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Abstract. 

An interpolation polynomial of order N is constructed from p independent subpolynomials of order 
n ~ N/p. Each such subpolynomial is found independently and in parallel. Moreover, evaluation of the 
polynomial at any given point is done independently and in parallel, except for a final step of summation 
of p elements. Hence, the algorithm has almost no communication overhead and can be implemented 
easily on any parallel computer. We give examples of finite-difference interpolation, trigonometric 
interpolation, and Chebyshev interpolation, and conclude with the general Hermite interpolation 
problem. 
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1. Introduction. 

In this paper we provide new formulas and algorithms for polynomial and 
trigonometric interpolation that are especially useful for vector and parallel machin- 
es. Unlike previous works on this subject, we do not consider ways of parallelizing 
the classical methods such as Lagrange, Newton, Finite difference etc., for poly- 
nomial interpolation, and FFT methods for trigonometric and Chebyshev interpo- 
lation I-5, 8]. Such works, most recently by E~ecio~lu, Gallopoulos and Ko~ I-3, 2] 
for the parallel construction of the Newton and Hermite formulas, Reif 1-7] for the 
construction of the Lagrange formula, Munro and Paterson 1-6] and Dowling 1-1] 
for parallel evaluation, are inefficient for large parallel systems because of their high 
communication overhead. Our new formulas on the other hand require almost no 
communication. 

Received December 1990. Revised June 1991 and October 1991. 
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Fig. 1. A s tar  archi tecture.  

Given a set of interpolation points, we partition them into smaller sets of points, 
and accordingly to smaller independent interpolation problems. That is, given 
p processors, we break our interpolation problem into p smaller independent 
interpolation problems similar in kind to the original one. The corresponding 
subpolynomials are then found in parallel with no communication overhead. For 
that purpose, each processor, operating sequentially, may use the best numerical 
and computational software tools that exist. There is no need for all processors to 
use the same interpolation method or the same number of points, although it is 
recommended that they all solve their subproblems in approximately the same time. 
To evaluate the polynomial we combine the values of the corresponding sub- 
polynomials. We observe that in case p = 1 we may use any sequential method, 
whereas in case p = N, where N equals the degree of the interpolation problem, we 
get the Lagrange method. Hence, our algorithm adapts itself to the number of 
processors available. 

We assume a star-shape model of computation, see figure 1. Here, there is one 
main processor with direct communication channels with the rest of the processing 
elements (PE's) and therefore with insignificant communication delay. For example, 
let N = np, then each PE computes in parallel the function values at its interpolation 
points and constructs the corresponding subpolynomial. Given a point for evalu- 
ation, each PE evaluates its subpolynomial and sends the result to the main 
processor which combines the individual results suitably. Taking p << N the 
communication overhead will contribute little to the overall complexity of the 
algorithm, and we obtain an efficient and practical algorithm. 

In Section 2 we present our new mathematical formulas for the interpolation 
polynomial as well as for the modified barycentric form. We then obtain specific 
formulas and algorithms for the finite difference interpolation problem in Section 3, 
for the trigonometric interpolation problem in Section 4, for the Chebyshev interpo- 
lation problem in Section 5, and for the general Hermite interpolation problem in 
SeCtion 6. 
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2. The interpolation polynomial. 

Let X = {Xo, x l , . . . ,  XN} be a set of given distinct points in the interval [a, b], and 
let f ( x )  be a function defined on [a, b], whose values fj - f(xj) ,  j = O, 1 ..... N, are 
given. We are interested in constructing a representation of the polynomial P(x) of 
degree at most N that interpolates f (x )  on X and is most suitable for parallel 
computation. 

Let {X1, X2,. . . ,  Xp} be a partition of X, i.e., 

(1) S = v o { X i  and X i n X ~ = O  for i # j .  

The following theorem indicates how P(x) can be constructed independently and in 
parallel by p processors, each solving a smaller interpolation problem on one of the 
subsets X;. 

THEOREM 2.1. For i = 1 . . . . .  p, define 

w -'~ = I - L ~ x , ( X j  - xk), x j ~ X , ,  (2) ,,, 

and let Q,(x) be the polynomial of degree at most IXd - 1 that satisfies the followin9 
interpolation conditions: 

(3) Q,(xj) = wi.jfj, xj ~ X,. 

Then P(x), the interpolation polynomial on X, is given by 

P 
(4) P(x) = 2 Qi(x) HxkCX, (x - Xk). 

i=1 

PROOF. First, it is clear that the right hand side of(4) is a sum of polynomials, each 
of degree at most N. Next, with the help of (2) and (3), it can be shown that P(x) 
satisfies the interpolation conditions 

(5) P(xj) = f (x j )  for all j. 

The result now follows from the uniqueness of P(x). II 

It is known [4, 9, t0] that the barycentric representation for Lagrange interpola- 
tion enjoys a large degree of numerical stability. Therefore we look for a generaliz- 
ation of the barycentric representation that is appropriate for the formula given in 
(4). Precisely this is achieved in Theorem 2.2 below. 

THEOREM 2.2 Let Qg(x) be as in Theorem (2.1), and let Ri(x), i = 1,.. . ,p, be the 
polynomial of degree at most IXiI - 1 that satisfies the interpolation conditions 

(6) Ri(xj) = wi,~, x 2 ~ Xi. 

Then P(x) can be expressed in the form 
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PROOF. Comparing (3) and (6), and employing (4), we see that 

(8) 
P 

1 =-- ~ R i (x )  I~x~#x,(X - xk)  for all x, 
i = 1  

which we rewrite in the form 

P 

(9) I = l-I~,,~x (x  - xk)  ~ ,  R,(x)/I-l,~k~x , (x  --  xk). 
i = I  

Similarly, 

P 

(10) P ( x )  = 1-Ix~.x (x  - x , )  ~ Q,(x) /1-[ .k .x  ~ (x  - xk). 
i = 1  

The result now follows by dividing (10) by (9). 

Given p processors, we assign processor i (i = 1,...,p), to computing the corre- 
sponding terms ~bi(x) and ~k~(x). The computation of wi, i takes O ( n i ( N  - hi)) ad- 
ditions and multiplications in the worst case, where n~ = IS~l. However, as will be 
seen in the following sections, in many cases of interest these values can be computed 
analytically in much fewer operations. Assuming that wl,j are known, and that 
n~ ,-~ n ~ N /p,  i = 1 . . . . .  p, each processor is faced with an interpolation problem of 
order n that can be solved simultaneously without any need of interprocessor 
communication. Once the interpolation polynomial is known, its value at points not 
in the set is given by summing and dividing the corresponding subvalues in (7). 

In Sections 3, 4, 5 we consider the problems of finite difference interpolation, 
trigonometric interpolation, and Chebyshev interpolation. For ease of representa- 
tion we will use a slightly different notation as follows: We assume that the function 
f ( x )  is given at N = n p  distinct points and that each of the p subsets X~, which are 
now numbered i = 0 . . . . .  p - 1, contains exactly n points. We denote the points in 
the subset X i by xi,~, j = 0 , . . . , n  - I. 

3. Finite difference interpolation. 

Let X be a set of equally spaced points in the interval [a, b], 

(11) x ~ = a + i h ,  i = 0 , 1 , . . . , N - 1 ,  h = ( b - a ) / ( N - 1 ) ,  

where we assume for simplicity that N = n p  and p is the number of processors 
available. We here consider two partitions. 
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In the first partition we assign the ith group of n consecutive points to the ith 
processor, i.e., 

X ~ = { x ~ . j = x ~ , + j ,  j = 0  . . . . .  n - l } ,  i = 0  . . . .  , p - 1 .  (12) 

Hence, 

in - - t  N - 1  

(13) w~7) = I~ (x,.+j - Xk) I-I (X,.+j -- xk) 
k=0 k=(i  + l)n 

- 1  N -  

where C~ = ( -h)N-"(N - 1)!/(n - I)! is independent o f / and j .  We note that if the 
same constant C multiplies all wi,j, it follows from (3), (6) that the subpolynomials 
Q~(x) and R~(x) are also multiplied by the same constant C but the interpolation 
polynomial P(x) remains invariant by (7). In view of this, each processor has to 
compute the corresponding polynomials Q~(x) and Ri(x) that satisfy the interpola- 
tion conditions 

- 1 n 1 / in N - -  

(15) R ~ ( x , d ) = ( - l f f ( N - + ~ ) / ( n T l  ) ,  

for j = 0,. . . ,  n -  1, and this computation can be carried out using any finite 
difference formula. 

In the second partition the subsets X~ are formed according to 

(16) X i = { x i o = x i + j p ,  j = O ,  .... n - - l } ,  i = O  . . . . .  p - 1 .  

Consequently, 

] - ] i + j p -  - -  X ~ I - I N - 1  
- 1  I l k = 0  l ( x i + j p  k I l l k = i + j p + l ( X i + j p  - -  Xk)  

(17) wi,j = ~-1 - x ~VI,,-1 1-I,=o(x,+ip , + , p , l , , = j + , ( x , + j ~  - x,+,,,) 
( 1 ) / ( N - -  1) 

(t8) = C2( -  1) '+~p- 1) n - 
j i +jp  

where C2 = Clip n- 1 is independent o f / and j .  Each processor has to compute the 
corresponding polynomials Qi(x) and Ri(x) that satisfy the interpolation conditions 

N - 1  n - - l ) ,  
(19) Q,(x,.i)= (-1)~+~{P-*'f~+,p ( i  + , p ) / ( j  

i +jp  j ' 



NEW ALGORITHMS FOR POLYNOMIAL AND . . .  469 

fo r j  = 0, . . . ,  n -- 1. As before, this computation can be carried out using any finite 

difference formula. 

The table below gives rough estimates on the total operation count for p << N: 

sequential parallel speed-up 

Construction (N -- 1)N/2 (N - n)n ~p/2 
Evaluation N 2(n + p) ~ p/2 

We point out that w~. i, being dependent only on N and p, can be computed in 
advance for a wide range of applications. The corresponding construction phase is 
then reduced to n z, a saving by a factor p. 

4. Trigonometric interpolation. 

Let O j, j = 0, 1 . . . .  , N - 1, be equally spaced points in [0, 2rr] given by 

(21) Oj = 2roy/N, j = O, 1 . . . . .  N - 1, 

and let f(O) be a function defined on [0,2n] whose values 
f1 =- f(Oj), j = 0, 1 , . . . ,N  - 1, are given. Furthermore, let N = 2M. Then there 
exists a unique balanced trigonometric polynomial T(O) of degree M,  

M - 1  

(22) T(O) = ½ao + ~ (at, cos kO + b k sin kO) + ½aM COS MO, 
k = l  

interpolating f(O) at the points 0j, j = 0, 1 , . . . ,  N - 1, see [4]. A complex inter- 
pretation of T(O) in terms of the variable z = e i° yields the balanced complex 
trigonometric polynomial P(z) =-- T(O) of degree M, 

M - 1  

(23) P(z) = ½C_M z - M  + • CkZ k + ½CMZ M, C-M = CM, 
k = - M + I  

whose coefficients ck are related to the a, and b, in (22) through 

(24) a, = ck + c-k ,  bk = i(Ck -- C-k), k = O, 1 , . . . , M .  

Of course, P(z) satisfies the interpolation conditions 

(25) P(zi) = T(Oj) = J~, j = 0,1, . . . ,  N - 1, 

where z i are given by 

(26) z i = z ~ ,  j = 0 , 1  . . . . .  N - l ,  with z l = e  2~/N. 

The coefficients c~ of P(z) can be computed from 
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1 N-1 
= =~O J~Z~-Z, l = --M, - -M + 1 . . . .  ,M, (27) cz N- k= 

and this, with the help of the FFT, can be done in O(N log N) operations. We note 
that the parallel FFT algorithm requires approximately O(logp) steps of inter- 
processor communication, and further, that the resulting polynomial needs further 
processing for parallel evaluation. In this section we introduce a new representation 
for P(z) that can be computed on a parallel computer with almost no interprocessor 
communication. Specifically, we divide the original trigonometric interpolation 
problem into p trigonometric interpolation problems of smaller size, each of which is 
of the same type as the original problem. Furthermore, the FFT can be employed in 
each of these problems. 

Let N = np with n = 2m, and consider the partition {Zo, Z1,. . . ,  Zp_ 1) of the set 
of points Z = {Zo,Zl,...,zN- i}, where 

(28) Zz={zz ,r=&+,p=zzz~,  r = 0 , 1  . . . . .  n - l } ,  l = 0 , 1  . . . .  , p - 1 .  

THEOREM 4. I. For I = 0, 1 . . . .  , p -- 1, define 

W - 1  = Z - M + m  (29) I., l,, I~ (zl., - zk.t), r = 0, 1 . . . .  , n - 1, 
k g:l 

and let Qz(s) be the balanced complex trigonometric polynomial of degree m that 
satisfies the interpolation conditions 

(30) Q,(z'v) = fz +,pWz, r, r = O, 1 . . . . .  n - I, 

on the subset of points Zo. Then P(z), the balanced trigonometric polynomial that 
satisfies the interpolation conditions in (25), can be expressed in the form 

p - - 1  

(31) e(z)  = z -M+" Y~ 9.,(z/z,) 1-[ (~ - z~.,). 
t = 0  k ~ l  

t~ooF. First, it is clear from (29) and (30) that P(z) in (31) satisfies the interpola- 
tion conditions in (25). Next, by (23), Qz(s) is of the form 

(32) 

Also 

(33) 

with 

(34) 

m - I  
@z(s) = ½d_ , . s -"  + ~ dks k + ½d,.s", d_ , .  = 4 . .  

k= - m + l  

M - i n  

z-','+,~ H (z - z~.,) = Z gk z~ 
k ~ l  k =  - M + m  

N - 1  
g-M+,. = 1--L(--Zk,,)= I~=on_l (--Z)) =Zt-n and 

k#l H r = O  ( - -Z t , r )  
g M - r a  ~ 1. 
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The first result in (34) follows from the fact that z; are Nth roots of unity, while the 
are the nth roots of unity. Substituting (32) in (31), and using (33) and (34~, we see 

that each of the terms z -  M +,.Ql(z/zz) i - ik ,  l(z -- Zk, t) in (31) is of the form ~kM= _ M hk zk 
with 

(35) h-M 1 m = ½d_, ,z{"  1 -m = ~ d - m z t  g - M + m  = "~dmzI g M - m  = hM,  

ensuring that P(z) is balanced. The rest follows from the uniqueness of P(z). • 

As before, we look for a generalized barycentric formula. This formula is develop- 
ed in Theorem 4.2 below. 

THEOREM 4.2. For l = O, 1 . . . . .  p -- 1, let Ql(s), be the balanced complex trigonomet- 
ric polynomial of  degree m that satisfies the interpolation conditions 

( 3 6 )  = ( -  r = 0 , 1  . . . . .  n - t ,  

on the subset o f  points Z o. Then the balanced trigonometric interpolation polynomial 
P(z) of  Theorem (4.1) can be expressed in the form 

(37) P(z) = Z~-7~ ( -  1)'zi-mQt(z/zt)/((z/zt)" - 1) 

where, depending on whether p is even or odd, R(s) assumes the simple forms 

(38) /~(s) = {1 if  p is odd 
½(sm + s -m) if p is even. 

PROOF. For I = 0, 1 . . . . .  p - 1, we let R~(s) be the balanced complex trigonometric 
polynomial of degree m that satisfies the interpolation conditions 

(39) Rl(z~) = wt.,, r = O, 1 . . . .  , n -- t, 

on the subset of points Zo. Comparing (39) with (30), it is obvious from Theorem 4.1 
that 

p - 1  
(40) 1 - z -M+" E R,(z/z,) I-I (z - zk.O. 

/=o  k ~ t  

Dividing now (31) by (40), we obtain the barycentric formula for P(z) 

(41) P(z) = ~'~=~ Q l ( z / z , ) / ~ - ~ ( z  - zz,,) 
P - I  R z n - 1  _ • )-'~l = 0 t( /zi)/I~,=o (Z Zl.r) 

Next, we observe that 

(42) H (z,,, - Zk.,) = H ( z , , , -  zk.,) / H ( z t . , -  z,.,) 
k ~ l  k , t ~ t , r  t ~ r  

= (Nz~ 71)/(nz,],; 1) = p z l ,  r,-n 
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W-1 -M-m t.,. = pzz.,. = p ( -  t )I+r~P-I~ZY "- 

n - 1  n - 1  

(44) 1--I (z --  zt,,) = z'~ 1-[ (z/zt  --  z~) = zT((z/zt)" --  1). 
r = O  r = O  

Compar ing  (36) with (30), and invoking (43), we see that  

(45) Qt(s) = p -  1( _ 1)Zz,~Oz(s), 1 = 0,1, . . . .  p - 1. 

Similarly, if we define/~(s) to be the balanced complex t r igonometr ic  polynomial  
that  satisfies the interpolat ion condit ions 

/~(z~) = (-- 1) '(p- 1), r = O, 1, . . . ,  n -- t, (46) 

then 

(47) Rt(s)  = p - 1 ( _  1)lz~,/~(s), l = 0, 1, . . . ,  p - 1. 

Combining (44), (45), and (47) in (41), we obtain (37). Finally, (38) can be seen to hold 

by inspection. • 

N o w  that  we have obtained the barycentr ic  form of  P(z),  we can obtain that  of 
T(O), the real form of P(z),  very easily as follows: 

(48) T(O) = ~ - ~  ( -  1)t(lt(O - Ot)/sin m(O - 0,) 

where 01(q~)= Qt(s), with s = e i~, is the balanced t r igonometr ic  polynomial  of 

degree m that  satisfies the interpolat ion condit ions 

(49) (It(Op,) = ( -  1) '~"- 1)fz +,p, r = 0, 1 , . . . ,  n - 1, 

and f/'(~b) is given by 

1 if p is odd. 
(50) f/'(~) = cos mq~ if p is even. 

We have the following opera t ion count  for construct ing and evaluating the 

polynomial  when p <<  N: 

sequential parallel speed-up 

Construction N log N n log n ~ p 
Evaluation N n + 2p ~p 
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We obtain a speed-up of order p both in the construction and evaluation of the 
polynomial as compared to the sequential F F T  algorithm. 

5. Chebyshev interpolation. 

Let xj, j = 0, 1 , . . . ,N  - 1, be N Chebyshev points in [ -  1, t ]  given by 

(51) xj = cos 0~, 0~ = 2j + 1 2N re, j = 0 , 1  . . . .  , N - l ,  

and let f ( x )  be a function defined on [ - 1 , 1 ]  whose values f j -= f (x j ) ,  
j = 0 , 1  . . . . .  N - 1 ,  are given. Let N = n p ,  and consider the partition 
X = {Xo, X1 . . . .  ,Xp_l}, where 

(52) Xl={x~ , r=x t+rp ,  r = 0 , 1  . . . . .  n - I } ,  l = 0 , 1 , . . . , p - 1 .  

We define a new partition, Y = {Y0, Y1 . . . . .  Yq_l), q = [(p + 1)/2J as follows: 

(53) Y z = X t u X r ,  l ' = p - l - l ,  l = 0 ,1 , . . . ,q  - 1. 

LEMMA 5. I. For 1 = O, 1 . . . . .  q -- 1, define 

(54) - 1 Wm,r = I-[ (Xm, r--Xk,t), m = l , l ' ,  r = 0 , 1 , . . . , n - - 1 ,  
k¢-l,l" 

and let Qt(x) be the polynomial of  degree I Yzl- 1 that satisfies the interpolation 
conditions 

(55) Qt(Xk.r) = fk+,pWk,,, k = I,I', r = O, 1 . . . . .  n - 1, 

on the subset of  points Yr. Then P(x), the interpolation polynomial on X,  can be 
expressed in the form 

q--1 

(56) P(x) = ~ Q,(x) H ( x -  xk,t). 
/ = 0  k e l ,  t" 

PROOF. The result in (56) follows from Theorem 2.1. • 

In developing the barycentric formula we distinguish between the cases in which 
p is even and odd. 

THEOREM 5.2. Let p be even, and for I = O, 1 . . . .  , q - 1, let Ol(x), be the polynomial 
of  degree 2n - 1 that satisfies the interpolation conditions 

(57) (~l(Xk,,)=j~+~p, k = l , l ' ,  r = 0 , 1  . . . . .  n - 1 .  

Then P(x) of  Lemma 5.1 can be expressed in the form 
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(58) P(x) = ~1-S°l ( -  1)z sin 2nOzQl(x)/(Tzn(x ) - T2.(xl) ) 
q -1  ~ ,  =o ( -  1) ~ sin 2nO~/(T2,(x) - - T 2 . - ~  

where Tk(x ) is the Chebyshev polynomial of  the first kind of  degree k. 

PROOF. Fo r  I = 0, 1 . . . .  , q -- 1, we let R~(x) be the polynomial  of degree 2n - 1 that  
satisfies the interpolat ion condit ions 

(59) Rt(Xk, r) = wk.r, k = l, l', r = O, 1,. . . ,  n - 1, 

on the subset of points Y~. We then obtain the barycentr ic  formula for P(x) 

X " - I  x (60) P(x) = ~S-d  Qt( )~Fir = o ( - x,,r)(x - Xr,r) 
t l -1  O, ) / l l r = O  ~t=o R rxWrl"- x (x xl.,)(x xv,~) 

f rom Theorem 2.2. Observing that  

(61) I-I (x - xk,,) = 2-2"+l(T2,(x)  - T2,(xt)), 
k=l,l" 

we obtain 

(62) I ]  (x~,, - Xk,,) = l-I (Xz,~ -- Xk.,) (XI, r - -  Xl.t)  1"1 (X/ , r  - -  XI'.t) 
k*l, l"  k , t~ l , r  t = O  

( N sinNO,,, ~ / ( . 2 n s i n 2 n O , , , )  
- \ ~ - T ~ ,  ] / \  22 , -  1 sin 0,,~ ] 

and hence, 

(63) Wk,,=Co(--1)  I s in2n0 .  k = l , l ' ,  r = 0 , 1  . . . . .  n - - l ,  

where Co = 2 N- 2, ÷ i/p is a constant  independent  of t and r. Compar ing  (55), (57) and 

(59) with (63) we obtain 

(64) Qt(x) = c o ( -  1) t sin 2nOfQz(x), 

(65) Rt(x) = c 0 ( -  1) t sin 2nO,, 

for I = 0, 1 . . . . .  q - 1. Combining (64), (65) and (61) in (60), we obtain (58). • 

THEOREM 5.3. Let p be odd, and for I = 0, 1 . . . . .  q - 2, let Ql(x), be the polynomial o f  
degree 2n - 1 that satisfies the interpolation conditions 

f ( -  1)'J; +,p, k = I (66) O,(x,,,) (--  1)'+ lfv+,p,  k = l '  r = O ,  1 . . . . .  n - l .  
L 

Furthermore, let O.q- l (x), be the polynomial of  degree n - 1 that satisfies the interpola- 
tion conditions 

(67) Qq- l(x) = f~ - i  +,p, r = 0, 1 . . . . .  n - 1. 

Then P(x) of  Lemma 5.1 can be expressed in the form 
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~7202 (-- 1)' sin 2nO, O.dx)/( Tz,(x) - T2,(x,)) + ½(- 1) ~- ~ 0_.~- J`(x)/ T,(x) 
(68) P(x) 

(69) 

(70) 

Furthermore,  

(71) 

and therefore, 

(72) l-I 
k gaq--1 

~7_---o 2 ( - 1)12 sin nOl T.(x)/(T2.(x) - T2.(xz)) + ½(- 1) ~- 1/T.(x) 

PROOF. We start by observing from (62) that  for I = 0 , ! , . . . ,  q - 2 

wl,, = c o ( -  1)t+'sin 2nOz, 

wv,r = Co(- 1) z+'+ a sin 2nOl. 

n - 1  

lq (X -- Xq-l,t) = 2-"+IT~(x), 
t = 0  

(X,_ l . , -  x~.3= l-I ( x , - 1 . , -  x~ . , ) / l l (xq_l . , -  xq_l.,) 
k , t # q -  l ,r  

_ (   s oNo. , .  3 / (  , .  
- \ 2 N - j ` s i n O q _ l , , . J / \ 2  "-J` s i n O q _ l , , . / "  

Finally 

(73) wq_ J`,. = c J̀ ( - 1) q- J̀ , 

where e 1 = Co2"- 1 is a constant  independent of q - 1 and r. Compar ing (55) and (59) 
with (66), (69) and (70) we obtain for I = 0, 1, . . . ,  q - 2, 

(74) Ql(x) = Co(-  1) l sin 2nO~Q_.z(x), 

(75) Rt(x) = Co(-  1) 1 sin 2nOl T.(x)/T.(x~). 

Similarly, from (67) and (73) we obtain 

(76) Q~- l(x) = c 1 ( -  1) q- J`Qq- l(x), 

(77) R~_ x(x) = c J`(- 1) " -  1. 

Combining (74), (75), (76) and (77) in (60), we obtain (68). • 

We next show how to find the corresponding polynomials O~(x), 
l = 0, 1 . . . . .  q - 1 using the F F T  algorithm. We give explicit formulas for the case 
where p is odd. The case where p is even is solved similarly. Let Q(x) be a polynomial  
of degree m - 1. Then Q(x) has a unique representation in terms of the Chebyshev 
polynomials of order less than m, i.e., 

m - J ,  

(78) Q(x) =½ao + ~ aj, Tk(x). 
k = l  

Rewriting the series in terms of x = cos 0, z = e ~° we get the corresponding "sym- 
metric" complex polynomial  of degree m - 1 
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m--1 

(79) C(z) = ~ Ck zk, Ck = C-k = ½ak, 
k = - m + I  

Let Q(x) satisfy the interpolation conditions 

2 j + 1  
(80) Q(x~)=g~, x j = c o s O j ,  O j -  2m 

then C(z) satisfies the interpolation conditions 

I L A N  B A R - O N  A N D  A V R A M  SIDI 

k = 0 , 1  . . . . .  m - 1. 

- - ,  j = O ,  1 . . . .  , m - I ,  

(81) C(vi) = P(x~) = gj, vj = e i°j, j = O, 1 . . . . .  m - 1, 

and vice versa. Hence, Q(x) can be obtained from C(z). 

THEOREM 5.4. Let C(s) be the balanced complex trigonometric polynomial of  degree 
n that satisfies the interpolation conditions 

~ Z j  _ 1 
( 8 2 )  ~'C(1) - -  ~ - L - - I  +jp j ,  ,,+~ 1 = n -  l - - j , j = O ,  1 . . . . .  n - - l ,  

[ d ( z l  ) = ½f~-l+i'v 

where z 1 = e ~/". Then C(z), the symmetric complex polynomial of  degree n - 1 
corresponding to Qq_ l(x) in (68), can be expressed in the form 

(83) C(z) = d(z /z l /2)  + d(1/(zzl/2)).  

PROOF. First, it is clear from (83) that C(z) is a symmetric complex polynomial.  
Furthermore,  from (23) C(s) is of the form 

n--1  

(84) d(s) = ~c_.s -"  + ~ c~s k + ½c.s", c_ .  = c.. 
k =  - n + l  

Consequently,  the coefficients of z" and z -"  in (83) are 

(85) ½c.(z;  "/2 + z"(2) = O, 

and C ( z ) i s  of degree at most  n - 1 .  Next, I ' ;_t = X q - i  = { c O s ~ n l ~ ,  

j = 0, 1 . . . . .  n - 1 t is a set of n Chebyshev points, a n d  therefore from (82) 

(86) C(vj) = C(z{) + C(z] +("-1 -J)) = Jq- t  +j,, j = 0, 1 . . . . .  n - 1, 

and C(z) satisfies the interpolation conditions. • 

THEOREM 5.5. Let ~(s) be the balanced complex trigonometric polynomial of  degree 
n that satisfies the interpolation conditions 

(87) yC(z~) = f l+j ,  j ,  [~(z]+j) = j~,+j,p = n - l - j ,  j = O ,  1 . . . . .  n - l ,  
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where z l  = e ~/" and I < q - 1. Then C(z), the symmetric complex polynomial of  deoree 
2n - 1 corresponding to ( - 2 i  sin 2nOiQl(x)) in (68), can be expressed in the form 

= C(z) + C(z-1) .  

PROOF. First, it is clear from (88) that C(z) is a symmetric complex polynomial. 
Furthermore,  from (23) C(z/v~) is of the form 

(89) = ½c_, + ~ Ck + ½C. C_, = C,. 
k= - n + l  

Consequently the coefficients of z 2" and z -  2, in (88) are 

(90) ½c,((VrVz)-" -- (VrVt)") = O, 

and C(z) is of degree at most 2n - 1. Next, we observe that 

(91) C ( z ) = 2 i s i n n ( O - 0 , , ) ~ ( ~ )  

and therefore from (87) and (66) 

(92) C(vl,j) = ( -  1) j -  12i sin 2nOl~(z~) = - 2i sin 2nOlQ(xt,j), 

(93) C(vr, j) = ( -  1) j 2i sin 2nO~ ~(zx z"- 1-5  = - 2i sin 2nOzO.s(xr,j). 

and C(z) satisfies the interpolation conditions. • 

We have the following operation count for constructing and evaluating the 
polynomial when N ,-~ n(2p), p << N: 

sequential parallel speed-up 

Construct ion N log N 2n log (2n) ~ p 
Evaluation N 2(n + p) u p  

Again we obtain a speed-up of order p both for the construction and evaluation of 
the polynomial as compared to the sequential F F T  algorithm. 

6. The general Hermite interpolation problem. 

Let X = {Xo, xl  . . . . .  xM} be given distinct points in the interval [a, b], and let f ( x )  
be a function defined on [a, b], for which 

(94) f ]  - f t°(xj),  t = O, 1 . . . .  , kj - 1, j = O, 1 . . . .  , M,  
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are given. We are interested in constructing a representation of the general Hermite 
interpolation polynomial P(x) of degree at most N, N + 1 = ~_a'~ o k j, that interpo- 
lates f ( x )  on X, i.e., 

(95) P(')(x~) = f] ,  t = O, 1 . . . . .  kj - 1, j = O, 1 . . . .  , M ,  

and is most suitable for parallel computation. 
Let {X1, X2 . . . . .  Xp) be a partition of X, i.e., 

(96) X =  uPtXi and X ~ c ~ X j = O  for i # j .  

The following theorem indicates how P(x) can be constructed independently and in 
parallel by p processors, each solving a smaller general Hermite interpolation 
problem on one of the subsets X~. 

THEOREM 6.1. For  i = 1 , . . . ,  p, and xj  ~ X~, define 

(97) v°j = Hx,¢x,(Xj - x,) ~', 

k, 
(98) z ~ d = ( - 1  )t ~ ( x j _ x , ) t + 1 ,  t = 0 , 1  . . . . .  k j - 2 ,  

x , .¢X~ 

l t - 1  
t ~o s , - l - s  1 . . . . .  k j - 1 ,  (99) vi, s = t ~ =  vi,jzi.j , t = 

- -  S t - - s  0 (100) q~,s = \ t! ~ q~,sv~,s v~, s, t = O, 1 . . . . .  k s - 1. 

Let Q~(x) be the polynomial  o f  degree at  most  nl - 1, n~ = ~,~j~x, k~, that  satisfies the 

fo l lowing interpolation conditions: 

(101) Ql°(xj) = t!q~d, t = O, 1 . . . . .  kj - 1. 

Then  P(x), the interpolation polynomial  on X ,  is given by 

p P 

(102) P(x) = ~ Q i ( x ) I - I x , ¢ x , ( X - x , )  k ' =  ~ Q,(x)l,(x). 
i=1 i=1 

Pgoor. First, it is clear that the right hand side of (102) is a sum of polynomials 
each of degree at most N. Next, we observe that 

l;(x) t,(x) E k ,  = - -  = ti(x)zi(x) 
x ~ ¢ X i  X - -  X r 

(103) 

and 

(104) l[t+ 1)(x) = t l},)(x)z}t_S)(x ) 
= o ks /  

= t! ~ l[')(x) z l t - ' ) (x)  
s! 
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Comparing (103) and (104) with (97)-{99), we see that 

zl°(x j) = t.zid, t = O, 1 , . ,  kj - 2, (105) 

and 

(106) 
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(110) 

and 

(111) 
2 

Ri(xj) = 1/v°~, R~(xj)= - Z - - "  
xrCXt X j  -- X r 

We can find the formulas for ~,j, s = 0, 1 . . . . .  kj - 1, in 

o (  z k ,x- x,, + <_ o  ,ix - x,, + or) (112) 
\xj~Xi / 

operations, and the formulas for the q[j ,  s = 0, i , . . . , k j ,  in 

l[O(xj) T ~ .. - = t.v~d, t = O, t, . ,kj  1. 

Differentiating both sides of (102) t times, and setting x = xi~X~ there, we finally 
obtain 

(107) P~°(xj) = *)(xj)l[ t - *)(x j) 
s = 0 k  / 

t 

(108) = t ! ~  ~ , - 8 _  t q l , j V l , j  - -  f j ,  
s = O  

as required. The result now follows from the uniqueness of P(x). • 

We conclude with the barycentric formula for P(x) given in Theorem 6.2 below. 

THEOREM 6.2. The general Hermite interpolation polynomial P(x) of  Theorem 6.1 
has the barycentric form 

(109) P(x) = ~ = 1  Qi(x)/I-I.jex, (x - x j) kJ 

where Ri(x), like Q~(x), is a polynomial of degree at most ni - 1 that satisfies the same 
interpolation conditions with f j replaced by 1, and f]  by 0, t = 1 . . . . .  kj - 1, for all j. 

PROOF. As in Theorem 2.2. • 

For example, for the classical Hermite interpolation problem, in which k~ = 2 for 
all j, we get 

2 
t) 0 ' X Qi(xj) = fff ,,j, Q,( j) = fj '/v°j - f j  Z 

x~Xl Xj -- X r 
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operations. Let ni "~ n ~ N / p ,  i = 1 , . . . , p ,  and assume that the v~,j are known. 
Each processor is then faced with a general Hermite interpolation problem of order 
n approximately that can be solved in O(n 2) operations. 

7. Conclusion. 

We have presented new mathematical formulas for polynomial and trigonometric 
interpolation that are especially useful for parallel computers. These interPOlation 
formulas adjust themselves to the number of processors available, receiving a classi- 
cal form in case of a single processor, and the Lagrange form in case there are as 
many processors as needed. The interpolation problem is broken down into smaller 
independent subproblems, which can be solved independently using currently 
existing software tools. We have shown that in most cases of interest the formulation 
of the interpolation subproblems can be done analytically, reducing the problem 
from order N to order n .,~ N / p  and achieving optimum speed-ups. Furthermore, the 
barycentric formula developed in the present work can be seen to enjoy a high 
degree of numerical stability as in the case with the barycentric formula for the 
ordinary Lagrange interpolation. 
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