Efficient implementation of minimal polynomial and reduced rank extrapolation methods

Avram Sidi

Computer Science Department, Technion-Israel Institute of Technology, Haifa 32000, Israel

Received 1 June 1990 Revised 4 December 1990

Abstract

Sidi, A., Efficient implementation of minimal polynomial and reduced rank extrapolation methods, Journal of Computational and Applied Mathematics 36 (1991) 305-337.

The minimal polynomial extrapolation (MPE) and reduced rank extrapolation (RRE) are two very effective techniques that have been used in accelerating the convergence of vector sequences, such as those that are obtained from iterative solution of linear and nonlinear systems of equations. Their definitions involve some linear least-squares problems, and this causes difficulties in their numerical implementation. In this work timewise efficient and numerically stable implementations for MPE and RRE are developed. A computer program written in FORTRAN 77 is also appended and applied to some model problems, among them a hypersonic flow problem involving chemical reactions.

Keywords: Extrapolation, convergence acceleration, minimal polynomial extrapolation, reduced rank extrapolation, vector sequences, linear and nonlinear systems, fixed-point iterative techniques, least squares, QR factorization.

1. Introduction

The minimal polynomial extrapolation (MPE) of Cabay and Jackson [2] and the reduced rank extrapolation (RRE) of Eddy [3] and Mešina [9] are two methods used in accelerating the convergence of a large class of vector sequences. In particular, they are employed for accelerating the convergence of fixed-point iterative techniques for linear or nonlinear systems of equations, such as those that arise in the discrete solution of continuum problems.

A unified treatment of these and other extrapolation methods has been given in the survey paper [19], where some numerical testing for them is also provided. Detailed convergence analyses for MPE and RRE have been presented in [12,13,16], and we shall mention some of the results that follow from these analyses later in this work. Also, both MPE and RRE are very closely related to some well-known Krylov subspace methods when they are applied to linearly generated vector sequences, and this subject is explored in detail in [13]. In fact, MPE and RRE are equivalent to the Arnoldi method and generalized conjugate residuals (GCR), respectively, when they are all applied to linear systems of equations starting with the same initial approximation. For the method of Arnoldi, see [10], and for GCR, see [4]. We also mention that the conjugate gradient type method of [1], the method of [22] that has been called ORTHODIR, and the recent generalized minimal residual method (GMRES) of [11] are all equivalent to GCR, and are used in solving linear equations. Recursion relations that exist among various approximations that are obtained from both methods are discussed in [6], where the existence of an interesting four-term lozenge recursion is shown. MPE and RRE have been employed successfully in [17] in accelerating the convergence of some finite-difference solution techniques in large-scale computational fluid dynamics problems. Finally, the application of MPE and RRE and other vector extrapolation methods to the iterative solution of consistent singular linear systems has been considered in [15], where this approach is shown to be sound theoretically, and precise convergence analyses are also provided.

The definitions of MPE and RRE involve the solution of a linear least-squares problem, the number of equations in this problem being equal to the dimension of the vectors in the given sequence. Since, in general, this dimension may be very large, as it is, for example, in three-dimensional computational fluid dynamics problems, the matrix of the least-squares problem may be very large. Thus, if standard linear least-squares packages are used, the time and core memory requirements in the implementation of MPE and RRE may become prohibitive. To circumvent this problem, the solution of the linear least-squares problem was achieved in [17] by solving the corresponding normal equations that is much less costly than using least-squares packages. This approach proves to be quite efficient when the amount of extrapolation is not very large. When the amount of extrapolation is increased, however, the accuracy decreases, as the normal equations become very ill-conditioned.

In the present work we propose new implementations for MPE and RRE, which are very inexpensive as far as both time and core memory requirements are concerned, and are stable numerically as the amount of extrapolation is increased. These implementations are also quite interesting mathematically, as they allow one to compute exactly (or estimate) the accuracy achieved in the extrapolation process without actually computing the residuals at each stage. This can be employed to further reduce the cost of implementation.

The plan of this paper is as follows. In Section 2 we briefly review the definitions of MPE and RRE. In Section 3 we consider the application of MPE and RRE to vector sequences that are generated by iterative solution of linear systems as this provides the motivation for different modes of usage of the methods. We devote Sections 4-6 to the development of the new implementations of MPE and RRE and the description of the mathematical features of these implementations. In Section 4 we give the details of the new implementations. One of the crucial ingredients of these implementations is the efficient solution of the least-squares problems by use of QR factorization. In Section 5 we show how, in these new implementations, the l_2 -norms of the residuals can be computed exactly for linear systems (or estimated for nonlinear systems) without doing extra vector computations. This enables us to assess the accuracy of the extrapolation without actually carrying it out, and can be used to reduce the amount of computation drastically. In Section 6 we discuss the operation counts and the storage requirements for the new implementations. In Section 7 we discuss some practical matters concerning the efficient use of MPE or RRE or any other vector extrapolation methods. Finally, in Section 8 we give some numerical results obtained by applying MPE and RRE through their new

implementations to three model problems. Two of these problems are linear, and the third is a nonlinear problem arising from finite-difference approximation of a two-dimensional hypersonic flow problem involving the Navier-Stokes equations with chemical reactions. A computer program written in FORTRAN 77 that implements MPE and RRE is provided in Appendix B.

2. Review of MPE and RRE

Let $x_0, x_1, x_2,...$ be a given sequence of N-dimensional column vectors, and denote its limit or antilimit by s. The vectors x_i are assumed to be complex, in general. Define

$$u_i = \Delta x_i = x_{i+1} - x_i$$
 and $w_i = \Delta^2 x_i$, $i = 0, 1, 2, ...$ (2.1)

Define the $N \times (j+1)$ matrices $U_j^{(n)}$ and $W_j^{(n)}$ by

$$U_{j}^{(n)} = \left[u_{n} \mid u_{n+1} \mid \dots \mid u_{n+j} \right]$$
(2.2)

and

$$W_{j}^{(n)} = \left[w_{n} | w_{n+1} | \dots | w_{n+j} \right].$$
(2.3)

2.1. Definition of MPE

For MPE the approximation $s_{n,k}$ to s, the desired limit or antilimit, is defined by

$$s_{n,k} = \sum_{j=0}^{k} \gamma_j x_{n+j},$$
 (2.4)

where the γ_i are determined as follows.

(i) Use the least-squares method to solve the overdetermined and, in general, inconsistent linear system

$$U_{k-1}^{(n)}c = -u_{n+k}, (2.5)$$

where $c = (c_0, c_1, \dots, c_{k-1})^T$. (ii) Set $c_k = 1$, and compute the γ_i by

$$\gamma_j = \frac{c_j}{\sum_{i=0}^k c_i}, \quad 0 \le j \le k,$$
(2.6)

assuming that $\sum_{i=0}^{k} c_i \neq 0$. When this condition is not satisfied, $s_{n,k}$ does not exist.

2.2. Definition of RRE

For RRE the approximation $s_{n,k}$ to s, the desired limit or antilimit, is defined by

$$s_{n,k} = x_n + \sum_{i=0}^{k-1} \xi_i u_{n+i}, \qquad (2.7)$$

where the ξ_i are determined by solving the overdetermined and, in general, inconsistent linear system

$$W_{k-1}^{(n)}\xi = -u_n, (2.8)$$

with $\xi = (\xi_0, \xi_1, \dots, \xi_{k-1})^T$, using the least-squares method. Since a least-squares solution to (2.8) always exists, $s_{n,k}$ always exists. In particular, $s_{n,k}$ exists uniquely when the matrix $W_{k-1}^{(n)}$ has full rank, i.e., rank $(W_{k-1}^{(n)}) = k$, or, equivalently, when the vectors $w_n, w_{n+1}, \dots, w_{n+k-1}$ are linearly independent. It can easily be shown that rank $(W_{k-1}^{(n)}) = k$, thus $s_{n,k}$ exists uniquely, when rank $(U_k^{(n)}) = k + 1$.

There exists an equivalent formulation of RRE that seems to be more suitable for computer implementation. It also has the advantage of unifying most of the algorithmic aspects of MPE and RRE. In this formulation $s_{n,k}$ is of the form given in (2.4); only this time the γ_j are obtained by the least-squares solution of the overdetermined and, in general, inconsistent linear system

$$U_k^{(n)}\gamma = 0, \tag{2.9}$$

where $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_k)^T$, subject to the constraint

$$\sum_{j=0}^{k} \gamma_j = 1.$$
 (2.10)

(Note that the γ_i in MPE satisfy (2.10) automatically, as can easily be seen from (2.6).)

Remarks. (1) It is important to realize that the γ_j in $s_{n,k} = \sum_{j=0}^k \gamma_j x_{n+j}$ depend solely on $x_n, x_{n+1}, \dots, x_{n+k+1}$.

(2) In most applications, N, the dimension of the vectors x_i , is much larger than k, so that the matrices $U_j^{(n)}$ have many more rows than columns. Therefore, there is great need to reduce the amount of numerical work with the columns of the matrices $U_i^{(n)}$.

3. Application of MPE and RRE to linear systems

Consider the linear nonsingular N-dimensional system

$$x = Ax + b, \tag{3.1}$$

where A is an $N \times N$ matrix and b is an N-dimensional column vector. Pick an initial vector x_0 , and generate the vectors x_1, x_2, \ldots by the iterative scheme

$$x_{i+1} = Ax_i + b, \quad i = 0, 1, \dots$$
 (3.2)

The solution s of (3.1) is now the limit of the sequence x_0, x_1, x_2, \ldots , when the latter converges, otherwise, s is the antilimit.

Let k_0 be the degree of the minimal polynomial of the matrix A with respect to the vector $x_n - s$. Then the following statements are true.

(i) s_{n,k_0} is uniquely defined both for MPE and RRE, and

$$s_{n,k_0} = s. \tag{3.3}$$

Also the linear systems in (2.5), (2.8) and (2.9) are consistent for $k = k_0$, even though they may be overdetermined. This is a consequence of the fact that the vectors u_{n+j} , $0 \le j \le k_0 - 1$, are linearly independent, and u_{n+k_0} lies in their span. (See [13, Section 2.2].)

(ii) For $k < k_0$, $s_{n,k}$ is uniquely defined for RRE. For MPE, however, $s_{n,k}$ may fail to exist when $k < k_0$. When the matrix C = I - A has positive definite Hermitian part, $s_{n,k}$ exists

uniquely for MPE also for $k < k_0$. (See [13, Section 2.2].) More generally, $s_{n,k}$ exists uniquely for MPE also for $k < k_0$, if the eigenvalues of C all lie on one side of a straight line through the origin in the complex plane, or, equivalently, if they all lie in an open sector $S = \{\mu: |\arg \mu - \theta| < \frac{1}{2}\pi\}$, for some θ , $-\pi < \theta \leq \pi$. This result can be proved exactly as [13, Theorem 2.2] with C there replaced by $e^{-i\theta}C$.

(iii) When the Arnoldi method and GCR are used in solving the linear system Cx = b, where C = I - A, with x_n as the initial vector, they become equivalent to MPE and RRE, respectively. Specifically, the approximations obtained from the Arnoldi method and GCR are exactly $s_{n,1}, s_{n,2}, \ldots$ that are produced by MPE and RRE, respectively. (See [13, Section 2.3].)

(iv) If the *distinct nonzero* eigenvalues of A are denoted λ_j , j = 1, 2, ..., and are ordered such that

$$|\lambda_1| \ge |\lambda_2| \ge |\lambda_3| \ge \cdots,$$
(3.4)

then, provided

$$|\lambda_k| > |\lambda_{k+1}|, \tag{3.5}$$

and A is diagonalizable, we have

$$s_{n,k} - s = \mathcal{O}(|\lambda_{k+1}|^n), \quad \text{as } n \to \infty, \tag{3.6}$$

both for MPE and RRE. (The coefficient of $|\lambda_{k+1}|^n$ on the right-hand side of (3.6) becomes large when the largest eigenvalues $\lambda_1, \lambda_2, \ldots$ are close to 1.) In view of the fact that $x_n - s = O(|\lambda_1|^n)$, as $n \to \infty$, we conclude that MPE and RRE are both true acceleration methods. Under the same conditions, if $s_{n,k} - s$ is precisely $O(|\lambda_{k+1}|^n)$ as $n \to \infty$, then the γ_j for MPE and RRE are such that

$$P^{n,k}(\lambda) = \sum_{j=0}^{k} \gamma_j \lambda^j = \prod_{i=1}^{k} \frac{\lambda - \lambda_i}{1 - \lambda_i} + O\left(\left|\frac{\lambda_{k+1}}{\lambda_k}\right|^n\right), \text{ as } n \to \infty,$$
(3.7)

i.e., for fixed k and for all sufficiently large n, the polynomial $P^{(n,k)}(\lambda)$ has precisely k zeros that tend to $\lambda_1, \lambda_2, \ldots, \lambda_k$. Furthermore, if we denote the zero of $P^{(n,k)}(\lambda)$ that tends to λ_j by $\lambda_j(n)$, then

$$\lambda_j(n) - \lambda_j = O\left(\left|\frac{\lambda_{k+1}}{\lambda_j}\right|^n\right), \quad \text{as } n \to \infty, \ 1 \le j \le k.$$
(3.8)

The proofs of (3.6) and (3.7) have been given in [12, Sections 3 and 4]. The proof of (3.8) will be published in the future. In case the matrix A in (3.2) is normal, the right-hand sides of (3.7) and (3.8) can be replaced by O($|\lambda_{k+1}/\lambda_k|^{2n}$) and O($|\lambda_{k+1}/\lambda_j|^{2n}$), respectively. (The result in (3.6) remains the same, however.) This implies that when A is normal, the rates of convergence of $P^{(n,k)}(\lambda)$ and its zeros $\lambda_j(n)$ are twice those that can be achieved otherwise. These results follow from the corresponding results of [14].

For the most general case in which the matrix A is not diagonalizable, the results in (3.6)-(3.8) need to be modified considerably. For a complete treatment of this case see [16, Sections 2, 3 and 5], where modifications of (3.6) and (3.7) are given. The modification of (3.8) will be published in the future.

A direct consequence of the result given in (3.6) is that better accuracy may be obtained if extrapolation is preceded by a number of fixed-point iterations. This has indeed been observed

numerically both for linear and nonlinear problems. We shall comment on this again in Section 7.

(v) Let us denote C = I - A. Then s is the solution to Cx = b. Denote by π_k the set of all polynomials $Q_k(\lambda)$ of degree at most k that satisfy $Q_k(0) = 1$. Consider now $s_{n,k}$ as obtained by applying MPE or RRE to the vector sequence x_0, x_1, \ldots . Then

$$||r(s_{n,k})|| \leq \left(\min_{Q_k \in \pi_k} ||Q_k(C)||\right) ||r(x_n)||, \text{ for RRE},$$
(3.9)

where r(x) = Ax + b - x = b - Cx = -C(x - s) is the residual for x, and $\|\cdot\|$ is the l_2 -vector norm, or the matrix norm induced by it. (In fact, $\|r(s_{n,k})\|$, k = 0, 1, 2, ..., is a monotonically decreasing sequence for RRE.) Similarly, if $C_{\rm H} = \frac{1}{2}(C + C^*)$, the Hermitian part of C, is positive definite, then

$$\|C_{\rm H}^{1/2}(s_{n,k}-s)\| \le \beta \Big(\min_{Q_k \in \pi_k} \|Q_k(C)\|\Big) \|C_{\rm H}^{1/2}(x_n-s)\|, \text{ for MPE},$$
(3.10)

where

$$\beta = \begin{cases} L, & \text{if } C \text{ is normal,} \\ L_{\sqrt{\text{cond}(C_{\text{H}})}}, & \text{otherwise,} \end{cases}$$
(3.11)

with $L = ||C_{\rm H}^{-1/2}CC_{\rm H}^{-1/2}|| \ge 1$. Note that both ||r(x)|| and $||C_{\rm H}^{1/2}(x-s)||$ are true norms for x-s. Two types of bounds for $\min_{Q_k \in \pi_k} ||Q_k(C)||$, in case $C_{\rm H}$ is positive definite, are given in [13, Section 4], and these can be used to derive upper bounds for $||r(s_{n,k})||$ and $||C_{\rm H}^{1/2}(s_{n,k}-s)||$ for fixed *n* and increasing *k*. For details see [13]. These bounds are employed in [17] to justify the use of the extrapolation strategy that has been called "cycling" in [19] and all subsequent publications.

Finally, analogous and almost identical results exist for the case in which the system in (3.1) is singular but consistent, so that it has an infinity of solutions. In this case the limit or antilimit depends on x_0 in a very specific manner. For details, see [15].

Remark. The various Krylov subspace methods like the Arnoldi method and GCR and others can be applied only to linear systems. Acceleration methods such as MPE and RRE, however, can be applied to nonlinear systems as well as linear ones. The reason for this is that, unlike the Krylov subspace methods, MPE and RRE are defined exclusively in terms of the given vector sequence, which may be generated, for example, by an iterative method. Whether the vector sequence is generated linearly or nonlinearly is irrelevant to the definitions of MPE and RRE and other vector extrapolation methods. This is a very important property of vector extrapolation methods.

4. Implementation of MPE and RRE

4.1. General considerations

As we have seen in Section 2, both MPE and RRE entail linear least-squares problems in their definitions. There is, therefore, an immediate need for the efficient solution of these problems. We propose to solve these problems by applying the QR factorization to the matrices $U_k^{(n)}$.

To keep the notation simple we shall set n = 0 everywhere, and denote the matrices $U_j^{(0)}$ by U_j . This amounts to simply renaming x_n and calling it x_0 .

We assume that the vectors u_0, u_1, \ldots, u_k are linearly independent so that the $N \times (k+1)$ matrix U_k is of full rank k+1. The case in which u_0, u_1, \ldots, u_k are linearly dependent will be discussed later in this section. We recall that for the linear system in (3.1) this assumption is valid when $k < k_0$, where k_0 is the degree of the minimal polynomial of the matrix A with respect to the vector $x_0 - s$. Therefore, there is a unique $N \times (k+1)$ matrix Q_k ,

$$Q_k = [q_0 | q_1 | \dots | q_k], \tag{4.1}$$

whose columns q_i satisfy

$$(q_i, q_j) = q_i^* q_j = \delta_{ij}, \tag{4.2}$$

and a unique $(k+1) \times (k+1)$ upper triangular matrix R_k ,

$$R_{k} = \begin{bmatrix} r_{00} & r_{01} & r_{02} & \cdots & r_{0k} \\ & r_{11} & r_{12} & \cdots & r_{1k} \\ & & r_{22} & \cdots & r_{2k} \\ & & & & \vdots \\ 0 & & & & & r_{kk} \end{bmatrix},$$
(4.3)

with $r_{ii} > 0$, i = 0, 1, ..., k, such that

$$U_k = Q_k R_k. \tag{4.4}$$

This QR factorization amounts to orthonormalizing the vectors u_0, u_1, u_2, \ldots , in this order. It is important to retain this order, as this enables us to form the QR factorization of U_{k+1} by appending one additional column to Q_k to obtain Q_{k+1} , and a corresponding column to R_k to obtain R_{k+1} .

QR factorization can be performed in different ways. The simplest way is the Gram-Schmidt (GS) process for orthonormalization of u_0, u_1, u_2, \ldots . This process is very unstable, however, in the sense that the computed vectors q_0, q_1, q_2, \ldots are very far from being orthogonal. The modified Gram-Schmidt (MGS) process, on the other hand, seems to be quite stable, and is the one that we have preferred. We recall that MGS is entirely equivalent to GS mathematically, and requires the same number of arithmetic operations as GS. The two methods are different numerically, however. For details, see, e.g., [7, pp. 218, 219].

For the sake of completeness we describe MGS for the case in which the vectors u_0 , u_1 , u_2 ,... are introduced one by one and in this order.

Algorithm MGS

Step (1) Read u_0 , and compute the scalar r_{00} and the vector q_0 according to $r_{00} = (u_0, u_0)^{1/2}$ and $q_0 = u_0/r_{00}$. Step (2) for k = 1, 2, ... do read u_k , and set $u_k^{(0)} = u_k$ for j = 0 to k - 1 do $r_{jk} = (q_j, u_k^{(j)})$ $u_k^{(j+1)} = u_k^{(j)} - r_{jk}q_j$ end

compute
$$r_{kk}$$
 and q_k according to
 $r_{kk} = (u_k^{(k)}, u_k^{(k)})^{1/2}$ and $q_k = u_k^{(k)}/r_{kk}$
end

(Here (y, z) stands for the Euclidean inner product y^*z , as before.)

It is easy to see that, when implementing MGS on a computer, $u_k^{(0)}$, $u_k^{(1)}$, ..., $u_k^{(k)}$, and q_k can all be made to occupy the same storage locations. As we shall see in the next paragraph, the computation of $s_{0,k}$ can be based on the q_j without the need to save either the x_j or the u_j . We can thus let u_k occupy the same storage locations as the $u_k^{(i)}$.

QR factorization can also be achieved by using Householder transformations. Although the computed matrices Q_k produced in this approach are closer to unitary than those produced by MGS when the l_2 -condition number of U_k is large, the amount of computing in this approach is about twice that required by MGS. We shall elaborate on this further in Section 7.

We now recall from the definitions of MPE and RRE, that the approximations $s_{0,k}$ for both methods can be expressed in the form

$$s_{0,k} = \sum_{j=0}^{k} \gamma_j x_j, \text{ with } \sum_{j=0}^{k} \gamma_j = 1.$$
 (4.5)

Assuming that $\gamma_0, \gamma_1, \ldots, \gamma_k$ have been determined, let us compute $\xi_0, \xi_1, \ldots, \xi_{k-1}$ from

$$\xi_0 = 1 - \gamma_0 \text{ and } \xi_j = \xi_{j-1} - \gamma_j, \ 1 \le j \le k - 1.$$
 (4.6)

Then, we can re-express $s_{0,k}$ in the form

$$s_{0,k} = x_0 + \sum_{i=0}^{k-1} \xi_i u_i = x_0 + U_{k-1} \xi, \qquad (4.7)$$

where $\xi = (\xi_0, \xi_1, ..., \xi_{k-1})^T$. Substituting now $U_{k-1} = Q_{k-1}R_{k-1}$ in (4.7), we obtain

$$s_{0,k} = x_0 + Q_{k-1}(R_{k-1}\xi) = x_0 + \sum_{j=0}^{k-1} \eta_j q_j, \qquad (4.8)$$

where

 $\eta_j = (j+1)$ st component of the column vector $R_{k-1}\xi$, $j = 0, 1, \dots, k-1$. (4.9)

This approach to the computation of $s_{0,k}$ is very advantageous, as it enables us to overwrite x_1, x_2, \ldots and u_0, u_1, \ldots , and thus saves a lot of storage.

4.2. Determination of the γ_i when $\operatorname{rank}(U_k) = k + 1$

The only thing that remains to be done now is to determine the γ_j , and this requires separate treatments for MPE and RRE.

4.2.1. Determination of the γ_i for MPE

As mentioned in Section 2, in order to determine the γ_j for $s_{0,k}$ in MPE we first solve the overdetermined system

$$U_{k-1}c = -u_k \tag{4.10}$$

by least squares. Since we also assume that the rank of U_k is k+1, we conclude that c is the unique solution of the normal equations

$$U_{k-1}^* U_{k-1} c = -U_{k-1}^* u_k.$$
(4.11)

Upon invoking $U_{k-1} = Q_{k-1}R_{k-1}$ in (4.11) and using the fact that $Q_{k-1}^*Q_{k-1} = I_{k\times k}$ (the $k \times k$ identity matrix), and the fact that R_{k-1} is a nonsingular matrix, we obtain

$$R_{k-1}c = -Q_{k-1}^*u_k. ag{4.12}$$

It is easy to see that

$$Q_{k-1}^* u_k = (r_{0k}, r_{1k}, \dots, r_{k-1,k})^{\mathrm{T}} \equiv \rho_k,$$
(4.13)

so that (4.12) becomes

$$R_{k-1}c = -\rho_k. \tag{4.14}$$

This is a linear system of k equations in the k unknowns $c_0, c_1, \ldots, c_{k-1}$, and its matrix R_{k-1} is upper triangular. Hence its solution can be achieved easily by back substitution.

Once $c_0, c_1, \ldots, c_{k-1}$ are determined, we set $c_k = 1$, and compute the γ_j from (2.6), provided $\sum_{i=0}^k c_i \neq 0$.

4.2.2. Determination of the γ_i for RRE

Again as we mentioned in Section 2, the γ_j for $s_{0,k}$ in RRE can be determined by solving the overdetermined system

$$U_k \gamma = 0 \tag{4.15}$$

by least squares subject to the constraint

$$\sum_{j=0}^{\kappa} \gamma_j = 1. \tag{4.16}$$

This amounts to minimizing the positive definite quadratic form $\gamma^* U_k^* U_k \gamma$ subject to (4.16). Consequently, the Lemma in Appendix A applies, and the γ_j can be obtained by solving the linear system of k + 2 equations

$$U_k^* U_k \gamma = \lambda \tilde{e}, \qquad \sum_{j=0}^k \gamma_j = 1, \qquad (4.17)$$

for $\gamma_0, \gamma_1, \ldots, \gamma_k$ and λ . Here

$$\tilde{e} = (1, 1, \dots, 1)^{\mathrm{T}}.$$
 (4.18)

As is stated in the same lemma, λ turns out to be strictly positive, and is given by

$$\lambda = \gamma^* U_k^* U_k \gamma, \quad \text{at the solution.}$$
(4.19)

The γ_i can be obtained by first solving the linear system

$$U_k^* U_k d = \tilde{e}, \tag{4.20}$$

for $d = (d_0, d_1, \dots, d_k)^T$, and letting

$$\lambda = \left(\sum_{j=0}^{k} d_j\right)^{-1},\tag{4.21}$$

and finally setting

$$\gamma = \lambda d. \tag{4.22}$$

As far as the solution of the system in (4.20) is concerned, we accomplish this again by using the QR factorization of U_k . Again by $Q_k^*Q_k = I_{(k+1)\times(k+1)}$ (the $(k+1)\times(k+1)$ identity matrix), we can rewrite (4.20) in the form

$$R_k^* R_k d = \tilde{e}. \tag{4.23}$$

This system can be solved by forward and back substitution as the matrix R_k is upper triangular.

4.3. Treatment of the case $rank(U_k) = k$

Up to this point we discussed the case in which the vectors u_0, u_1, \ldots, u_k are linearly independent. Since these vectors are being introduced one by one, we can view this case as adding the vector u_k to the linearly independent set $\{u_0, u_1, \ldots, u_{k-1}\}$ and obtaining the linearly independent set $\{u_0, u_1, \ldots, u_k\}$. We now consider the case in which $\{u_0, u_1, \ldots, u_{k-1}\}$ is a linearly independent set, but $\{u_0, u_1, \ldots, u_k\}$ is not, i.e., rank $(U_k) = k$. This exhibits itself through $r_{kk} = 0$ in the QR factorization step.

If we apply MPE, then we can compute the γ_j by solving the (nonsingular) system in (4.14) and employing (2.6), provided $\sum_{i=0}^{k} c_i \neq 0$ there. We then compute $s_{0,k}$.

If we apply RRE, we can compute $s_{0,k}$ as follows. First, by the linear dependence of u_0, u_1, \ldots, u_k , there exist constants $\alpha_0, \alpha_1, \ldots, \alpha_k$, not all zero, such that $\sum_{i=0}^k \alpha_i u_i = 0$. This implies that the linear system in (4.15) is consistent. Also we can write $U_k = Q_k R_k$, where Q_k and R_k are as in (4.1)-(4.3), $q_0, q_1, \ldots, q_{k-1}$ are uniquely determined and q_k is arbitrary in (4.1), and $r_{kk} = 0$ in (4.3). Multiplying both sides of (4.15) by Q_k^* , and using the fact that $Q_k^*Q_k = I_{(k+1)\times(k+1)}$, we obtain the system of k+2 equations

$$R_k \gamma = 0$$
 and $\sum_{j=0}^k \gamma_j = 1.$ (4.24)

Now, by $r_{kk} = 0$, this system actually consists of the k + 1 inhomogeneous equations

$$\left[R_{k-1} \mid \rho_k\right] \gamma = 0 \quad \text{and} \quad \sum_{j=0}^{\kappa} \gamma_j = 1 \tag{4.25}$$

in the k + 1 unknowns $\gamma_0, \gamma_1, \dots, \gamma_k$. Since a least-squares solution for the linear system in (2.8) always exists, a solution for the γ_j always exists too. Consequently, the equations in (4.25) always have a solution for RRE. Once we determine a set of γ_i 's, we compute $s_{0,k}$.

Comparing (4.25) with (4.14) and (2.6), we see that if $s_{0,k}$ exists for MPE when rank $(U_k) = k$, then it is equal to $s_{0,k}$ for RRE.

If the vector sequence $x_0, x_1, x_2,...$ is generated as in (3.2), then, as explained in Section 3, rank $(U_k) = k + 1$ for $k < k_0$, where k_0 is the degree of the minimal polynomial of A with respect to $x_0 - s$. The smallest value of k for which rank $(U_k) = k$ is k_0 , and at $k = k_0$ we already reach the solution, i.e., $s_{0,k_0} = s$. That is the first time $r_{kk} = 0$ occurs, we have $s_{0,k} = s$, and stop.

If the vector sequence $x_0, x_1, x_2,...$ is not generated linearly, and $rank(U_{k-1}) = k$, but $rank(U_k) = k < k+1$, then we can compute $s_{0,k}$ first, and then take $s_{0,k}$ or a nearby vector as x_0 ,

and restart the computation. Other strategies for continuing the computation can likewise be devised, but we shall not pursue this matter further.

It should be mentioned, however, that, due to round-off, the chances of encountering the case $rank(U_k) < k + 1$ in practice are extremely small. We have thus not included the treatment of this case in the computer program given in Appendix B.

4.4. Summary of implementations

We now summarize the major steps of the implementations, as they have been described above. We assume that all the matrices U_k have full rank.

Suppose that, starting with x_0 , we have constructed the matrices Q_{k-1} and R_{k-1} .

We now read x_{k+1} and compute $u_k = x_{k+1} - x_k$. Following this, using MGS, we compute the scalars r_{0k} , r_{1k} ,..., r_{kk} and the orthonormal vector q_k , which we use to augment the matrices Q_{k-1} and R_{k-1} to give Q_k and R_k , respectively.

We next proceed to the computation of the γ_j . For MPE, we first solve the upper triangular $k \times k$ system in (4.14) for $c_0, c_1, \ldots, c_{k-1}$ by back substitution, and then use (2.6) to obtain the γ_j . For RRE, we solve the $(k + 1) \times (k + 1)$ system in (4.23) for d, and then determine the γ_j by (4.21) and (4.22). The solution of the system in (4.23) can be achieved very simply by forward and back substitution as R_k is upper triangular.

Once the γ_j have been determined, we compute the ξ_j by (4.6) and the η_j by (4.9), and finally, $s_{0,k}$ by (4.8).

Next we read x_{k+2} , and proceed similarly, until a suitable stopping criterion is met.

It should be noted that, strictly speaking, neither r_{kk} nor q_k is needed for determining $s_{0,k}$, and their computation can be completed after x_{k+2} has been introduced. In the computer program that we give in Appendix B, though, we chose to compute r_{kk} and q_k before the computation of $s_{0,k}$.

Finally, it is not difficult to see that these implementations are very appropriate for vector computers as their handling of the x_i , u_i , and q_i can be entirely vectorized. The computer program given in Appendix B has been written to take full account of this.

5. Estimation of residual norms

5.1. General considerations for linear and nonlinear systems

Let s be the solution of the linear or nonlinear system of equations

 $x = F(x), \tag{5.1}$

and let us define the residual for an arbitrary vector x by

$$r(x) = F(x) - x. \tag{5.2}$$

Let x_0 be a given initial approximation, and generate the sequence of vectors $x_1, x_2, ...,$ according to the fixed-point iterative method

$$x_{j+1} = F(x_j), \quad j = 0, 1, \dots$$
 (5.3)

Consequently, the residual for x_i is given by

$$r(x_j) = F(x_j) - x_j = x_{j+1} - x_j = u_j,$$
(5.4)

thus is readily available.

Let us assume that MPE or RRE is applied to the sequence $x_0, x_1, x_2, ..., and that we are$ $computing the sequence <math>s_{n,1}, s_{n,2}, ...$. Let us assume also that we would like to stop the computation as soon as some norm of $r(s_{n,k})$ becomes $\leq \epsilon$ for some $k, \epsilon > 0$ being a preassigned level of accuracy. The most direct way of doing this would be by actually computing the vectors $s_{n,1}, r(s_{n,1}), s_{n,2}, r(s_{n,2}), ...,$ which is very costly.

Indeed, the computation of $s_{n,k}$ involves about k vector additions and k scalar-vector multiplications, that of $r(s_{n,k})$, by (5.2), amounts to one additional fixed-point iteration and one vector addition, and the computation of the norm of $r(s_{n,k})$ requires an additional inner product. In addition, the number of the vector operations increases with increasing k. In view of this, the most desirable situation is one that enables us to estimate some norm of $r(s_{n,k})$ without having to compute either $s_{n,k}$ or $r(s_{n,k})$.

5.2. Residual computation for linear systems

We now devise a strategy by which the l_2 -norms of the residuals $r(s_{n,k})$ can be obtained exactly without the need to compute either $s_{n,k}$ or $r(s_{n,k})$, when the sequence x_0, x_1, x_2, \ldots is being generated linearly by the iterative method in (3.2), i.e., when F(x) = Ax + b in (5.3). The case in which F(x) is nonlinear will be considered at the end of this section.

When F(x) = Ax + b, the residual for an arbitrary vector x, by (5.2), becomes

$$r(x) = Ax + b - x. \tag{5.5}$$

Consequently, by (2.10), (3.2) and (2.1), we have

$$r(s_{0,k}) = \sum_{j=0}^{k} \gamma_{j} u_{j} = U_{k} \gamma, \qquad (5.6)$$

and the l_2 -norm of $r(s_{0,k})$ is thus

$$\|r(s_{0,k})\| = (r(s_{0,k}), r(s_{0,k}))^{1/2} = (\gamma^* U_k^* U_k \gamma)^{1/2}.$$
(5.7)

By invoking $U_k = Q_k R_k$ in (5.7), we obtain

$$\|r(s_{0,k})\| = (\gamma^* R_k^* R_k \gamma)^{1/2}.$$
(5.8)

We now analyze $\gamma^* R_k^* R_k \gamma$ for MPE and RRE separately.

5.2.1. l_2 -norm of residual with MPE

Let us compute $R_k \gamma$ first. By (4.12)–(4.14) we have

$$\left[R_{k-1} \mid \rho_k\right] \left[\frac{c}{1}\right] = 0.$$
(5.9)

By dividing both sides of (5.9) by $\sum_{i=0}^{k} c_i$ with $c_k = 1$, and invoking (2.6), we obtain

$$\left[R_{k-1} \mid \rho_k\right] \gamma = 0. \tag{5.10}$$

Substituting (5.10) in $R_k \gamma$, we finally have

$$R_k \gamma = (0, 0, \dots, 0, r_{kk} \gamma_k)^{\mathrm{T}},$$
 (5.11)

from which we obtain

$$(\gamma^* R_k^* R_k \gamma)^{1/2} = r_{kk} |\gamma_k|.$$
 (5.12)

Consequently, for linearly generated sequences

$$|| r(s_{0,k}) || = r_{kk} |\gamma_k|$$
(5.13)

exactly, with r(x) as defined in (5.5).

5.2.2. l_2 -norm of residual with RRE By (4.19) we immediately have

$$\left(\gamma^* U_k^* U_k \gamma\right)^{1/2} = \sqrt{\lambda} , \qquad (5.14)$$

with λ as determined from (4.23) and (4.21). Consequently, for linearly generated sequences

$$\|r(s_{0,k})\| = \sqrt{\lambda} \tag{5.15}$$

exactly, with r(x) as defined in (5.5).

The results given in (5.13) and (5.15) assume exact arithmetic. Due to round-off errors, however, the actually computed residual norms may be getting farther from (5.13) and (5.15), especially when k is increasing. In this case it may be appropriate to compute $s_{0,k}$ and the norm of its residual every once in a while to make sure that round-off has not started to dominate the computations. Although such a test is not included in the computer program given in Appendix B, it is quite easy to incorporate it there.

5.3. Practical residual estimation in extrapolation for nonlinear systems

. . . .

We now consider the problem of error estimation for the case in which F(x) in (5.1) is nonlinear. Let us assume that the sequence x_0, x_1, x_2, \ldots is convergent, its limit, of course, being s, the solution of (5.1). Therefore, for n sufficiently large, x_n, x_{n+1}, \ldots are all very close to s, and we have

$$x_{n+1} - s = F'(s)(x_n - s) + \epsilon_n,$$
(5.16)

where F'(x) is the Jacobian matrix of the vector-valued function F(x), and ϵ_n is a vector whose norm is $O(||x_n - s||^2)$ as $n \to \infty$. This implies that the sequence x_0, x_1, x_2, \ldots behaves linearly at infinity, in the sense that

$$x_{j+1} \approx F'(s)x_j + (s - F'(s)s),$$
 (5.17)

for all sufficiently large j. Thus, for n sufficiently large, we can take

$$r(s_{n,k}) \approx U_k^{(n)} \gamma, \tag{5.18}$$

cf. (5.6), and

$$\|r(s_{n,k})\| \approx \left(\gamma^* R_k^{(n)} * R_k^{(n)} \gamma\right)^{1/2}, \tag{5.19}$$

cf. (5.8), where we have retained the index n in $U_k^{(n)}$ and $U_k^{(n)} = Q_k^{(n)} R_k^{(n)}$. The norm in (5.19) is the l_2 -norm as before. Consequently, we can take (5.19) as an estimate for the l_2 -norm of the residual $r(s_{n,k})$ without having to compute either $s_{n,k}$ or $r(s_{n,k})$, since it is given by (5.12) for MPE and by (5.14) for RRE.

In case n is not large enough, (5.19) may not be very realistic. In this case we may choose to compute $s_{n,k}$ and $r(s_{n,k})$ not for all k, but for $k = p, 2p, 3p, \ldots$, say, for some integer p > 1. This obviously reduces the cost.

When we use MPE or RRE in the cycling mode, which is one of the best modes of usage, things become simpler if we recall (5.4). To see this let us recall how cycling can be performed.

- Step (1) Fix the integer k. Pick $s_k^0 \equiv x_0$ and set q = 0. Step (2) Generate x_1 by (5.3). If $||r(s_k^{(q)})|| = ||x_1 x_0|| = ||u_0|| \le \epsilon$, then stop. Otherwise, generate x_2, \ldots, x_{k+1} by (5.3). Step (3) Compute $s_k^{(q+1)} \equiv s_{0,k}$ by MPE or RRE. Step (4) Replace x_0 by $s_k^{(q+1)}$, and q by q + 1, and go to Step (2).

Consequently, no extra computation for residuals is necessary, as u_0 is the true residual for the previous cycle.

6. Operation count and storage requirements

In most applications, N, the dimension of the vectors, is extremely large, while k takes on very small values. Consequently, the major part of the computational effort is spent in handling the large vectors, the rest being negligible.

As we can easily see, most of the vector computations take place in the QR factorization. At the kth stage that leads to $s_{0,k}$, the vector x_{k+1} is provided first. Starting with this, we need one vector addition to form $u_k = x_{k+1} - x_k$, and, following that, k vector additions, k+1 scalarvector multiplications and k+1 inner products to form the orthonormal vector q_k and the scalars r_{0k} , r_{1k} ,..., r_{kk} by MGS. The computation of $s_{0,k}$, if desired, requires k vector additions and k scalar-vector multiplications by (4.8). The computation of the γ_i , ξ_i and η_i is negligible, as it involves work with $k \times k$ or $(k+1) \times (k+1)$ triangular matrices for very small values of k.

As for the storage requirements, it is clear that x_0 needs to be saved. At the kth stage q_k needs to be saved, in addition to the previously saved $q_0, q_1, \ldots, q_{k-1}$. We also need two or three more auxiliary vectors of dimension N. Similarly the elements of the matrix R_k all need to be saved, but their storage requirements are negligible.

In view of the above, if only $s_{0,K}$ is needed for some preassigned K, then, recalling that the vector q_K need not be computed, the total operation count is $\frac{1}{2}(K^2 + 5K + 2)$ vector additions, $\frac{1}{2}(K^2 + 5K)$ scalar-vector multiplications and $\frac{1}{2}(K^2 + 3K + 2)$ inner products, which amounts to $\sim 2K^2N$ floating-point operations (scalar additions and multiplications). As for the storage requirements, we need (K+1)N storage locations for $x_0, q_0, q_1, \ldots, q_{K-1}$, and 2N storage locations for two additional auxiliary vectors. No additional storage locations are required for $s_{0,K}$ as $s_{0,K}$ can overwrite x_0 at the end of the computation.

In many cases it turns out that the accuracy that can be achieved with m cycles of MPE or RRE, each cycle being of width K, is comparable to that obtained for $s_{0,mK}$. If we compare the computational costs of each of these strategies, we see that, roughly speaking, the former is m times less expensive computationally than the latter, and requires m times less storage. Thus, as a computational strategy, cycling possesses important advantages.

It is very instructive to compare the implementations for MPE and RRE, as they are given in this work, with the vector epsilon algorithm (VEA) of [21]. VEA is defined recursively by

$$\epsilon_{-1}^{(n)} = 0 \quad \text{and} \quad \epsilon_{0}^{(n)} = x_{n}, \qquad n = 0, 1, \dots,$$

$$\epsilon_{k+1}^{(n)} = \epsilon_{k-1}^{(n+1)} + \frac{\overline{\Delta}\epsilon_{k}^{(n)}}{\left(\Delta\epsilon_{k}^{(n)}, \Delta\epsilon_{k}^{(n)}\right)}, \quad k \ge 0, \quad n \ge 0,$$
(6.1)

where $\Delta \epsilon_k^{(n)} = \epsilon_k^{(n+1)} - \epsilon_k^{(n)}$, and $\bar{z} = (\bar{z}_1, \dots, \bar{z}_N)^T$ if $z = (z_1, \dots, z_N)^T$. Thus, the computation of $\epsilon_k^{(n)}$ for $k \ge 2$ requires two vector additions, one scalar-vector multiplication and one inner product. For $\epsilon_1^{(n)}$ only one vector addition is required. Now as is suggested by experience and as can be justified heuristically, for given K, $\epsilon_{2K}^{(0)}$ for VEA and $s_{0,K}$ for MPE or RRE would have comparable performance. The total operation count for determining $\epsilon_{2K}^{(0)}$ is $4K^2$ vector additions, $2K^2 + K$ scalar-vector multiplications and $2K^2 + K$ inner products, which amounts to $\sim 10K^2N$ floating-points operations (scalar additions and multiplications). As for the storage requirements, we need (2K + 1)N storage locations to save $\epsilon_0^{(2K)}$, $\epsilon_1^{(2K-1)}$, \ldots , $\epsilon_{2K}^{(0)}$, and 2N storage locations for two auxiliary vectors. Consequently, VEA is about five times more expensive than either MPE or RRE as far as operation counts are concerned. As far as storage requirements are concerned, VEA is about twice as expensive as either MPE or RRE. In addition, since x_0 , x_1 , \ldots , x_{2K} are needed for $\epsilon_{2K}^{(0)}$, whereas only x_0 , x_1 , \ldots , x_{K+1} are needed for either MPE or RRE, VEA is about twice as expensive as MPE or RRE with respect to the number of vectors they utilize.

We note that, in the epsilon family of vector extrapolation methods, VEA seems to be the most advantageous as far as the operation count, storage requirements and numerical stability are concerned. For more details, see [19].

7. Some practical considerations for enhancing convergence and stability

In this section we would like to make a few remarks, which we believe are of practical importance with regard to enhancing the convergence and stability of vector extrapolation methods as they are applied to iterative procedures. Most of these remarks are based on the known theoretical results concerning vector extrapolation methods, some of which have been discussed in Section 3.

7.1. Effect of iteration before extrapolation

In most problems of interest the vector sequence $x_0, x_1,...$ converges extremely slowly so that there is not much difference between $||x_n - s||$ and $||x_0 - s||$ even for appreciably large values of *n*. The result in (3.6), however, suggests that there may be a large difference between $||s_{n,k} - s||$ and $||x_n - s||$ (hence $||x_0 - s||$) if *n* is sufficiently large. If the vectors x_j are produced by an iterative procedure such as (3.2), then this implies that it may be very useful to start the extrapolation procedure after a number of iterations with (3.2). One heuristic argument in favor of this strategy runs as follows. The initial error $x_0 - s$, in general, has components in the direction of all eigenvectors and principal vectors of A. After a few iterations the components in the direction of those eigenvectors and principal vectors corresponding to zero eigenvalues of A are totally eliminated, while those corresponding to the eigenvalues that are close to zero are diminished. Consequently, the error vector $x_n - s$ has mostly contributions from the eigenvectors and principal vectors corresponding to the large eigenvalues. Precisely these contributions are now diminished by the extrapolation procedure.

7.2. A simple "averaging" of the iteration process and its effect on convergence and stability

Assume that (3.2) or (5.3) result from the discrete solutions of continuum problems. Then, for a convergent scheme, the largest eigenvalues of A or of F'(s), the Jacobian matrix of F(x) at x = s, may be very close to 1 in the complex plane in some cases. This may cause the extrapolation process not to be very effective. The process may even suffer from a large amount of numerical instability.

One way of dealing with this problem is by applying extrapolation methods not to the sequence x_0, x_1, x_2, \ldots , but to y_0, y_1, y_2, \ldots , where $y_j = x_{jp}$, for some positive integer p. This strategy has been successfully implemented in [17].

Another way would be by changing (5.3), in general, to read

$$x_{j+1} = x_j + \omega \left(F(x_j) - x_j \right) = (1 - \omega) x_j + \omega F(x_j), \quad j = 0, 1, \dots,$$
(7.1)

where ω is a scalar different than 1. (The sequence generated by taking $\omega = 1$ is the one generated by (5.3).) Thus x_{j+1} is now a weighted "average" of x_j and $F(x_j)$, in which the weights $1 - \omega$ and ω need not be both positive.

By picking ω appropriately we can cause the spectrum of the Jacobian matrix of $(1 - \omega)x + \omega F(x)$ at x = s, namely, $(1 - \omega)I + \omega F'(s)$, to be increasingly favorable to $s_{n,k}$ for large values of n.

Let us take a look at the following example. Suppose the eigenvalues of F'(s) are all positive and lie in the interval $[\epsilon, 1 - \eta]$, for some $\epsilon > 0$ and $\eta > 0$ close to zero. Consequently, the sequence x_0, x_1, \ldots obtained from (5.3) converges, provided x_0 is sufficiently close to s in case F(x) is nonlinear, and unconditionally in case F(x) is linear. If we pick $\omega = 2$, then the eigenvalues of $(1 - \omega)I + \omega F'(s)$ lie in the interval $[-1 + 2\epsilon, 1 - 2\eta]$ so that the sequence obtained from (7.1) also converges. (If $\epsilon = \eta$, then this sequence converges more quickly than the one obtained from (5.3).) The new spectrum has two important properties relevant to vector extrapolation methods. (1) The largest positive eigenvalue of F'(s), namely $1 - \eta$, has moved away from 1. (2) Negative eigenvalues close to -1 have been created. Both of these properties enhance the stability of vector extrapolation processes both mathematically and numerically. (This follows from [12, Theorem 4.1], [16, Theorem 3.2] and [18, Theorems 4.1 and 5.2].) It should be noted that 2 is also that value of ω for which the spectral radius of $(1 - \omega)I + \omega F'(s)$ is minimal when $\epsilon = \eta$.

7.2.1. Special considerations for linear systems

When F(x) = Ax + b, and the vector sequence is generated by the iterative procedure in (7.1), the approximations $s_{0,k}$ are independent of ω , as has been shown in [8]. That is to say, the convergence properties of the $s_{0,k}$ are not changed by varying ω . Nevertheless, varying ω may influence the stability properties of the numerical implementations.

First, if the sequence obtained from (3.2) is divergent, then all the computations leading to $s_{0,k}$ will suffer a large loss of accuracy, especially for increasing k. By changing ω in (7.1) appropriately, we can cause the sequence to converge (or diverge very slowly), thus avoiding the numerical problem caused by the unboundedness of the original sequence.

Next, if the sequence obtained from (3.2) is slowly converging on account of the largest eigenvalues of A all being very close to 1 in the complex plane, then the vectors $u_0, u_1, u_2, ...$ are near being linearly dependent. Consequently, the l_2 -condition number of the matrices U_k may be very large. This may have a negative influence on the QR factorization of U_k by MGS that we have chosen for our implementation. This influence exhibits itself in the computed matrices Q_k being far from unitary and the computed $s_{0,k}$ not being very accurate. If, by picking ω appropriately in (7.1), we can change the spectrum in such a way that it now contains both positive and negative large eigenvalues, then the vectors $u_0, u_1, u_2, ...$ will be far from being linearly dependent numerically. This will result in better conditioned matrices U_k , which, in turn, will result in the computed matrices Q_k being quite accurate.

The numerical aspects of MGS and its use in the solution of least-squares problems and the comparison of these with the Householder QR factorization and least-squares solutions are discussed at length in [7, Sections 5.2.8, 5.2.9 and 5.3.6].

7.2.2. Application to Jacobi iteration for consistently ordered matrices

The observations above can be used very effectively in the solution of linear systems whose matrices are consistently ordered. Such matrices arise frequently, for example, in the finite-difference solutions of elliptic equations.

Suppose iterative methods of the form (3.2) are used in the solution of such a system. If the method used is the Jacobi iteration method, then it is known that the nonzero eigenvalues of A come in pairs of the form $\pm \mu$, see, e.g., [20, Chapter 4]. Consequently, if the eigenvalues of A are real, then they are in the interval $[-1 + \delta, 1 - \delta]$ for some $\delta, 0 < \delta < 1$, provided $\rho(A) < 1$. As a result, the nonzero eigenvalues of A^2 are in the interval $[\epsilon, 1 - \eta]$, for some $\epsilon > 0$, where $1 - \eta = (1 - \delta)^2 \approx 1 - 2\delta$ if $\delta \ll 1$. Furthermore, if 2M is the number of the distinct nonzero eigenvalues of A are real or not.

This implies that the approximation $s_{2n,2k}^1$ obtained from the Jacobi iterative method and the approximation $s_{n,k}^2$ obtained from the double Jacobi iterative method

$$y = Ax_j + b,$$

 $x_{j+1} = Ay + b, \quad j = 0, 1, ...,$
(7.2)

have the same asymptotic behavior as $n \to \infty$. In addition, since the largest eigenvalues of A^2 are twice as far from 1 as those of A, $s_{n,k}^2$ is more stable than $s_{2n,2k}^1$ as $n \to \infty$ both mathematically and numerically.

We can now couple the double Jacobi iteration method with the simple averaging procedure that was discussed above. Tha new iteration procedure then is

$$y = Ax_{j} + b, \qquad z = Ay + b, x_{j+1} = (1 - \omega)x_{j} + \omega z, \qquad j = 0, 1, \dots,$$
(7.3)

for some $\omega \neq 0$. As explained before, by varying ω we can cause the spectrum of the iteration matrix of (7.3), namely, $(1 - \omega)I + \omega A^2$, to become favorable to $s_{n,k}$. In particular, by picking $\omega = 2$ we can cause this spectrum to lie in the interval $[-1 + 2\epsilon, 1 - 2\eta] = [-1 + 2\epsilon, 1 - 4\delta + \delta^2]$. This enlarges the distance of the largest positive eigenvalue of the Jacobi iteration matrix A from 1 even further, and introduces negative eigenvalues close to -1. This causes $s_{n,k}^2$ to become more stable. Furthermore, if $\epsilon \ge \delta$, the convergence rate of x_n from (7.3) with $\omega = 2$ is as good as that of x_n from (7.2).

We note, incidentally, that the iterative method of (7.3) with $\omega = 2$ is known as Abramov's method, see [5, p.514]. It is quite easy to see that, in this case,

$$x_{j+1} - s = (2A^2 - I)(x_j - s) = T_2(A)(x_j - s),$$

where $T_2(\lambda) = 2\lambda^2 - 1$ is the Chebyshev polynomial of degree two. It should be emphasized that this is not Chebyshev acceleration, however.

8. Numerical examples

We have applied MPE and RRE through their new implementations described in the previous sections to several linear and nonlinear systems of equations. This has been done by employing the computer program that is provided in Appendix B. Some of the results obtained this way will be reported in this section.

We have picked real linear systems of equations whose matrices are symmetric or nonsymmetric. Numerical results for two of these systems, one symmetric and the other nonsymmetric, are included in this work. We have also treated nonlinear systems arising from finite-difference solutions of fluid mechanics problems. Numerical results for a hypersonic flow problem with chemical reactions are given in this paper.

Example 1. Consider the vector sequence obtained from (3.2), where A is a 1000×1000 septadiagonal matrix symmetric with respect to both of its main diagonals, and is given by

	5	2	1	1]	
	2	6	3	1	1					
	1	3	6	3	1	1				
$A = 0.06 \times$	1	1	3	6	3	1	1		ŀ	•
		1	1	3	6	3	1	1		
			••••	••••	••••	•••	•••	•••	· · .]	

The vector b is such that the exact solution s of (3.1) is $(1, 1, ..., 1)^{T}$.

All eigenvalues of A are in (0, 1), the smallest and the largest being $4.7279... \times 10^{-6}$ and 0.95999..., respectively. Consequently, the matrix C = I - A is symmetric positive definite. Also, there is a large amount of clustering of eigenvalues near the smallest and the largest ones.

Taking $x_0 = 0$, we generated the vectors $x_1, x_2, ...$ by (7.1) once by taking $\omega = 1$ and once by taking $\omega = 2$, and then applied MPE to these two sequences. We also applied the method of conjugate gradients (CG) to the linear system Cx = b starting again with $x_0 = 0$. The results of these computations are shown in Table 1(a).

k	MPE	<u> </u>	CG					
	$\omega = 1$			$\omega = 2$				
	$r_{kk} \gamma_k $	$ r(s_{0,k}) $	$\ s_{0,k} - s\ $	$r_{kk} \gamma_k $	$\ r(s_{0,k})\ $	$ s_{0,k} - s $	$ z_k - s $	
0	$1.46 \cdot 10^{0}$	$1.46 \cdot 10^{0}$	3.16 · 10 ¹	$2.92 \cdot 10^{0}$	$2.92 \cdot 10^{0}$	$3.16 \cdot 10^{1}$	$3.16 \cdot 10^{1}$	
5	$1.92 \cdot 10^{-1}$	$1.92 \cdot 10^{-1}$	$1.17 \cdot 10^{0}$	$3.83 \cdot 10^{-1}$	$3.83 \cdot 10^{-1}$	$1.17 \cdot 10^{0}$	$1.17 \cdot 10^{0}$	
10	$1.98 \cdot 10^{-2}$	$1.98 \cdot 10^{-2}$	$1.53 \cdot 10^{-1}$	$3.96 \cdot 10^{-2}$	$3.96 \cdot 10^{-2}$	$1.53 \cdot 10^{-1}$	$1.53 \cdot 10^{-1}$	
15	$2.51 \cdot 10^{-3}$	$2.51 \cdot 10^{-3}$	$2.03 \cdot 10^{-2}$	$5.01 \cdot 10^{-3}$	$5.01 \cdot 10^{-3}$	$2.02 \cdot 10^{-2}$	$2.02 \cdot 10^{-2}$	
20	$4.51 \cdot 10^{-4}$	$4.53 \cdot 10^{-4}$	$3.70 \cdot 10^{-3}$	$6.63 \cdot 10^{-4}$	$6.63 \cdot 10^{-4}$	$2.68 \cdot 10^{-3}$	$2.68 \cdot 10^{-3}$	
25	$1.58 \cdot 10^{-4}$	$2.26 \cdot 10^{-4}$	$4.43 \cdot 10^{-3}$	$8.78 \cdot 10^{-5}$	$8.78 \cdot 10^{-5}$	$3.52 \cdot 10^{-4}$	$3.52 \cdot 10^{-4}$	
30	$6.27 \cdot 10^{-5}$	$1.11 \cdot 10^{-4}$	$2.44 \cdot 10^{-3}$	$1.15 \cdot 10^{-5}$	$1.15 \cdot 10^{-5}$	$4.63 \cdot 10^{-5}$	$4.63 \cdot 10^{-5}$	
35	$2.49 \cdot 10^{-5}$	$3.19 \cdot 10^{-5}$	$6.08 \cdot 10^{-4}$	$1.53 \cdot 10^{-6}$	$1.53 \cdot 10^{-6}$	$6.53 \cdot 10^{-6}$	$6.11 \cdot 10^{-6}$	
40	$6.37 \cdot 10^{-6}$	$1.42 \cdot 10^{-5}$	$3.34 \cdot 10^{-4}$	$5.16 \cdot 10^{-7}$	$5.30 \cdot 10^{-7}$	$1.64 \cdot 10^{-6}$	$8.03 \cdot 10^{-7}$	
45	$7.90 \cdot 10^{-6}$	$5.42 \cdot 10^{-6}$	$3.66 \cdot 10^{-5}$	$7.31 \cdot 10^{-8}$	$1.29 \cdot 10^{-7}$	$1.27 \cdot 10^{-6}$	$1.06 \cdot 10^{-7}$	
50	$9.49 \cdot 10^{-7}$	$5.29 \cdot 10^{-6}$	$1.30 \cdot 10^{-4}$	$3.17 \cdot 10^{-8}$	$4.29 \cdot 10^{-8}$	$1.85 \cdot 10^{-7}$	$1.39 \cdot 10^{-8}$	

Table 1(a) Numerical results for Example 1, starting with $x_0 = 0$

Recall that the Arnoldi method becomes equivalent to CG when C is a symmetric matrix, and MPE, when applied to a linearly generated sequence, becomes equivalent to the Arnoldi method. Also $s_{0,k}$, when applied to a sequence generated linearly as in (7.1), is independent of ω . Consequently, $s_{0,k}$, both for $\omega = 1$ and $\omega = 2$, obtained from MPE, and z_k , obtained from CG, are all the same mathematically. This is verified in Table 1(a) at least for $k \leq 10$. The differences between the $\omega = 1$ and $\omega = 2$ MPE computations for k > 10 can be explained exactly as described at the end of Section 7.2.1. Again, as can be seen from Table 1(a), the $\omega = 2$ MPE computation starting with k = 40 approximately. Since CG involves orthogonalization with respect to only one vector, its absolute accuracy is guaranteed. On the other hand, MPE involves orthogonalization with respect to an ever increasing number of vectors at each stage, thus it cannot be absolutely accurate. In spite of this, the present implementation of MPE seems to be very stable in the sense that $||s_{0,k} - s||$ seems to be

Table 1(b)

MPE applied to Example 1 in the cycling mode; starting with the zero vector, first 20 iterations are performed; following that MPE is applied in the cycling mode with k = 10; the l_2 norm of the error in the initial (zero) vector is $3.16 \cdot 10^1$; the vectors are obtained by "averaging" the iterative process (3.2) with $\omega = 2$

i	$\ r(s_k^{(i)})\ $	$\ s_k^{(i)} - s\ $	
0	4.75 · 10 ⁻¹	5.91 · 10 ⁰	
1	$2.00 \cdot 10^{-4}$	$6.94 \cdot 10^{-4}$	
2	$2.90 \cdot 10^{-6}$	$8.78 \cdot 10^{-6}$	
3	$4.17 \cdot 10^{-8}$	$1.74 \cdot 10^{-7}$	
4	$9.27 \cdot 10^{-10}$	$3.70 \cdot 10^{-9}$	
5	$2.18 \cdot 10^{-11}$	$9.11 \cdot 10^{-11}$	
6	$5.49 \cdot 10^{-13}$	$2.83 \cdot 10^{-12}$	
7	$4.26 \cdot 10^{-14}$	$1.77 \cdot 10^{-13}$	
8	$6.16 \cdot 10^{-15}$	$9.46 \cdot 10^{-14}$	

constantly decreasing with increasing k. Indeed, we have verified this by going up to k = 100 in both the $\omega = 1$ and $\omega = 2$ MPE computations.

Our purpose in presenting Table 1(a) was to demonstrate the good stability properties of the new MPE implementation for large values of k. Otherwise, CG is the method we would normally use for this example, since its operation count and storage requirements are extremely small.

In Table 1(b) we present the results obtained for the same example with $\omega = 2$ first performing 20 iterations and then using MPE in the cycling mode with k = 10, as explained at the end of Section 5. The remarkable effectiveness of this strategy is obvious.

Example 2. Consider the linear nonsymmetric system of equations $\tilde{C}x = \tilde{b}$, where \tilde{C} is the block-tridiagonal matrix

$$\tilde{C} = \begin{bmatrix} B & -I & & & \\ -I & B & -I & & & \\ & -I & B & -I & & \\ & & & -I & B \end{bmatrix},$$

with $B = \begin{bmatrix} 4 & \alpha & & & \\ \beta & & & & \\ & & & \beta & 4 \end{bmatrix},$

and $\alpha = -1 + \delta$, $\beta = -1 - \delta$, $\delta \neq 0$. (See [10, p.122].) Again, the vector \tilde{b} is such that the exact solution s is $(1, 1, ..., 1)^{T}$. The iterative method that we pick for this system is Jacobi's method, so that $A = I - \frac{1}{4}\tilde{C}$.

Now the matrix \tilde{C} is consistently ordered. Thus the suggestions put forth in Section 7.2.2 can be successfully employed in this case.

In our numerical experiments we took $\delta = 0.2$. The matrices *B* and *I* in \tilde{C} were all 10×10 and \tilde{C} was 200 × 200, exactly as in [10]. The extrapolation method for which we give numerical results is RRE. We first applied RRE in the cycling mode in conjunction with Jacobi iteration. The vector obtained at the end of each cycle is denoted $\bar{s}_k^{(i)}$. Next we applied RRE in the cycling mode in conjunction with double Jacobi iteration. The vector obtained at the end of each cycle is denoted $\hat{s}_k^{(i)}$ now. Finally, we applied RRE in the cycling mode extended as follows. The vector sequence is generated by the iterative procedure of (7.3) with $\omega = 2$, i.e., by the "averaged" double Jacobi iteration with $\omega = 2$. In each cycle $n_i + k_i + 1$ such iterations are performed, and extrapolation is applied to the last $k_i + 2$ of the vectors, i.e., in each cycle s_{n_i,k_i} is computed. The vector obtained at the end of each cycle now is denoted $\tilde{s}_{n_i,k_i}^{(i)}$. The index *i* denotes the cycle number in each case.

In Table 2 we give the l_2 -norms of the errors $\bar{s}_k^{(i)} - s$ (k = 20), $\hat{s}_k^{(i)} - s$ (k = 10) and $\tilde{s}_{n_nk_i}^{(i)}$ $(n_i = 5, k_i = 5 \text{ all } i)$. Thus the number of basic Jacobi iterations performed to obtain the approximations $\bar{s}_k^{(i)}$, $\hat{s}_k^{(i)}$ and $\tilde{s}_{n_nk_i}^{(i)}$ in each cycle is 21, 22 and 22, respectively. We see that $\bar{s}_{20}^{(i)}$ and $\hat{s}_{10}^{(i)}$ have comparable accuracy, as expected. The number of vector operations for $\bar{s}_{20}^{(i)}$, however, is over three times that for $\hat{s}_{10}^{(i)}$. Also the storage requirement for $\bar{s}_{20}^{(i)}$ is about twice that for $\hat{s}_{10}^{(i)}$. The performance of $\tilde{s}_{5,5}^{(i)}$ is only slightly inferior. The number of vector operations for $\tilde{s}_{5,5}^{(i)}$ is about one tenth that for $\bar{s}_{20}^{(i)}$, while its storage needs are about one third those of $\bar{s}_{20}^{(i)}$.

i	$\ \bar{s}_{20}^{(i)} - s\ $	$\ \hat{s}_{10}^{(i)} - s\ $	$\ \tilde{s}_{5,5}^{(i)} - s\ $	
1	$6.66 \cdot 10^{-2}$	$7.47 \cdot 10^{-2}$	$1.34 \cdot 10^{-1}$	
2	$2.02 \cdot 10^{-4}$	$2.36 \cdot 10^{-4}$	$5.86 \cdot 10^{-4}$	
3	$2.53 \cdot 10^{-7}$	$4.26 \cdot 10^{-7}$	$1.14 \cdot 10^{-5}$	
4	$2.90 \cdot 10^{-10}$	$2.05 \cdot 10^{-9}$	$3.04 \cdot 10^{-8}$	
5	$2.03 \cdot 10^{-12}$	$5.96 \cdot 10^{-12}$	$2.15 \cdot 10^{-10}$	
6	$1.35 \cdot 10^{-13}$	$6.48 \cdot 10^{-14}$	$1.07 \cdot 10^{-12}$	
7	$3.61 \cdot 10^{-14}$	$3.13 \cdot 10^{-14}$	$1.75 \cdot 10^{-14}$	

RRE applied to Example 2 in the cycling mode;	the initial vector is zero,	and the l_2 -norm of	the error associated	with
it is $1.41 \cdot 10^1$				

Table 2

Example 3. One practical area in which extrapolation methods have been used successfully is that of computational fluid dynamics. See, e.g., [17] and the references therein. Vector extrapolation methods are coupled with iterative techniques that arise from the finite-difference approximations of the partial differential equations governing the flows. In most of the applications so far the equations considered have been those of compressible inviscid flows (the Euler equations).

We would now like to present some results obtained for a hypersonic compressible turbulent flow problem that also involves chemical reactions.

The physical problem considered is that of combustion of a premixed stoichiometric hydrogen-air hypersonic (Mach number 4) flow over a compression corner. The compression corner creates a shock wave, the temperature behind this shock wave being high enough to initiate a combustion process. The coupling between the combustion process and the shock wave results in a coupled shock-deflagration wave.

The physics is described by the two-dimensional Reynolds-averaged Navier–Stokes equations with nonequilibrium chemistry, i.e., the global continuity equation is replaced by all the species continuity equations. A 7-species 8-step reaction mechanism for hydrogen-oxygen combustion is adopted. The Baldwin–Lomax algebraic eddy viscosity turbulence model is also included.

The numerical method uses the LU-SSOR implicit factorization scheme and a second-order symmetric TVD scheme. Thus the number of the dependent variables is ten. The dependent variables are the two momenta per unit volume, the seven species densities and the total energy per unit mass. The number of the mesh points is approximately 4,000. As a result, the vectors in this problem are of dimension 40,000 approximately.

For the full details of the physical problem, the governing equations and the iterative scheme used in their solution, we refer the interested reader to [23].

The single-precision version of the computer program in Appendix B was incorporated in the fluid mechanics code that implemented the iterative scheme mentioned above. The combined code was run on a CRAY Y-MP computer at NASA-Lewis Research Center, Cleveland, OH.

This code was first run without chemical reactions as a Navier-Stokes solver with turbulence. Figure 1(a) contains some of the residual history obtained by applying RRE in the cycling mode with k = 20 after 80 and 200 initial iterations. As can be seen, better results are obtained for this problem by employing RRE early on. This seems to be true for nonlinear problems in general. Figure 1(b) contains some of the residual history obtained by using RRE again in the cycling mode with k = 10, 20, 30 after 80 initial iterations. The CPU-time for performing 500 iterations

Fig. 1. Residual history with and without convergence acceleration for the hypersonic flow problem in Example 3 with no chemical reactions.

without extrapolation is about 464 seconds. The overhead due to extrapolation turns out to be 1% or less.

The code was next run with chemical reactions. Figure 2 gives the convergence history obtained by using RRE in the cycling mode with k = 10 after 200 initial iterations. The CPU-time for performing 1000 iterations without extrapolation is about 1284 seconds. The overhead due to extrapolation turns out to be less than 0.05%.

We note that the reason for the negligible cost of extrapolation in this example lies in the fact that the iterative scheme has a high cost, which is due to the following: (1) the complexity of the physical problem (viscous, turbulent, chemically reacting flows); (2) the TVD scheme which is necessary in this case for capturing the shock waves with the best possible resolution; (3) the implicit LU-scheme that is required to retain a high CFL number, which is particularly important in viscous calculations. Finally, we mention that very similar performance was observed with MPE.

Fig. 2. Residual history with and without convergence acceleration for the hypersonic flow problem in Example 3 with chemical reactions.

Acknowledgements

The author gratefully acknowledges the useful conversations he had with Prof. Moshe Israeli in the course of this work. The computations pertaining to the first two examples and reported in this paper were done in double-precision arithmetic on an IBM-370 computer at the Computation Center, Technion-Israel Institute of Technology. The computations for the fluid mechanics example were carried out on a CRAY Y-MP computer by Dr. Shaye Yungster of the Institute for Computational Mechanics in Propulsion at NASA-Lewis Research Center, Cleveland, OH. The author would like to thank him for his kind permission to include some of the results in this work.

Appendix A

Lemma. Let T be an $m \times m$ Hermitian positive definite matrix, and let z_1, z_2, \ldots, z_m be complex variables. Denote $z = (z_1, z_2, \ldots, z_m)^T$. Then the solution to the problem

minimize
$$z * Tz$$
,
subject to $\sum_{i=1}^{m} z_i = 1$, (A.1)

can be obtained by solving the linear system of m + 1 equations

$$Tz = \lambda \tilde{e}, \qquad \sum_{i=1}^{m} z_i = 1, \tag{A.2}$$

where z_1, \ldots, z_m and λ are unknowns, and

$$\tilde{e} = (1, 1, \dots, 1)^{\mathrm{T}}.$$
 (A.3)

The unknown λ turns out to be real and positive, and is given by

$$\lambda = z^* Tz, \quad at \ the \ solution \,. \tag{A.4}$$

The solution of (A.2) can be achieved by first solving the system

$$Th = \tilde{e}, \tag{A.5}$$

for $h = (h_1, \ldots, h_m)^T$, and letting

$$\lambda = \left(\sum_{i=1}^{m} h_i\right)^{-1},\tag{A.6}$$

and finally setting

$$z = \lambda h. \tag{A.7}$$

Proof. We start by expressing the problem in terms of real variables. Let us write T in the form

T = M + iN, M and N real $m \times m$ matrices. (A.8)

Then, by the assumption that T is Hermitian, it follows that

$$M^{\mathrm{T}} = M \quad \text{and} \quad N^{\mathrm{T}} = -N. \tag{A.9}$$

Writing

$$z = x + iy$$
, x and y real *m*-dimensional vectors, (A.10)

and invoking (A.8) and (A.9) in z^*Tz , we have

$$z^{*}Tz = x^{T}Mx + y^{T}My + 2y^{T}Nx.$$
(A.11)

Now the constraint $\sum_{i=1}^{m} z_i = 1$ in (A.1) is equivalent to two real constraints, namely,

$$\sum_{i=1}^{m} x_i = 1 \quad \text{and} \quad \sum_{i=1}^{m} y_i = 0.$$
 (A.12)

We now use the method of Lagrange multipliers to minimize (A.11) subject to (A.12). Introducing the Lagrange multipliers -2μ and -2ν for the constraints $\sum_{i=1}^{m} x_i = 1$ and $\sum_{i=1}^{m} y_i = 0$, respectively, and taking derivatives with respect to the x_i and y_i , we obtain the linear system of equations

$$Mx - Ny - \mu \tilde{e} = 0, \qquad My + Nx - \nu \tilde{e} = 0, \qquad (A.13)$$

which, upon letting $\lambda = \mu + i\nu$, becomes equivalent to $Tz = \lambda \tilde{e}$. We have thus shown the truth of (A.2). Multiplying $Tz = \lambda \tilde{e}$ on the left by z^* , and using $\sum_{i=1}^m z_i = 1$, we obtain (A.4). Obviously, λ has to be strictly positive. For if λ were zero, then z = 0 would have to be the solution as T is Hermitian positive definite, but this would contradict the constraint $\sum_{i=1}^m z_i = 1$. The rest of the proof follows easily from (A.2), and we shall omit it. \Box

Appendix **B**

In this appendix we give a computer code written in standard FORTRAN 77 that implements MPE and RRE as described in the present work.

The implementation of MPE and RRE is done in SUBROUTINE MPERRE that forms the heart of this code.

Use of MPE and RRE in the cycling mode is made possible by SUBROUTINE CYCLE.

The vector sequence for extrapolation is generated by calling SUBROUTINE VECTOR, which, in the present code provides the iteration sequence of Example 1 with $\omega = 2$ weighting.

The driving program in the present code is the one that generates some of the results shown in Table 1(b).

We give no further explanations about the code and its use, as the different parts of the code are documented in detail.

C*7	****	AAA00010
С	IMPLEMENTATION OF MPE AND RRE WITH QR FACTORIZATION FOR LEAST	AAA00020
С	SQUARES. (QR PERFORMED BY MODIFIED GRAM-SCHMIDT PROCESS)	AAA00030
С	MPE AND RRE ARE APPLIED IN THE CYCLING MODE.	AAA00040
C*7	* * * * * * * * * * * * * * * * * * * *	AAA00050
С	THE COMPONENTS OF THE INITIAL VECTOR X, NAMELY, X(I), I=1,,NDIM,	AAA00060
С	CAN BE PICKED RANDOMLY. WE ACHIEVE THIS, E.G., BY INVOKING THE	AAA00070
С	IMSL VERSION 10 SUBROUTINE DRNUN THAT GENERATES PSEUDORANDOM	AAA00080
С	NUMBERS FROM A UNIFORM (0,1) DISTRIBUTION.	AAA00090
С	OTHER CHOICES FOR X(1),,X(NDIM) ARE POSSIBLE, SUCH AS X(I)=0,	AAA00100
С	I=1,,NDIM. IN THIS CASE REPLACE THE STATEMENT	AAA00110

0		CALL DRNUN (NDIM, X)	AAA00120
С	ΒY	THE DO LOOP	AAA00130
С		DO 10 I=1,NDIM	AAA00140
С		X (I)=0	AAA00150
С	10	CONTINUE	AAA00160
С*	* * * 1	***************************************	AAA00170
		IMPLICIT DOUBLE PRECISION (A-H,O-Z)	AAA00180
		PARAMETER (METHOD=1, NU=20, N=0, KMAX=10, NCYCLE=15, NDIM=1000)	AAA00190
		PARAMETER (EPSC=ID-IU, IPRES=1, IPRESI=1)	AAAUU200 AAAUU210
		DIMENSION $\alpha(\text{NDIM}), \beta(\text{NDIM}), 1(\text{NDIM}), \alpha(\text{NDIM}), \beta(\text{NDIM}), \beta(ND$	AAA00210
		DIMENSION C(0:KMAX), GAMMA(0:KMAX), XI(0:KMAX-1)	AAA00220
		EXTERNAL VECTOR	AAA00240
С			AAA00250
С	IN	ITIAL VECTOR DETERMINATION.	AAA00260
С		1	AAA00270
С		CALL DRNUN (NDIM, X)	AAA00280
		DO 10 I=1,NDIM	AAA00290
		X (I) =0	AAA00300
~	10	CONTINUE	AAAUU310
C	-		AAAUU320
č	EINI	D OF INITIAL VECTOR DETERMINATION.	AAA00330
C		CALL CYCLE (METHOD, X. S. NO, N. KMAX, NCYCLE, NDIM, Y. Z. VECTOR, O. R	AAA00340
	,	C. GAMMA. XI. RESC. EPSC. TPRES. TPRES.)	AAA00360
		STOP	AAA00370
		END	AAA00380
			AAA00390
		SUBROUTINE CYCLE (METHOD, X, S, NO, N, KMAX, NCYCLE, NDIM, Y, Z, VECTOR, Q, R, A	AAA00400
		*C,GAMMA,XI,RESC,EPSC,IPRES,IPRES1)	AAA00410
C*	***	***************************************	AAA00420
С	TH	IS SUBROUTINE APPLIES MPE AND RRE IN THE CYCLING MODE.	AAA00430
C	MPI	E AND RRE ARE INVOKED BY CALLING SUBROUTINE MPERRE.	AAAUU440
· · •			
<u> </u>	***		AAA00450
C	TH	**************************************	AAA00450 AAA00460
	TH: AR	**************************************	AAA00450 AAA00460 AAA00470 AAA00480
	THI ARI	**************************************	AAA00450 AAA00460 AAA00470 AAA00480 AAA00490
000000	THI ARI X	<pre>************************************</pre>	AAA00450 AAA00460 AAA00470 AAA00480 AAA00490 AAA00500
	THI ARI X	<pre>************************************</pre>	AAA00450 AAA00460 AAA00470 AAA00480 AAA00490 AAA00500 AAA00510
	THI ARI X S	<pre>************************************</pre>	AAA00450 AAA00460 AAA00470 AAA00480 AAA00490 AAA00500 AAA00510 AAA00520
	THI ARI X S N0	<pre>************************************</pre>	AAA00450 AAA00460 AAA00470 AAA00480 AAA00490 AAA00500 AAA00510 AAA00520 AAA00520 AAA00530
	THI ARI X S NO	<pre>************************************</pre>	AAA00450 AAA00460 AAA00470 AAA00480 AAA00490 AAA00500 AAA00510 AAA00520 AAA00520 AAA00530 AAA00530
	THI ARI X S NO	<pre>************************************</pre>	AAA00450 AAA00460 AAA00470 AAA00480 AAA00500 AAA00500 AAA00550 AAA00550 AAA00520 AAA00550 AAA00550
	THU ARI X S NO	<pre>************************************</pre>	AAA00450 AAA00460 AAA00470 AAA00480 AAA00480 AAA00500 AAA00520 AAA00520 AAA00530 AAA00550 AAA00550 AAA00550 AAA00550
	THI ARI X S NO N	<pre>************************************</pre>	AAA00450 AAA00460 AAA00470 AAA00480 AAA00480 AAA00500 AAA00510 AAA00520 AAA00520 AAA00550 AAA00550 AAA00550 AAA00550
	*** THI ARI X S NO N	<pre>************************************</pre>	AAA00450 AAA00460 AAA00470 AAA00480 AAA00500 AAA00500 AAA00520 AAA00520 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550
	THI ARI X S NO N KMI	<pre>************************************</pre>	AAA00450 AAA00460 AAA00480 AAA00480 AAA00500 AAA00500 AAA00520 AAA00520 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00560
	THI ARI X S NO N	<pre>************************************</pre>	AAA00450 AAA00460 AAA00480 AAA00480 AAA00500 AAA00510 AAA00520 AAA00520 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00500
	THU ARI X S NO N KM	<pre>************************************</pre>	AAA00450 AAA00460 AAA00480 AAA00480 AAA00500 AAA00510 AAA00520 AAA00520 AAA00520 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00500 AAA00600 AAA00610
	**** TH: ARJ X S N0 N KM1	 E ARGUMENTS METHOD, NDIM, Y, Z, VECTOR, Q, R, C, GAMMA, XI, IPRES, IPRES1 E AS IN SUBROUTINE MPERE. : INITIAL VECTOR. INPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : THE FINAL APPROXIMATION PRODUCED BY THE SUBROUTINE. OUTPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : NUMBER OF ITERATIONS PERFORMED BEFORE CYCLING IS STARTED, I.E., BEFORE MPE OR RRE IS APPLIED FOR THE FIRST TIME. INPUT. (INTEGER) : NUMBER OF ITERATIONS PERFORMED BEFORE MPE OR RRE IS APPLIED IN EACH CYCLE AFTER THE FIRST CYCLE. INPUT. (INTEGER) AX : WIDTH OF EXTRAPOLATION. ON EXIT FROM SUBROUTINE MPERRE IN EACH CYCLE, THE ARRAY S IS, IN FACT, THE APPROXIMATION S (NO, KMAX) IN THE FIRST CYCLE, AND S (N, KMAX) IN THE FOLLOWING CYCLES. INPUT. (INTEGER) YCLE: MAXIMUM NUMBER OF CYCLES ALLOWED. INPUT. (INTEGER) 	AAA00450 AAA00460 AAA00480 AAA00480 AAA00500 AAA00500 AAA00500 AAA00520 AAA00520 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00500 AAA00600 AAA00620 AAA00630
<u>.</u>	**** THE ARJ X S N0 N KM1 RES	<pre>************************************</pre>	AAA00450 AAA00460 AAA00480 AAA00480 AAA00500 AAA00500 AAA00500 AAA00520 AAA00520 AAA00520 AAA00520 AAA00520 AAA00550 AAA00550 AAA00550 AAA00520 AAA00520 AAA00610 AAA00630 AAA00640
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**** THI ARI X S NO N KM	 ************************************	AAA00450 AAA00460 AAA00470 AAA00480 AAA00490 AAA00500 AAA00500 AAA00530 AAA00530 AAA00550 AAA00540 AAA00540 AAA00590 AAA00600 AAA00610 AAA00640 AAA00650
<u>.</u>	**** THI ARI X S NO N KMI RES	<pre>************************************</pre>	AAA00450 AAA00470 AAA00470 AAA00480 AAA00480 AAA00500 AAA00510 AAA00520 AAA00520 AAA00540 AAA00540 AAA00540 AAA00540 AAA00540 AAA00600 AAA00600 AAA00660 AAA00660
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**** THE ARI X S NO N KMI NC: RE: EPS	<pre>************************************</pre>	AAA00450 AAA00450 AAA00450 AAA00480 AAA00500 AAA00500 AAA00520 AAA00520 AAA00520 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00650 AAA00610 AAA00610 AAA00640 AAA00660 AAA00660 AAA00670
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**** THE ARI X S NO N KMI RES	<pre>************************************</pre>	AAA00450 AAA00460 AAA00470 AAA00480 AAA00480 AAA00500 AAA00500 AAA00520 AAA00520 AAA00520 AAA00550 AAA00550 AAA00550 AAA00550 AAA00650 AAA00610 AAA00610 AAA00620 AAA00660 AAA00660 AAA00660 AAA00670 AAA00670 AAA00680
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**** THI ARJ S NO N KMJ RES EPS	<pre>************************************</pre>	AAA00450 AAA00470 AAA00480 AAA00480 AAA00500 AAA00500 AAA00500 AAA00520 AAA00520 AAA00520 AAA00550 AAA00550 AAA00550 AAA00550 AAA00650 AAA00610 AAA00620 AAA00650 AAA00650 AAA00670 AAA00680 AAA00680 AAA00680
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**** THI ARI X S NO N KMI RE:	<pre>************************************</pre>	AAA00450 AAA00470 AAA00480 AAA00480 AAA00500 AAA00500 AAA00510 AAA00520 AAA00520 AAA00530 AAA00550 AAA00550 AAA00550 AAA00610 AAA00610 AAA00620 AAA00620 AAA00650 AAA00650 AAA00660 AAA00670 AAA00680 AAA00680 AAA00690 AAA00690 AAA00700
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**** THI ARI X S NO N KMI RES	 ARGUMENTS METHOD, NDIM, Y, Z, VECTOR, Q, R, C, GAMMA, XI, IPRES, IPRES1 E AS IN SUBROUTINE MPERRE. : INITIAL VECTOR. INPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : THE FINAL APPROXIMATION PRODUCED BY THE SUBROUTINE. OUTPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : NUMBER OF ITERATIONS PERFORMED BEFORE CYCLING IS STARTED, I.E., BEFORE MPE OR RRE IS APPLIED FOR THE FIRST TIME. INPUT. (INTEGER) : NUMBER OF ITERATIONS PERFORMED BEFORE MPE OR RRE IS APPLIED IN EACH CYCLE AFTER THE FIRST CYCLE. INPUT. (INTEGER) AX : WIDTH OF EXTRAPOLATION. ON EXIT FROM SUBROUTINE MPERRE IN EACH CYCLE, THE ARRAY S IS, IN FACT, THE APPROXIMATION S (N0, KMAX) IN THE FIRST CYCLE, AND S (N, KMAX) IN THE FOLLOWING I CYCLES. INPUT. (INTEGER) YCLE: MAXIMUM NUMBER OF CYCLES ALLOWED. INPUT. (INTEGER) SC : L2-NORM OF THE RESIDUAL FOR S AT THE END OF EACH CYCLE. I PRECISION) SC : AN UPPER BOUND ON RESC/RESP, SOME RELATIVE RESIDUAL FOR S, USED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM OF THE RESIDUAL FOR S (N0, KMAX) AT THE END OF THE FIRST CYCLE, I.E., ON EXIT FROM SUBROUTINE MPERRE THE FIRST IME. IF RESC.LE.EPSC*RESP AT THE END OF SOME CYCLE, THEN ONE ADDITIONAL CYCLE IS PERFORMED, AND THE CORRESPONDING 	AAA00450 AAA00460 AAA00460 AAA00480 AAA00500 AAA00500 AAA00510 AAA00520 AAA00520 AAA00520 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00550 AAA00610 AAA00610 AAA00620 AAA00620 AAA00620 AAA00620 AAA00630 AAA00680 AAA00690 AAA00710 AAA00710
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**** THI ARJ S NO N KMI RES	 E ARGUMENTS METHOD, NDIM, Y, Z, VECTOR, Q, R, C, GAMMA, XI, IPRES, IPRES1 E AS IN SUBROUTINE MPERRE. : INITIAL VECTOR. INPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : THE FINAL APPROXIMATION PRODUCED BY THE SUBROUTINE. OUTPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : NUMBER OF ITERATIONS PERFORMED BEFORE CYCLING IS STARTED, I.E., BEFORE MPE OR RRE IS APPLIED FOR THE FIRST TIME. INPUT. (INTEGER) : NUMBER OF ITERATIONS PERFORMED BEFORE MPE OR RRE IS APPLIED IN EACH CYCLE AFTER THE FIRST CYCLE. INPUT. (INTEGER) AX : WIDTH OF EXTRAPOLATION. ON EXIT FROM SUBROUTINE MPERRE IN EACH CYCLE, THE ARRAY S IS, IN FACT, THE APPROXIMATION S (NO, KMAX) IN THE FIRST CYCLE, AND S (N, KMAX) IN THE FOLLOWING I CYCLES. INPUT. (INTEGER) YCLE: MAXIMUM NUMBER OF CYCLES ALLOWED. INPUT. (INTEGER) SC : L2-NORM OF THE RESIDUAL FOR S AT THE END OF EACH CYCLE. INPUT. (DOUBLE PRECISION) SC : AN UPPER BOUND ON RESC/RESP, SOME RELATIVE RESIDUAL FOR S, USED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM OF THE RESIDUAL FOR S (NO, KMAX) AT THE END OF THE FIRST TIME. IN FRECLE, I.E., ON EXIT FROM SUBROUTINE MPERRE THE FIRST CYCLE, I.E., ON EXIT FROM SUBROUTINE MPERRE THE FIRST TIME. IF RESCLE.EPSC*RESP AT THE END OF SOME CYCLE, THEN ONE ADDITIONAL CYCLE IS PERFORMED, AND THE CORRESPONDING S (N, KMAX) IS ACCEPTED AS THE FINAL APPROXIMATION, AND THE 	AAA00450 AAA00460 AAA00470 AAA00480 AAA00490 AAA00500 AAA00500 AAA00530 AAA00530 AAA00530 AAA00550 AAA00540 AAA00540 AAA00590 AAA00590 AAA00600 AAA00600 AAA00600 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00670 AAA00700 AAA00700 AAA00710 AAA00720
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**** THI ARJ X S NO N KMJ RES EPS	 E ARGUMENTS METHOD, NDIM, Y, Z, VECTOR, Q, R, C, GAMMA, XI, IPRES, IPRES1 E AS IN SUBROUTINE MPERRE. : INITIAL VECTOR. INPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : THE FINAL APPROXIMATION PRODUCED BY THE SUBROUTINE. OUTPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : NUMBER OF ITERATIONS PERFORMED BEFORE CYCLING IS STARTED, I.E., BEFORE MPE OR RRE IS APPLIED FOR THE FIRST TIME. INPUT. (INTEGER) : NUMBER OF ITERATIONS PERFORMED BEFORE MPE OR RRE IS APPLIED IN EACH CYCLE AFTER THE FIRST CYCLE. INPUT. (INTEGER) AX : WIDTH OF EXTRAPOLATION. ON EXIT FROM SUBROUTINE MPERRE IN EACH CYCLE, THE ARRAY S IS, IN FACT, THE APPROXIMATION S (N0, KMAX) IN THE FIRST CYCLE, AND S (N, KMAX) IN THE FOLLOWING I CYCLES. INPUT. (INTEGER) YCLE: MAXIMUM NUMBER OF CYCLES ALLOWED. INPUT. (INTEGER) SC : L2-NORM OF THE RESIDUAL FOR S AT THE END OF EACH CYCLE. I PRECISION) SC : AN UPPER BOUND ON RESC/RESP, SOME RELATIVE RESIDUAL FOR S, I USED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM OF THE RESIDUAL FOR S (N0, KMAX) AT THE END OF THE FIRST TIME. I FRESC.LE.EPSC*RESP AT THE END OF SOME CYCLE, THEN ONE I ADDITIONAL CYCLE IS PERFORMED, AND THE CORRESPONDING S (N, KMAX) IS ACCEPTED AS THE FINAL APPROXIMATION, AND THE SUBROUTINE IS EXITED. INPUT. (DOUBLE PRECISION) 	AAA00450 AAA00450 AAA00470 AAA00480 AAA00490 AAA00500 AAA00500 AAA00500 AAA00530 AAA00530 AAA00550 AAA00550 AAA00550 AAA00550 AAA00650 AAA00700 AAA00710 AAA00710 AAA00720
, , , , , , , , , , , , , , , , , , ,	***** ARJ X S NO N KMJ RES EPS	 ARGUMENTS METHOD, NDIM, Y, Z, VECTOR, Q, R, C, GAMMA, XI, IPRES, IPRES1 E AS IN SUBROUTINE MPERRE. : INITIAL VECTOR. INPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : THE FINAL APPROXIMATION PRODUCED BY THE SUBROUTINE. OUTPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : NUMBER OF ITERATIONS PERFORMED BEFORE CYCLING IS STARTED, I.E., BEFORE MPE OR RRE IS APPLIED FOR THE FIRST TIME. INPUT. (INTEGER) : NUMBER OF ITERATIONS PERFORMED BEFORE MPE OR RRE IS APPLIED IN EACH CYCLE AFTER THE FIRST CYCLE. INPUT. (INTEGER) AX : WIDTH OF EXTRAPOLATION. ON EXIT FROM SUBROUTINE MPERRE IN EACH CYCLE, THE ARRAY S IS, IN FACT, THE APPROXIMATION S (N0, KMAX) IN THE FIRST CYCLE, AND S (N, KMAX) IN THE FOLLOWING Z CYCLES. INPUT. (INTEGER) YCLE: MAXIMUM NUMBER OF CYCLES ALLOWED. INPUT. (INTEGER) SC : L2-NORM OF THE RESIDUAL FOR S AT THE END OF EACH CYCLE. IRETRIEVED AT THE END OF THE NEXT CYCLE. OUTPUT. (DOUBLE Z PRECISION) SC : AN UPPER BOUND ON RESC/RESP, SOME RELATIVE RESIDUAL FOR S, Z USED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM OF THE RESIDUAL FOR S (N0, KMAX) AT THE END OF THE FIRST Z CYCLE, I.E., ON EXIT FROM SUBROUTINE MPERRE THE FIRST Z MUSED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM OF THE RESIDUAL FOR S (N0, KMAX) AT THE END OF THE FIRST Z MUSED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM OF THE RESIDUAL FOR S (N0, KMAX) AT THE END OF THE FIRST Z MUSED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM OF THE RESIDUAL FOR S (N0, KMAX) AT THE END OF THE FIRST Z MUSED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM OF THE RESIDUAL FOR S (N0, KMAX) AT THE END OF THE FIRST Z MUSED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM OF THE RESIDUAL FOR S (N0, KMAX) AT THE END OF THE FIRST Z MUSED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM OF THE RESIDUAL FOR S (N0, KMAX) AT THE END OF THE FIRST Z MUSED IN THE STOPPING CRITERION. HERE RESPONDING IS (N, KMAX) IS ACCEPTED AS THE FINAL APPROXIMAT	AAA00450 AAA00450 AAA00470 AAA00480 AAA00480 AAA00500 AAA00500 AAA00510 AAA00530 AAA00530 AAA00540 AAA00540 AAA00540 AAA00540 AAA00590 AAA00590 AAA00600 AAA00600 AAA00600 AAA00600 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00670 AAA00710 AAA00710 AAA00730 AAA00730
, , , , , , , , , , , , , , , , , , ,	***** ARJ X S NO N KMJ RES EPS	<pre>E ARGUMENTS METHOD, NDIM, Y, Z, VECTOR, Q, R, C, GAMMA, XI, IPRES, IPRES1 E AS IN SUBROUTINE MPERRE. : INITIAL VECTOR. INPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : THE FINAL APPROXIMATION PRODUCED BY THE SUBROUTINE. OUTPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : NUMBER OF ITERATIONS PERFORMED BEFORE CYCLING IS STARTED, I.E., BEFORE MPE OR RRE IS APPLIED FOR THE FIRST TIME. INPUT. (INTEGER) : NUMBER OF ITERATIONS PERFORMED BEFORE MPE OR RRE IS APPLIED IN EACH CYCLE AFTER THE FIRST CYCLE. INPUT. (INTEGER) AX : WIDTH OF EXTRAPOLATION. ON EXIT FROM SUBROUTINE MPERRE IN EACH CYCLE, THE ARRAY S IS, IN FACT, THE APPROXIMATION S (N0, KMAX) IN THE FIRST CYCLE, AND S (N, KMAX) IN THE FOLLOWING I CYCLES. INPUT. (INTEGER) YCLES. MAXIMUM NUMBER OF CYCLES ALLOWED. INPUT. (INTEGER) SC : L2-NORM OF THE RESIDUAL FOR S AT THE END OF EACH CYCLE. RETRIEVED AT THE END OF THE NEXT CYCLE. OUTPUT. (DOUBLE PRECISION) SC : AN UPPER BOUND ON RESC/RESP, SOME RELATIVE RESIDUAL FOR S, F USED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM OF THE RESIDUAL FOR S (N0, KMAX) AT THE END OF THE FIRST CYCLE, I.E., ON EXIT FROM SUBROUTINE MPERRE THE FIRST CYCLE, I.E., ON EXIT FROM SUBROUTINE MPERRE THE FIRST IF RESC.LE.EPSC*RESP AT THE END OF SOME CYCLE, THEN ONE ADDITIONAL CYCLE IS PERFORMED, AND THE CORRESPONDING S (N, KMAX) IS ACCEPTED AS THE FINAL APPROXIMATION, AND THE SUBROUTIONE IS EXITED. INPUT. (DOUBLE PRECISION) IMPLICIT DOUBLE PRECISION (A-H, O-Z) PARAMETER (EPS=0)</pre>	AAA00450 AAA00450 AAA00450 AAA00480 AAA00500 AAA00500 AAA00510 AAA00520 AAA00520 AAA00550 AAA00540 AAA00540 AAA00550 AAA00550 AAA00550 AAA00590 AAA00600 AAA00600 AAA00600 AAA00600 AAA00660 AAA00650 AAA00660 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA00650 AAA0070 AAA00710 AAA00720 AAA00720 AAA00750
, , , , , , , , , , , , , , , , , , ,	***** ARJ X S NO N KMJ RES EPS	<pre>E ARGUMENTS METHOD, NDIM, Y, Z, VECTOR, Q, R, C, GAMMA, XI, IPRES, IPRES1 E AS IN SUBROUTINE MPERRE. : INITIAL VECTOR. INPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : THE FINAL APPROXIMATION PRODUCED BY THE SUBROUTINE. OUTPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : NUMBER OF ITERATIONS PERFORMED BEFORE CYCLING IS STARTED, I.E., BEFORE MPE OR RRE IS APPLIED FOR THE FIRST TIME. INPUT. (INTEGER) : NUMBER OF ITERATIONS PERFORMED BEFORE MPE OR RRE IS APPLIED IN EACH CYCLE AFTER THE FIRST CYCLE. INPUT. (INTEGER) AX : WIDTH OF EXTRAPOLATION. ON EXIT FROM SUBROUTINE MPERRE IN EACH CYCLE, THE ARRAY S IS, IN FACT, THE APPROXIMATION S (NO, KMAX) IN THE FIRST CYCLE, AND S (N, KMAX) IN THE FOLLOWING I CYCLES. INPUT. (INTEGER) SC : L2-NORM OF THE RESIDUAL FOR S AT THE END OF EACH CYCLE. RETRIEVED AT THE END OF THE NEXT CYCLE. OUTPUT. (DOUBLE PRECISION) SC : AN UPPER BOUND ON RESC/RESP, SOME RELATIVE RESIDUAL FOR S, I USED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM OF THE RESIDUAL FOR S (NO, KMAX) AT THE END OF THE FIRST CYCLE, I.E., ON EXIT FROM SUBROUTINE MPERRE THE FIRST CYCLE, I.E., ON EXIT FROM SUBROUTINE MPERRE THE FIRST IIF RESC.LE EPSC*RESP AT THE END OF SOME CYCLE, THEN ONE ADDITIONAL CYCLE IS PERFORMED, AND THE CORRESPONDING S (N, KMAX) IS ACCEPTED AS THE FINAL APPROXIMATION, AND THE SUBROUTINE IS EXITED. INPUT. (DOUBLE PRECISION) ***********************************</pre>	AAA00450 AAA00460 AAA00470 AAA00480 AAA00480 AAA00500 AAA00500 AAA00500 AAA00520 AAA00520 AAA00540 AAA00540 AAA00540 AAA00550 AAA00590 AAA00650 AAA00600 AAA00600 AAA00600 AAA00660 AAA00660 AAA00660 AAA00660 AAA00660 AAA00660 AAA00670 AAA00710 AAA00720 AAA00720 AAA00750 AAA00750 AAA00750 AAA00750 AAA00750 AAA00750 AAA00750
, , , , , , , , , , , , , , , , , , ,	***** ARJ X S NO N KMJ RES EPS	<pre>E ARGUMENTS METHOD, NDIM, Y, Z, VECTOR, Q, R, C, GAMMA, XI, IPRES, IPRES1 E AS IN SUBROUTINE MPERRE. : INITIAL VECTOR. INPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : THE FINAL APPROXIMATION PRODUCED BY THE SUBROUTINE. OUTPUT ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) : NUMBER OF ITERATIONS PERFORMED BEFORE CYCLING IS STARTED, I.E., BEFORE MPE OR RRE IS APPLIED FOR THE FIRST TIME. INPUT. (INTEGER) : NUMBER OF ITERATIONS PERFORMED BEFORE MPE OR RRE IS APPLIED IN EACH CYCLE AFTER THE FIRST CYCLE. INPUT. (INTEGER) AX : WIDTH OF EXTRAPOLATION. ON EXIT FROM SUBROUTINE MPERRE IN EACH CYCLE, THE ARRAY S IS, IN FACT, THE APPROXIMATION S (N0, KMAX) IN THE FIRST CYCLE, AND S (N, KMAX) IN THE FOLLOWING J CYCLES. INPUT. (INTEGER) YCLE: MAXIMUM NUMBER OF CYCLES ALLOWED. INPUT. (INTEGER) SC : L2-NORM OF THE RESIDUAL FOR S AT THE END OF EACH CYCLE. RETRIEVED AT THE END OF THE NEXT CYCLE. OUTPUT. (DOUBLE PRECISION) SC : AN UPPER BOUND ON RESC/RESP, SOME RELATIVE RESIDUAL FOR S, J USED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM OF THE RESIDUAL FOR S (N0, KMAX) AT THE END OF THE FIRST IF RESC.LE EPSC*RESP AT THE END OF SOME CYCLE, THEN ONE IF RESCIDIAL FOR S (N0, KMAX) AT THE END OF THE FIRST IF RESC.LE ESC*RESP AT THE END OF SOME CYCLE, THEN ONE IF RESCIDIAL FOR S (N0, KMAX) AT THE END OF THE FIRST IF RESC.LE ESC*RESP AT THE END OF SOME CYCLE, THEN ONE IF RESCIDIAL FOR S (N0, KMAX) AT THE END OF THE FIRST TIME. IF RESC.LE ESC*RESP AT THE END OF SOME CYCLE, THEN ONE ADDITIONAL CYCLE IS PERFORMED, AND THE CORRESPONDING S (N, KMAX) IS ACCEPTED AS THE FINAL APPROXIMATION, AND THE SUBROUTINE IS EXITED. INPUT. (DOUBLE PRECISION)</pre>	AAA00450 AAA00450 AAA00450 AAA00480 AAA00500 AAA00500 AAA00500 AAA00520 AAA00520 AAA00520 AAA00540 AAA00550 AAA00550 AAA00550 AAA00550 AAA00650 AAA00610 AAA00610 AAA00610 AAA00610 AAA00620 AAA00640 AAA00650 AAA00650 AAA00640 AAA00650 AAA00650 AAA00670 AAA00710 AAA00730 AAA00730 AAA00750 AAA00770 AAA00770 AAA00770 AAA00770

		EXTERNAL VECTOR	AA00800
		DO 40 IC=1,NCYCLE	AA00810
		IF (IPRES.EQ.I.OR.IPRESI.EQ.I) THEN	AAUU820
1	01	FORMAT(/./ CYCLE NO (.T3)	12200820
-	• 1	END IF	AA00850
		NN=N Z	AA00860
		IF (IC.EQ.1) NN=N0	AA00870
		IF (IPRES.EQ.1.OR.IPRES1.EQ.1) THEN	AA00880
-	<u>^</u>	WRITE (6,102) NN F	AA00890
T	02	FORMAT(/,' NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS ',13) A	AA00900
٦	03	$\frac{1}{10} \frac{1}{10} \frac$	7WW00310
-	05	END IF	AA00930
		DO 20 J=0, NN-1	AA00940
		CALL VECTOR (X, Y, NDIM)	AAA00950
		DO 10 I=1,NDIM	AAA00960
		X(1) = Y(1)	AA00970
	20 TU	CONTINUE	AAAUU980
	20	CALL MEEDER (METHOD X S KMAX KOUT NDIM Y Z VECTOR O R C	AA00990
	+	*GAMMA.XI.RES.RES1.EPS.IPRES.IPRES1)	AA01010
		IF (IC.EQ.1) RESP= $R(0,0)$	AAA01020
		RESC=R(0,0)	AAA01030
		IF (RESC.LE.EPSC*RESP) RETURN	AAA01040
		DO 30 I=1, NDIM 2	AAA01050
	~~	X(I)=S(I) 2	AAA01060
	30		AAA01070
	40	CONTINUE A	AAAU1080
		END	AAA011090
			AAA01110
		SUBROUTINE MPERRE (METHOD, X, S, KMAX, KOUT, NDIM, Y, Z, VECTOR, Q, R, C,	AAA01120
	,	*GAMMA, XI, RES, RES1, EPS, IPRES, IPRES1)	AAA01130
C*	****	***************************************	AAA01140
C	THI	IS SUBROUTINE APPLIES THE MINIMAL POLYNOMIAL EXTRAPOLATION (MPE)	AAA01150
C C	OR	THE REDUCED RANK EXTRAPOLATION (RRE) METHODS TO A VECTOR A DITENSION OF THE REDUCED BY A FIVED DOTING A	AAAU1150
č	325 TTT	ZUENCE AU,AI,AZ,, IARI IS OFIEN GENERATED DI A FIXED FOINI /	AAA01170
č	BOT	TH MPE AND RRE ARE ACCELERATION OF CONVERGENCE (OR EXTRAPOLATION)	AAA01190
c	MET	THODS FOR VECTOR SEQUENCES. EACH METHOD PRODUCES A TWO-DIMENSIONAL 2	AAA01200
С	ARF	RAY S(N,K) OF APPROXIMATIONS TO THE LIMIT OR ANTILIMIT OF THE	AAA01210
С	SEÇ	QUENCE IN QUESTION.	AAA01220
ç	THE	E IMPLEMENTATIONS EMPLOYED IN THE PRESENT SUBROUTINE GENERATE	AAA01230
C C	THE	$E SEQUENCES S(0,0) = X0, S(0,1), S(0,2), \dots $	AAA01240
C*	י א א א חיוז מ	************************************	AAU1250
č	A01	COMPUTER SCIENCE DEPARTMENT	AA01270
č		TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY 7	AA01280
č		HAIFA 32000, ISRAEL	AA01290
С	E-M	AAIL ADDRESS: CSSSIDI@TECHNION.BITNET P	AA01300
C*	****	**************************************	AA01310
C A	MET	THOD: IF METHOD.EQ.1, THEN MPE IS EMPLOYED. IF METHOD.EQ.2, THEN A	AA01320
	v	KKE IS EMPLOIED. INPUT. (INTEGER)	AAU1330
č	x	DEPENDENT AND A DEPENDENT AND	AA01340
č	s	: THE APPROXIMATION S(0,K) PRODUCED BY THE SUBROUTINE FOR	AA01360
ć	-	EACH K. ON EXIT, S IS S(0, KOUT). OUTPUT ARRAY OF DIMENSION	AA01370
С		NDIM. (DOUBLE PRECISION)	AA01380
С	KM2	AX : A NONNEGATIVE INTEGER. THE MAXIMUM WIDTH OF EXTRAPOLATION	AA01390
C		ALLOWED. THUS THE NUMBER OF THE VECTORS X0,X1,X2,,	AAU1400
C C	v ~ ·	EMPLOYED IN THE PROCESS IS KMAX+2 AT MOST, INPUT, (INTEGER) A	14401410
č	RUU	STOPPING CRITERION, AND DOES NOT EXCEED KMAX. THE VECTORS	AA01430
č		ACTUALLY EMPLOYED BY THE EXTRAPOLATION PROCESS ARE	AA01440
č		X0, X1, X2,, XP, WHERE P=KOUT+1. OUTPUT. (INTEGER)	AAA01450
С	ND:	IM : DIMENSION OF THE VECTORS. INPUT. (INTEGER)	AA01460
		- MODY ADDAY OF DIMENSION NOTM (DOUDLE DESCISION)	12201470

c c	Z VECTOR	:	WORK ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) A USER-SUPPLIED SUBROUTINE WHOSE CALLING SEQUENCE IS	AAA01480 AAA01490
č			CALL VECTOR(Y,Z,NDIM); Y,NDIM INPUT,Z OUTPUT.	AAA01500
С			Y,Z,NDIM ARE EXACTLY AS DESCRIBED ABOVE.FOR A FIXED POINT	AAA01510
С			ITERATIVE TECHNIQUE FOR SOLVING THE LINEAR OR NONLINEAR	AAA01520
c			SYSTEM $T=F(T)$, DIM(T)=NDIM, Y AND Z ARE RELATED BY Z=F(Y).	AAA01530
C			THUS $XI=F(XU)$, $XZ=F(XI)$, ETC.	AAA01540
C			VECTOR SHOULD BE DECLARED IN AN EXTERNAL STATEMENT IN THE	AAAU1550
č	0		CALLING PROGRAM. WADY ADDAY OF DIMENSION (NDIM (). KMAY_1) FOD FACU K ITS	AAA01560
č	Ŷ	•	FIEMENTS ADE THOSE OF THE OPTHOCONAL MATRIX OBTAINED FROM	22201590
č			OR FACTORIZATION OF THE MATRIX U	AAA01590
č			U = (U0 U1 UK), K=0,1,2,,	AAA01600
č			WHERE U0=X1-X0, U1=X2-X1, U2=X3-X2, ETC. OUTPUT. (DOUBLE	AAA01610
С			PRECISION)	AAA01620
С	R	:	WORK ARRAY OF DIMENSION (0:KMAX,0:KMAX). FOR EACH K, ITS	AAA01630
С			ELEMENTS ARE THOSE OF THE UPPER TRIANGULAR MATRIX OBTAINED	AAA01640
С			FROM QR FACTORIZATION OF THE MATRIX U DESCRIBED ABOVE.	AAA01650
С	_		OUTPUT. (DOUBLE PRECISION)	AAA01660
C	C	:	WORK ARRAY OF DIMENSION (0:KMAX). FOR EACH K, C FOR MPE IS	AAA01670
C			THE LEAST SQUARES SOLUTION OF THE SYSTEM U*C=U SUBJECT TO	AAA01680
C	C310/3		THE CONSTRAINT $C(K) = I$. (DOUBLE PRECISION)	AAA01690
č	GAMMA	:	WORK ARRAY OF DIMENSION (U:KMAX). FOR EACH K, THE GAMMA'S	AAAU1700
č			ARE SUCH THAT $S/O = CDMMD / (0) + YO = CDMMD / (1) + YT = CDMMD / (1) + YF$	AAAU1710
č			S(U, K) - GATTIA(U) * AUTGATTIA(I) * AITTGATTIA(K) * AK. FOR FACH K GAMMA FOR REF IS THE LEAST SOLIDERS SOLUTION OF	AAA01720
č			THE SYSTEM INCAMMARO SUBJECT TO THE CONSTRAINT	AAA01740
č			GAMMA(0) + GAMMA(1) + + GAMMA(K) = 1. (DOUBLE PRECISION)	AAA01750
č	XI	:	WORK ARRAY OF DIMENSION (0:KMAX-1), FOR EACH K, THE XI'S	AAA01760
Ċ			ARE SUCH THAT	AAA01770
С			S(0,K)=X0+XI(0)*U0+XI(1)*U1++XI(J)*UJ, J=K-1.	AAA01780
С			(DOUBLE PRECISION)	AAA01790
С	RES	:	L2-NORM OF THE RESIDUAL FOR S(0,K) FOR A LINEAR SYSTEM	AAA01800
С			T=A*T+B (OR AN ESTIMATE FOR IT FOR A NONLINEAR SYSTEM	AAA01810
ç			T = F(T) FOR EACH K. ON EXIT, THIS K IS KOUT. OUTPUT.	AAA01820
C	5501		(DOUBLE PRECISION)	AAA01830
C	RESI	:	L2-NORM OF THE RESIDUAL ACTUALLY COMPUTED FROM S(U, K) FOR	AAAU1840
č			EACH K. (THE RESIDUAL VECTOR FOR ANI VECTOR VEC IS TAKEN AS (F(VEC)-VEC)) ON FYIT THIS K IS KOUT OUTPUT	AAA01050
č			(DOUBLE PRECISION)	AAA01870
č	EPS	•	AN UPPER BOUND ON RES/R(0,0). THE RELATIVE RESIDUAL FOR S.	AAA01880
č		•	USED IN THE STOPPING CRITERION. NOTE THAT R(0,0)=L2-NORM	AAA01890
С			OF THE RESIDUAL FOR X0, THE INITIAL VECTOR. IF, FOR SOME K,	AAA01900
С			RES.LE.EPS*R(0,0), THEN THE CORRESPONDING S(0,K) IS ACCEPTED	AAA01910
С			AS THE FINAL APPROXIMATION, AND THE SUBROUTINE IS EXITED	AAA01920
С			WITH KOUT-K. IF S(0, KMAX) IS NEEDED, THEN EPS SHOULD BE	AAA01930
ç			SET EQUAL TO ZERO. INPUT. (DOUBLE PRECISION)	AAA01940
C	IPRES	:	IF IPRES.EQ.1, THEN RES IS PRINTED FOR ALL K, K=0,1,	AAA01950
0	TODECI		OTHEWISE, IT IS NOT. INPUT. (INTEGER)	AAA01960
č	IPRESI	•	IF IPRESI.EQ.I, THEN RESI IS COMPUTED AND PRINTED FOR ALL	AAAU1970
C+4		ى ب	x, x=0,1, OTHERWISE, II IS NOT. INPUT. (INTEGER)	AAAU1980
0	ידי אם	01	TE MENTIONED OD ENCTORTANTION IS PERFORMED BY EMDLOYING	AAA01990
č	THE MC	וח	ETED CRAM-SCHMIDT PROCESS	AAA02000
C**	*****	**	<pre>(************************************</pre>	AAA02020
Ū	IMP	L]	CIT DOUBLE PRECISION (A-H,O-Z)	AAA02030
	PAR	AN	(ETER (EPS1=1D-32, EPS2=1D-16)	AAA02040
	DIM	ΕŅ	ISION X (NDIM), S (NDIM), Y (NDIM), Z (NDIM)	AAA02050
	DIM	ΕŅ	ISION Q(NDIM, 0: KMAX-1), R(0: KMAX, 0: KMAX)	AAA02060
	DIM	EN	ISION C(0:KMAX), GAMMA(0:KMAX), XI(0:KMAX-1)	AAA02070
	IF	(]	PRES.EQ.1.AND.IPRES1.EQ.1) THEN	AAA02080
~	WRI	11	(0,3UL) NT/// K DEC DEC1/)	AAAU2090
3(T FOR	אוא. די	או (/, ה אבס אבטי) דר (דסטרכ ה 1 אות דססרכו אר 1 שניא	AAAU2100
	5113 VD 1	ግ ጉጉ	(6.302)	AAA02120
30)2 FOR	MZ	AT (/.' K RES')	AAA02130
- (ELS	E	IF (IPRES.NE.1.AND.IPRES1.EQ.1) THEN	AAA02140
	WRI	TE	2(6,303)	AAA02150

```
303 FORMAT (/,' K
                              RES1')
                                                                             AAA02160
      END IF
                                                                             AAA02170
      DO 10 I=1,NDIM
                                                                             AAA02180
      Y(I) = X(I)
                                                                             AAA02190
  10 CONTINUE
                                                                             AAA02200
      DO 250 K=0, KMAX
                                                                             AAA02210
C
                                                                             AAA02220
   COMPUTATION OF THE VECTOR XJ, J-K+1, FROM XK, AND COMPUTATION OF UK AAA02230
С
С
                                                                             AAA02240
      CALL VECTOR (Y, Z, NDIM)
                                                                             AAA02250
      DO 20 I=1,NDIM
                                                                             AAA02260
      Y(I) = Z(I) - Y(I)
                                                                             AAA02270
      CONTINUE
  20
                                                                             AAA02280
C.
                                                                             AAA02290
   DETERMINATION OF THE ORTHONORMAL VECTOR OK FROM UK BY THE MODIFIED
С
                                                                             AAA02300
С
   GRAM-SCHMIDT PROCESS
                                                                             AAA02310
С
                                                                             AAA02320
      DO 50 J=0,K-1
                                                                             AAA02330
      SUM=0
                                                                             AAA02340
      DO 30 I=1,NDIM
                                                                             AAA02350
      SUM=SUM+Q(I, J) *Y(I)
                                                                             AAA02360
  30
      CONTINUE
                                                                             AAA02370
      R(J,K) = SUM
                                                                             AAA02380
      DO 40 I=1, NDIM
                                                                             AAA02390
      Y(I) = Y(I) - R(J, K) * Q(I, J)
                                                                             AAA02400
  40 CONTINUE
                                                                             AAA02410
  50 CONTINUE
                                                                             AAA02420
      SUM=0
                                                                             AAA02430
      DO 60 I=1,NDIM
                                                                             AAA02440
      SUM=SUM+Y(I)**2
                                                                             AAA02450
  60 CONTINUE
                                                                             AAA02460
      R(K, K) =DSQRT (SUM)
                                                                             AAA02470
      IF (R(K,K).GT.EPS1*R(0,0).AND.K.LT.KMAX) THEN
                                                                             AAA02480
      HP=1DO/R(K,K)
                                                                             AAA02490
      DO 70 I-1,NDIM
                                                                             AAA02500
      Q(I, K) = HP * Y(I)
                                                                             AAA02510
  70 CONTINUE
                                                                             AAA02520
      ELSE IF (R(K,K), LE, EPS1*R(0,0)) THEN
                                                                             AAA02530
      EEE=EPS1
                                                                             AAA02540
      WRITE(6,304) K,K,EEE
                                                                             AAA02550
 304 FORMAT(/,' R(',I3,',',I3,') .LE.', 1P, D8.1, '*R(0,0).',/)
                                                                             AAA02560
      END IF
                                                                             AAA02570
С
                                                                             AAA02580
   END OF COMPUTATION OF THE VECTOR OK
С
                                                                             AAA02590
С
                                                                             AAA02600
      IF (METHOD.EQ.1) THEN
                                                                             AAA02610
С
                                                                             AAA02620
   COMPUTATION OF THE GAMMA'S FOR MPE
с
                                                                             AAA02630
С
                                                                             AAA02640
      DO 90 I=K-1,0,-1
                                                                             AAA02650
      CI = -R(I, K)
                                                                             AAA02660
      DO 80 J=I+1,K-1
                                                                             AAA02670
      CI=CI-R(I, J) * C(J)
                                                                             AAA02680
 80 CONTINUE
                                                                             AAA02690
      C(I) = CI/R(I, I)
                                                                             AAA02700
 90 CONTINUE
                                                                             AAA02710
      C(K)=1D0
                                                                             AAA02720
      SUM=0
                                                                             AAA02730
      DO 100 I=0,K
                                                                             AAA02740
      SUM=SUM+C(I)
                                                                             AAA02750
100 CONTINUE
                                                                             AAA02760
      IF (DABS(SUM).LE.EPS2) THEN
                                                                             AAA02770
      WRITE(6,311) K
                                                                             AAA02780
311
     FORMAT (/,'
                  S( 0,',13,') IS NOT DEFINED.',/)
                                                                             AAA02790
      GO TO 250
                                                                             AAA02800
      END IF
                                                                             AAA02810
      DO 110 I=0,K
                                                                             AAA02820
      GAMMA(I) = C(I) / SUM
                                                                             AAA02830
```

```
332
```

```
110 CONTINUE
      RES=R(K, K) *DABS(GAMMA(K))
С
   END OF COMPUTATION OF THE GAMMA'S FOR MPE
С
С
      ELSE IF (METHOD.EQ.2) THEN
С
   COMPUTATION OF THE GAMMA'S FOR RRE
С
С
      DO 130 I=0,K
      CI=1D0
      DO 120 J=0, I-1
      CI=CI-R(J, I) * C(J)
 120 CONTINUE
      C(I) = CI/R(I, I)
 130 CONTINUE
      DO 150 I=K,0,-1
      CI=C(I)
      DO 140 J=I+1,K
      CI=CI-R(I, J) *GAMMA(J)
 140
      CONTINUE
      GAMMA(I) = CI/R(I, I)
 150
     CONTINUE
      SUM=0
      DO 160 I=0,K
      SUM=SUM+GAMMA(I)
 160
      CONTINUE
      DO 170 I=0,K
      GAMMA(I) = GAMMA(I) / SUM
 170
      CONTINUE
      RES=1D0/DSORT (DABS (SUM))
С
С
   END OF COMPUTATION OF THE GAMMA'S FOR RRE
С
      END IF
      KOUT=K
      IF (IPRES.EQ.1.AND.IPRES1.NE.1) THEN
      WRITE(6,321) K,RES
 321 FORMAT (13, 2X, 1P, D15.2)
      END IF
      IF (RES.LE.EPS*R(0,0).OR.R(K,K).LE.EPS1*R(0,0)
           .OR.K.EO.KMAX.OR.IPRES1.EO.1) THEN
С
С
   COMPUTATION OF THE APPROXIMATION S(0,K)
С
      XI(0)=1D0-GAMMA(0)
      DO 180 J=1,K-1
      XI(J) = XI(J-1) - GAMMA(J)
 180
      CONTINUE
      DO 190 I=1,NDIM
      S(I) = X(I)
 190 CONTINUE
      DO 220 J=0,K-1
      HP=0
      DO 200 I=J,K-1
      HP=HP+R(J,I)*XI(I)
 200
      CONTINUE
      DO 210 I=1,NDIM
      S(I) = S(I) + HP * Q(I, J)
 210
     CONTINUE
 220 CONTINUE
С
C
C
   END OF COMPUTATION OF THE APPROXIMATION S(0,K)
      END IF
      IF (IPRES1.EQ.1) THEN
С
   EXACT COMPUTATION OF RESIDUAL L2-NORM.
С
```

AAA02840 AAA02850 AAA02860 AAA02870 AAA02880 AAA02890 AAA02900 AAA02910 AAA02920 AAA02930 AAA02940 AAA02950 AAA02960 AAA02970 AAA02980 AAA02990 AAA03000 AAA03010 AAA03020 AAA03030 AAA03040 AAA03050 AAA03060 AAA03070 AAA03080 AAA03090 AAA03100 AAA03110 AAA03120 AAA03130 AAA03140 AAA03150 AAA03160 AAA03170 AAA03180 AAA03190 AAA03200 AAA03210 AAA03220 AAA03230 AAA03240 AAA03250 AAA03260 AAA03270 AAA03280 AAA03290 AAA03300 AAA03310 AAA03320 AAA03330 AAA03340 AAA03350 AAA03360 AAA03370 AAA03380 AAA03390 AAA03400 AAA03410 AAA03420 AAA03430 AAA03440 AAA03450 AAA03460 AAA03470 AAA03480 AAA03490 AAA03500

AAA03510

С			AAA03520
		CALL VECTOR (S, Y, NDIM)	AAA03530
		RESI=0	AAA03540
		DU 230 I=1, NDIM DEC1-DEC1+(V/T)_C/T)) ++2	AAAU3550
23	0	RESI = RESIT (1 (1) = 5 (1)) * 2	AAA03560
2.5		RES1=DSORT (RES1)	AAA03580
с			AAA03590
c	END	ID OF EXACT COMPUTATION OF RESIDUAL L2-NORM.	AAA03600
С			AAA03610
		IF (IPRES.EQ.1) THEN	AAA03620
		WRITE(6,331) K,RES,RES1	AAA03630
33	31	FORMAT (13, 2X, 1P, 2D15.2)	AAA03640
		ELSE IF (IPRES.NE.1) THEN	AAA03650
33	2	WRITE(0,332) K,KESI Format(T2 2V 10 D15 2)	AAAU3660
55	12	FORMAT(15,2A, $IF, D15.2$)	AAA03670
		END IF	AAA03680
		IF (RES.LE.EPS*R(0,0).OR.R(K,K).LE.EPS1*R(0,0))-RETURN	AAA03700
		DO 240 I=1,NDIM	AAA03710
		Y(I) = Z(I)	AAA03720
24	0	CONTINUE	AAA03730
25	50	CONTINUE	AAA03740
		RETURN	AAA03750
		END	AAA03760
		AUDDAUMTHD UDAMAD (V. V. NOTH)	AAA03770
C**	***	SUBROUTINE VECTOR(X, 1, NDIM)	AAAU3780
c	тнт	ITS SUBBOUTTINE GENERATES THE VECTOR Y FROM THE VECTOR X BY USING	AAA03790
č	E.0	G., A FIXED POINT ITERATION TECHNIQUE.	AAA03810
Č**	***	***************************************	AAA03820
c	IN	THE PRESENT EXAMPLE THE ITERATIVE TECHNIQUE IS OF THE FORM	AAA03830
<u>~</u>	Y = P	A1*X+B1. HERE A1 IS AN NDIM*NDIM SEPTADIAGONAL MATRIX SYMMETRIC	AAA03840
C			
č	WIT	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS	AAA03850
C C C	WIT Al=	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS -(1-OMEGA)*I+OMEGA*A,WHERE OMEGA IS A SCALAR, I IS THE	AAA03850 AAA03860
	WIT A1= IDE	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS -(1-OMEGA)*I+OMEGA*A,WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX	AAA03850 AAA03860 AAA03870
00000	WIT A1= IDE	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS -(1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX	AAA03850 AAA03860 AAA03870 AAA03880
0000000	WIT A1= IDE	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX 5 2 1 1 2 6 2 1 1	AAA03850 AAA03860 AAA03870 AAA03880 AAA03880 AAA03890
00000000	WIT A1- IDE	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX 5 2 1 1 2 6 3 1 1 2 6 3 1 1	AAA03850 AAA03860 AAA03870 AAA03880 AAA03890 AAA03900 AAA03900
	WIT A1= IDF	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX 5 2 1 1 2 6 3 1 1 1 3 6 3 1 1 1 3 6 3 1 1 2 6 3 1 1 1 3 6 3 1	AAA03850 AAA03860 AAA03870 AAA03880 AAA03890 AAA03900 AAA03910 AAA03910
	WIT A1= IDF	ITH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS I=(1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX 5 2 1 1 2 6 3 1 1 1 3 6 3 1 1 A = 0.06* 1 1 3 6 3 1 1	AAA03850 AAA03860 AAA03870 AAA03880 AAA03890 AAA03910 AAA03910 AAA03920 AAA03930
	WIT A1= IDF	ITH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX 5 2 1 1 2 6 3 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1	AAA03850 AAA03860 AAA03870 AAA03880 AAA03890 AAA03900 AAA03910 AAA03920 AAA03930 AAA03940
	WIT A1= IDF	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX	AAA03850 AAA03860 AAA03870 AAA03880 AAA03990 AAA03910 AAA03920 AAA03920 AAA03930 AAA03940 AAA03950
	WIT A1= IDF	ITH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX 5 2 1 1 2 6 3 1 1 1 3 6 3 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1	AAA03850 AAA03860 AAA03870 AAA03880 AAA03890 AAA03900 AAA03910 AAA03920 AAA03930 AAA03950 AAA03950 AAA03950
00000000000000000000000000000000000000	WIT A1= IDF A B1	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX 5 2 1 1 2 6 3 1 1 1 3 6 3 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1	AAA03850 AAA03860 AAA03870 AAA03880 AAA03890 AAA03900 AAA03910 AAA03920 AAA03930 AAA03950 AAA03950 AAA03950 AAA03970
000000000000000000000000000000000000000	WIT Al= IDF A B1 SUC	ITH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX 5 2 1 1 2 6 3 1 1 1 3 6 3 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1 <td>AAA03850 AAA03860 AAA03870 AAA03890 AAA03890 AAA03900 AAA03910 AAA03920 AAA03930 AAA03940 AAA03950 AAA03950 AAA03970 AAA03980</td>	AAA03850 AAA03860 AAA03870 AAA03890 AAA03890 AAA03900 AAA03910 AAA03920 AAA03930 AAA03940 AAA03950 AAA03950 AAA03970 AAA03980
	WITAL= IDF A B1 SUC(1,	ITH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS I=(1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX 5 2 1 1 2 6 3 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1 </td <td>AAA03850 AAA03860 AAA03870 AAA03880 AAA03890 AAA03900 AAA03910 AAA03920 AAA03920 AAA03950 AAA03950 AAA03960 AAA03970 AAA03980 AAA03980</td>	AAA03850 AAA03860 AAA03870 AAA03880 AAA03890 AAA03900 AAA03910 AAA03920 AAA03920 AAA03950 AAA03950 AAA03960 AAA03970 AAA03980 AAA03980
	WIT Al= IDF A B1 SUC (1, THE	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS $=(1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX \begin{vmatrix} 5 & 2 & 1 & & & \\ & & 2 & 6 & 3 & 1 & 1 & & \\ & & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & & & & & & \\ & & $	AAA03850 AAA03860 AAA03870 AAA03880 AAA03890 AAA03900 AAA03910 AAA03910 AAA03920 AAA03950 AAA03950 AAA03970 AAA03970 AAA03970 AAA03990 AAA03990 AAA04000
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	WIT Al= IDF A B1 SUC (1, THE MET	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS $=(1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX \begin{vmatrix} 5 & 2 & 1 & & & \\ & & 2 & 6 & 3 & 1 & 1 & & \\ & & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & & \\ & & & & & & & \\ & & $	AAA03850 AAA03860 AAA03860 AAA03880 AAA03890 AAA03900 AAA03910 AAA03910 AAA03910 AAA03950 AAA03950 AAA03950 AAA03970 AAA03970 AAA03990 AAA03990 AAA04000 AAA04000 AAA04000
	WIT Al= IDF A B1 SUC (1, THE MET ***	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS $=(1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX \begin{vmatrix} 5 & 2 & 1 & 1 & 1 \\ & 2 & 6 & 3 & 1 & 1 & 1 \\ & & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & & & & & & & & & & &$	AAA03850 AAA03860 AAA03870 AAA03880 AAA03900 AAA03900 AAA03910 AAA03910 AAA03920 AAA03930 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03990 AAA03990 AAA04020 AAA04020 AAA04020
**	WITAL= IDF A B1 SUC(1, THE MET***	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX $\begin{vmatrix} 5 & 2 & 1 & 1 & 1 \\ & 2 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 1 &$	AAA03850 AAA03860 AAA03880 AAA03880 AAA03900 AAA03900 AAA03910 AAA03910 AAA03920 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA04020 AAA04020 AAA04030 AAA04030 AAA04030 AAA04030
	WITAL= IDF A B1 SUC(1, THE MET***	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA) * I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX $\begin{vmatrix} 5 & 2 & 1 & 1 & 1 \\ & 2 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3$	AAA03850 AAA03850 AAA03860 AAA03880 AAA03890 AAA03900 AAA03910 AAA03920 AAA03920 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA04020 AAA04020 AAA04050
	WIT Al= IDF A SUC (1, THE MET ***	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX	AAA03850 AAA03850 AAA03870 AAA03880 AAA03890 AAA03900 AAA03910 AAA03920 AAA03920 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA04000 AAA04010 AAA04050 AAA04060
	WIT Al= IDF A SUC (1, THE MET ***	<pre>TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX 5 2 1 1 1 2 6 3 1 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1 1 1 1 3 6 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	AAA03850 AAA03850 AAA03860 AAA03880 AAA03890 AAA03900 AAA03910 AAA03920 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA04050 AAA04050 AAA04070
	WIT Al= IDF A Bl SUC(1, THE MET ***	<pre>TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX 5 2 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 1 1 1 3 6 3 1 1 1 1 1 1 1 1 1 1 </pre>	AAA03850 AAA03850 AAA03860 AAA03880 AAA03890 AAA03900 AAA03910 AAA03920 AAA03920 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050
	WITAL= IDF A B1 SUC(1, THE MET*	<pre>TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS ==(1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX 2 6 3 1 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1 1 1 1 3 6 3 1 1 1 1 3 6 3 1 1 1 1 3 6 1 1 1 1 3 6 1 1 1 1 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	AAA03850 AAA03850 AAA03860 AAA03880 AAA03890 AAA03900 AAA03910 AAA03920 AAA03920 AAA03920 AAA03920 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04070 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050
×*	WITAL A B1 SUC(1, THE MET	<pre>TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS ==(1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX 2 6 3 1 1 </pre>	AAA03850 AAA03850 AAA03860 AAA03880 AAA03890 AAA03900 AAA03910 AAA03910 AAA03920 AAA03920 AAA03920 AAA03920 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03960 AAA04020 AAA04020 AAA04020 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050
× × × × × × × × × × × × × × × × × × ×	WITAL A B1 SUC(1, THE MET	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX $\begin{vmatrix} 5 & 2 & 1 & 1 & 1 \\ & 2 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	AAA03850 AAA03850 AAA03860 AAA03880 AAA03890 AAA03900 AAA03910 AAA03910 AAA03920 AAA03920 AAA03920 AAA03920 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA04050 AAA04010 AAA04050 AAA0050 AAA0050 AAA0050 AAA0050 AAA0050 AAA0050 AAA0050 AAA0050 AAA0050 AAA
	WITAL A B1 SUCC (1, THE MET ****	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX $\begin{vmatrix} 5 & 2 & 1 & 1 & 1 & 1 \\ & 2 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & & & & & & & & & & &$	AAA03850 AAA03850 AAA03860 AAA03880 AAA03890 AAA03900 AAA03910 AAA03910 AAA03920 AAA03920 AAA03920 AAA03920 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04120 AAA04120 AAA04120 AAA04120
	WITAL A B1 SUCC (1, THE MET ****	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA) * I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX $\begin{vmatrix} 5 & 2 & 1 & 1 & 1 \\ & 2 & 6 & 3 & 1 & 1 & 1 \\ & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & & & & 1 & 1 & 3 & 6 & 3 & 1 & 1 & 1 \\ & & & & & & & & & & & & &$	AAA03850 AAA03850 AAA03860 AAA03870 AAA03890 AAA03900 AAA03910 AAA03910 AAA03920 AAA03920 AAA03920 AAA03920 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA04020 AAA04020 AAA04020 AAA04020 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04120 AAA04130 AAA04140
	WITALIE A BI SUC(1, THE ****	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA) *I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX	AAA03850 AAA03850 AAA03860 AAA03870 AAA03890 AAA03900 AAA03900 AAA03910 AAA03920 AAA03920 AAA03920 AAA03920 AAA03920 AAA03920 AAA03920 AAA03920 AAA03920 AAA03920 AAA03920 AAA03920 AAA03920 AAA03920 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04020 AAA04120 AAA04120 AAA04120
	WITALIE A BI SUC(1, THE ****	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX $\begin{vmatrix} 5 & 2 & 1 & 1 & \\ 2 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 3 & 6 & 3 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 & 1 & 1 & 1 & \\ 1 & 1 & 1 &$	AAA03850 AAA03850 AAA03860 AAA03880 AAA03900 AAA03900 AAA03910 AAA03920 AAA03920 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA04050 AAA04000 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04050 AAA04150 AAA04150 AAA04150 AAA04150 AAA04150 AAA04150 AAA04150
	WITALIE A Bl SUC(1, THE MET ****	TH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS = (1-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE DENTITY MATRIX, AND A IS THE MATRIX $\begin{vmatrix} 5 & 2 & 1 & 1 & \\ 2 & 6 & 3 & 1 & \\ 1 & 1 & 3 & 6 & 3 & 1 & \\ 1 & 1 & 3 & 6 & 3 & 1 & \\ 1 & 1 & 1 & 3 & 6 & 3 & 1 & \\ 1 & 1 & 1 & 3 & 6 & 3 & 1 & \\ 1 & 1 & 1 & 3 & 6 & 3 & 1 & \\ 1 & 1 & 1 & 3 & 6 & 3 & 1 & \\ 1 & 1 & 1 & 3 & 6 & 3 & 1 & \\ 1 & 1 & 1 & 3 & 6 & 3 & 1 & \\ 1 & 1 & 1 & 3 & 6 & 3 & 1 & \\ 1 & . & . & . & . & . & \\ 1 & . & . & . & . & . & . & \\ 1 & . & . & . & . & . & . & . & \\ 1 & . & . & . & . & . & . & . & \\ 1 & . & . & . & . & . & . & . & \\ 1 & . & . & . & . & . & . & . & \\ 1 & . & . & . & . & . & . & . & \\ 1 & . & . & . & . & . & . & . & \\ 1 & . & . & . & . & . & . & . & \\ 1 & . & . & . & . & . & . & . & \\ 1 & . & . & . & . & . & . & . & \\ 1 & . & . & . & . & . & . & . & \\ 1 & . & . & . & . & . & . & . & . & \\ 1 & . & . & . & . & . & . & . & . & \\ 1 & . & . & . & . & . & . & . & . & . & $	AAA03850 AAA03850 AAA03860 AAA03880 AAA03900 AAA03900 AAA03910 AAA03920 AAA03920 AAA03920 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA03950 AAA04020 AAA04000 AAA04020 AAA04050 AAA04120 AAA04150 AAA04150 AAA04150 AAA04150 AAA04150 AAA04150 AAA04150 AAA04150 AAA04150 AAA04150

20 CONT RETU END	INUE JRN				AAA04190 AAA04200 AAA04210
CYCLE NO.	1				
NO. OF IT	ERATIONS PRIOR	TO EXTRAPOLATION I	ts 2	20	
WIDTH OF	EXTRAPOLATION I	S 10			
K 0 1 2 3 4 5 6 7 8 9 10	RES 4.75D-01 5.36D-01 1.52D-02 1.93D-02 4.23D-03 3.79D-03 1.41D-03 1.00D-03 5.16D-04 3.04D-04 2.00D-04	RES1 4.75D-01 5.36D-01 1.52D-02 1.93D-02 4.23D-03 3.79D-03 1.41D-03 1.00D-03 5.16D-04 3.04D-04 2.00D-04			
CYCLE NO.	2				
NO. OF IT	ERATIONS PRIOR	TO EXTRAPOLATION 1	ſS	0	
WIDTH OF	EXTRAPOLATION I	S 10			
K 0 1 2 3 4 5 6 7 8 9 10 CYCLE NO.	RES 2.00D-04 9.57D-05 9.59D-05 4.58D-05 4.42D-05 1.68D-05 1.91D-05 6.49D-06 7.22D-06 2.56D-06 2.90D-06	RES1 2.00D-04 9.57D-05 9.59D-05 4.58D-05 4.42D-05 1.68D-05 1.91D-05 6.49D-06 7.22D-06 2.56D-06 2.90D-06			
NO. OF IT	ERATIONS PRIOR	TO EXTRAPOLATION J	IS	0	
WIDTH OF	EXTRAPOLATION I	S 10			
K 0 1 2 3 4 5 6 7 8 9 10	RES 2.90D-06 1.18D-06 1.38D-06 6.20D-07 6.64D-07 2.43D-07 2.63D-07 8.58D-08 9.15D-08 3.95D-08 4.17D-08	RES1 2.90D-06 1.18D-06 1.38D-06 6.20D-07 6.64D-07 2.43D-07 2.63D-07 8.58D-08 9.15D-08 3.95D-08 4.17D-08			
CYCLE NO.	4				
NO. OF IT	ERATIONS PRIOR	TO EXTRAPOLATION I	s	0	
WIDTH OF	EXTRAPOLATION I	S 10			
к 0	RES 4.17D-08	RES1 4.17D-08			

1	2.44D-08	2.44D-08
2	2.40D-08	2.40D-08
3	1.29D-08	1.29D-08
4	1.24D-08	1.24D-08
5	5.49D-09	5.49D-09
6	5.39D-09	5.39D-09
7	1.95D-09	1.95D-09
8	1.96D-09	1.96D-09
9	8.71D-10	8.71D-10
10	9.27D-10	9.27D-10

CYCLE NO.

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0

WIDTH OF EXTRAPOLATION IS 10

5

ĸ	RES	RESI
0	9.27D-10	9.27D-10
1	5.14D-10	5.14D-10
2	5.46D-10	5.46D-10
3	2.74D-10	2.74D-10
4	2.71D-10	2.71D-10
5	1.17D-10	1.17D-10
6	1.09D-10	1.09D-10
7	4.64D-11	4.64D-11
8	4.28D-11	4.28D-11
9	2.07D-11	2.07D-11
10	2.19D-11	2.18D-11

CYCLE NO.

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0

WIDTH OF EXTRAPOLATION IS 10

6

ĸ	RES	RES1
0	2.18D-11	2.18D-11
1	1.25D-11	1.25D-11
2	1.26D-11	1.26D-11
3	7.23D-12	7.23D-12
4	6.32D-12	6.32D-12
5	3.29D-12	3.28D-12
6	2.85D-12	2.85D-12
7	1.27D-12	1.28D-12
8	1.15D-12	1.15D-12
9	5.79D-13	5.67D-13
10	5.67D-13	5.49D-13

References

- [1] O. Axelsson, Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations, Linear Algebra Appl. 29 (1980) 1-16.
- [2] S. Cabay and L.W. Jackson, A polynomial extrapolation method for finding limits and antilimits of vector sequences, SIAM J. Numer. Anal. 13 (1976) 734-752.
- [3] R.P. Eddy, Extrapolating to the limit of a vector sequence, in: P.C.C. Wang, Ed., Information Linkage between Applied Mathematics and Industry (Academic Press, New York, 1979) 387-396.
- [4] S.C. Eisenstat, H.C. Elman and M. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal. 20 (1983) 345-357.
- [5] D.K. Faddeev and V.N. Faddeeva, Computational Methods of Linear Algebra (Freeman, San Francisco, 1963).
- [6] W.F. Ford and A. Sidi, Recursive algorithms for vector extrapolation methods, Appl. Numer. Math. 4 (6) (1988) 477-489.

- [7] G.H. Golub and C.F. Van Loan, *Matrix Computations* (Johns Hopkins Univ. Press, Baltimore, MD, 2nd. ed., 1989).
- [8] M. Israeli and A. Sidi, An invariance property of some vector extrapolation methods, in preparation.
- [9] M. Mešina, Convergence acceleration for the iterative solution of the equations X = AX + f, Comput. Methods Appl. Mech. Engrg. 10 (2) (1977) 165-173.
- [10] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp. 37 (1981) 105-126.
- [11] Y. Saad and M.H. Schultz, A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856-869.
- [12] A. Sidi, Convergence and stability properties of minimal polynomial and reduced rank extrapolation algorithms, SIAM J. Numer. Anal. 23 (1986) 197-209.
- [13] A. Sidi, Extrapolation vs. projection methods for linear systems of equations, J. Comput. Appl. Math. 22 (1) (1988) 71-88.
- [14] A. Sidi, On extensions of the power method for normal operators, Linear Algebra Appl. 120 (1989) 207-224.
- [15] A. Sidi, Application of vector extrapolation methods to consistent singular linear systems, Appl. Numer. Math. 6
 (6) (1989/90) 487-500.
- [16] A. Sidi and J. Bridger, Convergence and stability analyses for some vector extrapolation methods in the presence of defective iteration matrices, J. Comput. Appl. Math. 22 (1) (1988) 35-61.
- [17] A. Sidi and M.L. Celestina, Convergence acceleration for vector sequences and applications to computational fluid dynamics, NASA TM-101327, ICOMP-88-17 (August 1988); also: AIAA Paper 90-0338, AIAA 28th Aerospace Sciences Meeting, Reno, NV.
- [18] A. Sidi, W.F. Ford and D.A. Smith, Acceleration of convergence of vector sequences, SIAM J. Numer. Anal. 23 (1986) 178-196.
- [19] D.A. Smith, W.F. Ford and A. Sidi, Extrapolation methods for vector sequences, SIAM Rev. 29 (1987) 199-233; Correction, SIAM Rev. 30 (1988) 623-624.
- [20] R.S. Varga, Matrix Iterative Analysis (Prentice-Hall, New York, 1962).
- [21] P. Wynn, Acceleration techniques for iterated vector and matrix problems, Math. Comp. 16 (1962) 301-322.
- [22] D.M. Young and K.C. Jea, Generalized conjugate gradient acceleration of nonsymmetrizable iterative methods, *Linear Algebra Appl.* 34 (1980) 159-194.
- [23] S. Yungster, Shock wave/boundary layer interactions in premixed hydrogen-air hypersonic flows: a numerical study, NASA TM-103273, ICOMP-90-22 (November 1990); also: AIAA paper 91-0413, AIAA 29th Aerospace Sciences Meeting, Reno, NV.