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ABSTRACT 

Consider the linear system of equations Bx =f, where B is an N x N singular 

matrix. In an earlier work by the author it was shown that iterative techniques coupled 

with standard vector extrapolation methods can be used to obtain or approximate a 

solution of this system when it is consistent. In the present work we expand on that 

approach to treat the case in which this system is in general inconsistent. Starting with 

Richardson’s iterative method, we develop a family of new iterative techniques and 

vector extrapolation methods that enable us to obtain or approximate the Drazin inverse 

solution of this system whether the index of B is 1 or greater than 1. We show that the 

Drazin inverse solution can be constructed from a finite number of iterations, this 

number being at most N + 2. We also provide detailed convergence analyses of the 

new iterative techniques and vector extrapolation methods and give their precise rates 

of convergence. 

1. INTRODUCTION 

Consider the system of linear equations 

where B is a singular complex N x N matrix that is not necessarily Hermitian, 

and f is an N-dimensional complex vector. As is well known, if this system is 

consistent, then it has an infinity of solutions; otherwise, it has no solution. 
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In an earlier work by the author [9], it was shown that if the system in (1.1) 

is consistent, then both iterative techniques and standard vector extrapolation 
methods coupled with iterative techniques can be used to produce or approxi- 
mate a solution of (1.1) under certain conditions. In particular, it was shown 
there that this may be possible when the index of B is 1, i.e., when the zero 
eigenvalues of B have only corresponding eigenvectors and no principal 
vectors, which is the case, for example, when B is diagonalizable. This may be 
possible also when the index of B is greater than I, i.e., when the zero 
eigenvalues of B have corresponding principal vectors, but in this case a 
rather stringent condition is needed for the initial vector that is used in the 
iterative technique. In either case, the solution that is obtained turns out to be 
very closely related to the Drazin inverse solution of (1.1). For the Drazin 
inverse and its various applications we refer the reader to the books by 
Ben-Israel and Greville [l] and Campbell and Meyer [Z]. 

Encouraged by the positive results of [q], in the present work we expand 
on that approach to give a rather thorough treatment of the problem of 
determining (or approximating) the Drazin inverse solution of (1.1). We do 
this under the most general conditions on B and f, namely, that the index of 
B is arbitrary, and that (1.1) may be consistent or inconsistent. 

Roughly speaking, the Drazin inverse solution, which we denote through- 
out by s’, is the unique vector that lies in the subspace Y(B) spanned by the 
eigenvectors and principal vectors of B corresponding to its nonzero eigenval- 
ues, and that satisfies the consistent system Br = f: where f’ is that part of 
the vector f that lies in Y(B). I n case the matrix B has index 1 and the 
system in (1.1) is consistent, s’ turns out to be a true solution. In case B is 
range-Hermitian, i.e., B and I?* have the same range, s’ turns out to be the 
Moore-Penrose generalized inverse solution of the system in (1. I), whether the 
latter is consistent or not. (Recall that if B is diagonalizable, then its index is 1, 
and if B is normal, then it is range-Hermitian; see [l].) Trivially, when B is 
nonsingular, s’ is the unique solution to (1.1). When (1.1) is consistent and 
thus has solutions, but the index of B is strictly greater than 1, the Drazin 
inverse solution of (1.1) does not necessarily satisfy (1.1). A rigorous and 
detailed discussion of all these points will be given in Section 2. 

It is important to emphasize from the start that standard iterative tech- 
niques cannot be used in a straightforward manner to approximate s’, the 
Drazin inverse solution of (l.l), in general. The reason for this is that the 
sequence of approximations generated this way may never converge to s’ or 
may never converge at all, as follows from Theorem 3.1 of the present work. 
Similarly, standard vector extrapolation methods cannot be employed to obtain 
approximations to s’. Therefore, there is need for a totally new approach to 
develop techniques for approximating Drazin inverse solutions. The approach 
taken in this paper is based on standard iterative techniques, which, despite 
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their possible divergence, contain valuable information on s’ that can be 
extracted in various ways. 

Throughout the present work we will consider Richardson’s iterative 
method for (1.1) (see Varga [13, p. 1411) as our standard iterative technique. 
In this technique 

Xj+l = Xj + U(f- Bxj), j = 0, 1, . . . , (1.2) 

xc being an arbitrary initial vector. This is the iterative technique considered 
also in [9]. It is clear that (1.2) can be expressed in the matrix iterative form 

xj+l = Axj + b, j=O,l,..., (1.3) 

where 

A=l-wB and b=wf. (1.4) 

As mentioned in [9], any other fixed point iterative technique for solving 
(1.1) is also of the form (1.3) with A = M- 'Q, where B = M - Q, and is a 
Richardson iterative method with w = 1 for the “preconditioned” linear 
system M- 'Bx = M- 'f. Thus there is no loss of generality in considering only 
Richardson’s iterative method. 

The plan of the present work is as follows: In the next section we review 
some of the results of [9], and introduce part of the notation that is used 
throughout the remainder. In Section 3 we analyze Richardson’s iterative 
method for the singular system in (1.1) whether the latter is consistent or not. 
We subsequently modify the sequence of vectors { x~}:=~ obtained from it to 
produce another sequence { i,}z=c that converges to s’, the Drazin inverse 
solution of (1.1) under certain conditions pertaining to the spectrum of B. 
These conditions are also needed when the system in (1.1) is singular and 
consistent, or even nonsingular. The main result of Section 3 is Theorem 3.2. 
In Section 4 we show how s’ can be constructed from a finite number of the 
vectors xj obtained from Richardson’s iterative method. We also provide a 
precise count of these vectors and show that their number does not exceed 
N + 2. The main result in Section 4 is Theorem 4.2. Based on the construc- 
tion of Section 4, in Section 5 we propose new extrapolation (or convergence 
acceleration) methods that produce approximations to s’ with much larger 
convergence rates than the vectors in the sequence { ?,,}“,=u. A detailed 
convergence analysis of these methods is provided in Sections 6 and 7, the 
main result being Theorem 7.3. 

We note that some of the techniques developed in the present work are 
similar to and extend those that were used in the papers by Sidi [7-91, Sidi and 
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Bridger [lo], Sidi, Ford, and Smith [ll], and Smith, Ford, and Sidi [12]. 
Use of iterative techniques for obtaining the Drazin inverse solution of a 

singular system has been considered in several papers. For example, Meyer 
and Plemmons [6] consider the Drazin inverse solution of a consistent singular 
system with a semiconvergent splitting of the matrix. In a recent work 
Eiermann, Marek, and Niethammer [3] consider the Drazin inverse solution of 
a singular system under the assumptions made in the present paper, and give a 
general framework for semiiterative methods appropriate for this purpose. 
Some of the material presented in Theorem 3.2 of the present work is closely 
related to [3]. We shall elaborate on this in Section 3. 

Finally, we mention that the approach that we take in Section 4 for the 
construction of the Drazin inverse solution from Richardson’s iterative method, 
and the extrapolation methods that follow in Sections 5-7, are completely 

2. THEORETICAL PRELIMINARIES 

Consider the linear system in (1.1) with B and f as described in the first 
paragraph of Section 1. There exists a nonsingular matrix V such that 

V-‘BV = J = 
(2.1) 

where Jj are Jordan blocks of dimension ri and have the form 

FLj 1 

Pi 1 0 
. . 

. . 

0 *:1 
Pi 

If V has the columnwise partition 

pi an eigenvalue . (2.2) 

v = [ “11 I u12 I .*. I Ulr, I “21 I “22 I . . * I UZr, I *-* I ““1 I %2 I . ** I %“] P 

(2.3) 
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then uil is the eigenvector corresponding to the eigenvalue pi, and in case 
fi > 1, Viz,. . . , uir, are the principal vectors (or the generalized eigenvectors) 
corresponding to pi. We actually have 

BUil = Pi”il, 

BUij=/tiUij+Ui,j-_l> j=2>"*,ri> for ri> 1. 
P-4) 

Let us denote 

Y(B) = span{ uij, 1 Q j G ?-i : /Li f O), 

M(B) = span{uil : pi = 0}, null space of B, 

A(B) = span(uij, 2 <j Q ri: pi = 0, ri > l}, 
(2.5) 

T-(B) = l(B) e “d(B). 

Obviously, the intersection of any two of the subspaces Y(B), .A”( B), and 
A(B) consists of the zero vector only, and CN = Y(B) @ N(B) to A(B) = 
Y(B) @ Y(B). If ri = 1 f or all the eigenvalues pi = 0, A(B) is defined to be 
the empty set, and yeA(B) is interpreted as y = 0. This happens, for 
example, when B is diagonalizable. 

We recall that the integer max{ ri : pi = 0) is the index of B, and we shall 
denote it by d throughout. 

We now state Theorem 2.1 of [9], which provides us with a necessary and 
sufficient condition for the consistency of the system in (1.1) exclusively in 
terms of the eigenvectors and principal vectors of B: 

THEOREM 2.1. When B is singular, the system in (1.1) has a solution if and 
only if f can be expanded in terms of the columns of the matrix V, excluding the 
vectors uir, corresponding to the zero eigenvalues pi. If a solution s exists, then 
it is of the form s = s’ + sn + sm, where s’ E Y(B) and s” E A(B) and they are 
uniquely determined, and So E JV( B) and is twnunique. In fact, if f = f + f”, 
where f’ E Y(B) and f” E A(B), then Bs’ = f’ and Bs” = f”. [Recall also that 
S” = 0 when d(B) is the empty set.] 

REMARKS. 

(1) Using the Jordan canonical form of the matrix Bn, the Drazin inverse 
of B, it is easy to verify that s‘ is, in fact, BDf, the Drazin inverse solution of 
(1.1). (For the Jordan canonical form of BD, see, e.g., [3].) 
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(2) When d, the index of B, is 1, the Drazin inverse B * is also called the 
group inverse and is denoted by B *. In case B is range-Hermitian, we have 
d = 1, and B* coincides with B+, the Moore-Penrose generalized inverse of 
B, so that s’ = B+f. A normal matrix is a range-Hermitian matrix. 

Before we end this section, we note that the eigenvalues of the iteration 
matrix A in (1.3) and (1.4) are Xi = 1 - wpi, and the corresponding eigenvec- 
tors are ii, = vii, 
(_o)-j+i 

while the corresponding principal vectors are iij = 
uij, 2 < j < ri, for ri > 1, exactly in the sense of (2.4). Correspond- 

ing to pi = 0, we have Xi = 1; hence Aii, = ii,. Also, 

(2.6) 

All this is mentioned in [9]. 
Finally, the following lemma will be of utmost importance in the next 

sections. 

LEMMA 2.2. Let 4(z) be u scalar or vector valued polynomial of degree d. 

Then, for any 5; 

4(C) - 9(O) = - ifl[Ai4(*)]( A’)> 

where A@(t) = 4(!: + 1) - 4(C), A%(l) = A(&( r)), etc. 

Proof. By Newton’s interpolation formula at the points 1; { + 1 
d, we have 

The result follows by setting z = 0 in (2.8). 

>.. 

(2.7) 

.,r+ 

(2.8) 

n 

3. RICHARDSON’S ITERATIVE METHOD FOR SINGULAR SYSTEMS 

Consider Richardson’s iterative method as described in (1.2)-(1.4) for the 
system (l.l), assuming that this system is not necessarily consistent. Our 
purpose now is to first analyze the nature of the sequence { xm}~=a obtained 
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by employing this method, and then to propose a modification. This modifica- 

tion results in a convergent sequence that has a useful limit, namely s’, the 

Drazin inverse solution, under certain conditions pertaining to the spectrum 

of B. 

THEOREM 3.1. Letf=f+f”a& xo=r;+3?a withf’,xb~.Y(B) and 

f, ?,, E F(B). Let s’ be the unique solution of Bx = f that lies in 9’(B): see 
Theorem 2.1. Then the sequence { x,,,}“,=~ generated by Richardson’s iterative 

method satisfies 

*nl - s’ = A”( rb - s’) + T(m), (3.1) 

where T(m) is a polynomial in m of degree at most d = max{ ri : pi = 0}, the 

index of B, with uector coefficients in FJB), and is such that T(0) = S+,. [The 

exact degree r of T(m) depends on f and ?,, and can be deduced form 
(3.5)-(3.10) in the proof below. In case (1.1) is inconsistent, r = d, in general.] 

Proof. From (1.2)-(1.4), f = f’ +f, and Bs’ = f, it follows that 

x~+~ - s’ = A( xj - s’) + wf, j = 0,l ,... . (3.2) 

By induction, (3.2) implies 

*m - s‘ = A”( x0 - s’) + R(m), (3.3) 

with 

R(m) = 

Now TE F(B) means that 

m=1,2 ,,.. . (3.4) 

i j=l 
(3.5) 

where Yi stands for summation over those values of i for which pi = 0. 

Substituting (3.5) in (3.4), and invoking (2.6), we have 

R(m) = c’ ~6..~Cil~$~(j.l). 
i j=l "1~1 

(3.6) 
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which, by the identity 

becomes 

From the fact that 

m ( 1 = 
m(m - 1). . . (m - i + 1) 

i i! 

is a polynomial in m of degree exactly i it follows that R(m) is a polynomial in 
m of degree at most d = max{ ri : pi = 0) with vector coefficients in Y(B), 
and is such that R(0) = 0. Also, when the system in (1.1) is inconsistent, then 
6i,, # 0 for some i in (3.5). If all of these c?~,., are nonzero when (1.1) is 
inconsistent, then the exact degree of R(m) is exactly d. 

Invoking now x0 = x6 + X, on the right hand side of (3.3), we obtain (3.1) 
with 

T(m) = A”‘ZO + R(m). (3.8) 

Again, by 3?,, E Y(B), we have 

20 = C’ c EijCij. 
i j=l 

Thus, by (2.6), after some manipulation, 

P-9) 

(3.10) 

As is seen, A”?,, is a polynomial in m of degree at most d - 1, with vector 
coefficients in Y(B). Also, letting m = 0 in (3.8), we obtain T(0) = 2,. This 
completes the proof of the theorem. U 
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Theorem 2.2 in [9], which is an extension of a known result on Richardson’s 

iterative method, states that when all the nonzero eigenvalues of the matrix B 
are in the same open half of the complex plane containing the origin on its 

boundary, the sequence { ~~}~=a converges for some (complex) w if and only 

if the system in (1.1) has a solution s, and x0 - s E Y(B) @ Jv( B). In 

Theorem 3.2 below we provide a further extension of this result. Specifically, 

we first propose a modification of Richardson’s iterative method, and then 

show that it converges to s’ starting from any initial vector, whether the 

singular system in (1.1) is consistent or not. 

THEOREM 3.2. Assume that 

2cos (Y 
o< ]w] <- 

pP) ’ 
~~=max{]arg~~-0]::~(~#0}; arg 0 = -8, 

(3.11) 

where p(B) = maxi 1 cli ) is the spectral radius of B. Let { x,,,}~=~ be the 
sequence obtained from (1.2)-(1.4). Let d = max{r, : pi = 0}, the index of B, 
as before. Now set 

L = %n + j$l (Ah) ( -im) 

x + 5 (-l)‘(k) i&m +j) 

= m > 

i=l i! j=O 
(3.12) 

where Ax, = x,,,+i - x,,,, 4x,,, = A(Ax,), etc. Then the sequence {zQ~=~ 
cmuerges to s’ + Fo, where s’ and F,, are exactly as described in Theorem 3.1. 

In fact, 

2, = s’ + 2, + O(md+h-l~m) as m+co, (3.13) 

wherep’=max{]&]:&#l)andh= max{ri: 1 Xi1 = 5). Here & = 1 - opi 

are, as before, eigenvalues of A. 
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Proof. First, Theorem 3.1 applies, and (3.1) holds, and T(m) is a polyno- 
mial in m of degree at most d, with vector coefficients in Y(B). Thus, by 
Lemma 2.2. 

T(m) - T(O) = - i$ [AiT( ( -im). (3.14) 

But T(0) = Z. and T(m) = x, - s’ - e,, where we have denoted e, = A”(x& 
- s’) for short. Therefore, (3.14) becomes 

x?n - sf - e, - 2, = - g (Aix, - Ah) ( -y). 

Invoking (3.12) in(3.15) we have 

i, - s’ - 2, = e, + fl ( A'e,) ( -;” ) . (3.16) 

Now xb - s‘ E Y(B), and Y(B) is the subspace spanned by the eigenvectors 
and principal vectors vij of B corresponding to the nonzero eigenvalues pi, or 
equivalently, the subspace spanned by the eigenvectors and principal vectors 
iij of A corersponding to eigenvalues Xi that are not unity. Also, Xi f 1 
implies ) Xi 1 < 1 under the assumptions made in the statement of the theo- 
rem; see [9, Theorem 2.21. Consequently, 

em = A”( rb - s’) = O(mh-‘fi”) as m + w. (3.17) 

Substituting (3.17) on the right hand side of (3.16) we obtain (3.13) thus 
proving the theorem. n 

REMARKS. 

(1) If there is no 8 for which arg pi E (0 - x/2,0 + x/2), all Ici # 0, then 
there exists no complex w for which { i,JE=a converges. Such a situation 
arises, for example, when B has both positive and negative eigenvalues. 

(2) When Re pi > 0 for pi # 0, we can take 0 = 0; thus we can choose w 
to be positive real, as can be seen from (3.11). 

(3) By picking x0 = 0, or x,, = B’c for an arbitrary vector 4, we can cause 
z. = 0 everywhere in Theorem 3.2. This results in lim,,,?, = s’. 

(4) When d = 1, (3.1) and (3.12) take on very simple forms, namely 

rm - ~‘=A”‘(x~-s’)+3?~+mo~ (3.18) 
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and 

2,=x,,,--Ax,,,, (3.19) 

respectively. 

In view of remarks (3) and (4) b a ove, we have the following very useful 
result for the case in which B is a range-Hermitian matrix: 

THEOREM 3.3. lf the matrix B in Theorem 3.2 is range-Hermitian, and if 

x - 0, or if x0 = BC; for an arbitrary vector 5, then the sequence { ~,}~=o. 0- 

where 2, = x,,, - m Ax,, m = 0, 1, . . . , converges to s’ = B+f, in fact, 

f,, = B+f + O(rnim) as m+oo, (3.20) 

with fi as defined following (3.13). 

Proof. Observe that for this case ri = 1 for all i, so that d = 1, h = 0, 
* 
x0 = 0, and s’ = B+f in Theorem 3.2. The details are left to the reader. n 

REMARK. If x0 is picked arbitrarily in Theorem 3.3, then Z. is not 
necessarily zero and should be added to the right hand side of (3.20). 

3.1. A Multipoint lterative Technique for { i,} 

We have not been able to find a stationary fixed point method that 
generates the vectors 2,. A stationary multipoint iterative technique does 
exist, however, and we turn to this in Theorem 3.4 below. 

THEOREM 3.4. The vectors 32, of Theorem 3.2 can be computed recur- 

sively from 

,. 
*m+d+l = iO( -lJdei( d 3 ') Ad+l-ji,E+j + ad+‘Bdf, m > 0, (3.21) 

with i,, 3i.,, . . . , fd as given in (3.12). 

Proof. We shall prove (3.21) by verification. First, we note that 

q-1 
Aqrm = x,,,+~ - c A’b, all m, q. 

l=O 
(3.22) 
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Let us set 

Substituting (3.12) in (3.23), and invoking (3.22), we obtain 

Q = c (_l)d+l-j d + l 
1;; ( j ),$[Ai( xm+d+l - zAlb 

where the summation on 1 is zero for j = d + 1. Now 

d+l 

Q= J~o(-l)d+l-i(dfl)Ad+l-~~m+j. (3.23) 

(3.24) 

d+l 

c C-1) 
j=O 

= &kt+d++d+l( i”)’ 

and this vanishes, since 

(3.25) 

for O<i<d. 

As a result of this, and by the facts that Ai(EfLdAAlb) = 0 for i > 1 and 

CtlJA’b = 0 for j = d + 1, (3.24) becomes 

Q = $( -l)d-j 

= +$A’bf;( -I)“-‘( d f I) 

= A(-$( ;).,, (3.26) 
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where we have used the identity 

5pj( d f 1) = (-I)“( $). 

It is now easy to see that 

Q = (I - A)% = &+‘Bdf. (3.27) 

(3.21) now follows. n 

It is worth mentioning that the result given in (3.21) follows from 

(l.l)-(1.4) and (3.12), whether (1.1) is consistent or not, i.e., it is an identity. 

3.2, Connection with Semiiterative Methods 

Finally, we mention that, after drawing the proper analogy, and some 

tedious algebra, it can be shown that there exists a semiiterative method of the 

type discussed in [3] that gives the sequences { ?,}zCO. The paper [3] 

introduces a general theory for semiiterative methods that can be used for 

approximating the Drazin inverse solution. This theory provides a set of 

conditions that need to be satisfied by any semiiterative method, but does not 

specify the method uniquely. It is very interesting that the approach and 

techniques used in the present work, which are entirely different than those 

employed in [3], should produce a semiiterative technique of the type given in 

[3]. We add for the sake of completeness that, in the notation of [3], the 

polynomials pk( z) associated with the semiiterative method that produces the 

sequence { ?,}zzO of the present work are given as 

p&i) = d-q 5 
i=O i i 

-ki+ 9 (2 - l)i. 

Thus, these pk( z). in addition to satisfying the necessary conditions of [3], 

namely, ~~(1) = 1, p&l) = 0, 1 < j < 9. satisfy also p&O) = 0, 0 < j Q k - 
9 - 1, and are uniquely defined by them. Note that in our notation 9 = d and 

k=m+d. 
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RICHARDSON’S ITERATIVE METHOD AND EXACT 

CONSTRUCTION OF s’ 

In the previous section we proposed a modification of Richardson’s itera- 

tive method that is useful for the singular linear system in (l.l), whether this 

system is consistent or not. We showed that the sequence of vectors { !?,}z=, 

obtained from this modification converges to the Drazin inverse solution s’, 

the unique solution of the consistent system Bx = f that is in Y(B), for some 

w, under certain conditions concerning the spectrum of B. We also provided 

the precise rate of convergence of this sequence. 

In the present section we show that s’ can be constructed from a finite 

number of the vectors xi obtained by Richardson’s iterative method. We shall 

actually carry out this construction in all detail. 

A concept that has been very useful in earlier work (see Sidi [8, 91 and 

Smith, Ford, and Sidi [12]) and will be of utmost importance in the present 

work is that of the minimal polynomial of a matrix with respect to a vector. We 

will call the polynomial P(A) = Ck,O~iXi, ck = 1, the minimal polynomial of 

the matrix A with respect to the vector u if 

u=o 

and 

It is known that P(X) exists and is unique. It is also known that if R(X) is 

another polynomial for which R( A)u = 0, then P(X) divides R(X). Conse- 

quently, P(X) divides th e minimal polynomial of A, which in turn divides the 

characteristic polynomial of A. 

LEMMA 4.1. Consider the singular linear system in (l.l), which may or 

may not be consistent. Let the sequence { x,,,}~,~ be generated by Richardson’s 

iterative method as in (1.2)-(1.4). D enote by P(X) the minimal polynomial of A 

with respect to the vector e, = A”( xb - s’), with xb as in Theorem 3.2, and let 

k, be the degree of P( X). Then P(1) # 0, and 

k,,< kri=N- kri-&< rankB,<N-1. (4.1) 
i=l i=l 

B,fO /4=0 
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(8 = rank B when _.4( B) is empty.) In addition, P(X) is also the minimal 
polynomial of A with respect to the vector A’+’ x,, where r is the exact degree of 
the vector valued polynomial T(m) in (3.1); hence r < d. Finally, P(X) can be 
constructed from the vectors x,,, x,,+~. . . , , x,+~,,+~+~, i.e., from at most 
R + d + 2 ,< N + 2 vectors. 

Proof. Since xb - s’ E Y(B), and Y(B) is the subspace spanned by the 
eigenvectors and principal vectors Gij of A belonging to eigenvalues not equal 
to unity, P(X) is not divisible by X - 1; hence P(1) # 0, and (4.1) holds. 

Letting m = n in (3.1), and applying the operator A’+l to both sides, we 
obtain 

Al+1 X ” = A’+‘e ?I’ (4.2) 

since T(m) is a polynomial in m of degree r, and thus A’+‘T( m) = 0. If Q(X) 
is the minimal polynomial of A with respect to Ar+‘e,, and hence with 
respect to A’+lx,,, we must have 

0 = Q(A) A7+‘xn = Q(A) Ar+‘en = Q( A)( A - Z)‘+‘e”, (4.3) 

by Ae, = (A - I)e,. Therefore, P(X) divides Q( X)(h - l)‘+‘. However, X - 1 
is not a factor of P(X), so that P(X), in fact, divides Q(X). Similarly, P( A)e, = 0 
implies 

0 = (A - I)r+lP( A)e, = P( A)( A - Z)‘+le,, 

= P(A) AT7+len = P(A) A’+lx,,, (4.4) 

which, in turn, implies that Q(x) d’ d ivi es P(h). Consequently, Q(h) = P(A). 
Let us write 

P(X) = i&$, Ck” = 1. 

Then, from (4.2) and (4.4), 

P(A) A’+‘x, = &Ci AT7+‘Xn+i = 0, 

(4.5) 

P-6) 
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i.e,. the coeffkients ca, c, 
equations 

. , ck,_ 1 of P(X) satisfy the set of overdetermined 

[ Ar+lx, ( Ar+lrn+l ( . = -A’+‘X”+k,,. (4.7) 

Since P(X) exists and is unique, (4.7) has a unique solution for ci, 0 < i < k, 

- 1. Thus, P(X) can actually be determined from the vectors 

XW x,+1.. . . > %+kO+T+I b y so ving (4.7). This completes the proof. ’ n 

REMARK. Note that P(h), the minimal polynomial of A with respect to e,, 
can be determined exactly as above if r is replaced by any integer greater than 
r throughout. In particular, we can replace r by its maximum value possible, 
namely d. The reason for this is that P(X) is also the minimal polynomial of A 

with respect to Ayx,, for any integer q 2 r + 1, as Aqxn = Aye,, for all 
q > 7 + 1; cf. (4.2). This is an important observation, and will be used later. 

THEOREM 4.2. Let the sequence { x,,,}~=~, the integers r, n, k,, and the 
polynomial P(X) be as in Lemma 4.1. With Z. as in Theorem 3.2, the vector 

s’ + x”,, can be constructed from the vectors x;, n < i Q n + k, + r + 1, i.e., 

j&m at most g + d + 2 < N + 2 vectors, in the following way: Define 

s = Cf~OCixm+i 

m 
c:poci ’ 

m=n,n+l,n+2 ,..., (4.8) 

and let 

j=O 

q= O,l,... . 

(4.9) 
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(Thus &,(m) = 1.) Let p,(m) be deftned by the Maclaurin expansion 

I = ,c06i( m) zi. (4.10) 
\i=O 

(Thus jo( m) = 1.) Then 

5’ + l?n = s, + 2 
i=l 

-m 

i 1 i 
- q<l Pi-y( m)a,(o)] Aism’ 

m=n,n+l,... . (4.11) 

As before, by letting x0 = 0, or x0 = Bdl, where I: is an arbitrary vector, we 

can cause F. = 0 in (4.11). 

Proof. From (3.1) and (4.5) we have 

2cj(Xfn+j- 
j=O 

s’) = J$ocjAm+j(rh - s’) + 2 cjT(m + j). 
j=O 

(4.12) 

The first summation on the right hand side of (4.12) is simply P( A)e,. For 

m = n, n + 1,. . . , we have e, = A”-“en. Thus P( A)e, = A”-“P( A)e, = 0. 

Invoking this, Ci!?ncj = P(1) # 0 (which follows from Lemma 4.1), and (4.8) 

in (4.12) we obtain 

s, - s’ = 
Cj!!ocjT( m + j) 

EJZoCj 

= f(m), m=fl,n+l,... . (4.13) 

Obviously, f(m) is a polynomial in m of degree exactly r, with vector 

coefficients in Y(B). By Lemma 2.2, 

f(m) - Y?(O) = - i$l [A??(m)] ( -im), all m. (4.14) 

But, by (4.13), 

A?(m) = A’S,, m=n,n+ l,..., i= 1,2,... . (4.15) 

Combining (4.14) and (4.15) in (4.13), we have 

s’ = S, + j$I(AiSm)( -im) - 9(O), m=n,n+l,.... (4.16) 



188 AVRAM SIDI 

In order to determine Y?(O) we proceed as follows: Since T(q) is a 

polynomial in 1 of degree r with vector coefficients, it can be expressed in the 

form 

(4.17) 

Consequently, we can write 

f(m) = 
L-;J!,cjq m + j) 

c~~ocj = i$oPi(m)ai. (4.18) 

where we have invoked (4.9). Substituting (4.18) in (4.13), and applying Ay to 

both sides of (4.13), we have 

A’~( m) = AqS, = ~ pi-,( m)Ui, m=n,n+l,..., q = 1,2,. . .,7. 
i=y 

Here we have made use of 

A’Pi( m) = PiLy( m), 

which can be obtained by employing 

Aq m = 0 i m \ 
i i- d> 

(4.19) 

y=O,l,..., (4.20) 

q=O,l,... . (4.21) 

(4.21), in turn, can be obtained by induction from the identity 

A? = “t 
0 ( 2 1) - (:) = (inrl). (4.22) 
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Let us now write (4.19) in the matrix form 

@o(m) &(m) Pa(m) ... 

@o(m) PI(m) . . . 

0 

AS, 

A’S,,, 

= A3S, , m=n,n+l,... . 

A’S,,, 

189 

(4.23) 

The matrix in (4.23) is a semicirculant matrix, and its inverse is the semicircu- 
lant matrix 

-60(m) 61(m) &(m) ... S,_,(m) 
Boo(m) &i,(m) . . . &-2(m) 

PO(m) . . . B,-,(m) 
0 

with p,(m) as defined in (4.10); see, e.g, [5, pp. 14-161. Consequently, 

a, = 2 a_,( rnj A’S,, m=n,n+l,... 
i=q 

(4.24) 

Substituting now (4.24) in (4.18) letting m = 0 there, and using the facts that 
PO(m) = 1 and T(0) = a0 = Zo, we obtain 

+(O) = X”O •t fI m=n,n+l,... . 
i=l 

(4.25) 

(4.11) can now be obtained by substituting (4.25) in (4.16). 
Setting m = n in (4.11), we see that if the scalars ci are known, then 

s’ + 2, is determined from the vectors xi, n < i < n + k, + r. The ci, on the 
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other hand, are determined from the vectors xi, n < i < n + k, + r + 1, as 
shown in Lemma 4.1. Consequently, only the vectors xi, n ,< i < n + kc + r 
+ 1, are needed for constructing s’ + r”,,. 

The rest of the proof is trivial, and we shall omit it. n 

We note that the ji(m) that are defined by (4.10) can be computed 
recursively from 

&S,(m) = 1, 

(4.26) 
i = 1,2,. . . ,7. 

We also note that the remark following the proof of Lemma 4.1 applies in 
Theorem 4.2 as well. That is to say, the integer 7 can be replaced by d 
throughout. [This would mean, in particular, that ai = 0 for 7 < i < d in(4.18), 
(4.19), and (4.24).] This observation will be of use later. 

The construction above assumes an especially simple form in case J(B) is 
the empty set. In this case d = 1. Consequently, if the system in (1.1) is 
inconsistent, we have r = 1. Using this, (4.11) becomes 

S,- n+$ AS,=s’+f,. 

1 i 

(4.27) 

We restate this result separately for the case in which B is a range-Hermitian 
matrix. 

THEOREM 4.3. Consider the singular and not necessarily consistent system 
in (1. l), and let the matrix B there be range-Hermitian. Let { x,,,}~=~ be the 
sequence generated by Richardson’s iterative method (1.2)-(1.4) with x0 = 0, 
or x,, = BE, 5 being chosen arbitrarily. Let P(X) = C~~lcix’, ck, = 1, be the 
minimal polynomial of A with respect to the vector A2xn, and define S, as in 
(4.8). Then 

S, - n + $-/ AS,= B+f, 

i 1 

(4.28) 

and the vectors that are used in the construction of B+f are 
x nr xn+l.. . . , xn+ko+2. 

In the terminology of Krylov subspace methods Theorem 4.3 implies that, 
starting with x0 = 0 or x0 = BE, B+f is obtained in exactly k, + 2 steps of 
Richardson’s iterative method, which, by (4.1), implies at most N + 1 of these 
iterations. 
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5. DEVELOPMENT OF NEW EXTRAPOLATION METHODS FOR s’ 

In the previous section we showed how s’ can be constructed from an 
appropriate number of the vectors { ~~}~=a that are generated by Richardson’s 
iterative method. Based on this development, in the present section we 
propose a class of extrapolation methods that produce approximations to s’. 
These approximations will be shown to have better convergence properties 
than the sequence { ?,}~=a. We note that the input needed for the extrapola- 
tion methods of this section is the sequence { xj}TZO obtained as in (1.2) and 
the integer d = max{ ri : pi = 0}, namely, the index of B, or any integer 
greater than d when d is not known precisely. (When the matrix B is 
diagonalizable, we know immediately that d = 1.) 

5.1. The General Extrapolation Method 
Pick the integers n 2 0 and k > 1. 

step 1 

(i) Determine the scalars -yj, 0 <j < k, by “solving” the overdetermined 
and, in general, inconsistent system of linear equations 

k 

c T~A~+‘x~+~ = 0, n<m<n+k, 
j=O 

subject to ,toyj = 1. 

Various “solution” methods will be explained below. More are possible, 
however. 

(ii) With rj determined as above, compute the scalars p&n) and p,(O) 
from 

frhus, pa(m) = 1.1 N ex , compute the scalars B,(n) from t 

ijo = 1, 

(5.2) 

(5.3) i= 1,2 ,..., d- 1. 
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Step 2. Compute the vectors S,, n < m < n + d, by 

k 

S, = C YjXm+j' 

j=O 
(5.4) 

Step 3. Compute the vector Zn.k, the approximation to s’ + zo, from 

Z n, k - $ k,( n)Py(0) A’S,. 
I 

(5.5) 

(As mentioned before, by picking x0 = 0 or x0 = Bdt, where E is an arbitrary 
vector, we can cause z. = 0, so that Z,, b ecomes an approximation to s’ 
only.) 

For the case in which d = 1 the extrapolation method above takes on an 
especially simple form: Z,,, is now given by 

k 
Z n,k = S,- n+ cj-yj AS,. 

i ! j=O 

5.2. Methods for the Solution of (5.1) 

Method 1. Determine the scalars ca, cl, . . . , ck_l as the solution to the 
problem 

II 
k-l 

c cj Ad+l~,+j + Ad+‘X,+k 
I/ 

= min, 
j=O 

(5.7) 

where )I z 1) is an arbitrary norm on CN. Following this, set ck = 1, and 
compute the -rj from 

‘j 
yj = c;,,c, ’ j=O,l,..., k. 

Method 2. Determine yo, yr, . . . , -fk as the solution to the problem 

(5.8) 

II 
k 

C Yj Ad+‘Xn+j II = min 
j=O 
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subject to J$Oyj = 1, (5.9) 

where 1) z 1) is an arbitrary norm on C N. By defining the scalars 6,, 6,, . . . ,&_ 1 

by 

1 - 6, = ya; 6,-r - & = yi, 1 < i f k - 2; bk-1 = Yk> (5.10) 

we can rewrite the minimization problem of (5.9) in the equivalent form 

II 
k-l 

Ad+h,,+ c 6iAd+2x,+, 
/I 
= min. 

i=O 

(5.11) 

In methods 1 and 2 above, (weighted) 1, norms can be employed. In 
particular, if the I, or 2, norm is used in (5.7) and (5.11), then the solution 
can be obtained by linear programming techniques. If the 2, norm is used, 
then the solution can be achieved by appropriate least squares techniques or 
even from the normal equations. 

Method 3. Pick k linearly independent vectors g,, . . . , gk, and deter- 
mine the scalars co, ci, . . . , c~_~ as the solution to the k linear equations 

k-l 

JFo (gi> Ad”x,+j)Cj = -( gi, Ad+‘xn+k), 1 G i < k- (5.12) 

Following this, set ck = 1, and compute the -rj from (5.8). 

Method 4. Pick a nonzero vector g, and determine the scalars 

co> Cl,. . . , c&l as the solution to the k linear equations 

k-l 

jFo ( g>Ad+‘r,+i+j) = -(g, Ad+‘“n+i+k)> 0 < i < k - 1. (5.13) 

Following this, set ck = 1, and compute the rj from (5.8). 
In methods 3 and 4 above, the inner product (y, Z) is general. Also, as 

mentioned in [8, 10, 111, if the vectors xi are in an arbitary normed linear 
space, then the inner products (gi, Add+lxn+j) in (5.12) and (g, Add+lrn+i+j) in 
(5.13) can be replaced by Qi(Ad”x,+,) and Q(Ad”r,+i+j) respectively, 
where Qi and Q are bounded linear functionals on the space, and Ql, . . . , Qk 
are also linearly independent. 
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Above we have followed closely the developments of [ll, Section 2.21. We 
note that methods 1 and 2 with the most general I, norm are analogous to 
those that produce MPE and RRE respectively. Similarly, methods 3 and 4 are 
analogous to those that produce MMPE and TEA respectively. For details and 
references pertaining to these methods, see, for example, [7, 8, 10, 111. 

Now the fact that in all of methods l-4 the rj can be determined as 
solutions to a system of k + 1 linear equations suggests that it might be 
possible to express Z,,, in determinantal form and that, as a result, there 
might exist recursion relations amongst the variuos Z,,,, similar to those 
derived in Ford and Sidi [4]. It is proposed to tackle this problem in a future 
publication. 

It is important to emphasize that the scalars rj, Pi(m), and 6i(m), as well 
as the vectors S,,, that are needed in the general extrapolation algorithm 
described above all depend on n and k. The analysis of their precise nature as 
functions of n and k is the subject of the next sections. 

5.3. Connection with Lemma 4.1 and Theorem 4.2 
We note that the steps of the general extrapolation method that lead to 

Z n.k are very similar to those of Lemma 4.1 and Theorem 4.2 that produce 
s’ + Za. It is worthwhile analyzing their differences closely, as this will be very 
helpful later. 

(1) In Lemma 4.1 and Theorem 4.2, k,, is the exact degree of the minimal 
polynomial of A with respect to e, = A”( xl, - s’) or, equivalently, with 
respect to A’+lx,, where r is the exact degree of the vector valued polynomial 
T(m) in (3.1). In th e g eneral extrapolation method k is an arbitrary positive 
integer that is at our disposal, and the integer r has been replaced by d. This 
has been done because r depends on f, the right hand side of (1.1) and on 
x0, which is picked arbitrarily, but d depends only on the matrix B, and thus 
is fixed. Furthermore, r < d always. If we require the exact degree of T(m) in 
our method, then we cannot have a practical method of extrapolation. 

(2) The rj in the general extrapolation method are analogous to cj/C~~oci 
in Lemma 4.1 and Theorem 4.2. We recall that the equations that the cj of 
Lemma 4.1 and Theorem 4.2 satisfy, namely, 

k,-1 

c c~A~+‘x,+~ = -A’+iX,,+k 
j=O 

(5.14) 

[cf. (4.6)], are consistent and have a unique solution, despite the fact that they 
are overdetermined. With k < k,, however, the equations (5.1) that are 
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“solved” in order to determine the rj are inconsistent for each value of m, 
n < m < n + k. In particular, the equations 

k-l 

c c~A~+‘x”+~ = -Ad+lr,,+kr 
j=O 

(5.15) 

obtained by setting m = n in (5.1) which are “solved” in methods 1 and 3 [cf. 
(5.7) and (5.12)], are inconsistent, and thus have no solution in the usual 
sense. This assertion can be proved by contradiction. For, if we assume that 
there exist co, cr. . . . kck_l satisfying (5.15) then, by Ay+l~,+i = AiAq+rx, 
for 9 2 r, we have (Cj,ocjAj) Add+’ 
the polynomial C~=ociX annihilates 

X, = 0, with ck = 1. But this implies that 
Add+ix,, and yet has a smaller degree than 

the minimal polynomial with respect to Adtlr,, which is impossible. 
^ 

(3) T(0) in Theorem 4.2 is a truly constant vector, i.e., the sum 

i$l q$l fii-g(m)Pq(0) Ais,, 
i ! m=n,n+l,..., 

in (4.25) is independent of m. The analogous sum 

that appears in (5.5) with m = n does not have this property when k < k,. 

(4) If k = k, in the general extrapolation method, then Zn,k, = s’ + 2, 

(a) always if the +rj are obtained using method 1 or method 2; 
(b) if the rj are uniquely determined using method 3 or method 4. 

We leave the verification of these assertions to the reader. 

6. PRELIMINARY RESULTS FOR THE CONVERGENCE 
ANALYSIS OF Z,,k 

In this section we derive a closed form expression for the error Z, k - (s’ 
+ go) in terms of the quantities that are computed for the general extrapola- 
tion method. This expression turns out to be very suitable for investigating the 
behavior of the error for n + 00 with k fixed. The error for fixed n and 
increasing k will be the subject of a future publication. 
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THEOREM 6.1. Denote 

k 

E, = C Yjem+jp all m. 
j=O 

(6.1) 

Then 

z n. k - (s’+Zo) = E,+ 5 
i=l [i 1 

-in - q$l Ji--q( a)Pq(O) Ai&. (6.2) 
I 

Proof. Replacing m in (3.1) by m + j, multiplying both sides of (3.1) by 
rj, and summing over j, we obtain 

S, - E, - s’ = 5 yjT(m + j) 
j=O 

= f(m), all m. (6.3) 

Since T(v) is a polynomial in v of degree at most d, it can be written in the 
form 

T(T) = i$ai( I), T(O) = a0 = zo. (6.4) 

Consequently, 

f(m) = iIfoPi(m)ai. (6.5) 

Applying now the technique employed in the proof of Theorem 4.2, we obtain 

f(m) - L?(O) = - i$l ( -im) Aif( all m, (6.6) 

with 

ii(O) = Cl + i$l 
i 
q$l pi-,( m, P,(O) 1 Ai’( m)y all m. (6.7) 

Combining (6.6) and (6.7) in (6.3), and invoking 

A??(m) = A’(S, - Em), all m, i> 1, (64 
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which follows from (6.3), we obtain 

St + iz ,, = S, - E, + 5 
i=l 

- q$18.-q(m)@q(0) 1 Ai(% - Em), 

all m. (6.9) 

Subtracting (6.9) with m = n from (5.5), we obtain (6.2). n 

The following result is a modification of Theorem 3.2 of [9] that is suitable 

for our analysis. 

THEOREM 6.2. For m suffciently large, x, satisfies 

x, - (s’ + t&) - T(m) = e, = some V < Y. (6.10) 

Here ai are complex numbers satisfying 

a, f 0, Uifl; Ui # Uj if i#j, (6.11) 

and are ordered so that 

IUII > I U2 I a 1 U31 a **. . (6.12) 

Pi(m) are polynomials in m with vector coefficients, given in the form 

Pi(m) = j$oYij( y)> some integer pi 2 0, (6.13) 

where the vectors yij, j = 0, 1, . . . , pi, i = 1,2, . . . , V, form a linearly indepen- 
dent set. (Specifically, the ai are distinct nonzero eigenvalues of A correspoud- 

ing to the nonzero eigenvalues pq of B, and yij are some linearly independent 

combinations of the eigenvectors and principal vectors corresponding to those 
eigenvalues A, = 1 - opq of A that are all equal to a,. As a result, pi + 1 < 

max{r, : X4 = 1 - wpq = q}. Also, m sufficiently large means m 2 max{ rq : 1 

- Wq = O}.) 

The proof of Theorem 6.2 can be achieved by recalling that e, = Am( xb - 

s’), and that x& - s’ E Y(B), and following the discussion of [lo, Section 21. 

Note that pi = 0 for all i in case B is a diagonalizable matrix. 
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COROLLARY 6.3. For m sufficiently large, and q 2 d + 1, Aqx,,, has the 
expansion 

(6.14) 

where ki( m) are polynomials with vector coefficients, given in the form 

+i(m) = % Cij[ 7) (6.15) 

Here, for each pair of integers i and j, ijij is a linear combination of yil. 
0 < 1 < pi, and ti,, = ( ai - l)q yip, # 0, so that Pi(m) is of degree pi exactly. 
In addition, the vectors ijij, j = 0, 1, . . , pi, i = 1, . . . , V, form a linearly 
independent set. 

Proof. Applying Aq with q > d + 1 to both sides of (6.10) we obtain 

Aqyx, = Aqem = i$l Aq[ Pi(m)ai (6.16) 

The result follows by actually evaluating Aq[ Pi(m)ai and recalling that 
ai # 1. The details are left to the reader. n 

In the remainder of this work we shall analyze four special cases of the 
general extrapolation method. We recall that the only difference between the 
various extrapolation methods stems from the procedures employed in the 
determination of the yi. In view of this the four methods are those in which 
the yi are determined from 

(1) method 1 with the general 1, norm, 
(2) method 2 with the general 1, norm, 
(3) method 3 with the general inner product, 
(4) method 4 with the general inner product. 

For these methods the yi are determined from the linear systems of equations 

k 

C uij*/j 
j=O 

&Y, 
j=O 

= 0, i = 0, 1, . . . , k - 1, 

(6.17) 

= 1, 
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where 

u.. = 
1J i 

Add”r 
n+i’ Add”X n+j 

1 
for method 1, 

uij = ( Ad+2x,+i, Ad+l~,+j) for method 2, 

Uij = gi+t> Ad+‘xn+j) i 
for method 3, 

(6.18) 

Uij = g, Ad+‘r,,+i+j) 
( 

for method 4. 

For methods 1 and 2 the equations in (6.17) are obtained from the normal 
equations associated with the least squares problems in (5.7) and (5.11) 
respectively. 

In view of (6.17) we have 

$ Yir;’ = 
D(1, x, . . . ) A”) 

i=O D(l,l,...,l) ’ 
(6.19) 

where 

Yo 

uoo 
D(y,, yl>...> Yk) = ulo 

Yl -.* Yk 
uo1 *-- ffOk 

$1 -.* Ulk , (6.20) 

i.e., yi are the coefficients of the polynomial D(1, h . . . , Ak)/Zl( 1, 1, . . . , 1). 
Similarly, in view of (6.1) we have 

E, = D( “;;;;l~. . . ‘I;‘“‘“) . 

, 1..., 

(6.21) 

Note that the first row of the determinant D(e,, . . . , em+k) in (6.21) is 
composed of vectors. When yo, yl, . . . , yk in D( yo, . . . , yk) are vectors, the 
latter is interpreted to be its expansion with respect to its first row. Conse- 

quently, D( yo, . . . , yk) becomes a vector in this case. 
All of these developments are based on [7, 111. 
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7. CONVERGENCE OF Z,, FOR k FIXED AND n + 00 

By Theorem 6.1 concerning the error Z,,, - (s’ + ?a), it is obvious that 
analyzing E, and the pi(O) and a,(n), for k fixed and n ---t 00, is what needs to 
be done. 

We recall that we are dealing with the four special cases of the general 
extrapolation method that are described following the proof of Corollary 6.3. 
For all four methods, we assume that the distinct eigenvalues ai that are 
present in (6.10) satisfy 

for some integer t, and that 

We furthermore assume that 

. . . (& Yto) 

for method 3, and 

IX (g, Yjp,) # O 
j=l 

. . 

, . . 

. . . 

. . . 

(7.2) 

(g1. YUJ,) 
# 0 (7.3) 

(gk7 t&J*) 

(7.4) 

for method 4. No additional assumptions are needed for methods 1 and 2. 

THEOREM 7.1. Under the conditions stated above, 

E,= O(n~lu,+lJ”) as nAo0, (7.5) 
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where p is a nonnegative integer given by 

201 

(7.6) 

and also, for all A, 

where a is some nonnegative integer. 

Proof. For the proof of (7.5) we substitute (6.10) and (6.14) and (6.15) in 

(6.25), and employ the technique that was used in the proof of Theorem 3.1 of 

[lo]. Similarly, for the proof of (7.7) we substitute (6.14) and (6.15) in(6.19), 

and employ the technique that was used in the proof of Theorem 3.2 of [lo]. 

We shall omit the details. n 

THEOREM 7.2. Let us define the scalars & by 

Then, for 0 < q < d, 

= O(1) as n-+03, 

p4(n) = +o&j(n :‘) + O(.I-VI 2in] as n --* 03 (7.10) 

=O(n”) as n-03, 

am%fwOfq<d-1, 

B,(n) = O(nq) as n-+03. (7.11) 
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Proof. From (7.7) in Theorem 7.1 it follows that 

(7.12) 

Combining (5.2) and (7.12), we obtain (7.9) and (7.10). Equation (7.11) is 
obtained by combining (5.3) and (7. lo), and by using induction. n 

Finally, Theorem 7.3 below is our main convergence result pertaining to 
z fl,k for n+ 03. 

THEOREM 7.3. The error in Z,, k satisftes 

Z n, k - (s’+Zn) =O(r~~+~lg~+il”) as n+m. (7.13) 

Proof. The proof of (7.13) can be achieved by combining (7.5) (7.9) and 
(7.11) in (6.2), and noting that A’E, = O(nBI u,+r ) “) as n + 03, for i > 1 as 
well as i = 0, because aj # 1 for all j. We leave out the details. n 
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