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Abstract 

Kaminski, M. and A. Sidi, Solution of an integer programming problem related to convergence of rows of PadC 
approximants, Applied Numerical Mathematics 8 (1991) 217-223. 

The following integer programming problem arises in the convergence analysis of rows of Pade approximants 
for meromorphic functions: maximize Xr=r( C+J, - C-I,‘), subject to the constraints C:=ro, = 7, 0 < a, < w,, 1 Q i Q r. 

Here the w, and r are given positive integers, and the u, are the integer unknowns. An algorithm is developed, 
by which all possible solutions can be constructed, and conditions for uniqueness are provided. Examples are 
appended. 

1. Introduction 

Let wi, i = 1,. . ., r, be given positive integers ordered such that or >, w2 2 . . . > w,, and let 7 
be a given integer satisfying 0 < 7 < C:,,w, = IV. Denote by IP( T) the following nonlinear integer 
programming problem: 

maximize i (qq - of), 
i=l 

subject to c ai = 7, (1.1) 
i=l 

O<u,<w,, i=l,..., r, 

ui integers. 

Notice that since there are only finitely many a, satisfying the constraints of (1.1) IP( r) 
always has a solution. 

This problem arose in [2] in the convergence analysis of the so-called intermediate rows of the 
PadC table for meromorphic functions, and its solution is crucial in determining whether any 
given such row of the Pade table converges or not. 

Specifically, [2, Theorem 6.11, that is the relevant result, says the following: Let the function 
f(t) by analytic at z = 0 and meromorphic in the open disk K = { z: 1 z 1 < R}. Denote the 

0168-9274/91/$03.50 0 1991 - Elsevier Science Publishers B.V. All rights reserved 



218 M. Kaminski, A. Sidi / An integer programming problem 

number of its poles in K, including their multiplicities, by p. Assume further that f(z) has only 
polar singularities on the boundary of K, CIK = { z: 1 z 1 = R }, and denote these poles and their 
respective multiplicities by zi and wi, i = 1, 2,. . . , r. Let fm,k( z) denote the (m/k) PadC 
approximant associated with the Maclaurin series of f(z). Assume that for some r satisfying 
0 < r < C~,iw, = IV, IP( 7) has a unique solution. Then the sequence of Pade approximants 

{ fn2,p+&)]:=07 converges to f(z) uniformly in any compact subset of K not including the poles 
of f(z). Denote by G( 7) and G( r + 1) the values of the objective function Ci=,( wiui - uf) at the 
solutions of IP( T) and IP( r + 1) respectively. Actually, 

fez) _fm,,+,(z) = o(~~(~+~)-~(~) 1 Z/R I”) as m -+ CO 

for z E K but z not a pole of f(z). Furthermore, as m -+ 00 the denominator polynomial of 

f m.p+TW has P zeros that converge to the p poles of f(z) that are in K, and ui zeros that 
converge to zi, 1 < i G r, on CIK. If IP( T) does not have a unique solution, it can be shown that 
there exist a set of points A = {z;, . . . , z:} and a subsequence of { fm,p+T( z)}~=o that converges 
uniformly to f(z) in any compact subset of K not including the poles of f(z) and points of A. 

It is easy to see that for 7 = 0 and 7 = C:,iw, = W the problem IP( T) has unique solutions, 
namely, ui = 0, 1 < i G r, for the former, and ui = wI, 1 d i G Y, for the latter. The uniform 
convergence of the sequences { f,,,( z)}z=,, and { f,,,, w (z)}~=, is guaranteed by the well-known 
de Montessus’ theorem. 

For details and references pertaining to the above see [2]. 
The same problem also arises in [l] in the convergence analysis of the basic QR method on 

Hessenberg matrices, and an algorithm for its solution is given there. This algorithm is iterative 
in nature, in the sense that the solutions to IP( r + 1) are obtained, by testing r possibilities at 
most, from those of IP( r), provided the latter are already known. 

The primary purpose of this note is to present yet a different algorithm, by which the 
solution(s) to IP( 7) can be constructed in a noniterative fashion. This new algorithm is based on 
a sequence of at most Y - 1 reductions, which decrease the dimension of the problem, and it also 
enables us to decide whether the solution to IP( 7) is unique, and in case of nonuniqueness it 
provides all of the possible solutions. 

Some of the properties of the solutions to IP( 7) are discussed in [2, Section 61. We give these 
below as some of them will be of use in the sequel. 

Let a], 1 <j < r, be a solution of IP( 7). 

(1) a)’ = wj - uj, 1 <j < Y, is a solution of IP( 7’) with 7’ = C5=iwi - r = W - r. This implies 
that IP( T) and IP( W - 7) simultaneously have unique (or nonunique) solutions and their 
solution sets are in one-to-one correspondence. Thus it is sufficient to treat IP( 7) for 
0-0&W]. 

(2) If wj, = tii,, for some j’ and j”, 1 <j’, j” < Y, and if uj, = yi and a,,, = y2 is a solution to 
IP( T), yi # yZ, then there is another solution to IP( 7) with uJ, = y2 and uj,, = yl. Conse- 
quently, a solution to IP( 7) cannot be unique unless ujl = uj,,. One implication of this is 
that for wi = . . . = w, = W > 1 the problem IP( 7) has a unique solution only for 7 = qr, 

q=l ,***, 5 - 1, and in this solution u/ = q, 1 <j < r. For wi = . . . = w, = 1 no unique 
solution to IP( 7) exists with 1 < r < r - 1. Another implication is that for wi = . . * = up 

> w,,, 2 ’ *. 2 w,, p -c r, no unique solution to IP( r) exists for 7 = 1,. . . , p - 1, and a 
unique solution exists for r = p, this solution being ui = . . . = up = 1, uj = 0, p + 1 <j < r. 
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(3) A unique solution to IP( 7) exists when tij, 1 <j < r, are all even or all odd, and 

7=qr++ c (clJ,-(J,), o<q<w,. 
/=I 

This solution is given by 

uj=q+ +j-w,), 1 <j<r. 

The solution to IP( 7) can be discussed more conveniently by transforming the variables ui and 
the constant r by 

s;=:w;-a;, l<i<r, 0.2) 

n=:W-% 

By (1.2) it is obvious that 8; takes on integer (half-integer) values if wi is an even (odd) integer. 
Similarly, n takes on integer (half-integer) values if W is an even (odd) integer. Also, we have 
-:w<?I<:w. 

Then IP( 7) becomes equivalent to: 

minimize i 8:, 
i=l 

subject to i 8; = n, (1.3) 

1=1 

- $0, < 8; < :a;, l<i<r. 

In the next section we derive certain properties of the solution to (1.3), on which we base our 
constructive algorithm. 

2. Theory 

By what has been said about the correspondence between IP( 7) and IP( IV- T), we conclude 
that it is sufficient to treat the cases in which 0 < $ W - [i W] < n < $ IV, and this is done in the 
remainder of this section. 

We also introduce the notation 

s= (S,,...,S,) and F(S)= i8,2. 
i=l 

Lemma 1. If 8, f - :wk and 8, Z iti,, and if 6, - 8, >, $, then F(S’) < F(S), where 8’ is obtained 
from S by replacing 6, and 8, by 8, - 1 and 8, + 1 respectively. 

Proof. The assertion follows by noting that both 6 and 8’ satisfy the constraints in (1.3), and that 

F(S’)= c S;+(8j+1)2+(Sk-1)2 
I=1 

i#j,k 

=F(8)+2-2(6,-6,)<F(+l. 0 
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Lemma 2. If q/r > :wj for some j, an (optimal) solution 6 to (1.3) must have Sj = iti,. 

Proof. Suppose to the contrary that 8, < +a,. Thus, 6j < $w, < q/r. Now q/r is the average of 
6 ,,..., S,.. Consequently, if Sj < v/r, then there exists 8, that satisfies 6, > v/r. Combining all 

this we have 

We now note that if aj < +u~, then Sj < :tij - 1, and if 8, > +u~, then 8, > iwj + i > 0. There- 
fore, 6, - Sj 2 :, and 8, and Sj are as in Lemma 1, so that F(S) is not minimal, contrary to the 
assumption. Thus, 8, = $J, must hold. 0 

Lemma 2 is very useful in that if w, < . . . < c++~ < 277/r < o,., < . . . < q, then it uniquely 

fixes 6; = +w,, r ’ + 1 < i G r, and allows us to complete the solution by solving the reduced 

problem: 

minimize g 82, 
i=l 

subject to iSi=q- i 3wi=q’, (24 
i=l 1=r’+1 

- :lJi < 6, < $.q, l<i<r’. 

Note that if 77 > 0, then 3’ > 0 too. It may be possible to reduce (2.1) further by applying 
Lemma 2 again. Finally, when Lemma 2 can no longer be applied, the solution and an algorithm 
for it can be completed by applying Lemmas 3 and 4 below. 

Lemma 3. If q/r < iwi, 1 6 i < r, then an (optimal) 

two indices j and k. 

Proof. Suppose to the contrary that for some j and 

solution 6 must satisfy 16, - 8, ) d 1 for any 

k IS, - Sj 1 a 1. Without loss of generality 
___ 

we can write 6, - Sj >, 2, or equivalently 8, >, 8j + 5. We can let 

8, = max a,, 
i 

and 8, = min 6,. 
i 

Now since aj < 6, and since q/r is the average of a,, . . . , S,, we must have Sj < v/r -C 6,. By 
assumption, q/r c +wi for all i, so that 8, < q/r < ~GJ~, hence aj # :tij. Similarly, 0 < q/r < 6,, 
hence 6, # - +a,. Therefore, Lemma 1 applies, and S cannot be a minimal solution contrary to 
the assumption. Thus we must have I 8, - 8, I < 1 for all j and k. 0 

Lemma 3 has some very powerful consequences that will be exploited in the development of 
the algorithm. First, if we set a = maxis, in an optimal solution 6, and a is integer (half-integer), 
then the 6, corresponding to the even (odd) wi take on the values a or a - 1, while the ai 
corresponding to the odd (even) oi all take on the value a - i. Let us denote the numbers of 8; 
that assume the values a, a - :, and a - 1, by x, y, and z respectively. Let us also denote by p, 
( p,,) the number of the even (odd) oi. Then x + z = p, and y = p, in case a is an integer, 
x + z = p0 and y = p, in case a is a half-integer. By the definition of a, x > 0. Obviously, y = 0 
if w, are all even or all odd, and z z 0 always. 
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Lemma 4. Under the conditions of Lemma 3, a, x, y, and z are unique. Consequently, if z = 0, the 
solution to IP( r) is unique. If z # 0, IP( 7) does not have a unique solution, but the solutions are 
obtained from each other by permutation of the 6, that assume the values a and a - 1. 

Proof. By the constraints in (1.3) we have 

7j= C8j=xa+y(a-+)+z(a-1)=(x+y+z)a 
I=1 

which can be rewritten in the form 

a=J+- :y + z 
r r ’ 

if we recall that 

x+y+z=r. 

1 
2Y - z, 

(2.2) 

(2.3) 
We now look for solutions of (2.2) and (2.3) under the additional constraints x > 0, z > 0, and 
y = p, or y = p, depending on whether a is an integer or half-integer. There are two cases to 
consider: 

(1) There are both even and odd o,, so that y > 0. In this case (2.2) implies 

5<a<3+1. 

Let us denote S = (q/r, q/r + 1). Now if q/r is an integer (half-integer), then a is the 
unique half-integer (integer) contained in S, and consequently y = p, ( y = p,) and x and z 
are uniquely determined from (2.2) and (2.3). If q/r is neither an integer nor a 
half-integer, then S contains exactly one integer and one half-integer, which we denote by 
(or and CQ = (Ye + i. Thus either a = a1 or a = aZ, or both. We now need to show that (Ye 
and (Ye cannot both be solutions for a. Suppose to the contrary that a is not unique. Then 
(2.2) and (2.3) have two solutions ((Ye, x1, y,, zt) and ((Ye, x2, y,, z2) for (a, x, y, z). By 
(2.2) these solutions must satisfy 

ix*- +z,= -+y1 -zt, (2.5) 

and, by (2.3) and the fact that y is either p, or p, they must also satisfy 

Xl + Zl = Y2 and x2+z2=yl. (2.6) 

From (2.6), z2 = y, - x2. Substituting this in (2.9, we obtain x2 = - zt < 0, which con- 
tradicts x2 > 0. Once a is known, x, y, z can be determined uniquely as explained before. 

(2) All wi are even or they are all odd, so that y = 0. By x > 0 and x + z = r, we have 
0 < z < r. Thus (2.2) implies that 

y<ai5+1. 
r (2.7) 

Now if p, = 0 ( p, = 0), then a is an integer (half-integer), thus (2.7) can have only one 
solution for a. Once a is determined, x and z can be determined uniquely as before. 

When z = 0 the uniqueness of the optimal S is obvious. When 0 -C z -C r - 1, (2.4) is always 
satisfied. Recalling that we are dealing with the case 17 > 0, (2.4) implies that a > 0. This implies 
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that a > i so that a - 1 2 - i >, - :w, for all i. Also by the assumption q/r < :oj for all i, 

(2.4) implies a < iwi + 1 for all i. If a is integer (half-integer), then a < :wi for wi even (odd). 
Combining all this we see that all permutations among the 6i that assume the values a and 
a - 1 are possible. This completes the proof. 0 

It is important to note that in case the interval S in the proof of Lemma 4 contains both an 
integer and a half-integer ((or and (Ye) only one of them satisfies (2.2) and (2.3). 

3. Examples 

We demonstrate the application of the results of the previous section with two examples. 

Example 1. Consider IP( 7) with r = 2 and or even (odd) and o2 odd (even), and wr > w2. For 
0 < 7 < [:(w, - wz)] we have w2 G 77 < wr. Consequently, Lemma 2 applies, and we obtain the 
unique solution ui = 7 and uz = 0. For 

[+Jr-WZ)] <rG [tw] = [+r+%)], 

we have 

Consequently, Lemmas 3 and 4 apply, and we obtain 

x=1, y=l, z = 0, a = i(217 + 1) = $(w- 27 + l), 

and the solution to IP( 7) is again unique. The values of u1 and a2 can now be determined easily. 
Consider, for instance, the case in which wr is even and o2 is odd. If a is an integer, then 
u, = &J, - a and u2 = 7 - ur, and if a is a half-integer, then u2 = iw2 - a and ur = 7 - uz. Also, 
the solution to IP( r) for [i W] < T < W can be obtained from that of IP( W - 7) as explained in 
the introduction. In any case, the solution of IP( T), for all possible 7, is unique. 

Example 2. Consider IP( r) with Y = 10 and w, = 10 - i + 1, 1 < i < 10. Let us take r = 5. Then 

W= cwi=55 and q=F>O. 
i=l 

Now q/r = $ so that V/Y 2 iwi, 7 < i 6 10. By Lemma 2, 6, = iai, 7 G i 6 10. Thus we have 
reduced the problem as in (2.1) with r ’ = 6 and n’ = 9, and wi = 10 - i + 1, 1 < i < 6. This time 
n’/r ’ = $ so that q’/r ’ > &, only. Again by Lemma 2, 6, = $w6, and the problem is reduced 
further as in (2.1) with Y” = 5 and 17” = 15, and wi = 10 - i + 1,l G i G 5. This time q”/r” = 3 > 
+ w,, and again 6, = iwg by Lemma 2. In the new reduced problem r “’ = 4 and q “’ = 12 and 
w;=lO-i+l, l<i<4. Now q”‘/r”’ =3<iwj, l<i<4, so that no further reduction is 
possible, and Lemmas 3 and 4 apply. Since y f 0 in this reduced problem, (2.4) holds and we 
have 3 < a < 4 so that a = 3.5 is the only possible solution. Consequently, y = 2, and z = 1 from 
(2.2), so that x = 1. This means that there are two (nonunique) optimal solutions with 
(a,, 6,, S,, 6,) = (3, 3.5, 3, 2.5) and (3, 2.5, 3, 3.5). Invoking 6, = iwi, 5 G i G 10, and (1.2), we 
finally have that IP(5) has two optimal solutions ( ul,. . . , al,,) with uI=O, 5<i<lO, u,=2, 
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u3 = 1 in both solutions. u2 = 1 and a4 = 1 in one of these solutions, while (Jo = 2 and a, = 0 in 
the other. Finally, the solutions to IP(50) are obtained by replacing a, in these solutions by 
w, - u,. 
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