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Let {Xm}~=o be a vector sequence obtained from a linear fixed point iterative technique in a 
general inner product space. In two previous papers [6,9] the convergence properties of the 
minimal polynomial and reduced rank extrapolation methods, as they are applied to the vector 
sequence above, were analyzed. In particular, asymptotically optimal convergence results per- 
taining to some of the rows of the tables associated with these two methods were obtained. In 
the present work we continue this analysis and provide analogous results for the remaining 
(intermediate) rows of these tables. In particular, when {Xm}~_-o is a convergent sequence, the 
main result of this paper says, roughly speaking, that all of the rows converge, and it also gives 
the rate of convergence for each row. The results are demonstrated numerically through an 
example. 

1. In t roduc t ion  

Let B be an inner product space over C, the field of complex numbers, and let 
(x, y) and Ilxll -- x)  be, respectively, the inner product and norm associated 
with B. The homogeneity property of the inner product is such that, for c~, 13 ~ C 
and x, y E B, (c~x, 13y) = 613(x, y). Let x0, Xl, x2,.. . ,  be a given sequence of vectors in 
B. In case this sequence converges denote its limit by s, otherwise, let s stand for 
its antilimit. Whether this sequence converges or not, we can apply to it vector 
extrapolation methods in order to obtain good approximations to s. In the present 
work we shall concentrate on two such methods that have proved to be especially 
successful in many cases. These are the minimal polynomial extrapolation (MPE) 
of [1] and the reduced rank extrapolation (RRE) of [2] and [5]. For a method almost 
identical to RRE, see also [4]. For a detailed survey of these and other related meth- 
ods, see [10]. For their efficient and stable numerical implementation, see [8]. 

When applied to the sequence xo, xl ,x2, . . . ,  each of the methods MPE and 
RRE produces a two-dimensional array of approximations to s. These approxima- 
tions, which we denote $n,k, are of the form 
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with 

w", (n,k) 
S,,,k = 2..,  7) x,+y , 

j=0 
(1.1) 

k 
(,,k) 

= 1. (1.2) 7) 
j--0 

The ~,,,k), in addition to (1.2), satisfy the k linear equations 

k 
~ . .  (~)_ (n,k) 

ui d r j  ---- O, O<i<<.k -  1, (1.3) 
j=0 

where 

u!~.) = ,j" (un+i, u,,+j) for MPE,  
(1.4) 

'd l (Wn+i, Un+j) for R R E ,  

Ui = Z~Xi = Xi+l -- Xi a n d  wi = z~Ui = Z~2Xi, 

with 

i =  0,1,2, . . . .  (1.5) 

Using (1.1)-(1.4), Sn,k can be expressed as a quotient of two determinants. For all 
these developments, see [6]. 

Let us order the 8n,k in a table akin to the Pad6 table as follows: 

3 0 , 0  S I , 0  8 2 , 0  �9 �9 �9 

8 0 , 1  81 ,1  8 2 , 1  �9 . . 

8 0 , 2  8 1 , 2  8 2 , 2  �9 . . 
(1.6) 

In [6] and [9] the problem of convergence of the rows of this table was addressed 
for sequences {Xm }~~ in B that satisfy 

c o  

Xm ~ S + ~ Pj(m))~j  as m ~ c ~ .  (1.7) 
]=1 

X co Here s is the limit or antilimit of the sequence { m}m=0 as already mentioned, and 
Aj are scalars that satisfy 

I)ql/> I,X21 i> I,X31 (1.8a) 

Ai # Aj if i # j ,  Ai # 0 and Ai # 1 for all i. (1.8b) 

In addition, we assume that there can be only a finite number of Aj having the 
same modulus. Pj(m) are polynomials in m with coefficients in B, which we write in 
the form 
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/m) 
Pj(m) = E y j l [  , , (1.9) 

1=0 \ ~" 

where (7) are binomia l  coefficients and  yjl, t = 0, 1 , . . .  ,pj,j = 1 , 2 , . . . ,  fo rm a line- 
ar ly  independent set of vectors in B. We agree to order the ~j such that 

if I~jl = I~j+ll, thenpj~>pj+l .  (1.10) 

The meaning of (1.7) is that for any integer N there exist a positive constant K 
and a positive integer m0 that depend only on N, such that for every m/> m0, 

X m -- $ - -  ~ Py(m)A~' ~<KanJ 'N[ANI m . ( 1 . 1 1 )  

Sequences of vectors generated from nonsingular linear systems of equations 
by using stationary fixed point iterative techniques are exactly of the form 
described above. For this case the Aj are distinct nonzero eigenvalues of the matrix 
of iteration, and, for each j,  the vectors yjl, 0 <<. l <<.pj, are in the invariant subspace of 
this matrix that corresponds to Aj. The vector s, which is the limit or antilimit of 

X co the sequence { m}m=O, n O W  is simply the solution of the linear system. Note that 
when the matrix of iteration is diagonalizable, p] = 0 for all j,  i.e., Pj(m) are all con- 
stant in m. For a defective matrix ofiterationpj # 0 for some j, in general. A short 
description of all this will be given in the beginning of the next section. For the 
detailed derivation, see [9, section 2]. 

The following result concerning the rows of the MPE and RRE tables was 
proved in [9, theorem 3.1], see also [6, theorem 3.1]. 

T H E O R E M  1.1 

Let the sequence {x/}~= 0 be exactly as described above. Let 

I~,1>1~,+11 

for some integer t, andlet 

(1.12) 

j = l  

Then, for both MPE and RRE, the approximations Sn,k exist for all sufficiently 
large n, and satisfy 

Sn,k -- S = F(n)nl"+~]At+l[ n , (1.14) 

where 

sup lit(n)II < oo .  (1.15) 
n 

Furthermore, the dominant part of F(n) as n-+ oo is the same for both MPE and 
RRE, as a consequence of which, we also have 

k =  E ( p j +  1). (1.13) 
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sMPE _RRE (1.16) n,k - -  S ,'., a'n, k - -  S a s  n - - *  c r  

Under the conditions imposed, this result is optimal and cannot be improved 
upon. 

Judging from (1.12) and (1.13), we see that theorem 1.1 can cover all the rows 
of the extrapolation tables provided both of the following are satisfied: 

(i) pj = 0 for all j ,  
(ii) I,Xtl > I,X21 > I,X31 > . . . .  

Otherwise, theorem 1.1 covers only part of the rows dictated by (1.12) and (1.13), 
i.e., only those rows k for which k is as given by (1.13) for some t, and (1.12) is satis- 
fied for this t. For instance, when pt+l >0, the rows k, with k = )-~'~=1 (PJ + 1) + i, 
1 <<, i <~Pt+l, a r e  not covered by theorem 1.1. 

The purpose of the present work is to treat the problem of these intermediate 
X oo rows. We shall do this under the additional assumption that the sequence { re}m=0 

is generated by a stationary linear fixed point iterative technique. In section 2 we 
consider a sequence obtained from the iterative solution of a linear system of equa- 
tions in C N, and show that a result very similar to (1.14) and (1.15) holds for all 
intermediate rows of the RRE and MPE tables, unconditionally for the former and 
under some mild conditions for the latter. The main result of section 2 is theorem 
2.3. In section 3 we give the solution to an integer programming problem that arises 
in theorem 2.3, the main result of this section being theorem 3.2. In section 4 we ver- 
ify numerically the results of theorems 1.1 and 2.3 by applying MPE and RRE to 
vector sequences obtained from finite difference discretization of a two-dimen- 
sional convection-diffusion equation. Now theorem 1.1 actually holds for a slightly 
generalized form of MPE and RRE that is described in [9, p.37, eq. (1.16)]. In sec- 
tion 5 we describe this generalization, and show that theorem 2.3 holds for this gen- 
eralized form as well. In section 6 we go back to the general inner product space 
B, and show that the results of section 2 can easily be extended to this case with no 
substantive changes. 

2. Theory for f'mite dimensional spaces 

2.1.  G E N E R A L  C O N S I D E R A T I O N S  

We assume in this section that B is the N-dimensional space C N. Let us denote 
by s the solution of the nonsingular linear system of equations 

x = A x  + b .  (2 .1)  

X oo Starting with an arbitrary vector x0, if we now generate the sequence { m},,=0 by 
the iterative technique 

Xj+l = a x j  + b, j = O, 1 , . . . ,  (2.2) 
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then, as mentioned in the previous section, the vector Xm is of the form 

Xr,, = s  + s Pj(m),~ T, for allm>~d, somed>~0. (2.3) 
j=l 

Here Aj are some or all of the distinct nonzero eigenvalues of A, which can be 
ordered as in (1.8a), and satisfy (1.8b) automatically. The Pj(m) are precisely as 
described in the previous section, and the vectors yjl in (1.9) satisfy 

(A - AjI)i yjt = O, pj - i +  l <~l<~pj, l <.i<.pj + 1, 

(A - AjI)iyj,pj_i ~ 0, O<.i<~pj. (2.4) 

Actually, (2.4) is a result of the fact that yj~j is an eigenvector of A corresponding 
to Aj, while, for pj > 0, Yj.~j-i is a linear combination of eigenvectors and 1 s t , . . . ,  ith 
principal vectors that correspond to Aj. If ry is the dimension of the largest Jordan 
block corresponding to the eigenvalue Aj, then pj ~< rj - 1. For an arbitrary initial 
vector x0, in general, pj = rj - 1 may hold. Finally, the integer d in (2.3) is deter- 
mined by the zero eigenvalues of A. We have d = 0 when A is nonsingular, and d is 
equal to the index of A when A is singular. 

2.2. EXISTENCE OF APPROXIMATIONS 

Since we are going to be discussing the convergence of the sequence {Sn,k}~=O for 
arbitrary fixed k, we first have to address the question of existence of the Sn,k. 

THEOREM 2.1. 

Let/co be the degree of the minimal polynomial of A with respect to the vector 
xn - s. Then (i) Sn,k for RRE exists and is unique unconditionally for all k </co, and 
(ii) Sn,k, for MPE exists and is unique for all k </co, provided the hermitian part of 
the matrix a ( I  - A) is positive definite for some a e C, la[ = 1. Also Sn,ko exists and 
is equal to s unconditionally for both MPE and RRE. 

The part of theorem 2.1 pertaining to RRE follows from [7, theorem 2.1], while 
that pertaining to MPE follows from [7, theorem 2.2] and is a slight improvement of 
the latter. We also note that the minimal polynomials of A with respect to the 
vectors Xm - s, m >I d, are identical to each other. 

We note that the sufficient condition concerning the existence of Sn, k for MPE 
that is given in theorem 1.1 is different from the one in theorem 2.1. They do not 
contradict each other, but are supplementary. In the sequel we shall assume the 
existence of Sn,k for MPE and RRE precisely under the conditions stated in 
theorem 2.1. 
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2.3. THEORETICAL UPPER BOUNDS FOR ERROR NORMS 

We define the residual vector r(x) associated with an arbitrary vector x by 

r(x) = A x  + b - x = (A - I ) ( x -  s ) .  (2.5) 

Consequently, IIr(x)II is a true no rm for x - s. 
We also define the matrix C and its hermitian par t  CH by 

C = a ( I - A )  and C H = � 8 9  (2.6) 

for some a e C, I~1 = 1. In addition, in case Cri is positive definite, we define the 
vector no rm I1" I1' by 

Ilxll' = x / ( x ,  C n x ) .  (2.7) 

Theorem 2.2 below will be the starting point  of  our t reatment  of  the intermedi- 
ate rows of  the M P E  and R R E  tables. 

THEOREM 2.2 
With k </co, where/co is the degree of  the minimal  polynomial  of  A with respect 

to xn - s, we have, for R R E  

IIr(sn,k)ll <~ l l eq (a ) ( x~  - s)ll, (2.8) 
while for MPE,  assuming that  CH is positive definite, 

IIs~,k -- sll' <<.11C~I/2C * q ( a ) ( x n  - s)ll ', (2.9) 

where q(A) is an arbitrary polynomial  of  degree at most  k that  satisfies q(1) = 1. 

The par t  of  theorem 2.2 pertaining to R R E  follows by combining the result 

IIr(s~,k)ll <<. IIq(a)r(x~)ll , (2.10) 

see [7, theorem 4.2], with (2.5), while that  pertaining to MPE is a slight improve- 
men t  of[7, theorem 4.4]. 

2.4. MAIN RESULT FOR CONVERGENCE OF INTERMEDIATE ROWS 

We now state the main  result of  the present work. 

THEOREM 2.3 
Assume that  Xm is exactly as described in section 2.1, and that  the condit ions of  

theorem 2.2 hold as well. Let 

I~1 > I.Xr+~I . . . . .  I~,+~1 > IAt+,+xl (2.11) 

for some t~>0 and r~> 1. (Here we set IX01 = c~ and A~+l = 0.) Denote  for conveni- 
ence 
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037 ----pjq- 1, j =  1,2, . . . .  

235 

(2.12) 

t t+r 
~ _ . w j < k  < ~-~ 03j, (2.13a) 
j=l j=l 

t 
r = k - ~ - 2 w y .  

j=l 

Define the set S(r) of integer r-tuples (~rl, . . . ,  or,) by 

S(r)  = (~rl,...,crr) :O<<.ai<<.wt+i,l<<.i<~r, and a i = r  . (2.14) 
i=l 

Define the nonnegative integer/3 by 

/3 = min m a x  (Pt+i  - -  0"1)" (2.15) 
(r ,...:r,) eS('r) 1 <~i<<.r 

Then, for both MPE and RRE, 

I l sn ,k  - sll = O(n'lA,+xl n) as n - ~ o o .  (2.16) 

(2.13b) 

NOTE 
As will be shown in the next section,/3 is nonincreasing in r,  and takes on all 

values between Pt+l and 0 as r takes on all values between 0 and )-'~-~=1 wt+i - 1. 
Also,/3 = 0 whenpt+i = 0, 1 ~< i ~< r, as is seen from (2.1 5). 

?roof 
We start by analyzing the vector q(A)(x,, - s )  that appears in both (2.8) and 

(2.9), recalling at the same time that q(A) is an arbitrary polynomial of degree at 
most k that satisfies q(1) = 1. Let us pick 

t ~ -  ~j "J " ~ -  ~t+i~" S(r)  (2.17) 
q(A)=j__X~l(1----~j ) /=I~l(T At+i--] ' ( ~  �9 

Now, by (1.9) and (2.4), 

(A - Ajl)~JPj(n) = 0 for all n. (2.18) 

Employing (2.3), (2.17), and (2.18), we obtain 
V 

q(A)(xn - s) = ~ [q(A)Pj(n)]A']. (2.19) 
j=t+l 

Again, from (1.9) and (2.4) and the fact that (7) "" nt/l[ as n --~ oo, for 1 ~<i ~< r, 
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( A -  ,Xt+il)~'Pt+,(n) = ~ [ (a -  ,X,+,l)~'yjl] 
1=0 

f O(nP,+,-",) as n--,-oo, 
" t  

t,O, 

as a consequence of which we have 

{ 0(~'+'-" ')  as n ~ oo, 
q ( A ) e t + , ( n ) =  O, 

This, along with (2.11), results in 

t+r 

E [q(A)Py(n)]A'] = O(n*lAt+ll n) 
j=t  + l 

where 

0 ~ tY i <-Pt+i,  
(2.20) 

O" i = 03t+ i 

0 <~ tYi <~Pt+i, (2.21) 
(7 i = 03t+ i �9 

as n--~ oo, (2.22) 

6 = m a x  ( P t + i -  a i ) .  
l <~t<~r 

(2.23) 

From (1.8a) and (1.10) we also have 
/J 

[q(A)Py(n)]A' ~ = O(nP'+'+'l~,+r+~l ~) as n--+c~. (2.24) 
j=t+r+l 

Combining (2.22) and (2.24) in (2.19), and recalling (2.11) again, we obtain 

q(A)(x, ,  - s) = O(n*l,X,+ l as n ~ o o .  (2.25) 

Finally, we recall that ( a l , . . . ,  at) in (2.23) is in S( , ) ,  but is arbitrary otherwise. 
This means that 6 can be minimized over the set S(~-). As a result of this minimiza- 
tion process we obtain 6 = fl, with fl as defined in (2.15). This completes the 
proof. [] 

R e m a r k s  
(1) Comparing (2.11) and (2.13a) in theorem 2.3 with (1.12) and (1.13) in theo- 

rem 1.1, we realize that theorem 2.3 indeed covers all of the intermediate rows of 
the MPE and R R E  tables. This is true whether the matrix A is diagonalizable or 
not. 

(2) Combining theorems 1.1 and 2.3, we conclude that, for all values of k, the 
convergence of row k is at least as rapid as that of row k - 1. 

(3) Again, combining theorems 1.1 and 2.3, we see that, for n sufficiently large, 
[Isn,k - s[I may not decrease substantially when k corresponds to consecutive inter- 
mediate rows, i.e., when k satisfies (2.13a). However, provided IAt+ll is substan- 
tially larger than [At+r+l l, a large jump from I Isn ,k-!  - sll t o  IIsn,k - sll may take place 
for k = y~'~+~ w 1. 



A. Sidi / Convergence of extrapolation tables 237 

2.5. THEOREM I. 1 REVISITED 

We would like to note that the technique that we used in the proof of theorem 
2.3 can also be used in the proof of theorem 1.1 under the additional conditions of 
theorem 2.3. By (1.13) and (2.13b) we see first that -r = 0 for theorem 1.1. This, of 
course, forces ai = 0, i = 1 , . . . ,  r, everywhere. As a result, we have 3 = 8 = Pt+l, 
which, along with (2.16), produces (1.14) with (1.15). 

We should also note, however, that the result produced by this technique is not 
optimal as it is based on the inequalities of theorem 2.2. In particular, it does not 
give the dominant behavior of the vector F(n) in (1.14), and thus it does not enable 
us to obtain a very refined result such as (1.16). 

3. Solut ion o f  the opt imizat ion problem in (2.15) 

In this section we would like to tackle the integer programming problem in 
(2.15). For simplicity, and without loss of generality, we set t = 0 in (2.14) and 
(2.15), and denote the rain-max problem there by Q(r), and 3 by 3('r). That is, Q(r) 
stands for the integer programming problem 

3('r) = min max cri) (3.1) 
(al,...,'r,) ES(r) I <~i<~r (pi -- " 

THEOREM 3.1 

For 0 ~< r < ~--~-~=1 wi, 3(r)  is a nonincreasing function of t .  

Proof 
Let (a~, . . . ,  a~) ~ S(r) be a solution to Q(r), and consider Q(r + 1). Now at least 

one of the a~, aq say, satisfies 0 <~ ~* ~<pq. Let us set aq = aq + 1, and cri = a~, i ~ q. 
Then (or1,..., at) E S(r  + 1), and q 

max ai) = max |l<~i<~r [ max (Pi - ~ ) ,  Pq -- a ;  -- 1] <~3(r). (3.2) 3 ( r +  1)~< l<.i~r(pi- 
.1 t. i#q 

This completes the proof. [] 

To understand the nature of the solution to Q(-r), let us first consider small 
values of r. We shah adhere to our convention Pl ~>P2 >I . . .  >~Pr established in 
(1.10). 

(i) When r = 0, a~ = 0, 1 ~< i ~< r, and 3(0) = pl, trivially. 
(ii) When r =  1, ~r~ = 1, cr~ = 0, 2<~i<<,r, and 3 ( 1 ) = p a  if pl =p2  or 3(1) 

= pl - 1 ifpl >p2. 
(iii)When r = 2 ,  cr~ = a ~ =  1, a~ = 0 ,  3<<,i<~r, if pl =P2, or ~r~ = 2 ,  ~r~ = 0 ,  

2<~i<<,r, if p l>p2.  In the former case 3 ( 2 ) = P l  if Pl = P 2 = P 3  or 
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/3(2) = Pl  -- 1 if  p l  = P2 >P3, while  in the la t ter /~(2)  = Pl  - 1 i f p l  = P2 + 1 
or/3(2) = Pl  - 2 i fpl  ~>P2 + 2. 

THEOREM 3.2. 
Let  the  in tegers  rl ,  r 2 , . . . ,  be such tha t  

Pl = . . .  = Prl >Prl+l  = -- .  = Prl+r2 > . . . .  (3.3) 

(It  m a y  be possible  t ha t  rl = r a l ready,  so tha t  r2, r3 , . . . ,  a re  all zero).  Le t  us also 
def ine  

R j = E r i  a n d  c j = p R j - - p R j + , ,  j = l , 2 ,  . . . .  (3.4) 
i=1 

Le t  r ,  1 ~ r < ~;=1  r be given. T h e n  there  exist  un ique  integers  q, e, a n d  p, sat isfy-  
ing q ~> 0, O<~e<.Cq+l, andO<~p<Rq+t, such tha t  

r = E cjRj + eRq+l + p. 
j=l 

(3.5) 

W i t h  this, an  op t ima l  so lu t ion  ( a ~ , . . . ,  a~) to Q(r) is g iven by  

a~ = ~-~ cj + e + [i<<.p] 
j=l 

if Rt-1 + 1 <<.i<<.Rt , (3.6) 

w h e r e  [i ~< p] = 1 if/~</9, a n d  [i ~< p] = 0 otherwise ,  a n d  R0 = 0. Also  

Pl  - a~ if  p = 0,  

/ 3 ( r ) =  P l - a ~ + I  if  p > 0 .  
(3.7) 

As  a resul t ,  as r increases  f r o m  0 to ) - -~ t  wj - 1 , 3 ( r )  is non inc r ea s ing  a n d  takes  
on  all the  v a l u e s p l , p l  - 1 , . . . ,  0, in this order .  

Instead of giving a formal proof of  theorem 3.2, we will show graphically how 
the optimal solution is constructed. This construction will also show that the solu- 
tion given in (3.6) is an optimal one. We shall do this through an example. 

EXAMPLE 

r ---- 8, Pl  = P2 = 4, P3 ----P4 ----P5 ---- 2, P6 ----P7 ---- 1, PS = 0. T h u s  rl = 2, r2 ----- 3, 
r3 = 2,r4 = 1 ,Rl  = 2 ,R2 = 5,R3 = 7,R4 = 8, a n d c l  = 2, c2 = c3 -- l. 

We n o w  f o r m  the  i -  pi h i s tog ram,  see fig. 1. T h e  in tegers  wi th in  the  squares  
a re  all possible  va lues  o f r  be twe e n  1 a n d  8 ~ i=1  (Pi + 1). N o t e  the  o rde r  in w h i c h  the  
squares  a re  n u m b e r e d .  
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pl 

4 

3 

2 

1 

0 

b 

5 6 

I0 I i  

17 18 

i 2 

r 2 

7 8 9 " - -  rs 

12 13 14 15 

19 20 21 22 

3 4 5 6 

k 

16 " r4 ~- 

23 24 J 

7 8 

CI 

C2 

C3 

C4 

i 

Fig. 1. 

Let us consider the optimal solution for r = 13. We start by putting an X in all 
the squares numbered 1 through 13, see fig. 2. Then the number of X's in the i = 1 
column is a~, the number of X's in the i = 2 column is cry, etc. Thus a~ = tr~ = 4, 
tr~ = c r y =  2, a} = 1,tr~ =cr~=a~ = 0. As a result,13(13) = 1. 

We also see from this that the solution to Q(r + 1) can be obtained from that of 
Q(r) by increasing only one of the cr~ by 1. For example, the solution to Q(14) is 
obtained from that of Q(13) by increasing tr} from 1 to 2, while the rest of the tr~ are 
kept unchanged. In addition, 8(14) = 1. 

By moving the X's to the other squares, while their total number is kept fixed, 
we can see that maxi(pi - tri) either increases or remains unchanged, as should hap- 
pen at the minimum. We also see that the solution to Q(r) is not necessarily 
unique. 

pl 

X X 

X X 

2 

X X 

X X 

X 

3 4 5 6 7 8 

r = 1 3  

q=2, e=O,p=4 

~(r) = z 

F 
$ 

Fig. 2. 
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4. A numerical example 

Consider the two-dimensional convection-diffusion equation 

c02u 02u 
OX 2 Oy 2 

{ Ou Ou'X 
in JT, 

u = g  o n 0 0 ,  (4.1) 

where J7 is the unit square. This equation has been used as a test problem for vector 
extrapolation methods and Krylov subspace methods on nonsymmetric and /or  
indefinite systems. See, e.g., [3]. 

Let xi = i6x, 0 ~ i ~  Mx + 1, and yj = j6y, 0 <~j ~ My  + 1, where 8x = 1 
/ (Mx + 1) and 6y = 1/(My + 1) for some positive integers Mx and My. We discre- 
tize this equation by replacing all the partial derivatives at (xi, yj) by central differ- 
ences. If  we now order the unknowns uid, which are the approximations to the 
corresponding u(xi, yj), in the form Uli, u12,... ,  ulMy, u21, u22, �9 �9 �9 u2My, . . . ,  u ~ l ,  
UMx2, �9 . . ,  UM~M,, then we obtain a linear system of equations with a block tridiago- 
hal matrix. If  3 = 0 = 7, then we have the usual 5-point discretization scheme for 
Poisson's equation, in which case the matrix of the linear system is symmetric and 
positive definite. By increasing 3 in the negative direction we can make the matrix 
less and less positive definite and ultimately cause it to become indefinite. By pick- 
ing 7 ~ 0 we make the matrix nonsymmetric, the amount of asymmetry being 
directly related to the size of-),. 

In our computations we pick Mx = My = 30 so that the number of  unknowns is 
N = MxMy = 900. We also take g = 0 as our boundary condition a n d f  = 0, caus- 
ing the solution (both of the partial differential equation and of the difference equa- 
tions) to be zero everywhere. We use the Jacobi iteration technique starting with 
(1, 1/x/2, 1/x/3, �9  1/x/~)  T as the initial vector. 

We now apply MPE and R R E  in conjunction with the Jacobi iterative technique 
for the linear system above. We first recall that the matrix of this system is consis- 
tently ordered. This implies that if # is an eigenvalue of the Jacobi iterative matrix, 
then so is - # .  As a result, the number of distinct eigenvalues having the same mod- 
ulus is always even. This, of course, implies that theorem 1.1 applies only for some 
or all of the even k, and theorem 2.3 applies for the rest. 

The numerical results reported in this section were all obtained by using the 
F O R T R A N  77 code given in [8]. The computations were performed in extended 
double precision arithmetic on an IBM-370 machine. 

Case 1: Let us take 7 = 0 and 3 = 0. Then we are dealing with the Poisson 
equation with Dirichlet boundary conditions on the unit square. The Jacobi itera- 
tion matrix is real symmetric and all its eigenvalues are in ( -  1, 1 ) and are symmetri- 
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cally distributed about 0. Thus theorem 1.1 applies to Sn,k with k = 2, 4, 6 , . . . ,  since 
pj = 0 for all j; (1.14) holds withpt+l = 0, and (1.16) holds too. 

Table 1 gives 116'.,k- 6'11, the Euclidean norm of  the error, for n = 500 and 
k = 1 , 2 , . . . ,  20, for both MPE and RRE. We observe that II 0 Y. - 6"11 is almost 

~RRE identical to "500,k- 6"[I for k = 2 , 4 , . . .  ,20, in accordance with (1.16). We also 
observe that, for both MPE and RRE, 116"500,2q§ -6"11 is not much smaller than 
II 6"500,2q - 6'11, in accordance with remark 3 following the proof of theorem 2.3. 

Case 2: Let us now take 7 = 100 and fl = 0. The resulting system of  linear 
equations is real nonsyrnmetric. As a result of  this the Jacobi iteration matrix is also 
real nonsymmetric. We do not know for sure whether the eigenvalues of  the Jacobi 
iteration matrix are real or not for this case. As mentioned above, however, we 
know that theorem 1.1 applies for some or all of  the even k's. 

Table 2 gives HSn,k- sll for n = 200 and k = 1 , 2 , . . . ,  20, for both MPE and 
RRE. It seems from this table that theorem 1.1 applies with k = 2, 6, 8, 12, 14, at 
least. This implies first that the Jacobi iteration matrix has two distinct real eigen- 
values +/~ of  largest size. Then there are either two distinct real eigenvalues q-v each 

Table 1 

/z-norm of the errors in ssoo~,k = 0, 1 , . . .  , 2 0  w h e r e  sn~ is computed by applying MPE and RRE 
in conjunction with the Jacobi iteration method for the t'mite difference equations obtained from 
(4 .1 )  w i t h  f = 0 a n d  g = 0 a n d  f l  = 0 a n d  7 = 0. The solution for this case is s = 0. The initial 
vector is taken to be ( 1 , 1 / x / ~ ,  I / r e 3 , . . . ,  1 / x / ' N )  T, where N is the number of  unknowns. R e c a l l  

that s, ,0 = x ,  f o r  a l l  n.  

k MPE IIssoo~ - sll I 1 ~  - sll 

0 1 . 0 3 D  - 01 1 . 0 3 D  - 01 
1 6 . 0 7 D  - 0 2  1 . 0 3 D  - 01 
2 1 . 1 9 D  - 03  1 . 1 9 D  - 03  

3 1 . 0 1 D  - 03  1 . 1 8 D  - 03  

4 8 . 5 7 D  - 06  8 . 5 8 D  - 0 6  

5 8 . 0 5 D  - 0 6  8 . 4 6 D  - 0 6  

6 5 . 0 9 D  - 0 7  5 . 1 0 D  - 0 7  

7 4 . 5 5 D  - 07  5 . 0 4 D  - 0 7  

8 1 . 3 7 D  - 08  1 . 3 8 D  - 08  

9 1 . 2 8 D  - 08  1 . 3 5 D  - 08  

10 4 . 3 1 D  - 10 4 . 3 3 D  - 10 

11 2 . 2 3 D -  10 4 . 1 5 D  - 10 

12  7 . 0 9 D  - 12 7 . 1 0 D -  12 

13 5 . 7 3 D  - 12  6 . 9 0 D  - 12 

14 1 . 2 9 D -  13 1 . 3 0 D -  13 

15 1 . 2 2 D  - 13 1 . 2 6 D  - 13 

16 1 . 0 3 D  - 14  1 . 0 5 D  - 14 

17 7 . 2 0 D  - 15 1 . 0 0 D  - 14  

18 1 . 2 2 D  - 16 1 . 2 2 D  - 16 

19 7 . 5 0 D -  17 1 . 1 6 D  - 16 

2 0  3 . 6 5 D  - 18 3 . 6 7 I )  - 18 
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Table 2 

12-norm o f  the errors  in s2oo~,k = 0, 1 , . . .  ,20 where snj, is computed  by applying M P E  and  R R E  
in conjunct ion  with the Jacobi  i teration me thod  for the finite difference equat ions  obta ined f rom 

(4.1) w i t h f  = 0 and  g = 0 a n d / ~  = 0 and 7 = I00. The solut ion for  this case is s = 0. The initial 
vector  is taken to be (1, I / v ~ ,  1 / v ~ , . . . ,  1 / v ~ )  T, where N is the number  o f  unknowns .  Recall 

tha t  sn,o = x n  for  all n. 

k ~,MPE ~2oo~ - sll II s2R~ - sll 
0 2.32D - 03 2.32I) - 03 

1 2 . 1 8 D  - 03 2.26D - 03 

2 8.78D - 07 8.78D - 07 

3 7.38D - 07 8.09D - 07 
4 5.25D - 08 2.01D - 07 
5 3.33D - 08 9.50D - 08 
6 5 . 3 1 D -  11 5 . 3 1 D -  11 
7 3.88D - 11 4.46D - 11 

8 1.01D - 15 1.01D - 15 

9 6.29D - 16 7.57I) - 16 
10 2 . 7 8 D -  17 4 . 7 1 D -  18 

11 1.38D - 17 1.07D - 17 

12 3.00D - 21 3.001) - 21 
13 1.60I) - 21 1.99D - 21 

14 5.29D - 27 5.29D - 27 

15 3.15D - 27 3.90D - 27 
16 2.72D - 27 3.02D - 27 

17 1.36D - 27 1.79D - 27 
18 8.74D - 29 1.12D - 28 

19 5.72I) - 29 8.20D - 29 
20 4.05D - 31 3.91D - 31 

having one corresponding eigenvector and one corresponding principal vector or 
four distinct complex eigenvalues -t-(a + i/~) having, of course, the same modulus. 
We can continue this way and come to conclusions about the rest of the eigen- 
values. 

5.  A f u r t h e r  d e v e l o p m e n t  

_ (n,k) For given n and k let the rj  for MPE and R R E  be exactly as defined through 
(1.2)-(1.5) in section 1. Let us now replace the approximation Sn,k of section 1 by a 
corresponding approximation s ~ ,  where 

k 
o(q) ~ (n,k) 

= 2 . . , 7 j  Xn+q+j, q ~ > 0  a f i x e d  i n t e g e r  ( 5 . 1 )  ~ n,k 
y--o 

A s  ~ (0 )_  -(q) i ~ in fact, a (slight) generalization of Sn,k. When the 7~ n'k) " n,k - -  Sn, k ~ ~n,k ~, 
are those obtained from RRE, s00 ) turns out to be precisely the approximation 
g iven  in [4]. 
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Obviously, for given n and k, all s~,qk ) , q = 0, 1,2, . . . ,  use the same set of 7~ ~'k). 
The reader should be cautioned not to confuse s ~  with Sn+q,k. The simplest dit'fer- 
ence between the two is that o(q) is constructed from the vectors xt, n<~i<~n ~ n~k 
+k  + max(l ,  q), whereas Sn+q,k is constructed from xt, n + q ~< i ~< n +q + k + 1, and 
these two sets of vectors are different from each other when q>  0. Actually, the 
vect r o(q) -';'~- o on, k , , , ,u q > 0 does not belong in the table given in (1.6) whenever k < k0, cf. 
theorem 2.1. 

The treatment of the row convergence problem in [9] was actually achieved for 
the s!q) u. In particular, theorem 1.1 holds in its entirety with Snk replaced by s(,~. In 
view of this fact, it is natural to ask whether the results for the intermediate rows 
hold with snk replaced by s(_q,).. The question is of interest also since theorem 2.2, 
which forms the starting point"'~ of the proof of theorem 2.3, is not satisfied by s(~ 
when q > 0. Theorem 5.1 below provides the answer to this question. 

THEOREM 5.1 
Theorems 2.1 and 2.3 hold without any changes when sn,k is replaced by s(_q,).. 

Proof  
First, we recall that, under the conditions of theorem 2.1, sn~ exists and is unique 

if and only if the ,y!n,k) exist and are unique. This and (5.1) are enough to conclude 
that theorem 2.1 about'J the existence of the s~,k holds with sn,k replaced by s ~ .  Next, 
we recall that (2.2) implies 

X m - s = A m ( x o - s ) ,  m =  0,1, . . . .  (5.2) 

Combining this with (5.1) and with ~j---o 7~ ~ )  = 1, we obtain 

k 
s(q) (n,k), -s) 7j (Xn+q+j 

j=O 

(5.3) 

From this we immediately have 
(q) SA,k- sll IIAqll Ilsn,k- sll (5.4) 

in any norm whatsoever. Invoking now theorem 2.3 on the right hand side of 
(5.4), we see that it holds with Sn,k replaced by s ~ .  [] 

6. Extension to general inner product spaces 

In section 2 we restricted ourselves to vector sequences obtained from iterative 
solution of linear systems of equations of the form (2.1) in C N. In this section we 
consider vector sequences obtained from iterative solution of linear operator equa- 
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t ions o f  the fo rm (2.1) in an infinite dimensional  inner product  space B described 
in the first pa ragraph  o f  section 1. We assume that  the Aj and  Yjl are precisely as in 
section 1, and  that  the vectors Xm satisfy (1.7) the summat ion  there being indeed 
infinite. With  this last condit ion the concept  o f  the minimal  polynomial  of  A with 
respect  to a vector  loses its meaning and  relevance, and we have k0 = cr formally.  

By going th rough  the proofs o f  theorems 2.1 and  2.2, we see that  their  results 
remain  unchanged  whether  A is an N • N matr ix  or a bounded  linear opera tor  in a 
general  inner  p roduc t  space B. The same a rgument  applies to theorem 2.3 as well. 
We only need to keep in mind  that  (i) in (2.19) and  (2.24) t/is to be replaced by oo, 
(ii) the equali ty sign = in (2.19) is to be replaced by the asymptot ic  equivalence sign 
,,% and  (iii) the interpretat ion o f  (1.7) th rough (1.11) should be recalled. Similarly, 
theorem 5.1 remains valid. 
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