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ABSTRACT: The polynomials 

k 

Dk(z) := L (~) (j + l)k (--z)j, k ~ 0, 

j=O 

were introduced by the second author in the context of convergence acceleration schemes 

and numerical integration. They are characterized by biorthogonality to powers of log x: 

1 .
f (log x)J Dk(x) dx = 0, j < k. 

o 

We show that uniformly in compact subsets of (\[O,l], there is the strong asymptotic 

Dk(z) = k! eW (271"kw)-lj2 (--zew)k (1 + 0(1)), k --j 00, 

where w is the unique root of the equation zew(l - w) = 1 in the region ../6:= {w = a + 

ib: a ~ 0, b E (-7l,7l) and 0 < jw - 112 ~ (bjsin b)2}. Moreover, we give pOintwise 

asymptotics on (0,1) and deduce the asymptotic zero distribution. 
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1. INTRODUCTION AND RESULTS 

The polynomials 

k 

(l.l) 	 Dk(z) := L (r) (j + l)k (---2)j, k ~ 0, 

j=O 
arise in several contexts in numerical analysis: In investigating the T-transformation, a 

standard method used to accelerate convergence of sequences; in construction of 

interpolatory integration rules; and in related rational interpolation [2], [ll], [12], [13], [14J. 

They have many interesting features: They are biorthogonal to powers of log x on [O,lJ: 

1 . 
(1.2) f (log x)J Dk(x) dx = 0, j = 0, 1, 2, ... , k-l. 

o 
It is easily deduced from this relation that Dk has k simple zeros in (0,1). There is a 

Rodrigues type formula: 

(1.3) e U Dk(eu) = (~ul [eu(1- eu)k] , 


and via Cauchy's integral formula for derivatives, this leads to a Schlafli-type integral 


formula: 


(1.4) 

Here C is a·simple closed curve encircling u. So they have properties that mirror those of 

the classical orthogonal polynomials [16]. For these and other properties of Dk, see [11], 

[12], [13]. 

In this paper, we use (1.4) and the method of steepest descent to derive asymptotics 

for Dk(z) as k -j 00 . We feel that these asymptotics have intrinsic interest, inasmuch as the 

{Dk}k:O are a special class of biorthogonal polynomials, that admit analysis. There is a 

vast literature on strong asymptotics of orthogonal polynomials [7], [8], [16] and on their 

zero distribution [15], but apparently nothing on biorthogonal polynomials of the form of 

the {Dk}. Furthermore, these asymptotics have some implications for the numerical 

integration rules based on the zeros of {Dk(z)}k:O' and also for rational interpolation and 

convergence acceleration. 

In our results, a special region and conformal map playa principal role. We define 
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(1.5) r := {w = a + ib: a ~ 0, bE (-11",11") and a = 1 - b cot b} 

= {w a + ib: a ~ 0, b E (-11",11") and Iw _11 2 = (b/sin b)2}. 

We define Ato be the inside of r, punctured at 1. More formally, 

(1.6) A:= {w a + ib: a ~ 0, b E (-11",11") and °< Iw 112 < (b/sin b)2}. 

So A is an open doubly connected set, containing (O,oo)\{l}, and contained inside the 

half-strip {z: lIm zl < 11", Re z > O}. Ais pictured below. 

Fig. 1. The region "" 

Theorem 1.1 Define 

(1.7) i[I(w) 1/(ew(1 w)), w E-:/l. 

(a) i[I maps Aconformally onto (\[O,lJ and maps .AU {I} conformally onto l\[0,1]. 

(b) III maps the "upper-half" of r, namely r + := r n {z: 1m z > O} one-{Jne onto (0,1) and 

maps the "lower-half" of r, namely, := {z: 1m z < O} one-{Jne onto (0,1). 

A more detailed version of Theorem 1.1 is given in Section 2. In the sequel, we shall 

let ~: (\[0,1] ... A denote the inverse map of Ill, that is ~(i[I(w)) = w, w E.A'. Moreover, 

note that 

(1.8) z llI(w) <=? w = ~(z) <=? zew(l w) 1. 

Following is our strong asymptotic for z off [0,1]: 
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Theorem 1.2 We have as k -l 00, uniformly in compact subsets of [\[0,1], 

(1.9) Dk(z) = k! e<P{z) (-ze<P(,:))k (1 + 0(1)), k -l 00. 

.J27rk ¢(z) 
(The branch of the square root is the principal one). 

An alternative way to formulate (1.9) is 

W 
Dk(z) = k (-zew)k (1 + 0(1)) = k! e (w-l)-k (1 + 0(1)), 
~ ~ 

where w = <P(z) is the root of (1.7) in vi. 

In discussing the zero distribution of {Dk}k:'O' it is convenient to use the monic 

polynomials formed from the {Dk}, namely 

Associated with Dk(z) is the counting measure 
k 

1~fj(1.11 ) 
lie K k x'k' 

j=l J 

. where fjx denotes a Dirac delta (or unit mass) at x. Thus lie is a measure supported in 

[0,1]' of total mass one, and assigning mass 11k to each of the zeros of Dk. Note that for S 

c [0,1]' 

Iie(S) = f dlie ~. total number of zeros of Dk in S, 
S 

so Iie(S) counts the proportion of zeros of Dk in S. The behaviour of lie as k -l 00, describes 

the zero distribution, or asymptotic behaviour of zeros of {Dk}k:'O' 

Recall the notion of weak convergence [6]: We write 

* lie ~ /1, k -l 00, 


if 


1 f 1 

lim f f dlie f d/1 for every continuous f:[O,l]-lIR. 

k-lOO 0 o 


Equivalently for every 0 < a < b < 1, 


Iie[a,b] proportion of zeros of Dk in [a,b] 
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b 
-l J dj.L, k -l 00. 

a 
See [15] for an extensive coverage of zero distribution of orthogonal polynomials for weights 

on finite intervals. Following is our result on zero distribution: 

Theorem 1.3 	Define 

(1.12) h(b) ~ eb cot b - 1, bE [0,11"]. 

Then h decreases from h(O) 1 to h(1I") = °as b increases from °to 11". Let h[-I]: [O,lJ-l 

[0,1I"J denote the inverse function of h, and define 

dx(1.13) 	 dj.L(x) := j.L'(x) dx := [-1]' x E (0,1). 
1I"h'(h (x)) 

Then dj.L is a positive measure on [0,1] with. 

1 
(1.14) 	 J dj.L = l. 

° 
Moreover, 

*(1.15) ~--..------; j.L, k -l00, 

and 

(1.16) 	 j.L'(x) _;:;::;:1=:::;: (1 +0(1)), x -l 1-, 
11" ,12(1 - x) 

(1.17) j.L'(x) 	 _--=--1~2 (1 + 0(1)), x -l 0+. 
x 1I0g xl 

Finally, uniformly for z in compact subsets of (\[0,1], 

• 11k 1
(1.18) 	 limIDk(z)1 =exp(J 10glz-tldj.L(t)). 

k-loo ° 

We remark that in [1], necessary conditions were given on the zero distribution of 

points in sequences of interpolatory integration rules for their convergence on all 

continuous functions. When transferred to [0,1]' these necessary conditions require that 

j.L'(x) ~ ~-~===::;:, a.e. x E (0,1). 
11" 

This inequality is consistent with (1.16) and (1.17). So the convergence of the 



Lubinsky-Sidi 

interpolatory integration rules [11] based on the zeros of the {Dk}k::'O remains an 

interesting unsolved problem. 

Our final result deals with pOintwise asymptotics of Dk(x) on (0,1): 

Theorem 1.4 Let h:[0,1r] .... [0,1] be defined by (1.12) and let hH ]: [0,1] .... [0,11'] be its inverse 

function. Then for x E (0,1), as k .... 00, 

2 1/2 a k ea 
(1.19) 	 Dk(x) = k!(Kir) (-xe) { . 1/2 cos[(k+l)b ~ arctan(~)] + o(l)}, 

11' la+lbl 

where 

(1.20) b:= b(x) := hH](x); a:= a(x) := 1 - hH](x) cot hH](x). 

The asymptotic holds unifoflrJy for x in compact subsets of (0,1). 

Our proofs of the asymptotics in Theorems 1.2 and 1.4 depend on the method of 

steepest descent and the representation (1.4). In Section 2, we take the first steps by 

investigating the conformal map IJI that defines the location of the critical points of the' 

integral (1.4). We could only give an explicit form of a suitable contour C for some ranges 

of z eU and for other z needed to use a continuity argument, and a study of components 

defined by the level curves of certain functions, to prove the existence of a suitable contour. 

So in Section 3, we investigate the level curves (order stars) and components defined by the 

function whose kth power appears in (1.4). In Theorems 3.6 and 3.8, we prove the 

existence of a suitable contour for the purposes of Theorem 1.2 and 1.4 respectively. In 

Section 4, we use this to p~ove Theorems 1.2 and 1.4, and then in Section 5, we deduce the 

zero distribution of Theorem 1.3. 

2. THE CONFORMAL MAP 

We begin with a discussion of the mapping of the boundary r of Aonto [0,1] by IJI. 

(Recall that r was defined by (1.5)). 
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Lemma 2.1 (a) Let x E (0,1). The equation 

(2.1) x==\lI(w){:::}xew(1 w) 1,WE"Jr, 

has exactly two roots w == a ± ib. These are determined by the conditions 

a> OJ b E (O,11")j 

(2.2) a == 1 b cot b; 

(2.3) x = ~eb cot b 1 =: h(b). 

Moreover, a + ib lies in 

(2.4) f+:=rn{z:Imz>O}, 

and a - ib lies in 

(2.5) f_:= r n {z: 1m z < O}. 

(b) As x increases from 0 to 1, b = b(x) decreases from 11" to 0 and a a(x) decreases from 

00 to O. Moreover, a = a(x) increases as b = b(x) increases in (0,11"). Finally, h(b) decreases 

from h(O) = 1 to h( 11") = 0, as b increases from 0 to 11". 

(c) We can write 

= {w = a + ib: a > 0, b E (0,11") and Iw - 1/ 2 

Proof (a), (b) We write w a + ib (a ~ 0, b E (0,11")) and substitute into (2.1). Taking 

real and imaginary parts gives 

xea [(cos b) (1- a) + b sin b]= 1; 

(sin b) (1 - a) b cos b O. 

The second of these equations gives (2.2). Moreover, solving for 1 - a from the second and 

then substituting into the first gives (2.3). Thus if w a + ib satisfies (2.1) with a ~ 0, b 

E (0,11"), then it necessarily lies on It is clear that then Vi a - ib lies on Next we 

show that for x E (0,1), there is a unique b E (0,11") for which x h(b), that is (2.3) holds. 

A simple calculation shows that 

eb cot b - 1 sin b b 
(2.6) hl(b) b [2 cos b - --0- Silll:)]. 

Here if bE (0,11"), t := ~ E (0,1), so using the inequality 

2 cos b ~ 2 < t + l/t, 

we see that 
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(2.7) hl(b) < 0, bE (O,Jr). 


Thus h(b) decreases from h(O) = 1 to h( Jr) = 0, as b increases from 0 to Jr, and (2.3) has a 


unique solution b for a given x. Finally, from (2.2), 


b - 2bda b - sin b cos b 
----':0...,,.-- > 0,ao sm. 2b 

by the inequality sin u < u, u E (0,00). 

(c) This is immediate from (2.2). 0 

We remark that for w:=: a ± ib E f, (c) shows that 

Iw-112=(Si~ b)2n, 

with equality only for b O. So the punctured open ball {w: 0 < Iw - 11 < I} is 

contained inside v6. 

Proof of Theorem 1.1 We note first that the proof of Theorem 1.1(b) is contained in 

Lemma 2.1. So we turn to the proof of Theorem 1.1(a). We let 

g(w):= l/iJ/(w) eW(l-w), wE .AU {I}. 

It suffices to show that g maps .AU {I} conformally onto (\[1,00). Let r > 0 and consider 

'1:= {c: Icl 5 r}\[l,oo). 

We fix B > 1 such that 

(2.8) eB(B 1) > r, 


and form a truncated subregion of .Au {I}, namely 


AS (.AU {I}) n {w: Rew < B}. 

We let r B denote the boundary of AS, positively oriented. Then r B consists of that part 

of r with real part < B, together with a vertical line segment cutting the real line at B. 

We shall apply the principal of the argument to the curve r B' Note that if w E I'B n I', 

then Lemma 2.1 shows that g(w) = 1/iJ/(w) eW(1 w) E [1,(0). Furthermore if w E 

rB\I', then w B + is, some s E IR, so 

Ig(w) I = eB((B _1)2 + 82)1/2 ~ eB (B -1) > r, 
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by (2.8). Thus the function gl(wl/(g(w) - c) is continuous for (w,c) E f B x 1, and so 

H(c) 2~ f g(~;(~)c dw 
fB 

is continuous for c E 1. Since 1 is connected, so is H(1). But H(c) is integer valued, 

namely is the total mUltiplicity of roots of the equation g(w) c with w E AS. Thus 

H(1) is a connected set of integers, so consists of a single integer. Now 0 E 1, and the 

equation 

g(w) eW(l w) = 0 

has exactly one root w = 1 E AS, so we deduce H(1) = H( {O}) {l}. 

It follows that given c E (\P,oo), the equation g(w) c has exactly one root in AS for all B 

large enough. We have proved that g maps an open subset of .AU {l}, call it 'It say, in a 

one-to-one fashion onto (\[l,oo). We show finally that 'It = .AU {l}. If this is not the 

case, then we can choose z E .AU {I} \ 'It. Now if g(z) E (1,00), then 

x:= l/g(z) E(0,1) ¢=} 1 =x g(z) xez(1- z) 

and Lemma 2.1 implies that z E f, a contradiction. Simila,rly if g(z) = 1, x := l/g(z) = 1, 

and the proof of Lemma 2.1 shows that z 0, again a contradiction. Finally, if g(z) E 

(\[1,(0), then we can find, by hypothesis, w E 'It, such that g(w) g(z) c, say. Then the 

equation g(u) = c has two distinct roots wand z in .AU {I}. This contradiction shows 

that necessarily 'It = .AU {I}, and so g maps .AU {I} conformally onto (\[1,(0). 0 

Note that 


\)j'(w) = we-w(1-w)-2 > 0, w E (0,1) U(1,00). 


Also if we restrict w to be real, then 

lim \)jew) = 1; lim \)jew) = 00; 
w.... O w.... 1 ­

lim \)jew) = -00; lim \)jew) = 0; 
w.... 1 + w.... oo 

So we have: 
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Proposition 2.2 (a) As w increases from °to 1, 1J!(w) increases from 1 to 00 (and conversely); 

(b) As w increases from 1 to 00, 1J!(w) increases from -00 to °(and conversely). 

3. LEVEL CURVES AND COMPONENTS (ORDER STARS) 

In this section, we analyze the function whose kth power appears in our Schliilli type 

integral formula. But first, we note that by expanding (1 - eu)k via the binomial theorem, 

and then mUltiplying by eU and differentiating k times, it is easy to verify that the Dk 

defined by (1.1) indeed satisfy (1.3) and hence (1.4). The biorthogonality (1.2) is an easy 

consequence of (1.3) and successive integrations by parts. Let us reformulate (1.4), by 

setting t = u + v there, so that 

eU+v k
(3.1) v ) dv, 

where now 1 is a positively oriented simple closed contour enCircling O. 

Recall that if 

U(3.2) z = e : Re u E IR and 1m u E (-'11", '11"], 


then we can uniquely define for z E (\[0,1]' awE ...4'by the equation 


(3.3) w = <j>(z) {::::} z = 1J!(w) {::::} zew(1 -w) = 1. 


Moreover, if x E (0,1), there is a unique w E -:;r such that 


(3.4) 1m w > 0 and x lJi(w) {::::} xew(l w) = 1. 


Then also (w denotes the conjugate of w) 


(3.5) x 1J!(W) {::::} xew(l -W) 1. 

In the sequel we assume that w w(z) or w w(x) is defined this way. 

The critical points of the function 

(3.6) H(v,z) 


whose kth power appears in our integral (3.1) determine the behaviour of the integral (3.1), 


according to the classical method of steepest descent [9]. Below we show that for a given z 


E (\[0,1]' w = <j>(z) is the unique critical point lying in .A, and the integral behaves 
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approximately like H(w,z)k. Accordingly we define a normalized function 

(3.7) 	 G(v,z) := ~t;:~j, w = ~(z). 
It is obviously easier to deal wit,h an explicit contour 1, and we found that we could 

use the circular contour 

iO
1 = {we: 0 E [-71", 7I"]}, 

at least for Izl ~ 3.4. However, this choice of contour does not, work for z close to [0,1]' 

and so an alternative approach is required. To prove the existence of a suitable contour 1 

for all z, we consider the level curves 

(3.8) U(z):= {v E C: IG(v,z)1 = I}, 

and the components that they define 

(3.9) ~z) {VEC: IG(v,z)1 < I}, 

(3.10) .!t'{z):= {v E C: I G(v,z) I > I}. 

Some of our analysis is reminiscent of the theory of order stars [4], [5], but we could 

not directly apply results from there: Much of our emphasis is on continuity of U(z) in z. 

We first prove that our components of ~z) and .Et(z) have suitable behaviour for Izllarge 

enough, and use a continuity Iconnectedness argument to deduce'this behaviour for all z. 

Note that as the level curve of an analytic function, U(z) (regarded as a curve in the 

plane) is locally rectifiable, and non self-intersecting except at points where G'(v,z) = 0 

(the derivative is always with respect to v, and z is always fixed during the differentiation). 

These pOints are called multiple, more specifically, double, triple, ... points of the level 

curve, according to the multiplicity of the zero of G'(v,z). 

We begin by studying the critical pOints of G(v,z). 

Lemma 3.1 Fix z E C\{O,I} and let u be defined by (3.2). Let H(v,z) and G(v,z) be defined 

by (3.6) and (3.7) respectively. 

(a) If vEe, then 

(3.11) G'(v,z) 0 {=7 H'(v,z) 0 {=7 z = e U = w(v). 

In particular, v = w satisfies these equations. 
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(b) If v E ( satisfies G'(v,z) = 0, then 

v 
(3.12) H(v,z) = 1 -vze -zev. 

In particular, this is true for v = w. 

(c) If v E ( satisfies 

(3.13) G'(v,z) = 0; I G(v,z) I 1, 


then v = w or v = w. Moreover, if z E {\[0,1], then v = wand so v w is the only (at 


least) double point of the curve U(z). If z E (0,1), then v = wand v ware the only (at 


least) double points of the curve U(z). 


(d) The zeros of G(v,z) have the form v -u + 2kni, k an integer, and the only pole of 


G(v,z) is v O. 


Proof (a) We see that 


H'(v,z) = -v-2{1-zev(l-v)} v-2{I-z/W(v)}, 

so (3.11) follows. Of course by definition of w, z w(w), so w satisfies these equations. 

(b) 	We see that 

H'(v,z) = O:::::} zev = 1/(1 v) 

:::::} H(v,z) = (1 -l/(l-v))/v -1/(1 v). 

Moreover, then 

zev zvev = 1 

1 - zev = -vzev :::::} H(v,z) 

(c) 	Now 

I G(v,z) I = 1 :::::} IH(v,z) I = I H(w,z) I, 
and if also G'(v,z) = 0, then as also H'(w,z) 0, (b) shows that 

Iv 1= Iw-ll; 'levI = lewl· 

Then Re v = Re w, and both lie on the same circle centre I, so necessarily v w or v w. 

Now if z E (0,1), then recall from Lemma 2.1 that w and ware distinct and satisfy z = 

w(w) w(W), and moreover H(w,z) so w and Vi are distinct double points of 

U(z). 
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Finally if z E (\[0,1], then we already know that w = <jJ(z) satisfies z w(w) and so G'(w,z) 

= 0, and also IG(w,z) I 1. We must show that Vi cannot be yet another double point of 

U(z). Obviously if w is a distinct double point, then w 1- Vi. But in that case, we would 

have G'(Vi,z) = 0, so (a) gives z = w(w) w(Vi) and both wand Vi lie in .A, contradicting 

that Wis one-to-()ne in v6. So for such z, w is the unique double pOint of the curve U(z). 

(d) is immediate from (3.6) and (3.7). 0 

Next, we recall the shape of the components near the double point w: 

Lemma 3.2 Let z E {\{0,1}. Then for small enough Iv wi, 

2 
(3.14) G(v,z) 1 + (v 2ww) + O(v w)3. 


Moreover, if.,t denotes the principal branch of the .,t, then for S E IR, 


(3.15) v w + .flW s G(v,z) 1 + s2 + O(s\ S ... 0;' 

(3.16) v w + .flW is =} G(v,z) = 1 - 82 + 0(83), 8'" 0; 


Consequently 2 sectors of g(z), say "1 (z) and 312(z), and two'sectors of ~z), say (51 (z) 


and (52(z), touch at w. 


Fig. 2. Sectors of 4!,z) and 9(z) near w 
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Now 

G(v,z) IILY~,~z1
H(W;ZJ 

v w
[1 ~ (l_e - )] *', 

by (3.12). By substitution of the Maclaurin series for e v-w, we deduce that 

00 • 

(3.17) G(v,z) 1 + (v w)2 + ~ L (v ~!w)J. 
j=3 

Now (3.14) follows for Iv wi < 1. Then also (3.15) and (3.16) are immediate. 0 

Next, we turn our attention to unbounded components of ..z(z) and &(z). 

Lemma. 3.3 For z E (\{0,1}, there is exactly one unbounded component of ..z(z) and 

exactly one unbounded component of &(z), say $u(z) and !t'1u(z) respectively. Given f > 

0, there exists V0 > 0 and c (depending on z) such that I v I ~. V0 and 

Re v -In I v I ~ f C v E $u(z)j 


Rev-lnlvl~f c VE!t'1 (Z)'
u

Proof This is reminiscent of much more general results on asymptotic values and paths of 

entire/ meromorphic functions [3]. Let 

X(v) Revv In Ivl +In Izl In IH(w,z)l. 

Then 

IG(v,z) I ~ ~--'-='-'--'--­ eX(v) + --"--­
IvIIH(w,z)1 IvIIH(w,z)1 

and similarly 

(3.18) 	 I G(v,z) I ~ eX(v) 
Ivll H(w,z) I 

Thus given £ > 0, there exists Vo such that 

c 2Ivl ~ Vo and X(v) ~ £ I G(v,z) I ~ e / > 1; 


Ivl ~ Vo and X(v) ~ -f IG(v,z)I ~ e < 1. 
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Essentially this says that the path X(v) = 0 forms the boundary for large Iv I of unbounded 

components of ~z) and .'l{z) respectively. Finally, as the maximum-modulus principle 

shows that each bounded component of ~z) contains a zero of G(v,z) (of the form -u + 

2k1ti) and each bounded component of D(z) contains a pole of G(v,z) (namely 0) an easy 

application of Rouche's Theorem shows that G(v,z) has the same number of zeros/ poles as 

Rrv )in closed regions near the curve X(v) 0, and as there are none such zeros / poles v w,z . 

for large Iv I, we are done. 0 

By combining Lemmas 3.2 and 3.3, we can investigate the bounded components of 

~z) and .'l{z) for large enough Iz I. In the sequel, fJA denotes the boundary of open A c L 

Lemma 3.4 For Izi ? e, there is exactly one unbounded component ~u(z) of ~z) and 

.0 (z) of .'l{z), and moreover exactly one bounded component of .'l{z) and no bounded u

components of ~z). The bounded component of .'l{z), which we denote by !lb(z) , 

Contains o. Furthermore, fJDb(z) touches fJ.0 (z) and fJ~uCz) at the unique double point w u

of the curve U(z). 

Fig. 3. The Comoonents of .1(z) and 9.(z) 
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Proof We begin by showing that all zeros of G(v,z) (recall z is fixed, we are regarding this 

as a function of v) lie in .2 (z) at least for I z I ~ e. Consider the vertical line {-u + iy: y E u 

IR}, which contains all the zeros of G(v,z). We show that this lies in a component of jl(z), 

necessarily the unbounded one. Now (recall (3.6), (3.7) and that z = e U) 

1 - eiYI
IG(-u+iy,z) I-u + iy II H(w,z) I 

1 

< 2 (by (3.12)) - "[ReiiT Ileu+wl 

< 2 
IRe uleRe u lIn Izll Izl 

as Re w > 0 for z E (\{o}. Thus 

sup IG(-u+iy,z) I < 1, 

yEIR 


provided lIn I z II I z I ~ 2, which is certainly true for Iz I ~ e. So for such z, there is no 

bounded component of jl(z). 

To prove that there is exactly one bounded component of 9(z), refer to Figure 2, and recall 

that there are two sectors Sl(z) and S12(z) of 9(z) and two sectors 01(z), 82(z) of jl(z) 

that touch at w. We claim that Sl (z) and S12(z) cannot belong to the same component of 

9(z). If they did, then we could find a closed Jordan curve starting at w, passing through 

Sl(z) and then through S12(z) to w, and lying wholly in one component of 9(z). This 

curve would then enclose either sector 81(z) or O2(Z), and so enclose a bounded component 

of jl(z), contradicting that there are none. So Sl(z) and S12(z) lie in different components 

of 9(z), and so there is at least at one bounded component of 9(z) containing one of Sl (z), 

S12(z). This component must necessarily contain a pole of G(v,z), and there is exactly one 

pole at 0, so there is exactly one bounded component of 9(z) containing 0, and one of the 

sectors Sl(z), S12(z). 0 

To prove that the main details of Figure 3 persist for I z I < e, z E (\[0,1], we are 

forced to use a continuity argument. We almost show that the level curve U(z), when 

restricted to any bounded ball centre 0, is continuous in z with respect to Haussdorff 
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distance between sets. We define for a E (, B c (, 

dist(a,B) inf{la bl:bEB}. 

Lemma3.5 Assume either that {zn}n:1 c (\[O,lJ and Zo E {\[O,lJ or that {zn}n:l c (0,1) 

and Zo E (0,1). Moreover, assume that zn -l Zo as n -l 00. Let s > r > O. Let 

(3.19) 	 Un := U(znl n {v: Ivl ~ r}, n ~ 1; 
, 

(3.20) 	 Un := U(zn) n {v: Ivl < s}, n ~ 1; 

and 

(3.21) Uo U(zo)n{v:lvl~r}. 

Then 

(3.22) sup 
VEU 

dist(v, Uo) -l 0, n -l 00. 

n 

Moreover, 
A 

(3.23) 	 sup dist(v, Un) 0, n -loo. 
VEUO 

Proof This is elementary, but we could not find a reference, so include the details. We first 


prove (3.22). Let (J be an infinite sequence of positive integers, and let 


(3.24) vn E Un' n E ,:J. 


Choose a subsequence of ff, say <tf', such that 


vn -l vO' n -l 00, n E til. 

Note that IVol ~'r. By continuity of G(v,z) in both v and z, (for the relevant range of z, 

according as Zo is inside (0,1) or in (\[O,l]) 

IG(vo'zo)I 	 lim IG(vn,znll = 1. 
n-loo 

(Recall vn E U(zn))' So Vo E UO' Then 

dist(vn,UO) ~ IVn - vol -l 0, n -l 00, n E til. 

Thus under (3.24), we have shown that 

(3.25) 	 lim inf dist(vn,UO) = O. 
n-loo 
nE(J 

Finally, if (3.22) is not true, we can find 15 > 0, a subsequence (J of integers, and vn E Un' 
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n E 3,' 	 such that 

dist(v , U ) ~ 0, n E 3,'n O

contradicting (3.25). 

We turn to the proof of (3.23). Let Vo E UO' We first show that 

(3.26) dist( v 0' Un) -; 0, n -; 00. 


Now we have IG(vo'zo)I 1, say G(vO'z) '1/ where 1'1/1 = 1. Now by continuity of 


G(·,. ) in both variables (again with suitable restrictions on the range of each variable), 


1im (G(v,zn) - '1/) = G(v,zO) - '1/, 
n-;oo 

uniformly for v in an open set containing YO' Since v 0 is a zero of the non-constant 

analytic function G(v,zO) '1/, Hurwitz' Theorem shows that there exists v such that . n 

G(vn,zn) - '1/ 0 

and 

vn -; VO' n -; 00. 

Then vn E U(zn) and for n large enough, I vn I < 8, so vn E Un' n large enough. Thus 

dist(vO' Un) S IvO-vnl-;O,n-;oo, 

so we have (3.26). Finally, if (3.23) is not true, then 3 0> 0, vm E U and nm ~ 1, m ~ I,o 

such that nm +00, m -; 00, and 

dist(vm,U ) ~ 0, m ~ l.n m 

By passing to a subsequence, if necessary, we may assume that v m v 0' m -; 0:;. Then v 0 E 

U (the latter set is closed) so o 
A 	 • 

os dist(vm,U ) S IVm - Vol + dist(vO,U ) -; 0, m 00,n 	 n m 	 m 

by (3.26), a contradiction. 0 

Now we can prove the required behaviour of components of jl(z) and ..<Z(z) for all z E 

(\[0,1], not just for Iz I 2 e. We cannot however obtain as strong a conclusion as in Lemma 

3.4. 
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Theorem 3.6 For z E (\[O,l], there is exactly one unbounded component of ~z) and E{z), 

which we denote by j)'u(z) and .0 (z) respectively. Moreover, there is exactly one bounded u

component of E{z), which we denote by .!lb(z). The latter contains 0 and its boundary 

contains w = ~(z). We can find a smooth closed Jordan curve I passing through w,
Z 

encircling .!lb(z) and so 0, and such that IZ\{W} lies in ~z). 

Remark We are not ruling out the possibility that there are one or more bounded 

components of ~z), but the important fact is that we can find the contour I surrounding
Z 

.!lb(z) and lying in ~z) except at w. This is pictured below in Figure 4. 

Proof Recall that for fixed z, G(v,z) has one pole at v O. So there is at most one 

bounded component of E{z), and so either one or two components of E{z) in all. We 

denote by vftthe set of z E (\[O,l] for which there is one component of E{z), and by .A"the 

set of z E {\[O,l] for which there are two components of E{z). We show that both vft and 

.A"are open. Since their union is {\[O,l] and the latter set is connected, one of them must 

be empty. But .A"contains all z with Izl ~ e, so necessarily .A"= (\[O,l] and there is then 

one bounded component of E{z) containing 0 for all Z E (\[O,l]. The reader will find it 

helpful to refer to Figures 2 and 3 . 

.&is open: Let zl E .At. Choose VI E (0,,,,) such that VI lies in the unbounded component of 

E{zl)' and moreover the interval [vI'''') lies in E{zl) and IG(vl'zI)I > 2. (See the 

right-hand-side of (3.18) to convince yourself that this is possible, and note that the 

right-hand-side is increasing in v, for large enough real v). Since zI E vft, E{zl) consists of 

one component, so we can find a path a from 0 to v I lying. wholly in E{z]). Then 

inf I G(v,zl) I > 1. . 
vEa 

By continuity of G( . " ), if (' > 0 is small enough, 

Iz zll <E=}inf IG(v,z)1 >l. 
vEa 

Moreover, the fact that IG(v,z) I is bounded below for real v by a function that is 

increasing in v for large real v, and continuous in z (see (3.18)) shows that if (' is small 

enough, also 
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v E [VI ,(0) =} IG(v,z) I > 1 =} [v1,(0) c It(z) for Iz z1 1 < €. 

We have shown that for z close enough to z1' (J is a path from 0 to the unbounded 

component of It(z) lying wholly in It(z). Since the only bounded component of It(z) would 

have to contain 0, it follows that It(z) has exactly one component, for Iz z1 1 < c, and so 

such z E .)(;. 

fig open: Let zl E f and wI <jJ(zI)' By hypothesis, there exist two components of 

It(zl) , say 9b(zI) and .0u(zl)· Here .0u(zl) is unbounded, and 9b(zl) is bounded and 

contains O. We consider two cases: 

I: The boundaries of :i7u~l) and ~1) do not touch (We shall see just now that this is 

not possible). Then there is a positive distance between the boundaries of the two 

components, so we can find a closed Jordan curve, (J say, enclosing 9b(zI) in its interior, 

and lying wholly in £(zl)' Then 

sup 1G(v,zl) 1 < I,
vE(J 

so for some small enough c > 0, 

Iz zII < c=} sup 1G(v,z) 1 < l. 
vEer 

Then for such z, (J lies wholly in £(z) and encloses 0 E It(z), and so there is a bounded 

component of It(z) lying inside (J. So there is one bounded component and one unbounded 

component of It( z). Thus 1z - z1 1 < t =} z E .#." 

II. The boundaries of :i7u~l) and ~1) touch Now these can only touch at a point of 

U(zI) that is at least a double point of U(zl)' By Lemma 3.I(c), this point must be WI := 

<jJ(zl)' We can then find a smooth closed Jordan curve (J enclosing 9b(zl) (and so 0) and 

such that er contains WI' while er\{wI} is contained in £(zl)' 

Recall now from Lemma 3.2 that for all z E (\[O,l], w := <jJ(z) is the unique double point of 

U(z) and that w <jJ(z) is continuous in z. Moreover, Lemma 3.5 establishes the continuity 
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of U(z) in z, when intersected with bounded balls centre O. 

It follows that we can find a E a, b E a, such that a lies in the sector 61(zl) of ~zl) and 

such that b lies in the sector 62(zl) of ~zl) (see Figure 2) and € > 0 such that for Iz 

zil < l, there is a smooth Jordan are, T say, passing from a to b, passing through w z 

~(z) and such that T \{w} lies in ~z). (This can also be deduced from the inverse/ 
Z 

implicit function theorems). The crucial thing is that a and b do not depend on z. Let a1 

denote that part of a omitting the arc of a passing from a to b through wI' Of course, a l 

does not depend on z, only on our fixed zl' 

Now 

sup IG(v,zl)1 < 1, 
vEal 

so if € above is small enough, 

Iz-z11 < € =} sup IG(v,z)1 < 1. 
vEal 

Then for such z, a1 U Tz)S a closed Jordan curve pa.ssing through w ~(z), enclosing 0 E 

.'t(z) and such that 0'1 U T \ {w} lies in ~z). This curve must then enclose a bounded 
Z 

component of .'t(z), and so there are two components of .'t(z). Thus z E ffor Iz-zll < €. 

So .At and f are open, and their union is the connected set (\[0,1]. Since f) {z: Izl ~ e} 

is non-empty, .At must be empty, and we have for all z E (\[0,1]' that there is a single 

bounded component of .'t(z) containing 0, and an unbounded component of .'t(z). 

It remains to show that the boundary a.<lb(z) of .<lb(z) contains w. We can proceed much 

as above: Let 

.At1 := {z E (\[o,l]: w = ~(z) ¢ a.<lb(z)}; 

.AI := {z E (\[0,1]: w = <j)(z) E a.<lb(z)}. 

Firstly for zl E .At1' the distance between w 1 
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continuity of G( . " ) easily shows that the same is true in a neighbourhood of zl' So.itl is 

open. For zl E Ai, we can find a path from 0 to wI ~(zl) such that li\{wl } lies in 

.<ib(zl)· By splitting li into a small piece near wI' and a remaining large piece lil' we can 

use continuity of G( ".) to show that 

inf IG(v,z) I > lforalllz-zil < E, 

and use the behaviour of G(v,z) near w ~(z) to construct a small arc T from the z 

endpoint of lil to w with T \{w} in ~z). Then lil U T is a path from 0 to w with lil U T 
Z Z Z 

\ {w} lying in .<2b(z) necessarily. So Ai is also open and moreover from Lemma 3.4 

contains {z: Izi ~ e}. Again we deduce that Ai = {\[O,l]. So for all z E (\[O,l], 8.<2b(z) 

contains w ~(z). 

Finally, we can find a closed Jordan curve, starting at w, passing through 62(Z), 

lying all the time very close to 8.<2b(z) but staying in ~z) until we reach the sector 61(z) 

and then w. This Jordan curve can be taken as our 1 ' (Note that on one side of 'l1(z)z 

except at its double points, we are in ~z), and on the other side, we are in ~z). This is 

meaningful locally because 'l1(z) is smooth). 0 

Fig. 4. The closed curve 'Y z 
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We now turn to prove the existence of a suitable contour for z = x E (0,1). The 

proof is very similar to that for Z E (\[0,1]: We first deal with x not too close to 0, and 

then use a continuity / connectedness argument to extend this to all x E (0,1). 

Lemma 3.7 Let z = x E [0.00076,1). Then there exists exactly one unbounded component 

of ~x), !l(x), and exactly one bounded component of ~x), !l(x). Denote these by .!Bu(x), 

!iJu(x), ~(x),!lb(x) respectively. The boundaries of all these four components touch at w 

w(x) and w = w(x) determined by (3.4), (3.5), and these are the only double points of 

the curve U(x). Moreover, !lb(x) contains 0, and ~(x) contains u := - log x, and all 4 

components are symmetric with respect to the real axis. 

Fig. 5. The Components of .l!x) and $l{x) 

Proof We already know that there is exactly one unbounded component of ~x) and !l(x). 

Moreover, the symmetry of the components with respect to the real axis follows as H(v,x) 

is real on the real axis. 

Recall that the zeros of G(v,x) have the form - u + 2kti = log x + 2kri., k an integer. 
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We show that 

(3.27) sup 1G(-u+iy,x) 1 < 1, 
lyl?,21r 

so that the rays that make up the set {-u + iy: 1 y 1 ?' 21r} lie in the unbounded component 

of Ji(x). 	 Write x = h(b) as in (2.3) of Lemma 2.1. We have 

iY 2 
IH(-u+iy,x)12 11 - e l 

I-u + iyl2 
4si n 2(Y/2) ,­

u 
2 + y 

2' 

Also from Lemma 3.1(b) and then Lemma 2.1(c), 

IH(w,x)1 2 Iw 11-2=(Sibb)2. 

So, 

IG(-u+iy,x) 12 4sin2(y/2) (b )2 
u2 + y2 SiiiD' 

Recall that u -log x = log h(b). Then for y ?' 21r+2, 

. 2 4 b 2
(3.28) IG(-U+lY,X) 1 ~ 2 2(Sii:iO) =:J(b), 

(log h(b)) + 4(1r+l) 

say. Also using the inequality 

sin2(y/2) sin2((y 21r)/2) ~ (y 21r)2/4, 

we obtain for y E [21r,21r+2j, 

2 
1G(-u+iy,x) 12 ~ ~ ( ~;~ 2 (!n~ b)2 =: t/J(y) (iii~ b)2. 

. (log h b + y 

Here for y E [21r,21r+2j, 

t/J'(y) = 2(y - 21r) 2 2 {(log h(b))2 + 211Y}?' 0, 
{(log h(b))2 + y } 

so for such y, 

IG(-u+iy,x) 12 ~ t/J(21f+2) (si~ b)2 = J(b). 

Thus 

sup 1G(-u+iy,x) 12 ~ J(b). 
Iy I?'21r 

We claim that J(b) defined by (3.28) is an increasing function of b E (O,1r). For h(b) is 

decreasing according to Lemma 2.1(b), and a differentiation shows that (Sl~ b)2 is 

increasing in this interval. A simple calculator evaluation of h(b) and then J(b) (recall 
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h(b) is defined by (2.3)} for b ~ 7r shows that 

J(~ 7r) 0.9115 ... < l. 

So b E (O,~7r) =} J(b) < 1. But, by Lemma 2.1(b), this range of b corresponds to 

x E [h(~ 7r), 1) = [0.000754... ,1). 

In particular for x E [0.00076,1), we have (3.27) as IG(-u+iy,x) I is even in y. So all but at 

most one of the zeros of G( v,x) lie in the unbounded component of jj(x), and hence there is 

at most one bounded component of jj(x). 

Next, note that from Lemma 3.2 and symmetry, we have the picture in Figure 6 for sectors 

of jj(x) and .!t(x) near w, W. 

7t 

o 

Fig. 6. Sectors of J!x) and 9!x) near w and Vi 

We denote as in Lemma 3.2, the sectors of jj(x) and .!t(x) near w, by 0'1 (x), 0'2(x) and 

.51 (x), ~(x). We claim that .51 (x) and ~(x) lie in different components of 9(x). If not, 

we could find a closed Jordan curve C1 starting at w, passing through .51(x) and then only 

through this component of .!t(x) and through ~(x) to w. Because of the symmetry of the 

components w.r.t. the real axis, we can assume that C lies in the upper-half-plane. Then1 
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C1 encloses either 61(x) or 62(x) and so encloses a bounded component of jj(x) in the 

upper-half-plane. Then c:t encloses a distinct component of jj(x) in the lower half-plane. 

So we obtain two bounded components of jj(x), a contradiction to what we proved above. 

So, .51 (x) and "'2(x) lie in different components of j!.(x) and the same is true of 

~ (x), "Yz(x). Since there can be only one bounded component of j!.(x), there must be one 

such component, containing 0, .51 (x) and ~ (x) (or "'2(x) and "Yz(x)). The boundary of 

this component then contains wand w. 
Next, we claim that 61(x) and 62(X) lie in different components of jj(x). For if 

they lay in the same component of jj(x), then we could find (as above) a closed Jordan 

curve lying wholly in the upper-half-plane, starting at w, passing through 61(x) all the 

way through jj(x), to 62(x) and then ending at w. This then encloses a bounded 

component of j!.(x) in the upper-half-plane, and its reflection w.r.t the real axis gives 

another bounded component of j!.(x) in the lower-half-plane, contradicting that there is 

only one bounded component of j!.(x). 

Thus there is a single bounded component of jj(x), ~(x) say, enclosing the zero u 

-log x of G(v,x) and also containing either 61(x) and ~l (x) (or 62(X) and ~2(x)). Then 

~(x) is adjacent to !tb(x) and the boundaries of all 4 components touch at wand w. 0 

Now we can prove the required ·behaviour of components of jj(x), j!.(x) for all x E 

(0,1), but we do not obtain as strong a conclusion as in Lemma 3.7: 

Theorem 3.8 For x E (0,1), there is exactly one unbounded component of jj(x) and j!.(x), 

which we denote by $u(x) and ~u(x) respectively. Moreover, there is exactly one bounded 

component of j!.(x), which we denote by !tb(x). The latter contains °and its boundary 

contains the double points w = w(x) and w w(x) of U(x). We can find a smooth closed 

Jordan curve 'Yx passing through wand w, encircling !tb(x) and so 0, and such that 'Yx \ {w, 

w} lies in jj(x). 

Remark We are not ruling out the possibility that there is more than one bounded 
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component of £(x), but the important fact is that we can find the contour, surroundingx 

, 9b(x) and lying in £(x) except at w, W. This is pictured below in Figure 7. 

Proof Recall that for fixed x, G(v,x) has one pole at v = o. So there is at most one 

bounded component of 9.(x), and so either one or two components of 9.(x) in all. We 

denote by .At the set of x E (0,1) for which there is one component of 9.(x), and by A'the 

set of x E (0,1) for which there are two components of 9.(x). We show that both .At and A' 

are open sets in (0,1). Since their union is (0,1) and the latter set is connected, one of them 

must be empty. But A'contains [0.00076,1), so necessarily A'= (0,1) and there is then one 

bounded component of 9.(x) containing 0 for all x E (0,1). The reader will find it helpful to 

refer to Figures 5 and 6. Below we proceed much as in Theorem 3.6, so give less detail. 

""is open: Let xl E .At. Choose vI E (0,00) such that vI lies in the unbounded component of 

9.(xl ) , and moreover the interval [vl,oo) lies in 9.(xl ) and IG(vl,xl)1 > 2. (See the 

right-hand-side of (3.18) to convince yourself that this is possibl~, and note that the 

right-hand-side is increasing in v, for large enough real v). Sincexl E .At, 9.(x ) consists l 

of one component, so we c~ find a path (7 from 0 to vI lying wholly in 9.(xl ). Then 

inf I G(v,xl ) I > l. 
vE(7 

By continuity of G(·,·), if t > 0 is small enough, 

Ix-xII < t~ inf IG(v,x)1 > l. 
vE(7 

Moreover, the fact that I G(v,x) I is bounded below for real v by a function that is 

increasing in v for large real v, and continuous in x (see (3.18)) shows that if t is small 

enough, also 

vE [vl'oo)~ IG(v,x)I > l~ [vl'oo) C 9.(x)for Ix-xII < t. 

We have shown that for X close enough to xl' (7 is a path from 0 to the unbounded 

component of 9.(x) lying wholly in 9.(x). Since the only bounded component of 9.(x) 

would have to contain 0, it follows that 9.(x) has exactly one component, for I x - xII < f, 

and so such x E .At. 
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fia Open: Let xl E ffand wI w(xl ). By hypothesis, there exist two components of 

ll(xl ), say 9b(xl ) and ..0 (xI), Here ..0 (xI) is unbounded, and 9b(xl ) is bounded and u u
contains O. We consider two cases: 

I: The boundaries of ~~l) and ~l) do not touch (We shall see just now that this is 

not possible). Then there is a positive distance between the boundaries of the two 

components, so we can find a closed Jordan curve, (J say, enclosing 9b(xl ) in its interior, 

and lying wholly in ~xI)' Then 

sup IG(v,x1)1 < 1 
vE(J . 

so for some small enough ( > 0, 

Ix XII < I'~ sup I G(v,x) I < l. 
vE(J 

Then for such x, (J lies wholly in ~x) and encloses 0 E ll(x), and so there is a bounded 

component of ll(x) lyiag inside (J. So there is one bounded component and one unbounded 

component of ll(x). Thus IX - XII < ( ~ XE .;Y. 

II. The boundaries of 9Ju~ll and ~1) touch Now these can only touch at a point of 

U(xl ) that is at least a double point of U(xl ). By Lemma 3.l(c), this point must be WI 

and by symmetry of the components they also touch at WI' We can then find a smooth 

closed Jordan curve (J enclosing 9b(xl ) (and so 0) and such that (J contains WI and WI' 

while (J\{wl' WI} is contained in ~xl)' Moroever, we may assume that (J is symmetric 

w.r.t the real axis. 

Recall now from Lemma 3.2 that for all X E (0,1), w := w(x) Jand ware the only 

double pOints of U(x) and that w = w(x) is continuous in x. Moreover, Lemma 3.5 

establishes the continuity of U(x) in x, when intersected with bounded balls centre O. 

It follows that we can find a E (J, b E (J, such that a lies in the sector 61(Xl) of 

~xl) and such that b lies in the sector 62(x1) of ~xI) (see Figure 6) and t> 0 such that 

for I X XII < t, there is a smooth Jordan are, r X say, passing from a to b, passing through 

w = w(x) and such that r x \ {w} lies in ~x). (This can also be deduced from the inversel 
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implicit function theorems). The crucial thing is that a and b do not depend on x. Let 0"1 

denote that part of 0" omitting the arcs of 0" passing from a to b through w 1 and passing 

from 0 to a: through wI' Of course, 0"1 does not depend on x either. 

Now 

S\lP IG(v,x1) I < 1, 
VEO"I 

so if f above is small enough, 

Ix-xII < f=} sup I G(v,x) \ < 1. 
VEO"I 

Then for such x, 0"1 U Tx U is a closed Jordan curve passing through w = w(x) and w, 

enclosing 0 E &(x) and such that 0"1 U TX U TX\{W, w} lies in S5(x). This curve must then 

enclose a bounded component of &(x), and so there are two components of &(x). Thus x E 

...rfor Ix-xII < c. 

So .J( and ...r are open, and their union is the connected set (0,1). Since ...ris 

non~mpty, .J( must be empty, and we have for all X E (0,1), that there is a single 

bounded component of &(x) containing O. 

It remains to show that the boundary 8&h(x) of &hex) contains wand W. We can 

proceed much as above: Let 

.Jtt := {x E (0,1): w w(x) ~ 8&h(x)}; 

A'l := {x E (0,1): w = w(x) E 8&h(x)}, 

Firstly for Xl E . .J(l' the distance between WI = w(xl ) and 8&h(x1) is positive, and then 

continuity of G(v,x) easily shows that the same is true in a neighbourhood of Xl' So.J(l is 

open. For Xl E A'l, we can find a path from 0 to WI such that 0"\{w1} lies in &h(xl ). By 

splitting 0" into a sn~ll piece near wI' and a remaining large piece 0"1' we can use 

continuity of G( .,. ) to show that 

inf IG(v,'x) I > 1 for all Ix -XII < <, 
VEO"I 

and use the behaviour of G(v,x) near w = w(x) to construct a small arc T from the 
X 

endpoint of 0"1 to w with Tx \ {w} in S5(x). Then 0"1 UTx is a path from 0 to w with 0"1 U TX 

\ {w} lying in 9b(x) necessarily. So A'l is also open and moreover from Lemma 3.7 
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contains [0.00076,1). Again we deduce that AJ. (0,1). So for all x E (0,1), 89b(x) 

contains w w(x) and also w by symmetry. 

Finally, we can find a closed Jordan curve, starting at w, passing through 6 (X),2

lying all the time very close to 89b(x) but staying irt' ..:n(x) until we reach the sector 3'2(x) 

and then passing through wand then close to 89b(x) through 3'1 (x) to 61(x) and ending at 

w. This Jordan curve can be taken as our IX' (Note that on one side of U(x) except at its 

double points, we are in ..:n(x), and on the other side, we are in 9{x). This is meaningful 

locally because U(x) is smooth). 0 

_i.,...-­...... 
~ /''' 

V .... ~~J 
V 

I \\//
I 

V 

I ~, 

\ 0 

\~ 
J~ 

~ 

\ 

'>fwr-... 
/ r--......~ 

i'oo..1x 
" ,/ In-

Fig. 7. The closed curve lx 

4. PROOFS OF THEOREMS 1.2 AND 1.4 

Most of the work towards the proof of Theorems 1.2 and 1.4 has already been 

completed in §3. All that we have to do is to analyze the integral in (3.1), but over a 

small arc near w or wand w, according as z is in [\[0,1] or (0,1). We begin with a more 

precise version of Lemma 3.2: 
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Lemma. 4.1 Let either z E (\[0,1] and w <jl(z) or z E (0,1) and w be defined by (3.4). 

Choose 8 so small that0 

o/f-5/2(4.1) So < 2 l~wl' 

Then for S E [-SO,80], 

(4.2) G(w+i~s,z) I-s2 +.6.(s), 

where 

(4.3) 

Proof A little rearrangement of (3.17) shows that 

G(v,z) = 1 + 2~(v w)2 + .6. 

where 

3 (Xl • 

A ._ (v - 'Yl 1:." (v ~,wl'-' . ­ ~ +vk J. 

j=3 


In particular, for v w + i ~ s, we obtain (4.2), where 

(4.4) 

Now for lsi ~ sO' (4.1) gives 

1~81 ~ v'2TW[sO < 2-2 < 1, 
1 + Iwl 

and moreover, 

I~ 81 ~ .J2TWTso< 2-2 
Iwl, 

so 

I v I = 1w + i ~ s I ~ 1w 1/2. 

Then 

(Xl 

1.6.(8)1 ~ 1;1 {v'2fW[ Isl 3 
+ (v'2fW[ 181)3 LTr} 


j=3 


~ 181
3 (1 + Iwl)

vTWT 
25 /28 


~ (82/2) __0 (1 + Iwl) < s2/2, 

vTWT 
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by (4.1). 0 

Lemma 4.2 With the hypotheses of Lemma 4.1, let T denote the path {w + i /IW s: 8 E z 

[-so,sO]} . Then 

(4.5) I 2~ f v H(v,z)k dv 
T

Z 

= k! eW (21rkw)-1/2 H(w,z)k (1 + 0(1)). 

Proof We see that 

k! ( )k f G(v,z)k dv~H w,z T v 
z 

S 
k! k w 0 S k = 2ir H(w,z) /IW e f G(w + i/IWs, z) ds. 

1r -8 W + i..{2W s
0 

Now by Lemma 4.1, 

2 2 3
G(w + i/IWs, z)k = ek log(l-s + .6.(8)) =e-ks + O(ks ) 

and moreover, (4.3) shows that 

2 2 
IG(w+i/IWs,z)k l $eklog(l-s /2)$e-ks /2. 

We thus see that most of the contribution to the integral I comes from the interval I s I $ 

(2 lkg k)I/2, and outside this interval, the integrand is O(k-1). So 

1= 

1 f (210g k)1/2 _t2 1k! k 
= 1r H(w,z) { - e dt + o( )} 


,,;K -(210g k)1/2 ,,;K 


= k! eW (21rkw)-1/2 H(w,z)k (1 + 0(1)). o 

Proof of Theorem 1.2 We know from (3.1) that for z = eU
, 
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Dk(z) = ~! J H(v,z)k dv 
111 "Iv 

where "I is a positively oriented simple closed curve encircling O. Choose "I =: "I , the z 

contour of Theorem 3.6 (Recall Figure 4). We can deform 'Yz a little so that that part of 'Yz 

passing through w is the path T of Lemma 4.2. Thenz 
V

kT J e k kT k J kDk(z) 2ir T v H(v,z) dv + 2ir H(w,z) "I \ T V G(v,z) dv. 
z z z 

Since "Iz\ Tz lies in ~z), at a positive distance from 'U'(z) , the second integral in the last 

right-hand-side is D( t1<}, k -! 00, for some 0 < 8 < 1. So Lemma 4.2 gives the result. The 

uniform convergence in compact sets follows as all the contours "I, T etc. varyz z 

continuously with z, as do all our estimates. So we obtain uniformity first in small balls 

and then in arbitrary compact sets. 0 

Proof of Theorem 1.4 We may assume that our contour "Ix constructed in Theorem 3.8 is 

symmetric w.r.t. the real axis (See Figure 7) and so we can assume that "Ix contains both 

Tx and Tx' where Tx is as in Lemma 4.2, and is the conjugateset of points, traversed so 

that "Ix is positively oriented. Thus 

V 

Dk(x) = k! [2ii11 J + 2m1 J_ 1ve H(v,x)k dv 
Tx 

+ ~~ H(w,x)k J 
"IX\TxU 

Here "IX\(Tx U r) lies in ~x), at a positive distance from 'U'(x) , so for some 0 < 8 < 1, 

and for large enough k, 

1121 ~ k! IH(w,x)l k if. 

Moreover, since the integrand v H(v,x)k is real for real v, it is eaSily seen that the 2 

integrals in II (with the factor zkincluded) are conjugatE'll of one another, so that 

Dk(x) = k! 2 Re [zk J v H(v,x)k dv 1+ D(k! IH(w,x) Ik if) 

111 Tx 


2 1/2 eW k k = k! (7iK) {Re [- H(w,x) J + o(H(w,x) )}, rw 
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by Lemma 4.2. Finally, recall from (3.12) and then Lemma 2.1 that 

H(w,x)k = (_xew)k = (_xea)k eibk, 

where 

w a + ib; b = h[-l](x); 

and 

a = 1 - b cot b 1 - h[-l] (x) cot h[-l](x). 

Then (1.19) follows easily. 0 

5. ZERO DISTRIBUTION 

Recall the notation (1.10) and (1.11) as well as the definition (1.8) of the inverse 

conformal map ¢. Our proof of Theorem 1.3 begins with the following lemma: 

Lemma 5.1 We have 

(5.1 ) lim lI)k(z) 11/k = Ize¢(Z)-I I, 
k-lOO 

uniformly in compact subsets of (\[0,1]. Moreover, there exists a non-negative measure J.t 

on [0,1] with 

1 
(5.2) f dJ.t = 1, 

o 
and satisfying 

1. 
(5.3) flog Iz tl dJ.t(t) = log Izl +Re¢(z)-l,ZE(\[O,l]. 

o 
If we define for x E (0,1) 

Re ¢(x) lim Re ¢(x + iy), 
y-lO+ 

whenever the limit exists, and 

(5.4) F(x):= log Ixl + Re¢(x) 1, 

then 

(5.5) 
1f loglx-tl dJ.t(t) F(x),xE(O,l). 
o 

Proof First note that 
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1 
exp( j log Iz - t I dt\(t)), k ~ 1. 

o 
Now by Hellis Theorem [6], [15] (or if the reader prefers, the Banach-Alaoglu Theorem on 

weak-*-compactness), we can choose an infinite subsequence #of positive integers and a 

measure ft such that 

.t\ * ' ft, k -I 00, k E rfI'. 

Necessarily ft is non-negative, has support in [0,1] and satisfies (5.2) as each t\ does. 

Moreover, weak convergence gives 

A 11k 	 1
(5.6) 	 lim I Dk(z)I =exp(j log Iz-tl dft(t)), 

k-loo 0 
kE# 

z E {\[0,1]. The uniform convergence in compact subsets follows from equicontinuity and 

the Arzela-Ascoli Theorem (cf. [6], [15]). But also, for such z, Theorem 1.2 and Stirling's 

formula gives 

(5.7) 	 lim ID
k

(z)l l/k = Ize~(z)-ll. 
k-loo 
kE# 

Comparing with (5.6) gives (5.3). It remains to prove (5.5). Now by Lebesgue's Monotone 

Convergence Theorem, for all x E (0,1), 

1 1 

lim j logl(x+iy) tldft(t)=j loglx-tldft(t). 

y-lO + 0 0 


Consequently, we deduce from (5.3) that (5.5) holds at all x E (0,1) where there exists 

(5.8) 	 lim Re ~(x + iy) Re ~(x). 
y-lO+ 

But from (1.7) and Theorem 1.1 (b) qi is continuous and one-one on -;;r n{z: 1m z > O}, so 

the inverse ~ of qi satisfies (5.8) for each x E (0,1). 0 

We next turn to solving (5.5): 

Lemma 5.2 The equation (5:5) subject to ft being a non-negative measure with support in 

(0,1) and satisfying (5.2) has a unique solution, given by 

(5.9) 	 dft(x) = ft'(x) dx = 1~1]' x E (0,1).
1I'h'(h (x)) 
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Proof We already know from t.he previous lemma that there is a solution dJt and must just 

show that it is unique and given by (5.9). Let us write 

~(z) = U(x,y) + i V(x,y) for z = x + iy. 

Then (5.3) becomes 

1 2~f log((x-t)2+i)dJt(t) 410g(x +y2)+U(x,y) 1. 
o 

Differentiating partially w.r.t. y gives 

f 1 - ---'k--,., dJt(t) Y 2 + ~ U(x,y)x2o (x + Y VJ 

2 Y 2-%x V(x,y), 
x + y 

by the Cauchy-Riemann equations. Now the left-hand side of the last expression is the 

Poisson integral for the upper-half plane of the measure Jt, apart from a multiplicative 

constant. It is known that for a.e. x E (0,1), the left-hand side approaches 7r Jt' (x) as y .... 

0+. See for example [l0,p.244, Thm. 11.24]. Thus for a.e. x E (0,1), 

7r Jt'(x) = Iim %x V(x,y). 
y.... O+ 

But we see that if w a + ib, where a, b satisfy (2.2), (2.3), and in particular x = h(b), 

then 

lim (U + iV)(x,y) lim ~(x + iy) = w, 
y.... O+ y.... O+ 

so 

lim V(x,y) 1m w = b hHl(x). 
V"" 0 + 

Becaus~ h[-I](x) is continuously differentiable in (0,1) and because V(x,y) is harmonic in 

the upper-half plane, we deduce that also for a.e. x E (0,1), 

. () ( ) db 
~~~+ 7Ji. V x,y = Ox 

d HJ()
Ox h x 

_r:­1.,.-_.
h'(hH](x))' 

So we have for a.e. x E (0,1), 

Jt'(x) 1 

Finally, write 
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dtt(x) tt'(x) dx + dv(x), 

where vis the singular part of tt, and in particular is non-negative and bas support in [0,1]. 

Then 

1 
0$ f dv 

o 
f 1 

[dtt(x) 
o 

tt'(x) dx] 

1 

1 - f 0 Jrbl(hl~lJ(x)) dx= (by (5.2) and (5.9)) 

1 - f: Jr*:ftj db o. 

Thus, v has total mass 0, so is the zero measure and we have (5.9). 0 

Proof of Theorem 1.3 We have from Lemma 5.1 that (1.18) holds where tt satisfies (5.3) 

and (5.5). Then by Lemma 5.2, tt has the form (1.13) and satisfies (1.14). The weak 

convergence (1.15) follows from (1.18) and the uniqueness of the measure tt in Lemma 5.2. 

It remains to prove (1.16) and (1.17). To this end, recall from (2.6) that 

b cot b - 1 . b b 
h'(b)=e b [2cosb r-SiIl1)]' 

so we obtain using Maclaurin series for sin and cos, that 

(5.10) h'(b) = -b + 0(b2), b -+ 0+, 

and similarly from the definition (1.12) of h, 

b2 4(5.11) h(b) 1- 2 + O(b ), b -! 0+. 

We deduce that for x h(b), b -+ 0+, 

b hHl(x) = 42(1 - x) {I + o(l)}, 

so from (5.10), (5.11) and this last ~elation, 

(512) IIf(x) = - I - = 1 (1 + 0(1)) 
. ,.. Jrh'(hl-Ij(x)) Jrh'(b) 7fb 

. 1 (1 + 0(1)), x -+ 1-. 
7f..j2(1 - x) 

Also as b -+ 7f-, we see that 

7f 

x h(b) = ~e 7r=b (1 + O(Jr b)),, Jr 
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which yields 

(5.13) 1r- b = IIo~ xl (1 + 0(1)). 

Then from (2.6), 

h'{b) = Sl~ b [2 cos b 

X1r 2 [1 + 0(1)] 

(1r - b) 


_x Ilo~ xl 
2 

[1 + 0(1)]. 

Thus the density function t-t'(x) satisfies 

t-t'(x) = 1 2 [1 + 0(1)], x -; 0+. 0 

x Ilog xl 
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