GS. The two methods are different
numerically, however. For details, see, e.g., [7, pp. 218, 2191.

For the sake of completeness we describe MGS for the case in which the vectors uo, ul, u2,. . .

are introduced one by one and in this order.

Algorithm MGS
Step (1) Read uo, and compute the scalar roe and the vector q. according to

r, = (uo, ulP2 and q. = uo/r,.
Step (2) for k = 1, 2,. . . do

read uk, and set ulp’ = uk
for j=O to k- 1 do
‘jk,=(q. up’) J’

(J+l) =
uk

.j/ - rikqj

end

312 A. Sidi / Implementation of extrapolation methods

compute rkk and qk according to
rkk = (uik’, uik))“* and qk = uik)/rkk

end

(Here (y, z) stands for the Euclidean inner product y*z, as before.)
It is easy to see that, when implementing MGS on a computer, up’, ui’), . . . , ukk’, and qk can

all be made to occupy the same storage locations. As we shall see in the next paragraph, the
computation of Sg,k can be based on the qj without the need to save either the xj or the uj. We
can thus let uk occupy the same storage locations as the uy).

QR factorization can also be achieved by using Householder transformations. Although the
computed matrices Qk produced in this approach are closer to unitary than those produced by
MGS when the I,-condition number of Uk is large, the amount of computing in this approach is
about twice that required by MGS. We shall elaborate on this further in Section 7.

We now recall from the definitions of MPE and RRE, that the approximations so,k for both
methods can be expressed in the form

k k

s o,k = c YjXj, with c yj = 1. (4.5)
j=O J=o

Assuming that yo, yi, . . . , yk have been determined, let us COmpUte to, 51,. . . , [k_ l from

<o=l-yo and .$j=(j_l-yj, l<j<k-1. (4.6)

Then, we can re-express so,k in the form
k-l

SO,k = X0 + C 5iUi = X0 + uk-l’$,

i=O

where 5=Go, &,..., (k_l)T. Substituting now &_i = Qk_lRk_l in (4.7), we obtain
k-l

(4.7)

where

SO,k =XO f Q/c-,(Rk-,O =XO -f C Vjqj>
j=O

(4.8)

qj = (j + 1)st component of the column vector R,_,(, j = 0, 1,. . . , k - 1. (4.9)

This approach to the computation of Sg,k is very advantageous, as it enables us to overwrite
x1, x2,--- and uo, ui,. . . , and thus saves a lot of storage.

4.2. Determination of the yj when rank(&) = k + I

The only thing that remains to be done now is to determine the y,, and this requires separate
treatments for MPE and RRE.

4.2.1. Determination of the yj for MPE
As mentioned in Section 2, in order to determine the yj for so,k in MPE we first solve the

overdetermined system

&_ic= -uk (4.10)

A. Sidi / Implementation of extrapolation methods 313

by least squares. Since we also assume that the rank of U, is k + 1, we conclude that c is the

unique solution of the normal equations

u,*_,u,_,c = - Uk?,U,. (4.11)

Upon invoking U,_, = Q,_,R,_, in (4.11) and using the fact that Qz_lQk_l = IkXk (the k X k

identity matrix), and the fact that R,_, is a nonsingular matrix, we obtain

R,_,c = - Q,*_,u,. (4.12)

It is easy to see that

Q,Luk=h, qk,...,~k-&~=~k, (4.13)

so that (4.12) becomes

R,_,c = -pk. (4.14)

This is a linear system of k equations in the k unknowns co, ci, . . . , ck__l, and its matrix R,_, is
upper triangular. Hence its solution can be achieved easily by back substitution.

Once co, ci,. .

c;=(=c; # 0.
. , c&l are determined, we set ck = 1, and compute the yj from (2.6), provided

4.2.2. Determination of the yj for RRE
Again as we mentioned in Section 2, the yj for fo,k in RRE can be determined by solving the

overdetermined system

u,y = 0 (4.15)

by least squares subject to the constraint

; yj=l. (4.16)
j=O

This amounts to minimizing the positive definite quadratic form y*U,*U,y subject to (4.16).
Consequently, the Lemma in Appendix A applies, and the yj can be obtained by solving the
linear system of k + 2 equations

‘&* uky = AZ, i Yj=l,
j=O

for yo, Ye,..., yk and h. Here

z= (1, l)...) 1)‘.

As is stated in the same lemma, X turns out to be strictly positive, and is given by

(4.17)

(4.18)

A = y * uk* uky , at the sohhm. (4.19)

The yj can be obtained by first solving the linear system

U,*U,d = e”,

for d = (do, d,, . . . , dk)T, and letting

(4.20)

(4.21)

314 A. Sidi / Implementation of extrapolation methods

and finally setting

y=Ad. (4.22)

As far as the solution of the system in (4.20) is concerned, we accomplish this again by using
the QR factorization of U,. Again by Q$Qk = I~k+ljx(k+lj (the (k + 1) X (k + 1) identity
matrix), we can rewrite (4.20) in the form

R,*R,d = e”. (4.23)

This system can be solved by forward and back substitution as the matrix R, is upper triangular.

4.3. Treatment of the case rank(&) = k

Up to this point we discussed the case in which the vectors ua, ui,. . . , uk are linearly
independent. Since these vectors are being introduced one by one, we can view this case as
adding the vector uk to the linearly independent set { u,,, ui, . . . , uk_ 1 } and obtaining the linearly
independent set { u,,, ui, . . . , uk >. We now consider the case in which { ua, ui, . . . , u&_~} is a
linearly independent set, but { uo, ui, . . . , uk } is not, i.e., rank(U,) = k. This exhibits itself
through r,, = 0 in the QR factorization step.

If we apply MPE, then we can compute the yj by solving the (nonsingular) system in (4.14)
and employing (2.6), provided Cf=,ci # 0 there. We then compute s~,~.

If we apply RRE, we can compute so,k as follows. First, by the linear dependence of
uo, u1,***, u.4, there exist constants ao, al,. . . , ak, not all zero, such that Cf=(=,oliui = 0. This
implies that the linear system in (4.15) is consistent. Also we can write U, = C&R,, where Qk and
R, are as in (4.1)-(4.3), qo, qi,.. ., qk_l are uniquely determined and qk is arbitrary in (4.1), and
rkk = 0 in (4.3). Multiplying both sides of (4.15) by Q$, and using the fact that QzQk =
I (k+l)x(k+l), we obtain the system of k + 2 equations

R,y=O and i y,=l. (4.24)
j=O

Now, by rkk = 0, this system actually consists of the k + 1 inhomogeneous equations

(4.25)
j=O

in the k+ 1 unknowns yo, yi,..., yk. Since a least-squares solution for the linear system in (2.8)
always exists, a solution for the yj always exists too. Consequently, the equations in (4.25) always
have a solution for RRE. Once we determine a set of yj’s, we compute s~,~.

Comparing (4.25) with (4.14) and (2.6), we see that if so,k exists for MPE when rank(U,) = k,
then it iS equal t0 Sg,k for RRE.

If the vector sequence x0, xi, x2,. . . is generated as in (3.2), then, as explained in Section 3,
rank(Uk) = k + 1 for k -C k,, where k, is the degree of the minimal polynomial of A with respect
to x0 - s. The smallest value of k for which rank(Uk) = k is k,, and at k = k, we already reach
the solution, i.e., s~,~, = s. That iS the first time rkk = 0 occurs, we have so k = s, and stop.

If the vector sequence x0, xi, x2,. . . is not generated linearly, and’ rank(Uk_i) = k, but
rank(l/,) = k -C k + 1, then we can compute so,k first, and then take so,k or a nearby vector as x0,

A. Sidi / ImpIementation of extrapolation methods 315

and restart the computation. Other strategies for continuing the computation can likewise be
devised, but we shall not pursue this matter further.

It should be mentioned, however, that, due to round-off, the chances of encountering the case
rank(U,) < k + 1 in practice are extremely small. We have thus not included the treatment of this
case in the computer program given in Appendix B.

4.4. Summary of implementations

We now summarize the major steps of the implementations, as they have been described
above. We assume that all the matrices U, have full rank.

Suppose that, starting with x0, we have constructed the matrices Qk_1 and R,_,.
We now read xk+, and compute uk = xk+i - xk. Following this, using MGS, we compute the

scalars rOk, rlk,. . . , r,, and the orthonormal vector qk, which we use to augment the matrices
Qk_ 1 and R,_ 1 to give Qk and Rk, respectively.

We next proceed to the computation of the yj. For MPE, we first solve the upper triangular
k x k system in (4.14) for ca, ci, . . . , c~__~ by back substitution, and then use (2.6) to obtain the
yj. For RRE, we solve the (k + 1) X (k + 1) system in (4.23) for d, and then determine the yj by
(4.21) and (4.22). The solution of the system in (4.23) can be achieved very simply by forward
and back substitution as R, is upper triangular.

Once the yj have been determined, we compute the tj by (4.6) and the qj by (4.9), and finally,

~0.k by (4.8).
Next we read x~+~, and proceed similarly, until a suitable stopping criterion is met.
It should be noted that, strictly speaking, neither rkk nor qk is needed for determining s~,~,

and their computation can be completed after x~+~ has been introduced. In the computer
program that we give in Appendix B, though, we chose to compute rkk and qk before the
computation of s~,~.

Finally, it is not difficult to see that these implementations are very appropriate for vector
computers as their handling of the xi, ui, and q,. can be entirely vectorized. The computer
program given in Appendix B has been written to take full account of this.

5. Estimation of residual norms

5.1. General considerations for linear and nonlinear systems

Let s be the solution of the linear or nonlinear system of equations

x = F(x), (5.1)

and let us define the residual for an arbitrary vector x by

r(x) = P(x) -x. (5.2)

Let x0 be a given initial approximation, and generate the sequence of vectors xi, x2,. . .,

according to the fixed-point iterative method

xi+1 =F(xj), j=o, 1)“. . (5 *3)

316 A. Sidi / Implementation of extrapolation methods

Consequently, the residual for xj is given by

r(xj) = F(Xj) - xi = xi+1 - xi = uj,

thus is readily available.

(5 -4)

Let us assume that MPE or RRE is applied to the sequence x0, x1, x2,. . . , and that we are
computing the sequence s,,~, s,,~, Let us assume also that we would like to stop the
computation as soon as some norm of r(+) becomes < e for some k, c > 0 being a preassigned
level of accuracy. The most direct way of doing this would be by actually computing the vectors
s PI.19 r(s,,l), s,,~, r(~,,~), . . . , which is very costly.

Indeed, the computation of s,,~ involves about k vector additions and k scalar-vector
multiplications, that of Y(s,,~), by (5.2), amounts to one additional fixed-point iteration and one
vector addition, and the computation of the norm of r(~,,~) requires an additional inner product.
In addition, the number of the vector operations increases with increasing k. In view of this, the
most desirable situation is one that enables us to estimate some norm of r(~,,~) without having
to compute either .s,,~ or ~(s,,~).

5.2. Residual computation for linear systems

We now devise a strategy by which the I,-norms of the residuals r(.+) can be obtained
exactly without the need to compute either s,,~ or r(s,,k), when the sequence x0, xi, x2,. . . is
being generated linearly by the iterative method in (3.2), i.e., when F(x) = Ax + b in (5.3). The
case in which F(x) is nonlinear will be considered at the end of this section.

When F(x) = Ax + b, the residual for an arbitrary vector x, by (5.2), becomes

r(x) =Ax+b-x.

Consequently, by (2.10), (3.2) and (2.1), we have
k

+O,k) = C Yj"j = U,Y,
j=O

and the I,-norm of r(so,k) is thus

11 +O,k) 11 = bbO,kh r(s0.k))1’2 = (Y*“,*ukd1’2*

By invoking U, = Q,R, in (5.7), we obtain

lP+O,k) II = (Y*Rk*RkY)1'2.
We now analyze y*RzR,y for MPE and RRE separately.

5.2.1. l-,-norm of residual with MPE
Let us compute R,y first. By (4.12)-(4.14) we have

[Rk-&)k][;] =O.

By dividing both sides of (5.9) by CfSocj with ck = 1, and invoking (2.6), we obtain

[R,-,IP,]Y=~.

(5.5)

(5 4

(5.7)

(5 -8)

6%

(5.10)

A. Sidi / Implementation of extrapolation methods 317

Substituting (5.10) in R,y, we finally have

R,Y = (0, 0,. . . ,O, rkk~k)=,

from which we obtain

(Y *%%Y)1’2 = r,c,c I yk I.

Consequently, for linearly generated sequences

11 r&k) 11 = rkk 1 Yk I

exactly, with r(x) as defined in (5.5).

(5.11)

(5.12)

(5.13)

5.2.2. l,-norm of residual with RRE
By (4.19) we immediately have

(y*u,*u,y)“2 = JT;, (5.14)

with h as determined from (4.23) and (4.21). Consequently, for linearly generated sequences

11 r(SO,k) II = Ji; (5.15)

exactly, with r(x) as defined in (5.5).

The results given in (5.13) and (5.15) assume exact arithmetic. Due to round-off errors,
however, the actually computed residual norms may be getting farther from (5.13) and (5.15),
especially when k is increasing. In this case it may be appropriate to compute s,,~ and the norm
of its residual every once in a while to make sure that round-off has not started to dominate the
computations. Although such a test is not included in the computer program given in Appendix
B, it is quite easy to incorporate it there.

5.3. Practical residual estimation in extrapolation for nonlinear systems

We now consider the problem of error estimation for the case in which F(x) in (5.1) is
nonlinear. Let us assume that the sequence x0, x1, x2,. . . is convergent, its limit, of course, being
s, the solution of (5.1). Therefore, for n sufficiently large, x,, x,+r, . . . are all very close to s, and
we have

X n+1 -s = F’(s)(x, -s) + en, (5.16)

where F’(x) is the Jacobian matrix of the vector-valued function F(x), and z, is a vector whose
norm is 0(11 x, - s II 2, as n + CO. This implies that the sequence x0, xi, x2,. . . behaves linearly
at infinity, in the sense that

x~+~ = F’(s)x, + (s - F’(s)s), (5.17)

for all sufficiently large j. Thus, for n sufficiently large, we can take

+,,k) = Uk(% (5.18)

cf. (5.6), and

II rbn,k) 11 = (Y*R’,“‘*R’,“‘-Y)~‘~, (5.19)

318 A. Sidi / Implementation of extrapolation methodr

cf. (5.8), where we have retained the index n in U,,n) and Uk(“) = Qp’@“). The norm in (5.19) is
the I,-norm as before. Consequently, we can take (5.19) as an estimate for the I,-norm of the
residual T(S, k) without having to compute either s,,~
MPE and by’(5.14) for RRE.

or T(s,+), since it is given by (5.12) for

In case n is not large enough, (5.19) may not be very realistic. In this case we may choose to
compute s,,~ and T(s,*~) not for all k, but for k = p, 2p, 3p,. . . , say, for some integer p > 1.
This obviously reduces the cost.

When we use MPE or RRE in the cycling mode, which is one of the best modes of usage,
things become simpler if we recall (5.4). To see this let us recall how cycling can be performed.

Step (1) Fix the integer k. Pick si = x0 and set q = 0.
Step (2) Generate xi by (5.3). If 11 r(@)) 11 = 11 x1 - x0 11 = II u. I(< f, then stop. Otherwise,

generate x2 ,..., x~+~ by (5.3).
Step (3) Compute si9+i) = so k by MPE or RRE.
Step (4) Replace x0 by sp+‘j, and q by q + 1, and go to Step (2).

Consequently, no extra computation for residuals is necessary, as u. is the true residual for the
previous cycle.

6. Operation count and storage requirements

In most applications, N, the dimension of the vectors, is extremely large, while k takes on
very small values. Consequently, the major part of the computational effort is spent in handling
the large vectors, the rest being negligible.

As we can easily see, most of the vector computations take place in the QR factorization. At
the kth stage that leads to so,&, the vector x~+~ is provided first. Starting with this, we need one
vector addition to form uk = xk+ 1 - xk, and, following that, k vector additions, k + 1 scalar-
vector multiplications and k + 1 inner products to form the orthonormal vector qk and the
scalars rOk, r,,, . . . , rkk by MGS. The computation of s~,~, if desired, requires k vector additions
and k scalar-vector multiplications by (4.8). The computation of the y;, & and vi is negligible, as
it involves work with k x k or (k + 1) x (k + 1) triangular matrices for very small values of k.

As for the storage requirements, it is clear that x0 needs to be saved. At the kth stage qk
needs to be saved, in addition to the previously saved qo, ql,. . . , qk_ 1. We also need two or three
more auxiliary vectors of dimension N. Similarly the elements of the matrix R, all need to be
saved, but their storage requirements are negligible.

In view of the above, if only sO,K is needed for some preassigned K, then, recalling that the
vector qK need not be computed, the total operation count is :(K2 + 5K + 2) vector additions,
i(K2+5K)s ca ar 1 - vector multiplications and +(K2 + 3K + 2) inner products, which amounts to
- 2K2N floating-point operations (scalar additions and multiplications). As for the storage
requirements, we need (K + 1) N storage locations for x0, qo, ql,. . . , qK_l, and 2 N storage
locations for two additional auxiliary vectors. No additional storage locations are required for
s~,~ as sO,K can overwrite x0 at the end of the computation.

In many cases it turns out that the accuracy that can be achieved with m cycles of MPE or
RRE, each cycle being of width K, is comparable to that obtained for s~,~~. If we compare the
computational costs of each of these strategies, we see that, roughly speaking, the former is m

A. Sidi / Implementation of extrapolation methods 319

times less expensive computationally than the latter, and requires m times less storage. Thus, as a
computational strategy, cycling possesses important advantages.

It is very instructive to compare the implementations for MPE and RRE, as they are given in
this work, with the vector epsilon algorithm (VEA) of [21]. VEA is defined recursively by

e?i==O and eg’=x,, n=o, l,...,

(6.1)

where Aep) = cjcn+‘) - ep) and Z = (Z, E,)T if z=(zi,..., z~)~. Thus, the computation of
ep) for k > 2 requires two vector additions, one scalar-vector multiplication and one inner
product. For 6;“’ only one vector addition is required. Now as is suggested by experience and as
can be justified heuristically, for given K, rioi for VEA and so,K for MPE or RRE would have
comparable performance. The total operation count for determining ei”i is 4K2 vector ad-
ditions, 2K2 + K scalar-vector multiplications and 2K2 + K inner products, which amounts to
- lOK*N floating-points operations (scalar additions and multiplications). As for the storage
requirements, we need (2K + 1)N storage locations to save egK), aide-‘), . . . , c$‘i, and 2N
storage locations for two auxiliary vectors. Consequently, VEA is about five times more
expensive than either MPE or RRE as far as operation counts are concerned. As far as storage
requirements are concerned, VEA is about twice as expensive as either MPE or RRE. In
addition, since x0, x1,. . . , xZK are needed for E$‘A, whereas only x0, x1,. . . , x~+~ are needed for
either MPE or RRE, VEA is about twice as expensive as MPE or RRE with respect to the
number of vectors they utilize.

We note that, in the epsilon family of vector extrapolation methods, VEA seems to be the
most advantageous as far as the operation count, storage requirements and numerical stability
are concerned. For more details, see [19].

7. Some practical considerations for enhancing convergence and stability

In this section we would like to make a few remarks, which we believe are of practical
importance with regard to enhancing the convergence and stability of vector extrapolation
methods as they are applied to iterative procedures. Most of these remarks are based on the
known theoretical results concerning vector extrapolation methods, some of which have been
discussed in Section 3.

7.1. Effect of iteration before extrapolation

In most problems of interest the vector sequence x0, xi,. . . converges extremely slowly so that
there is not much difference between 11 X, - s 11 and 11 x0 - s I] even for appreciably large values
of n. The result in (3.6) however, suggests that there may be a large difference between

(1% k -sll and (lx,,---s(I (hence 11x,,-sl]) ‘f 1 n is sufficiently large. If the vectors xi are
pro&iced by an iterative procedure such as (3.2), then this implies that it may be very useful to
start the extrapolation procedure after a number of iterations with (3.2). One heuristic argument
in favor of this strategy runs as follows. The initial error x0 - s, in general, has components in

320 A. Sidi / Implementation of extrapolation methods

the direction of all eigenvectors and principal vectors of A. After a few iterations the components
in the direction of those eigenvectors and principal vectors corresponding to zero eigenvalues of
A are totally eliminated, while those corresponding to the eigenvalues that are close to zero are
diminished. Consequently, the error vector x, - s has mostly contributions from the eigenvectors
and principal vectors corresponding to the large eigenvalues. Precisely these contributions are
now diminished by the extrapolation procedure.

7.2. A simple “averaging” of the iteration process and its effect on convergence and stability

Assume that (3.2) or (5.3) result from the discrete solutions of continuum problems. Then, for
a convergent scheme, the largest eigenvalues of A or of F’(s), the Jacobian matrix of F(x) at
x = s, may be very close to 1 in the complex plane in some cases. This may cause the
extrapolation process not to be very effective. The process may even suffer from a large amount
of numerical instability.

One way of dealing with this problem is by applying extrapolation methods not to the
sequence x0, xi, x2,. . . , but to y,, y,, y,, . . . , where yi = xjp, for some positive integer p. This
strategy has been successfully implemented in [17].

Another way would be by changing (5.3), in general, to read

(7.1)
where w is a scalar different than 1. (The sequence generated by taking w = 1 is the one
generated by (5.3).) Thus xj+i is now a weighted “average” of xi and F(xj), in which the
weights 1 - w and w need not be both positive.

By picking w appropriately we can cause the spectrum of the Jacobian matrix of (1 - w)x +
oF(x) at x = s, namely, (1 - w)l+ wF’(s), to be increasingly favorable to s,+ for large values
of n.

Let us take a look at the following example. Suppose the eigenvalues of F’(s) are all positive
and lie in the interval [E, 1 - 111, for some c > 0 and n > 0 close to zero. Consequently, the
sequence x0, xi,. . . obtained from (5.3) converges, provided x0 is sufficiently close to s in case
F(x) is nonlinear, and unconditionally in case F(x) is linear. If we pick w = 2, then the
eigenvalues of (1 - o)l + oF’(s) lie in the interval [- 1 + 2e, 1 - 2771 so that the sequence
obtained from (7.1) also converges. (If e = 77, then this sequence converges more quickly than the
one obtained from (5.3).) The new spectrum has two important properties relevant to vector
extrapolation methods. (1) The largest positive eigenvalue of F’(s), namely 1 - 9, has moved
away from 1. (2) Negative eigenvalues close to - 1 have been created. Both of these properties
enhance the stability of vector extrapolation processes both mathematically and numerically.
(This follows from [12, Theorem 4.11, [16, Theorem 3.21 and [18, Theorems 4.1 and 5.21.) It
should be noted that 2 is also that value of o for which the spectral radius of (1 - w)l + oF’(s)
is minimal when E = n.

7.2.1. Special considerations for linear systems
When F(x) = Ax + b, and the vector sequence is generated by the iterative procedure in (7.1),

the approximations s~,~ are independent of w, as has been shown in [8]. That is to say, the
convergence properties of the s~,~ are not changed by varying w. Nevertheless, varying w may
influence the stability properties of the numerical implementations.

A. Sidi / Implementation of extrapolation methods 321

First, if the sequence obtained from (3.2) is divergent, then all the computations leading to ~a,~
will suffer a large loss of accuracy, especially for increasing k. By changing w in (7.1)
appropriately, we can cause the sequence to converge (or diverge very slowly), thus avoiding the
numerical problem caused by the unboundedness of the original sequence.

Next, if the sequence obtained from (3.2) is slowly converging on account of the largest
eigenvalues of A all being very close to 1 in the complex plane, then the vectors z+,, ui, u2,. . .

are near being linearly dependent. Consequently, the /,-condition number of the matrices U,
may be very large. This may have a negative influence on the QR factorization of U, by MGS
that we have chosen for our implementation. This influence exhibits itself in the computed
matrices Qk being far from unitary and the computed s~,~ not being very accurate. If, by picking
w appropriately in (7.1) we can change the spectrum in such a way that it now contains both
positive and negative large eigenvalues, then the vectors uO, ui, u2,. . . will be far from being
linearly dependent numerically. This will result in better conditioned matrices U,, which, in turn,
will result in the computed matrices Qk being closer to unitary and the computed s,,~ being quite

accurate.
The numerical aspects of MGS and its use in the solution of least-squares problems and the

comparison of these with the Householder QR factorization and least-squares solutions are
discussed at length in [7, Sections 5.2.8, 5.2.9 and 5.3.61.

7.2.2. Application to Jacobi iteration for consistently ordered matrices
The observations above can be used very effectively in the solution of linear systems whose

matrices are consistently ordered. Such matrices arise frequently, for example, in the finite-dif-
ference solutions of elliptic equations.

Suppose iterative methods of the form (3.2) are used in the solution of such a system. If the
method used is the Jacobi iteration method, then it is known that the nonzero eigenvalues of A
come in pairs of the form +p, see, e.g., [20, Chapter 41. Consequently, if the eigenvalues of A are
real, then they are in the interval [- 1 + 8, 1 - 61 for some 6, 0 < 6 < 1, provided p(A) -C 1. As a
result, the nonzero eigenvalues of A2 are in the interval [z, 1 - q], for some E > 0, where
1 - n = (1 - s)2 = 1 - 28 if 6 -=x 1. Furthermore, if 2M is the number of the distinct nonzero
eigenvalues of A, then the number of the distinct nonzero eigenvalues of A2 is M whether the
eigenvalues of A are real or not.

This implies that the approximation s:,,~~ obtained from the Jacobi iterative method and the
approximation ~,2,~ obtained from the double Jacobi iterative method

y=Axj+b,

xi+1 =Ay+b, j=O, l,..., (7.2)

have the same asymptotic behavior as n --) co. In addition, since the largest eigenvalues of A2 are
twice as far from 1 as those of A, s& is more stable than si,, 2k as n -+ cc both mathematically
and numerically.

We can now couple the double Jacobi iteration method with the simple averaging procedure
that was discussed above. Tha new iteration procedure then is

(7 -3)

322 A. Sidi / Implementation of extrapolation methoak

for some o # 0. As explained before, by varying w we can cause the spectrum of the iteration
matrix of (7.3), namely, (1 - w)l+ tiA2, to become favorable to s,,~. In particular, by picking
w = 2 we can cause this spectrum to lie in the interval [- 1 + 2~,1- 2n]= [- 1 + 2e, 1 - 46 +
S2]. This enlarges the distance of the largest positive eigenvalue of the Jacobi iteration matrix A
from 1 even further, and introduces negative eigenvalues close to - 1. This causes sz k to become
more stable. Furthermore, if e >, 6, the convergence rate of x, from (7.3) with w = 2 ‘is as good as
that of X, from (7.2).

We note, incidentally, that the iterative method of (7.3) with w = 2 is known as Abramov’s
method, see [5, p.5141. It is quite easy to see that, in this case,

Xj+l - S = (2A2 - I)(Xj - S) = T2(A)(Xj - S),

where T2(X) = 2X2 - 1 is the Chebyshev polynomial of degree two. It should be emphasized that
this is not Chebyshev acceleration, however.

8. Numerical examples

We have applied MPE and RRE through their new implementations described in the previous
sections to several linear and nonlinear systems of equations. This has been done by employing
the computer program that is provided in Appendix B. Some of the results obtained this way will
be reported in this section.

We have picked real linear systems of equations whose matrices are symmetric or nonsymmet-
ric. Numerical results for two of these systems, one symmetric and the other nonsymmetric, are
included in this work. We have also treated nonlinear systems arising from finite-difference
solutions of fluid mechanics problems. Numerical results for a hypersonic flow problem with
chemical reactions are given in this paper.

Example 1. Consider the vector sequence obtained from (3.2), where A is a 1000 X 1000
septadiagonal matrix symmetric with respect to both of its main diagonals, and is given by

52 11
263 11
136 3 11

A=0*06x 1 1 3 6 3 1 1
11 3 6 3 11

The vector b is such that the exact solution s of (3.1) is (1, 1,. . . , l)T.
All eigenvalues of A are in (0, l), the smallest and the largest being 4.7279.. . X lop6 and

0.95999.. .) respectively. Consequently, the matrix C = I - A is symmetric positive definite. Also,
there is a large amount of clustering of eigenvalues near the smallest and the largest ones.

Taking x0 = 0, we generated the vectors xi, x2,. . . by (7.1) once by taking w = 1 and once by

taking w = 2, and then applied MPE to these two sequences. We also applied the method of
conjugate gradients (CG) to the linear system Cx = b starting again with x0 = 0. The results of
these computations are shown in Table l(a).

A. Sidi / Implementation of extrapolation methods 323

Table l(a)
Numerical results for Example 1, starting with x0 = 0

k MPE CG

0

5
10
15
20
25
30
35
40
45
50

w=l w=2

rkk 1 yk 1

1.46.10’
1.92.10-l
1.98.10-’
2.51~10-~
4.51.10-4
1.58.10-4
6.27.10-5
2.49.10-5
6.37.10-6
7.90.10-6
9.49.10-’

IISO,k --sII rkk 1 yk 1

3.16.10’ 2.92.10’
1.17*10° 3.83.10-l
1.53*10-’ 3.96.10-2
2.03.10-* 5.01.10- 3
3.70.10-3 6.63.10-4
4.43.10-3 8.78.10-5
2.44.10-3 1.15.10F5
6.08. 1o-4 1.53.10-6
3.34.10-4 5.16.10-’
3.66.10-5 7.31.10F8
1.30.10-4 3.17.1o-8

11 dSO,k) 11 11 SO.k - s 11 11 =k --sII
2.92.10’ 3.16.10’ 3.16. lo1
3.83.10-’ 1.17.1oo 1.17.10°
3.96.10-2 1.53.10-l 1.53.10-l
5.01.10-3 2.02.10-2 2.02.10-2
6.63.10-4 2.68.10-3 2.68.10-3
8.78.lo-’ 3.52.10-4 3.52~10-~
1.15.10-5 4.63.10-5 4.63.10-5
1.53.10-6 6.53.10-6 6.11.10-6
5.30.10-’ 1.64.10-6 8.03.10-’
1.29.10-’ 1.27.10-6 1.06.10-’
4.29.10-* 1.85.10-’ 1.39.10-*

Recall that the Arnoldi method becomes equivalent to CG when C is a symmetric matrix, and
MPE, when applied to a linearly generated sequence, becomes equivalent to the Arnoldi method.

Also ~,,,k, when applied to a sequence generated linearly as in (7.1), is independent of w.
Consequently, s~,~, both for w = 1 and w = 2, obtained from MPE, and zk, obtained from CG,
are all the same mathematically. This is verified in Table l(a) at least for k i 10. The differences
between the w = 1 and w = 2 MPE computations for k > 10 can be explained exactly as
described at the end of Section 7.2.1. Again, as can be seen from Table l(a), the w = 2 MPE
computation differs from the CG computation starting with k = 40 approximately. Since CG
involves orthogonalization with respect to only one vector, its absolute accuracy is guaranteed.
On the other hand, MPE involves orthogonalization with respect to an ever increasing number of
vectors at each stage, thus it cannot be absolutely accurate. In spite of this, the present
implementation of MPE seems to be very stable in the sense that 11 sO.k - s 11 seems to be

Table l(b)
MPE applied to Example 1 in the cycling mode; starting with the zero vector, first 20 iterations are performed;
following that MPE is applied in the cycling mode with k = 10; the I,norm of the error in the initial (zero) vector is
3.16.10’; the vectors are obtained by “averaging” the iterative process (3.2) with w = 2

i II a9 II l)$)-sll

0 4.75.10-l 5.91.100
1 2.00*10-4 6.94.10-4
2 2.90.10-6 8.78.10-6
3 4.17.10-a 1.74.10-’
4 9.27.10-lo 3.70.10-9
5 2.18. lo- l1 9.11.10-”
6 5.49.10-13 2.83.10-l*
7 4.26.10-14 1.77.lo-‘3
8 6.16.10_‘5 9.46.10-14

324 A. Sidi / Implementation of extrapolation metho&

constantly decreasing with increasing k. Indeed, we have verified this by going up to k = 100 in
both the w = 1 and w = 2 MPE computations.

Our purpose in presenting Table l(a) was to demonstrate the good stability properties of the
new MPE implementation for large values of k. Otherwise, CG is the method we would normally
use for this example, since its operation count and storage requirements are extremely small.

In Table l(b) we present the results obtained for the same example with w = 2 first performing
20 iterations and then using MPE in the cycling mode with k = 10, as explained at the end of
Section 5. The remarkable effectiveness of this strategy is obvious.

Example 2. Consider the linear nonsymmetric system of equations & = d, where c” is the
block-tridiagonal matrix

cc

I

B -Z
-I B -I

-Z B -I
-Z

-I B

with B =

and a = - 1 + 6, fi = - 1 - 8, 6 # 0. (See [lo, p.1221.) Again, the vector b” is such that the exact

solution s is (1, 1,. . . , l)T. The iterative method that we pick for this system is Jacobi’s method,
sothat A=Z-+C”.

Now the matrix c” is consistently ordered. Thus the suggestions put forth in Section 7.2.2 can
be successfully employed in this case.

In our numerical experiments we took 6 = 0.2. The matrices B and Z in c” were all 10 x 10
and d was 200 X 200, exactly as in [lo]. The extrapolation method for which we give numerical
results is RRE. We first applied RRE in the cycling mode in conjunction with Jacobi iteration.
The vector obtained at the end of each cycle is denoted St). Next we applied RRE in the cycling
mode in conjunction with double Jacobi iteration. The vector obtained at the end of each cycle is
denoted 9:” now. Finally, we applied RRE in the cycling mode extended as follows. The vector
sequence is generated by the iterative procedure of (7.3) with o = 2, i.e., by the “averaged”
double Jacobi iteration with w = 2. In each cycle nj + kj + 1 such iterations are performed, and
extrapolation is applied to the last kj + 2 of the vectors, i.e., in each cycle s,,,k, is computed. The
vector obtained at the end of each cycle now is denoted f,$f,‘k ,. The index i denotes the cycle
number in each case.

In Table 2 we give the I,-norms of the errors S:‘) - s (k = 20), $-” - s (k = 10) and .$$k,
(ni=5, ki=5 all i). Th us the number of basic Jacobi iterations performed to obtain the
approximations Ski), if’ and $f,i, in each cycle is 21, 22 and 22, respectively. We see that S$,)
and f$,’ have comparable accuracy, as expected. The number of vector operations for S$,),
however, is over three times that for s;‘$. Also the storage requirement for SiL) is about twice that
for $6’. The performance of s;‘3 is only slightly inferior. The number of vector operations for s;‘Ij
is about one tenth that for $A), while its storage needs are about one third those of $a.

A. Sidi / ImpIementation of extrapolation methods 325

Table 2
RRE applied to Example 2 in the cycling mode; the initial vector is zero, and the /,-norm of the error associated with

it is 1.41.10’

1 6.66.10-2 7.47.10-2 1.34.10-l
2 2.02.10-4 2.36.10-4 !~86.10-~
3 2.53.10-7 4.26.10-7 1.14.10-5
4 2.90.10-lo 2.05.10-9 3.04.10-s
5 2.03.10-” 5.96.10-12 2.15.10-lo
6 1.35.10-‘3 6.48.10-14 1.07.10-‘2
7 3.61.10-14 3.13.10-14 1.75-10-14

Example 3. One practical area in which extrapolation methods have been used successfully is that
of computational fluid dynamics. See, e.g., [17] and the references therein. Vector extrapolation
methods are coupled with iterative techniques that arise from the finite-difference approxima-
tions of the partial differential equations governing the flows. In most of the applications so far
the equations considered have been those of compressible inviscid flows (the Euler equations).

We would now like to present some results obtained for a hypersonic compressible turbulent
flow problem that also involves chemical reactions.

The physical problem considered is that of combustion of a premixed stoichiometric hydro-
gen-air hypersonic (Mach number 4) flow over a compression corner. The compression corner
creates a shock wave, the temperature behind this shock wave being high enough to initiate a
combustion process. The coupling between the combustion process and the shock wave results in
a coupled shock-deflagration wave.

The physics is described by the two-dimensional Reynolds-averaged Navier-Stokes equations
with nonequilibrium chemistry, i.e., the global continuity equation is replaced by all the species
continuity equations. A 7-species 8-step reaction mechanism for hydrogen-oxygen combustion is
adopted. The Baldwin-Lomax algebraic eddy viscosity turbulence model is also included.

The numerical method uses the LU-SSOR implicit factorization scheme and a second-order
symmetric TVD scheme. Thus the number of the dependent variables is ten. The dependent
variables are the two momenta per unit volume, the seven species densities and the total energy
per unit mass. The number of the mesh points is approximately 4,000. As a result, the vectors in
this problem are of dimension 40,000 approximately.

For the full details of the physical problem, the governing equations and the iterative scheme
used in their solution, we refer the interested reader to [23].

The single-precision version of the computer program in Appendix B was incorporated in the
fluid mechanics code that implemented the iterative scheme mentioned above. The combined
code was run on a CRAY Y-MP computer at NASA-Lewis Research Center, Cleveland, OH.

This code was first run without chemical reactions as a Navier-Stokes solver with turbulence.
Figure l(a) contains some of the residual history obtained by applying RRE in the cycling mode
with k = 20 after 80 and 200 initial iterations. As can be seen, better results are obtained for this
problem by employing RRE early on. This seems to be true for nonlinear problems in general.
Figure l(b) contains some of the residual history obtained by using RRE again in the cycling
mode with k = 10, 20, 30 after 80 initial iterations. The CPU-time for performing 500 iterations

326 A. Sidi / Implementation of extrapolation metho&

1 o-4

h

- No extrapolation

___. RRE (NO=ZOO, KMAX=BO)

. . . . RRE (NO=f30. KMAX=20)

10-4 RRE (NO:BO. KMAK=lO)
RRE (NO=80. KbUK=ZO)

RRE (NO=80. KMAx=30)

3
e 10-S

1

(b)
IO_'2 I I I I I

0 200 400 600 0 200 400 600

Iteration iteration

Fig. 1. Residual history with and without convergence. acceleration for the hypersonic flow problem in Example 3 with
no chemical reactions.

without extrapolation is about 464 seconds. The overhead due to extrapolation turns out to be
1% or less.

The code was next run with chemical reactions. Figure 2 gives the convergence history
obtained by using RRE in the cycling mode with k = 10 after 200 initial iterations. The
CPU-time for performing 1000 iterations without extrapolation is about 1284 seconds. The
overhead due to extrapolation turns out to be less than 0.05%.

We note that the reason for the negligible cost of extrapolation in this example lies in the fact
that the iterative scheme has a high cost, which is due to the following: (1) the complexity of the
physical problem (viscous, turbulent, chemically reacting flows); (2) the TVD scheme which is
necessary in this case for capturing the shock waves with the best possible resolution; (3) the
implicit LU-scheme that is required to retain a high CFL number, which is particularly
important in viscous calculations. Finally, we mention that very similar performance was
observed with MPE.

10-8
d
‘$ 10-10

10-16

10-18

_ No extrapolation

RRE (NO=ZOO. KtdAX=lO)

I I I I I

0 400 800 1200

Iteration

Fig. 2. Residual history with and without convergence acceleration for the hypersonic flow problem in Example 3 with
chemical reactions.

A. Sidi / Implementation of extrapolation methods 321

Acknowledgements

The author gratefully acknowledges the useful conversations he had with Prof. Moshe Israeli
in the course of this work. The computations pertaining to the first two examples and reported in
this paper were done in double-precision arithmetic on an IBM-370 computer at the Computa-
tion Center, Technion-Israel Institute of Technology. The computations for the fluid mechanics
example were carried out on a CRAY Y-MP computer by Dr. Shaye Yungster of the Institute for
Computational Mechanics in Propulsion at NASA-Lewis Research Center, Cleveland, OH. The
author would like to thank him for his kind permission to include some of the results in this
work.

Appendix A

Lemma. Let T be an m x m Hermitian positive definite matrix, and let zl, z2,
variables. Denote z = (zl, z2,. . . , z,,,)=. Then the solution to the problem

minimize z*Tz,

subject to 2 zi = 1,
i=l

can be obtained by solving the linear system of m + 1 equations

Tz = M, fzi=l,
i=l

where zl,. . . , z, and h are unknowns, and

Z= (1, l,..., l)=.

The unknown A turns out to be real and positive, and is given by

A=z*Tz, at the solution.

The solution of (A.2) can be achieved by first solving the system

Th = 6-,

forh=(hl,..., h,,,)=, and letting
-1

A= ihi ,
i i i=l

and finally setting

z=Xh.

z, be complex

Proof. We start by expressing the problem in terms of real variables. Let us write T in the form

T=M+iN, M and N real m X m matrices. (A.81

Then, by the assumption that T is Hermitian, it follows that

MT=M and NT= -N. (A.91

328 A. Sidi / Implementation of extrapolation methods

Writing

z=x+iy, x and y real m-dimensional vectors,

and invoking (A.8) and (A.9) in z * Tz, we have

z*Tz = x=Mx +y=M-y + 2y=Nx.

Now the constraint Cy=,zj = 1 in (A.l) is equivalent to two real constraints, namely,

gxi=l and i$lyi = 0.
i=l

(A.10)

(A.ll)

(A.12)

We now use the method of Lagrange multipliers to minimize (A.ll) subject to (A.12). Introduc-
ing the Lagrange multipliers - 2~ and - 2v for the constraints Cy&xi = 1 and Cy=iyi = 0,
respectively, and taking derivatives with respect to the xi and y,, we obtain the linear system of
equations

Mx-Ny-/_@=o, My+Nx-&?=o, (A.13)

which, upon letting X = p + iv, becomes equivalent to Tz = AZ. We have thus shown the truth of
(A.2). Multiplying Tz = Ae” on the left by z*, and using CyXizi = 1, we obtain (A-4). Obviously, X
has to be strictly positive. For if X were zero, then z = 0 would have to be the solution as T is
Hermitian positive definite, but this would contradict the constraint Cy!izi = 1. The rest of the
proof follows easily from (A.2), and we shall omit it. •I

Appendix B

In this appendix we give a computer code written in standard FORTRAN 77 that implements
MPE and RRE as described in the present work.

The implementation of MPE and RRE is done in SUBROUTINE MPERRE that forms the
heart of this code.

Use of MPE and RRE in the cycling mode is made possible by SUBROUTINE CYCLE.
The vector sequence for extrapolation is generated by calling SUBROUTINE VECTOR,

which, in the present code provides the iteration sequence of Example 1 with w = 2 weighting.
The driving program in the present code is the one that generates some of the results shown in

Table l(b).
We give no further explanations about the code and its use, as the different parts of the code

are documented in detail.

C***AAAooo10

C IMPLEMENTATION OF MPE AND RRE WITH QR FACTORIZATION FOR LEAST AAA00020
C SQUARES. (QR PERFORMED BY MODIFIED GRAM-SCHMIDT PROCESS) AAAooo30
C MPE AND RRE ARE APPLIED IN THE CYCLING MODE. AAA00040
C****t**************~~~~~~~~~~~~*~~~~~~~~~~~~~~*~~~~~~~~~~~~~~~~~~~~~~~~*AOOO~O

C THE COMPONENTS OF THE INITIAL VECTOR X, NAMELY, X(I),I=l,...,NDIM, AAAOOO60
C CAN BE PICKED RANDOMLY. WE ACHIEVE THIS, E.G., BY INVOKING THE AAAooo70
C IMSL VERSION 10 SUBROUTINE DRNUN THAT GENERATES PSEUDORANDOM 1dAOO080
C NUMBERS FROM A UNIFORM (0,l) DISTRIBUTION. AAAooo90
C OTHER CHOICES FOR X(l),. ..,X(NDIM) ARE POSSIBLE, SUCH AS X(1)=0, AAA00100
c I=l,..., NDIM. IN THIS CASE REPLACE THE STATEMENT AAAOOllO

A. Sidi / Implementation of extrapolation methods 329

C CALL DRNUN(NDIM,X) AAAoo120
C BY THE DO LOOP AAAoo130
C DO 10 I=l,NDIM AAAoo140
C X(I)=0 AAAoo150
C 10 CONTINUE AAAOO160
C***********************X***AAA~~~~O

IMPLICIT DOUBLE PRECISION (A-H,O-2) AAAOO180
PARAMETER (METHOD=1,NO=20,N=0,KMAX=l0,NCYCLE-15,NDIM=l000) AAAoo190
PARAMETER (EPSC=lD-10,IPRES=l,IPRESl=l) AAAoo200
DIMENSION X(NDIM),S(NDIM),Y(NDIM),Z(NDIM) AAAoo210
DIMENSION Q(NDIM,O:KMAX-l),R(O:KMAX,O:KMAX) AAAoo220
DIMENSION C(O:KMAX),GAMMA(O:KMAX),XI(O:KMAX-1) AAAOO230
EXTERNAL VECTOR AAAOO240

C AAAOO250
C INITIAL VECTOR DETERMINATION. AAAOO260
C AAAOO270
C CALL DRNUN(NDIM,X) AAAOO280

DO 10 I=l,NDIM AAAoo290
X(I)=0 AAAoo300

10 CONTINUE AAAoo310
C AAAOO320
C END OF INITIAL VECTOR DETERMINATION. AAAoo330
C mAoo340

CALL CYCLE(METHOD,X,S,NO,N,KMAX,NCYCLE,NDIM,Y,Z,VECTOR,Q,R, ?&?+A00350
*C,GAMMA,XI,RESC,EPSC,IPRES,IPRESl) AAAOO360
STOP AAAoo370
END AAAOO380

AAAoo390
SUBROUTINE CYCLE(METHOD,X,S,NO,N,KMAX,NCYCLE,NDIM,Y,Z,VECTOR,Q,R, AAA00400

*C,GAMMA,XI,RESC,EPSC,IPRES,IPRESl) AAAoo410
C*******************~~~~*~~~~~~~~~~~~~~***~~~~~~~*~~~~~~~~~~~*~~~~~~~~~~-00420

C THIS SUBROUTINE APPLIES MPE AND RRE IN THE CYCLING MODE. -00430
C MPE AND RRE ARE INVOKED BY CALLING SUBROUTINE MPERRE. -00440
C***~00450

C THE ARGUMENTS METHOD,NDIM,Y,Z,VECTOR,Q,R,C,GAMMA,XI,IPRES,IPRESl AAAOO460
C ARE AS IN SUBROUTINE MPERRE. -00470
C -00480
c x : INITIAL VECTOR. INPUT ARRAY OF DIMENSION NDIM. (DOUBLE AAAoo490
C PRECISION) AAAoo500
c s : THE FINAL APPROXIMATION PRODUCED BY THE SUBROUTINE. OUTPUT AAAoo510
C ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) AAAOO520
C NO : NUMBER OF ITERATIONS PERFORMED BEFORE CYCLING IS STARTED, AAAoo530
C I.E., BEFORE MPE OR RRE IS APPLIED FOR THE FIRST TIME. AAAoo540
C INPUT. (INTEGER) AAAoo550
C N : NUMBER OF ITERATIONS PERFORMED BEFORE MPE OR RRE IS APPLIED AAAOO560
C IN EACH CYCLE AFTER THE FIRST CYCLE. INPUT. (INTEGER) AAAoo570
c KMAX : WIDTH OF EXTRAPOLATION. ON EXIT FROM SUBROUTINE MPERRE IN AAAOO580
C EACH CYCLE, THE ARRAY S IS, IN FACT, THE APPROXIMATION AAAoo590
C S(NO,KMAX) IN THE FIRST CYCLE,AND S(N,KMAX) IN THE FOLLOWING AAAOO600
C CYCLES. INPUT. (INTEGER) AAAOO610
C NCYCLE: MAXIMUM NUMBER OF CYCLES ALLOWED. INPUT. (INTEGER) -00620
C RESC : L2-NORM OF THE RESIDUAL FOR S AT THE END OF EACH CYCLE. -00630
C RETRIEVED AT THE END OF THE NEXT CYCLE. OUTPUT. (DOUBLE AAAOO640
C PRECISION) AAAOO650
C EPSC : AN UPPER BOUND ON RESC/RESP, SOME RELATIVE RESIDUAL FOR S, AAAOO660
C USED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM AAAOO670
C OF THE RESIDUAL FOR S(NO,KMAX) AT THE END OF THE FIRST -00680
C CYCLE, I.E., ON EXIT FROM SUBROUTINE MPERRE THE FIRST TIME. AAAOO690
C IF RESC.LE.EPSC*RESP AT THE END OF SOME CYCLE, THEN ONE mA00700
C ADDITIONAL CYCLE IS PERFORMED, AND THE CORRESPONDING AAAoo710
C S(N,KMAX) IS ACCEPTED AS THE FINAL APPROXIMATION, AND THE -00720
C SUBROUTINE IS EXITED. INPUT. (DOUBLE PRECISION) -00730
C***********************~~~~~~~~~~*~~~*~~~~*~~~~~~~~~~~~*~~~~~~~~~~~~~~~-00740

IMPLICIT DOUBLE PRECISION (A-H,O-2) -00750
PARAMETER (EPS-0) -00760
DIMENSION X(NDIM),S(NDIM),Y(NDIM),Z(NDIM) -00770
DIMENSION Q(NDIM,O:KMAX-l),R(O:KMAX,O:KMAX) -00780
DIMENSION C(O:KMAX),GAMMA(O:KMAX),XI(O:KMAX-1) AAAoo790

330

101

102

103

::

30
40

A. Sidi / Implementation of extrapolation methods

EXTERNAL VECTOR
DO 40 IC-l,NCYCLE
IF (IPRES.EQ.l.OR.IPP.ESl.EQ.1) THEN
WRITE(6,lOl) IC
FORMAT(/,' CYCLE NO. ',13)
END IF
NN-N
IF (IC.EQ.l) NN-NO
IF (IPRES.EQ.l.OR.IPRESl.EQ.1) THEN
WRITE(6,102) NN
FOF@lAT(/,' NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS ',13)
WRITE(6,103) KMAX
FORMAT(/,' WIDTH OF EXTRAPOLATION IS ',13)
END IF
DO 20 J-O,NN-1
CALL VECTOR(X,Y,NDIM)
DO 10 I-1,NDIM
X(1)-Y(I)
CONTINUE
CONTINUE
CALL MPERRE(METHOD,X,S,KMAX,KOUT,NDIM,Y,Z,VECTOR,Q,R,C,
*GAMMA,XI,RES,RESl,EPS,IPRES,IPRESl)
IF (IC.EQ.l) RESP-R(o,O)
RESC-R(O,o)
IF (RESC.LE.EPSC*RESP) RETURN
DO 30 I-l,NDIM
X(1)-S(I)
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE MPERRE(METHOD,X,S,KMAX,KOUT,NDIM,Y,Z,VECTOR,Q,R,C,

AAAOO800
AAAOO810
AAAOO820
AAAOO830
AAAOO840
AAAOO850
AAAOO860
AAAOO870
AAAOO880
AAAOO890
AAAoo900
AAAoo910
AAAoo920
AAAoo930
AAAoo940
AAAoo950
AAAOO960
AAAoo970
AAAOO980
AAAoo990
AAA01000
AAAOlOlO
AAAo1020
AAAo1030
AAAo1040
AAAo1050
AAAO1060
AAAo1070
AAAO1080
AAAo1090
AAAOllOO
AAAOlllO
AAAo1120

*GAMMA,XI,RES,RESl,EPS,IPRES,IPRESl) AAAo1130
C***~oll40

C
C
C
C
C
C
C
C
C
C
c*1’
C
C
C
C

THIS SUBROUTINE APPLIES THE MINIMAL POLYNOMIAL EXTRAPOLATION (MPE)
OR THE REDUCED RANK EXTRAPOLATION (RRE) METHODS TO A VECTOR
SEQUENCE X0,X1,X2,..., THAT IS OFTEN GENERATED BY A FIXED POINT
ITERATIVE TECHNIQUE.
BOTH MPE AND RRE ARE ACCELERATION OF CONVERGENCE (OR EXTRAPOLATION)
METHODS FOR VECTOR SEQUENCES. EACH METHOD PRODUCES A TWO-DIMENSIONAL
ARRAY S(N,K) OF APPROXIMATIONS TO THE LIMIT OR ANTILIMIT OF THE
SEQUENCE IN QUESTION.
THE IMPLEMENTATIONS EMPLOYED IN THE PRESENT SUBROUTINE GENERATE
THE SEQUENCES S(O,O)-XO,S(O,l),S(0,2),... .
r***************************************~~~~~*~~**~*~*~~*~*~~*~~~*~~~

AUTHOR : AVRAM SIDI
COMPUTER SCIENCE DEPARTMENT
TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY
HAIFA 32000,ISRAEL

AAAo1150
AAAO1160
AAAo1170
AAAOllEO
AAAo1190
AAAo1200
AAAo1210
AAAo1220
AAAO1230
AAAO1240
*AAAO1250
AAAO1260
AAAO1270
AAAO1280
AAAo1290

C E-MAIL ADDRESS: CSSSIDI@TECHNION.BITNET AAAo1300
C***~ol3lo
C METHOD:
C
c x
C
c s
C
C
c KMAX :
C
C
C KOUT :
C
C
C
C NDIM :
c Y

IF METHOD.EQ.l, THEN MPE IS EMPLOYED. IF METHOD.EQ.2, THEN
RRF, IS EMPLOYED. INPUT. (INTEGER)
THE VECTOR X0. INPUT ARRAY 0~ DIMENSION NDIM. (DOUBLE
PRECISION)
THE APPROXIMATION S(o,K) PRODUCED BY THE SUBROUTINE FOR
EACH K. ON EXIT, S IS S(O,KOUT). OUTPUT ARRAY OF DIMENSION
NDIM. (DOUBLE PRECISION)
A NONNEGATIVE INTEGER.THE MAXIMUM WIDTH OF EXTRAPOLATION
ALLOWED. THUS THE NUMBER OF THE VECTORS X0,X1,X2,...,
EMPLOYED IN THE PROCESS IS KMAX+2 AT MOST. INPUT. (INTEGER)
A NONNEGATIVE INTEGER. KOUT IS DETERMINED BY A SUITABLE
STOPPING CRITERION, AND DOES NOT EXCEED KMAX.THE VECTORS
ACTUALLY EMPLOYED BY THE EXTRAPOLATION PROCESS ARE
x0,x1,x2 ,..., XP, WHERE P=KOUT+l. OUTPUT. (INTEGER)
DIMENSION OF THE VECTORS. INPUT. (INTEGER)
WORK ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION)

AAAO1320
AAAo1330
AAAoi340
AAAo1350
AAAO1360
AAAo1370
AAAO1380
MO1390
AAAo1400
AAAo1410
AAAO1420
AAAo1430
AAAo1440
AAAo1450
MO1460
AAAo1470

A. Sidi / Implementation of extrapolation methods 331

c 2
c VECTORi
C
C
C
C
C
C
C
C Q :
C
C
C
C
C
C R
C
C
C
c c
C
C
C GAMMA:
C
C
C
C
C
c XI :
C
C
C
C RES :
C
C
C
C RESl :
C
C
C
C EPS :
C
C
C
C
C
C
C IPRES :
C
C IPRESl:
C

WORK ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION)
A USER-SUPPLIED SUBROUTINE WHOSE CALLING SEQUENCE IS

CALL VECTOR(Y,Z,NDIM): Y,NDIM INPUT,2 OUTPUT.
Y,Z,NDIM ARE EXACTLY AS DESCRIBED ABOVE.FOR A FIXED POINT
ITERATIVE TECHNIQUE FOR SOLVING THE LINEAR OR NONLINEAR
SYSTEM T-F(T), DIM(T)=NDIM, Y AND Z ARE RELATED BY Z-F(Y).
THUS Xl=F(XO), X2-F(Xl), ETC.
VECTOR SHOULD BE DECLARED IN AN EXTERNAL STATEMENT IN THE
CALLING PROGRAM.
WORK ARRAY OF DIMENSION (NDIM,o:KMAX-1). FOR EACH K, ITS
ELEMENTS ARE THOSE OF THE ORTHOGONAL MATRIX OBTAINED FROM
QR FACTORIZATION OF THE MATRIX U

U = (UO I Ul I . . . I UK), K-0,1,2,...,
WHERE UO-X1-X0, Ul-X2-X1, U2=x3-X2, ETC. OUTPUT. (DOUBLE
PRECISION)
WORK ARRAY OF DIMENSION (o:KMAX,o:KMAX). FOR EACH K, ITS
ELEMENTS ARE THOSE OF THE UPPER TRIANGULAR MATRIX OBTAINED
FROM QR FACTORIZATION OF THE MATRIX U DESCRIBED ABOVE.
OUTPUT. (DOUBLE PRECISION)
WORK ARRAY OF DIMENSION (o:KMAX). FOR EACH K, C FOR MPE IS
THE LEAST SQUARES SOLUTION OF THE SYSTEM U*C-o SUBJECT TO
THE CONSTRAINT C(K) -1. (DOUBLE PRECISION)
WORK ARRAY OF DIMENSION (o:KMAX). FOR EACH K, THE GAMMA'S
ARE SUCH THAT
S(O,K)=GAMMA(o)*XO+GAMMA(l)*Xl+...+GAMMA(K)*XK.
FOR EACH K, GAMMA FOR RRE IS THE LEAST SQUARES SOLUTION OF
THE SYSTEM U*GAMMA=O SUBJECT TO THE CONSTRAINT
GAMMA(O)+GAMMA(l)+...+GAMMA(K)=l. (DOUBLE PRECISION)
WORK ARRAY OF DIMENSION (o:KMAX-1). FOR EACH K, THE XI'S
APE SUCH THAT
S(O,K)-XO+XI(O)*UO+XI(l)*Ul+...+XI(J)*UJ, J-K-1.
(DOUBLE PRECISION)
LP-NORM OF THE RESIDUAL FOR S(0.K) FOR A LINEAR SYSTEM
T=A*TfB (OR AN ESTIMATE FOR IT FOR A NONLINEAR SYSTEM
T-F(T)) FOR EACH K. ON EXIT, THIS K IS KOUT. OUTPUT.
(DOUBLE PRECISION)
L2-NORM OF THE RESIDUAL ACTUALLY COMPUTED FROM S(O,K) FOR
EACH K. (THE RESIDUAL VECTOR FOR ANY VECTOR VEC IS TAKEN
AS (F(VEC)-VEC).) ON EXIT, THIS K IS KOUT. OUTPUT.
(DOUBLE PRECISION)
AN UPPER BOUND ON RES/R(O,O), THE RELATIVE RESIDUAL FOR S,
USED IN THE STOPPING CRITERION. NOTE THAT R(O,o)=L2-NORM
OF THE RESIDUAL FOR X0, THE INITIAL VECTOR. IF, FOR SOME K,
RES.LE.EPS*R(o,o), THEN THE CORRESPONDING S(O,K) IS ACCEPTED
AS THE FINAL APPROXIMATION, AND THE SUBROUTINE IS EXITED
WITH KOUT-K. IF S(O,KMAX) iS NEEDED, THEN EPS SHOULD BE
SET EQUAL TO ZERO. INPUT. (DOUBLE PRECISION)
IF IPRES.EQ.l, THEN RES IS PRINTED FOR ALL K, K-0,1,... .
OTHEWISE, IT IS NOT. INPUT. (INTEGER)
IF IPRESl.EQ.1, THEN RFSl IS COMPUTED AND PRINTED FOR ALL
K, K-0,1,... . OTHERWISE, IT IS NOT. INPUT. (INTEGER)

AAAO1480
AAAo1490
AAAo1500
AAAOlSlO
AAAo1520
mAo1530
AAAo1540
AAAol.550
AAAO1560
AAAo1570
AAAO1580
AAAo1590
AAAO1600
AAAO1610
AAAO1620
AAAO1630
AAAO1640
AAAO1650
AIuO1660
a01670
AAAO1680
AAAO1690
AAAo1700
AAAo1710
AAAO1720
AAAo1730
AAAo1740
AAAo1750
AAAO1760
AAAo1770
AAAO1780
-01790
AAAOl800
AAAO1810
AAAO1820
AAAO1830
AAAo1040
AAAoia50
AAAO1860
AAAO1870
AAAO1880
AAAO1890
AAAo1900
AAAo1910
AAAo1920
AAAo1930
AAAo1940
AAAo1950
AAAO1960
AAAo1970
AAAO1980

~***AAAo1990
C THE ABOVE MENTIONED QR FACTORIZATION IS PERFORMED BY EMPLOYING AAAo2000
C THE MODIFIED GRAM-SCHMIDT PROCESS. AAAo2010
c************t**AAA02020

301

302

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (EPSl-lD-32,EPS2=1D-16)
DIMENSION X(NDIM),S(NDIM),Y(NDIM),Z(NDIM)
DIMENSION Q(NDIM,O:KMAX-l),R(o:KMAX,o:KMAX)
DIMENSION C(O:KMAX),GAMMA(O:KMAX),XI(o:KMAX-1)
IF (IPRES.EQ.l.AND.IPRESl.EQ.1) THEN
WRITE(6,301)
FORMAT(/,' K RES RESl')
ELSE IF (IPRES.EQ.l.AND.IPRESl.NE.1) THEN
WRITE(6,302)
FORMAT(/,‘ K RES’)
ELSE IF (IPRFS.NE.l.AND.IPRESl.EQ.1) THEN
WRITE(6,303)

-02030
AAAO2040
AAAO2050
-02060
AAAO2070
AAAO2080
AAAo2090
AAAo2100
AAAo2110
-02120
-02130
-02140
-02150

332 A. Sidi / Implementation of extrapolation methods

303 FORMAT(/,' K RESl')
END IF
DO 10 I=l,NDIM
Y(I)=X(I)

10 CONTINUE
DO 250 K=O,KMAX

COMPUTATION OF THE VECTOR XJ, J-K+l, FROM XK, AND COMPUTATION OF UK
C

CALL VECTOR(Y,Z,NDIM)
DO 20 I=l,NDIM
Y(I)=Z(I)-Y(1)

20 CONTINUE

b DETERMINATION OF THE ORTHONORMAL VECTOR QK FROM UK BY THE MODIFIED
C GRAM-SCHMIDT PROCESS
C

30

40
50

60

70

304

C

DO 50 J-0,K-1
SUM-O
DO 30 I-l,NDIM
SUM=SUM+Q(I,J)*Y(I)
CONTINUE
R(J,K)=SUM
DO 40 I=l,NDIM
Y(I)-Y(I)-R(J,K)*Q(I,J)
CONTINUE
CONTINUE
SUM-0
DO 60 I=l,NDIM
SUM=SUM+Y(I)**2
CONTINUE
R(K,K)=DSQRT(SUM)
IF (R(K,K).GT.EPSl*R(O,O).AND.K.LT.KMAX) THEN
HP=lDO/R (K, K)
DO 70 I-1,NDIM
Q(I,K)-HP*Y(I)
CONTINUE
ELSE IF (R(K,K).LE.EPSl*R(O,O)) THEN
EEE=EPSl
WRITE(6,304) K,K,EEE
FORMAT(/,' R(',I3, ',.',13,') .LE.',lP,D8.1,'*R(O,O).',/)
END IF

C END OF COMPUTATION OF THE VECTOR QK
C

IF (METHOD.EQ.l) THEN
C
C COMPUTATION OF THE GAMMA'S FOR MPE
C

80

90

100

311

DO 90 I=K-1,0,-l
CI=-R(I,K)
DO 80 J-I+l,K-1
CI-CI-R(I,J)*C(J)
CONTINUE
C(I)=CI/R(I,I)
CONTINUE
C(K)=lDO
SUM-0
DO 100 I-O,K
SUM=SUM+C(I)
CONTINUE
IF (DABS(SUM).LE.EPS2) THEN
WRITE(6,311) K
FORMAT(/; S(0,', 13,') IS NOT DEFINED.',/)
GO TO 250
END IF
DO 110 I-0,K
GAMMA(I)-C(I)/SUM

'AAAO2160
AAAO2170
AAAO2180
wiAo2190
AAAo2200
AAAo2210
AAAo2220
AAAO2230
AAAo2240
AAAo2250
AAAO2260
AAAO2270
AAAO2280
AAAo2290
AAAO2300
MO2310
AAA02320
AAAO2330
AAAO2340
AAAO2350
AAAO2360
AAAO2370
AAAO2380
AAAo2390
AAAO2400
AAAO2410
AAAO2420
AAAO2430
AAAO2440
AAAO2450
AAAO2460
AAAO2470
AAAO2480
AAAo2490
AAAO2500
mAO25l.O
AAAO2520
AAAO2530
AAAO2540
AAAO2550
AAAO2560
AAAO2570
AAAO2580
AAAo2590
AAAO2600
AAAO2610
AAAO2620
AAAO2630
AAAO2640
AAA02650
AAAO2660
AAAO2670
AAAO2680
AAAO2690
AAAO2700
Au02710
AAAO2720
AAAO2730
AAAO2740
AAAO2750
AAAO2760
AAAO2770
AAAO2780
AAAo2790
AAAO2800
AAAO2810
AAAO2820
AAAO2830

A. Sidi / Implementation of extrapolation methods 333

110 CONTINUE
RFS=R(K,K)*DABS(GAMMA (K))

C
C END OF COMPUTATION OF THE GAMMA'S FOR MPH
C

ELSE IF (METHOD.EQ.2) THEN
C
C COMPUTATION OF THE GAMMA'S FOR RRE

DO 130 I=O,K
CI-1DO
DO 120 J=O,I-1
CI=CI-R(J,I)*C(J)

120 CONTINUE
C(I)-CI/R(I,I)

130 CONTINUE
DO 150 I=K,O,-1
CI-C(1)
DO 140 J=I+l,K
CI-CI-R(I,J)*GAMMA(J)

140 CONTINUE
GAMMA(I)=CI/R(I,I)

150 CONTINUE
SUM-O
DO 160 I=O,K
SUM-SUM+GAMMA(I)

160 CONTINUE
DO 170 I=O,K
GAMMA(I)==GAMMA(I)/SUM

170 CONTINUE
RES-lDO/DSQRT(DAHS(SUM))

END OF COMPUTATION OF THE GAMMA'S FOR RRE
C

END IF
KOUT-K
IF (IPRES.EQ.l.AND.IPRESl.NE.1) THEN
WRITE(6,321) K,RES

321 FORMAT(I3,2X,lP,D15.2)
END IF
IF (RES.LE.EPS*R(O,O).OR.R(K,K).LE.EPSl*R(O,O)

* .OR.K.EQ.KMAX.OR.IPRESl.EQ.l) THEN

: COMPUTATION OF THE APPROXIMATION S(O,K)
C

180

190

200

210
220

C

XI(O)=lDO-GAMMA(O)
DO 180 J-l,K-1
XI(J)=XI(J-I)-GAMMA(J)
CONTINUE
DO 190 I=l,NDIM
S(I)=X(I) AAAo3340
CONTINUE AAAo3350
DO 220 J=O,K-1
HP-O
DO 200 I=J,K-1
HP=HP+R(J,I)*XI(I)
CONTINUE
DO 210 I=l,NDIM
S(I)-S(I)+HP*Q(I,J)
CONTINUE
CONTINUE

C END OF COMPUTATION OF THE APPROXIMATION S(O,K)
C

END IF
IF (IPRESl.EQ.l) THEN

C
C EXACT COMPUTATION OF RESIDUAL LZ-NORM.

AAAO2840
MA02850
AAAO2860
AAAO2870
AAAO2880
AAAO2890
AAAo2900
AAAo2910
WA02920
AAAo2930
AAAo2940
AAAo2950
AAAO2960
AAAo2970
MO2980
AAAo2990
AAAo3000
AAAo3010
AAAO3020
Au03030
AAAo3040
AAAo3050
AAAO3060
AAAo3070
AAAO3080
AAAo3090
AAAo3100
AAAo3110
AAAO3120
AAAo3130
AAAo3140
a03150
AAAO3160
AAAo3170
AAAO3180
AAAo3190
AAAO3200
Am03210
AAAO3220
AAAO3230
AAAO3240
AAAO3250
AAAO3260
AAAO3270
AAAO3280
AAAo3290
AAAo3300
AAAo3310
AAA03320
AAAo3330

AAAO3360
-03370
AAAO3380
Aao3390
AAAo3400
AAAo3410
AAAO3420
AAAo3430
mo3440
AAAo3450
MO3460
mo3470
AAAO3480
AAAo3490
AAAo3500
AAAo3510

A. Sidi / Implementation of extrapolation method 334

C AAAO3520
CALL VECTOR(S,Y,NDIM) AAAo3530
RESl-0 AAAo3540
DO 230 I=l,NDIM AAAo3550
RESl=RESl+(Y(I)-S(I))**2 AAAO3560

230 CONTINUE AAAo3570
RESl=DSQRT(RESl) AAAO3580

C AAAo3590
C END OF EXACT COMPUTATION OF RESIDUAL L2-NORM. AAAO3600
C Am03610

IF (IPRES.EQ.l) THEN AAAO3620
WRITE(6,331) K,RES,RESl MO3630

331 FORMAT(I3,2X,lP,2D15.2) AAAO3640
ELSE IF (IPRES.NE.l) THEN AAAO3650
WRITE(6,332) K,RESl AAAO3660

332 FORMAT(I3,2X,lP,D15.2) MO3670
END IF MO3680
END IF AAAO3690
IF (RES.LE.EPS*R(O,O).OR.R(K,K).LE.EPS1*R(O,O))-RETURN AAAo3700
DO 240 I=l,NDIM zu+Ao3710
Y(I)=E(I) AAAO3720

240 CONTINUE AAAo3730
250 CONTINUE AAAo3740

RETURN AAAo3750
END AAAO3760

Am03770
SUBROUTINE VECTOR(X,Y,NDIM) AAAO3780

C*******************~~~~~~~~~~~~~~~~***~~~~~~**~~~~~~~~*~~~~~~~~~~~~*~*~-O3790

C THIS SUBROUTINE GENERATES THE VECTOR Y FROM THE VECTOR X BY USING, AAAO3800
C E.G., A FIXED POINT ITERATION TECHNIQUE. AAAO3810
C***AAAO3820
C IN THE PRESENT EXAMPLE THE ITERATIVE TECHNIQUE IS OF THE FORM AAAO3830
C Y=Al*X+Bl. HERE Al IS AN NDIM*NDIM SEPTADIAGONAL MATRIX SYMMETRIC MO3840
C WITH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS AAAO3850
C Al=(l-OMEGA)*I+OMEGA*A,WHERE OMEGA IS A SCALAR, I IS THE AAAO3860
C IDENTITY MATRIX, AND A IS THE MATRIX NO3870
C AAAO3880
C 15211 AAAO3890
C 126311 I AAAo3900
C 1136311 AAAo3910
C A = 0.06*1 1 1 3 6 3 1 1 I. IaAo3920
C I 1136311 I AAAo3930
C I 1136311 I AAAo3940
C I * . AAAo3950
C -03960
C Bl IS THE VECTOR DEFINED AS Bl=OMEGA*B, THE VECTOR B BEING CHOSEN AAAo3970
C SUCH THAT THE SOLUTION OF THE SYSTEM T=A*T+B IS THE VECTOR AAAO3980
c (l,l,...,l). AAAo3990
C THE ITERATIVE TECHNIQUE USED IS THUS RICHARDSON'S ITERATIVE AAAo4000
C METHOD APPLIED TO THE SYSTEM (I-A)*T-B. AAA04010
C***************************************O4020

IMPLICIT DOUBLE PRECISION (A-H,O-2) AAAo4030
PARAMETER (OMEGA=ZDO,TAU=lDO-OMEGA) AAAo4040
DIMENSION X(NDIM),Y(NDIM) AAAo4050
N=NDIM AAAO4060
Y(1)=(5*X(1)+2*X(2)+X(3)+X(4))*6D-2+46D-2 mo4070
~(2)=(2*X(1)+6*X(2)+3*X(3)+X(4)+X(5))*6D-2+22D-2 AAAO4080
~(3)=(~(1)+3*X(2)+6*X(3)+3*X(4)+X(5)+X(6))*6D-2+lD-l AAAo4090
DO 10 1=4,N-3 AAAo4100
~(I)=(X(I-~)+X(I-~)+~*X(I-~)+~*X(I)+~*X(I+~)+X(I+~)+X(I+~~)*~D-~ AAA04110
* +4D-2 AAAO4120

10 CONTINUE AAAo4130
y(N-2)=(X(N)i.3*X(N-l)+6*X(N-2)+3*X(N-3)+X(N-4)+X(N-5))*6D-2+1D-l AAAo4140
y(N-1)=(2*X(N)+6*X(N-l)+3*X(N-2)+X(N-3)+X(N-4))*6D-2+22D-2 AAAo4150
Y(N)=(S*X(N)+2*X(N-l)+X(N-2)+X(N-3))*6D-2+46D-2 AAAO4160
DO 20 I=l,N AAAo4170
Y(I)=TAU*X(I)+OMEGA*Y(I) AAAO4180

A. Sidi / Implementation of extrapolation methoak 335

20 CONTINUE
RETURN
END

CYCLE NO. 1

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 20

WIDTH OF EXTRAPOLATION IS 10

K RES RESl
0 4.75D-01 4.75D-01

:
5.36D-01 5.36D-01
1.52D-02 1.52D-02

3 1.93D-02 1.93D-02
4 4.23D-03 4.23D-03
5 3.79D-03 3.79D-03
6 1.41D-03 1.41D-03
7 l.OOD-03 l.OOD-03
8 5.16D-04 5.16D-04
9 3.04D-04 3.04D-04

10 2.00D-04 2.00D-04

CYCLE NO. 2

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0

WIDTH OF EXTRAPOLATION IS 10

K
0

RES
2.00D-04
9.57D-05
9.59D-05
4.58D-05
4.42D-05
1.68D-05
1.91D-05
6.49D-06

RESl
2.00D-04
9.57D-05
9.59D-05
4.58D-05
4.42D-05
1.68D-05
1.91D-05
6.49D-06

8 7.22D-06 7.22D-06
9 2.56D-06 2.56D-06

10 2.90D-06 2.90D-06

CYCLE NO. 3

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0

WIDTH OF EXTRAPOLATION IS 10

K RES RESl
0 2.90D-06 2.90D-06
1 l.l8D-06 l.l8D-06
2 1.38D-06 1.38D-06
3 6.20D-07 6.20D-07
4 6.64D-07 6.64D-07

2.43D-07 2.43D-07
2.63D-07 2.63D-07
8.58D-08 8.58D-08
9.15D-08 9.15D-08

9 3.95D-08 3.95D-08
10 4.17D-08 4.17D-08

CYCLE NO. 4

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0

WIDTH OF EXTRAPOLATION IS 10

K RES RESl
0 4.1713-08 4.17D-08

mAo4190
MAO4200
AAAO4210

336 A. Sidi / Implementation of extrapolation methods

8
9

10

2.44D-08 2.44D-08
2.40D-08 2.40D-08
1.29D-08 1.29D-08
1.24D-08 1.24D-08
5.49D-09 5.49D-09
5.39D-09 5.39D-09
1.95D-09 1.95D-09
1.96D-09 1.96D-09
8.71D-10 8.71D-10
9.27D-10 9.27D-10

CYCLE NO. 5

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0

WIDTH OF EXTRAPOLATION IS 10

K RES RESl
0 9.27D-10 9.27D-10
1 5.14D-10 5.14D-10
2 5.46D-10 5.46D-10
3 2.74D-10 2.74D-10
4 2.71D-10 2.71D-10
5 l.l7D-10 l.l7D-10
6 l.O9D-10 l.O9D-10
7 4.64D-11 4.64D-11
8 4.28D-11 4.28D-11
9 2.07D-11 2.07D-11

10 2.19D-11 2.18D-11

CYCLE NO. 6

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0

WIDTH OF EXTRAPOLATION IS 10

K
0

2
3
4

2

ii
9

10

RES RESl
2.18D-11 2.18D-11
1.25D-11 1.25D-11
1.26D-11 1.26D-11
7.23D-12 7.23D-12
6.32D-12 6.32D-12
3.29D-12 3.28D-12
2.85D-12 2.85D-12
1.27D-12 1.28D-12
l.l5D-12 l.l5D-12
5.79D-13 5.67D-13
5.67D-13 5.49D-13

References

[l] 0. Axelsson, Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations,
Linear Algebra Appl. 29 (1980) l-16.

[2] S. Cabay and L.W. Jackson, A polynomial extrapolation method for finding limits and antilimits of vector
sequences, SIAM J. Numer. Anal. 13 (1976) 734-752.

[3] R.P. Eddy, Extrapolating to the limit of a vector sequence, in: P.C.C. Wang, Ed., Information Linkage between
Applied Mathematics and Industry (Academic Press, New York, 1979) 387-396.

[4] S.C. Eisenstat, H.C. Elman and M. Schultz, Variational iterative methods for nonsymmetric systems of linear
equations, SIAM J. Numer. Anal. 20 (1983) 345-357.

[S] D.K. Faddeev and V.N. Faddeeva, Computational Methods of Linear AIgebra (Freeman, San Francisco, 1963).
[6] W.F. Ford and A. Sidi, Recursive algorithms for vector extrapolation methods, Appl. Numer. Math. 4 (6) (1988)

477-489.

A. Sidi / Implementation of extrapolation methods 331

[7] G.H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins Univ. Press, Baltimore, MD, 2nd. ed.,
1989).

[8] M. Israeli and A. Sidi, An invariance property of some vector extrapolation methods, in preparation.
[9] M. MeSina, Convergence acceleration for the iterative solution of the equations X = AX + f, Comput. Methocis

Appl. Mech. Engrg. 10 (2) (1977) 165-173.
[lo] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp. 37 (1981) 105-126.
[ll] Y. Saad and M.H. Schultz, A generalized minimal residual algorithm for solving nonsymmetric linear systems,

SIAM J. Sci. Statist. Comput. 7 (1986) 856-869.
[12] A. Sidi, Convergence and stability properties of minimal polynomial and reduced rank extrapolation algorithms,

SIAM J. Numer. Anal. 23 (1986) 197-209.
[13] A. Sidi, Extrapolation vs. projection methods for linear systems of equations, J. Comput. Appf. Math. 22 (1)

(1988) 71-88.
(141 A. Sidi, On extensions of the power method for normal operators, Linear AIgebra Appl. 120 (1989) 207-224.
[15] A. Sidi, Application of vector extrapolation methods to consistent singular linear systems, Appl. Numer. Math. 6

(6) (1989/90) 487-500.
[16] A. Sidi and J. Bridger, Convergence and stability analyses for some vector extrapolation methods in the presence

of defective iteration matrices, J. Comput. Appl. Math. 22 (1) (1988) 35-61.
[17] A. Sidi and M.L. Celestina, Convergence acceleration for vector sequences and applications to computational

fluid dynamics, NASA TM-101327, ICOMP-88-17 (August 1988); also: AIAA Paper 90-0338, AIAA 28th
Aerospace Sciences Meeting, Reno, NV.

[18] A. Sidi, W.F. Ford and D.A. Smith, Acceleration of convergence of vector sequences, SIAM J. Numer. Anal. 23
(1986) 178-196.

[19] D.A. Smith, W.F. Ford and A. Sidi, Extrapolation methods for vector sequences, SIAM Rev. 29 (1987) 199-233;
Correction, SIAM Rev. 30 (1988) 623-624.

[20] R.S. Varga, Matrix Iterative Analysis (Prentice-Hall, New York, 1962).
[21] P. Wynn, Acceleration techniques for iterated vector and matrix problems, Math. Comp. 16 (1962) 301-322.
[22] D.M. Young and K.C. Jea, Generalized conjugate gradient acceleration of nonsymmetrizable iterative methods,

Linear Afgebra AppI. 34 (1980) 159-194.
[23] S. Yungster, Shock wave/boundary layer interactions in premixed hydrogen-air hypersonic flows: a numerical

study, NASA TM-103273, ICOMP-90-22 (November 1990); also: AIAA paper 91-0413, AIAA 29th Aerospace
Sciences Meeting, Reno, NV.

