
SIAM J. MATRIX ANAL. APPL.
Vol. 16, No. 4, pp. 1341-1369, October 1995

1995 Society for Industrial and Applied Mathematics

021

APPLICATION OF VECTOR-VALUED RATIONAL
APPROXIMATIONS TO THE MATRIX EIGENVALUE PROBLEM
AND CONNECTIONS WITH KRYLOV SUBSPACE METHODS *

AVRAM SIDI

Abstract. Let F(z) be a vector-valued function F C CN, which is analytic at z 0
and meromorphic in a neighborhood of z 0, and let its Maclaurin series be given. In a recent
work [J. Approx. Theory, 76 (1994), pp. 89-111] by the author, vector-valued rational approximation
procedures for F(z) that are based on its Maclaurin series, were developed, and some of their conver-
gence properties were analyzed in detail. In particular, a Koenig-type theorem concerning their poles
and a de Montessus-type theorem concerning their uniform convergence in the complex plane were
given. With the help of these theorems it was shown how optimal approximations to the poles of
F(z) and the principal parts of the corresponding Laurent series expansions can be obtained. In this
work we use these rational approximation procedures in conjunction with power iterations to develop
bona fide generalizations of the power method for an arbitrary N N matrix that may or may not
be diagonalizable. These generalizations can be used to obtain simultaneously several of the largest
distinct eigenvalues and corresponding eigenvectors and other vectors in the invariant subspaces. We
provide interesting constructions for both nondefective and defective eigenvalues and the correspond-
ing invariant subspaces, and present a detailed convergence theory for them. This is made possible
by the observation that vectors obtained by power iterations with a matrix are actually coefficients
of the Maclaurin series of a vector-valued rational function, whose poles are the reciprocals of some
or all of the nonzero eigenvalues of the matrix being considered, while the coefficients in the principal
parts of the Laurent expansions of this rational function are vectors in the corresponding invariant
subspaces. In addition, it is shown that the generalized power methods of this work are equivalent
to some Krylov subspace methods, among them the methods of Arnoldi and Lanczos. Thus, the the-
ory of the present work provides a set of completely new results and constructions for these Krylov
subspace methods. At the same time this theory suggests a new mode of usage for these Krylov
subspace methods that has been observed to possess computational advantages over their common
mode of usage in some cases. We illustrate some of the theory and conclusions derived from it with
numerical examples.

Key words. Krylov subspace methods, method of Arnoldi, method of Lanczos, power itera-
tions, generalized power methods, diagonalizable matrices, defective matrices, eigenvalues, invariant
subspaces, vector-valued rational approximations
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1. Introduction. Let F(z) be a vector-valued function, F C - CN, which is
analytic at z 0 and meromorphic in a neighborhood of z 0, and let its Maclaurin
series be given as

(1.1) F(z)- E umzm’
m-----0

where u. are fixed vectors in CN.
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In a recent work by the author [Si6] three types of vector-valued rational approx-
imation procedures, entirely based on the expansion in (1.1), were proposed. For each
of these procedures the rational approximations have two indices, n and k, attached
to them, and thus form a two-dimensional table akin to the Pad6 table or the Walsh
array. Let us denote the (n, k) entry of this table by F,,a(z). Then Fn,a(z), if it exists,
is defined to be of the form

(1.2) E (n,k)
=0 Cj zk-JFn+v+j(z) P,,a(z) (,a)

k _(n,k) nl;- with ca Qn,a(O)= 1,
j=0 cj za-J

where v is an arbitrary but otherwise fixed integer >_ -1, and

(1.3) F,(z) E uzi’ m 0, 1,2,... Fm(z) =_ 0 for m < 0,
i=0

(n,a)and the cj are scalars that depend on the approximation procedure being used.
If we denote the three approximation procedures by SMPE, SMMPE, and STEA,

then the cj

_
cj for each of the three procedures, are defined such that they satisfy

a linear system of equations of the form

k-1

(1.4) Euijcj -uia’ O <_ k-1; ca=l,
j=0

where uij are scalars defined as

(1.5)
(Unwi, UnWj)

u,j (qi+. Un+j

for SMPE,
for SMMPE,
for STEA.

Here (.,.) is an inner product---not necessarily the standard Euclidean inner
product--whose homogeneity property is such that (ox, fly) 6fl(x, y) for x, y in
CN and c, fl in C. The vectors q., q,..., form a linearly independent set, and the
vector q is nonzero. Obviously, Fn,a(z) exists if the linear system in (1.4) has a solution
for co, Cl k--1.

It is easy to verify that for SMPE the equations in (1.4) involving co, c,..., ca-1
are the normal equations for the least squares problem

(1.6) min
0CI ...Ck--i

k-I

E CjUnTj UnWk
j=O

where the norm II" is that induced by the inner product (., .), namely, Ilxll v/, x).
As is clear from (1.2) and (1.3), the numerator of Fn,a(z) is a vector-valued

polynomial of degree at most n+ + k, whereas its denominator is a scalar polynomial
of degree at most k.

As can be seen from (1.4) and (1.5), the denoninator polynomial Qn,a(z) is
constructed from u,,u+,...,u,+ for SMPE and SMMPE, and from u,,u+,

u+2a..- for STEA. Once the denomina:tors have been determined, the numer-
ators involve u0, u,..., u++a: :for all. three approximation procedures.
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The approximation procedures above are very closely related to sone vector ex-
trapolation methods. In fact, as is stated in Theorem 2.3 in Section 2 of [Si6], Fn,k(z)
for SMPE, SMMPE, and STEA are obtained by applying sone generalized versions
of the minimal polynomial extrapolation (MPE), the modified minimal polynomial
extrapolation (MMPE), and the topological epsilon algorithm (TEA), respectively, to
the vector sequence Fm(z),m 0, 1,2, For early references pertaining to these
methods and their description, see the survey paper of Smith, Ford, and Sidi [SmFSi],
and for recent developments pertaining to their convergence, stability, implementa-
tion, and other additional properties, see the papers by Sidi [Sill, [Si2], [Sih], Sidi and
Bridger [SiB], Sidi, Ford, and Smith [SiFSm], and Ford and Sidi [FSi]. The above
mentioned generalizations of vector extrapolation methods are given in [SiB, (1.16)
and (1.17)].

A detailed convergence analysis for the approximations Fn,k(z) as n x was

given in [Si6], whose main results can be verbally summarized as follows: (i) Under
certain conditions the denominators Qn,(z) converge, and their zeros, k in number,
tend to the k poles of F(z) that are closest to the origin. This is a Koenig-type
result and is proved in Theorems 4.1 and 4.5 of [Si6], where the precise rates of
convergence are also given for both simple and nmltiple poles of F(z), and optimal
approximations to multiple poles are constructed in a simple way. (ii) Under the same
conditions F,(z) converges to F(z) uniformly in any compact subset of the circle
containing the above-mentioned k poles of F(z) with these poles excluded. This is
a de Montessus-type result and is proved in Theorem 4.2 of [Si6]. (iii) The principal
parts of the Laurent expansions of F(z) about its poles, simple or multiple, can be
constructed from Fn,k(z) only. This construction, along with its convergence theory,
is provided in Theorem 4.3 of [Si6].

It turns out that tile denominator polynomials Q.,(z) are very closely related
to some recent extensions of the power method for the matrix eigenvalue problem,
see [SiB, 6] and [Si3]. Specifically, if the vectors u, of (1.1) are obtained from
Um= Au,-I, m 1, 2,..., with u0 arbitrary, and A being a complex N N and, in
general, nondiagonMizable matrix, then the reciprocals of tile zeros of the polynomiM
Qn,t(z) are approximations to the k largest distinct and, in general, defective eigen-
values of A, counted according to their multiplicities, under certain conditions. In 3
of this work we provide precise error bounds for these approximations for n - c that
are based on the results of Theorems 4.1. and 4.5 of [Si6]. While the approximations
to nondefective eigenvMues have optimal accuracy in some sense, those that corre-
spond to defective eigenvMues do not. In this paper we also show how approximations
of optimal accuracy to defective eigenvMues can be constructed solely from Qn,k(z),
providing their convergence theory for n --, c at the same time. We then extend the
treatment of [SiB] and [Si3] to cover the corresponding invariant subspaces in general,
and the corresponding eigenvectors in particular. For example, we actually show how
the eigenvectors corresponding to the largest distinct eigenvalues, whether these are
defective or not, can be approximated solely in terms of the vectors uj, and provide
precise rates of convergence for them. The key to these results is the observation
that the vector-valued power series .,=0 umzm actually represents a vector-valued
rational function F(z) whose poles are the reciprocals of some or all of the nonzero
eigenvalues of A, depending on the spectral decomposition of u0, and that correspond-
ing eigenvectors (and certain combinations of eigenvectors and principal vectors) are
related to corresponding principal parts of the Laurent expansions of the function
F(z). The main results of 3 pertaining to eigenvalues are given in Theorem 3.1, while
those pertaining to eigenvectors and invariant subspaces are given in Theorem 3.2
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and the subsequent paragraphs. A detailed description of the properties of the power
iterations Um Au,-I, m-- 1, 2,..., is provided in 2.

In 4 we present a short review of general projection methods and Krylov sub-
space methods for the matrix eigenvalue problem. Of particular interest to us are the
methods of Arnoldi [A] and Lanczos ILl, which are described in this section.

In 5 we show that the extensions of the power method developed and analyzed
in 3 are very closely related to Krylov subspace methods. In particular, we show
that the reciprocals of the k poles and the corresponding residues of the rational
approximations Fn,k(z) (with -1) obtained from the SMPE, SMMPE, and STEA
procedures are the Ritz values and the Ritz vectors, respectively, of certain Krylov
subspace methods of order k.for the matrix A starting with the power iteration un.
Specifically, the methods of Arnoldi and Lanczos are related to the F,,(z) obtained
from the SMPE and STEA procedures, respectively, precisely in this sense when (., .)
in (1.5) is the standard Euclidean inner product. The main results of 5 concerning
this are summarized in Theorem 5.4 and Corollary 5.5. In addition, Theorem 5.6 gives
some optimality properties of the Arnoldi method.

Now the Ritz values and Ritz vectors obtained from Krylov subspace methods
are normMly used as approximations to nondefective eigenpairs. They are not very
effective for defective eigenpairs. Since we know that the generalized power methods
based on the SMPE, SMMPE, and STEA procedures are related to Krylov subspace
methods, the constructions for approximating defective eigenvalues and their corre-
sponding invariant subspaces that originate from generalized power methods and that
are given in 3 are entirely new as far as Krylov subspace methods are concerned.
Similarly, all of the .convergence results of 3, whether they pertain to defective or
nondefective eigenvalues and their corresponding invariant subspaces, are new and to-
tally different from the known analyses provided by Kaniel IN], Paige [Pail, and Shad
[Sal], [Sa2]. Some of these analyses can also be found in Parlett [Par2] and Golub
and Van Loan [GV]. The last two references also give a very thorough treatment of
the computational aspects of Krylov subspace methods.

In 6 we show how the Ritz values and Ritz vectors obtained in a stable way from
the common implementations of the Arnoldi and Lanczos methods can be used in
constructing the approximations to the defective eigenvalues and their corresponding
invariant subspaces in general and eigenvectors in particular.

In 7 we illustrate some of the theoretical results and claims of the paper with
numerical examples.

In view of the connection between (1) the Krylov subspace methods and (2)
the vector-valued rational approximations of [Si6] and the corresponding generalized
power methods of the present work, we now summarize the main contributions of this
paper.

(i) It is shown that Krylov subspace methods for the matrix eigenvalue problem
are completely equivalent to methods founded on analytic function theory and rational
approximations in the complex plane.

(ii) A mode of usage of Krylov subspace methods akin to the power method, in
which one first iterates on an arbitrary initial vector many times and only then applies
Krylov subspace methods, is proposed. This mode produces approximations only to
the largest eigenvalues and their corresponding invariant subspaces.

(iii) The output from Krylov subspace methods, namely, the Ritz values and
Ritz vectors, are used in constructing optimal approximations to defective eigenvalues
and the corresponding eigenvectors and invariant subspaces. (The Ritz values and
Ritz vectors by themselves are not good approximations to defective eigenvalues and
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corresponding eivenvectors and invariant subspaces.)
(iv) A complete convergence theory for the generalized power methods is pro-

vided.
(v) This author’s numerical experience suggests that at least in some cases the

mode of usage proposed in this work and mentioned in (ii) above may produce the
accuracy that is achieved by applying the Arnoldi method in the commonly known
way using less storage and less computational work when the matrix being treated is
large and sparse.

Before closing this section we note that the eigenvalue problem for defective ma-
trices has received some attention in the literature. The problem of approximating the
largest eigenvalue of a matrix when this eigenvalue is defective has been considered
by Ostrowski [O], who proposes an extension of the Rayleigh quotient and inverse
iteration and gives a thorough analysis for this extension. Parlett and Poole [ParPo]
consider the properties of a wide range of projection methods within the framework
of defective matrices. The convergence of the QR method for defective Hessenberg
matrices has been analyzed in detail by Parlett [Parl]. The problem of determining
the Jordan canonical form of defective matrices has been treated in Golub and Wilkin-
son [GW]. The use of power iterations in approximating defective eigenvalues is also
treated to some extent in Wilkinson [W, Chap. 7] and Householder [H, Chap. 7].

Finally, we mention that the results of [Si6], as well as the application of vector-
valued rational approximations to the matrix eigenvalue problem, were motivated by
the developments in a recent work by the author [Si4] on the classical Pad6 approxi-
mants.

2. Properties of power iterations. Let A be an N x N matrix, which, in
general, is complex and nondiagonalizable. Let u0 be a given arbitrary vector in CN,
and generate the vectors ul, u2,..., according to

(2.1) Uj+I Auj, j >_ O.

Denote by s the index of A, i.e., the size of the largest Jordan block of A with zero
eigenvalue. Then u, is of the form

(2.2) u ajl A for m > s,
"= k/=0

where Aj are some or all of the distinct nonzero eigenvalues of A, which we choose to
order such that

(2.3)

pj + 1 wj are positive integers less than or equal to the dimension of the invari-
ant subspace of A belonging to the eigenvalue Aj, and , 0 <_ <_ pj, are linearly
independent vectors in this invariant subspace. It turns out that the vector jpj is an
eigenvector of A corresponding to Aj, while the vectors gji, 0, 1,..., pj 1, are com-
binations of eigenvectors and principal vectors of A corresponding to the eigenvalue
,k. What is more, the subspaces

Y span{tjl, i < <_ pj }, O, 1,..., pj,

are invariant subspaces of A corresponding to the eigenvalue/j, and satisfy Y0 D Y1 D
Dgpj.
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Whether all distinct nonzero eigenvalues are present among )1,,2,... ,AM, the
exact values of the wj, and the precise composition of the vectors jt, all depend on
the spectral decomposition of the initial vector u0. For a detailed derivation of the
above see [SiB, 2].

Before we go on, we will only mention how to determine the maximum value that
wj can assume. Suppose that the Jordan canonical form of A has several Jordan blocks
whose eigenvalues are all equal to Aj. Then the largest value that wj can assume is the
size of the largest of these blocks. In general, for a randomly chosen vector u0, wj will
take on its maximum value. In cases where wj is theoretically less than this maximum
value, rounding errors on a computer will ultimately force wj to take on its maximum
value.

It is obvious from the above that

(2.4)
M M

+ <_
j--1 j=l

and

5ji, 0

_
<_ pj, 1 <_ j

_
M, are linearly independent.

Also the minimal polynomial of the matrix A with respect to the vector us has degree
k0 M i.e.j=l .dj

If defined as a monic polynomial, this polynomial is unique and divides the min-
imal polynomial of A, which, in turn, divides the characteristic polynomial of A.
Furthermore, the minimal polynomial of A with respect to us is also the minimal
polynomial of A with respect to u, for all m >_ s. Consequently, any set of vectors
{Urn, Urn+l,... ,Um+k} is linearly independent for m >_ s provided k < k0.

Now applying Lemma 3.1 of [Si6] in conjunction with (2.2), we conclude that the
vector-valued power series =ou,z’ represents the vector-vMued rational function

M pj
aji(2.6) F(z) (I- zA)-luo

in which the vectors aji are uniquely determined in terms of the 5jr from

(2.7) 5j E aj, O <_. <_ pj, I <_ j <_ M,
i--i

and hence form a linearly independent set, and G(z) is a vector-valued polynomial of
degree at most s- 1. In fact, G(z) is in the invariant subspace of A corresponding to
the zero eigenvalue. Also, ajp tjpj, i.e., ajpj is an eigenvector of A corresponding
to the eigenvalue Aj, while for each i,O <_ <_ pj-- 1,aji is some other vector in
the invariant subspace Y corresponding to the eigenvalue Aj, and involves principal.
vectors as well as eigenvectors.
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When the matrix A is diagonalizable, pj 0 for all j in (2.2) and hence in (2.6).
If, in addition, A is normal, then its eigenvectors form an orthogonal set with respect
to the standard Euclidean inner product, namely, (x, y) x’y, where x* stands for
the hermitian conjugate of x. Consequently, the vectors gj0 ajo in (2.2) and (2.6)
are orthogonal with respect to this inner product when A is normal.

Now that we have shown that the power series =o UmZ’ represents a rational
function F(z) that is analytic at z 0 and has poles zj .k- of respective mul-
tiplicities wj pj + 1,j 1, 2,..., M, we can apply any one of the approximation
procedures SMPE, SMMPE, or STEA to the power series =ou’zm to obtain the
vector-valued rational approximations F,,k(z) to F(z). We can then apply the theo-
rems of 4 and 5 of [Si6] to construct approximations to the eigenvalues Aj and the
vectors aji in (2.6) and (2.7).

It is important to note that the linear independence of the vectors ajl is an
important condition for the convergence of the SMPE and SMMPE procedures, but
is not needed for the STEA procedure. In addition, we assume throughout that

(e.8)
(ql,a 0) a pl (ql,at0) atpt

(qk,alO) (qk,alpl) (qk,ato) (qk,atpt)
for SMMPE,

where k Ej=I Wj, and that

H(q, ajpj 0 for STEA.
j--1

No additional assumption is needed for SMPE.
In order for (2.8) to hold it is necessary (but not sufficient) that the two sets of

vectors {aj 0

_
i

_
pj, 1

_
j <_ t} and {q,..., qk}, each be linearly independent,

as has already been assumed.

3. Theoretical development of generalized power methods. In light of
the developments of 2 and Theorems 4.1, 4.3, and 4.5 of [Si6] and the developments
of 5 in the same paper, we approach the matrix eigenvalue problem as follows.

Given the vector u0 that is picked arbitrarily, we generate the vectors Ul, u2,...,

according to (2.1). We then fix the integers n and k, and determine the coefficients

,j 0, 1,... ,k, of the denominator polynomial of Fn,a(z) for one of the pro-
cedures SMPE, SMMPE, and STEA, by using u,,,Un+l,...,u,+k for SMPE and
SMMPE, and Un, Un+l,...,Un+2k-1, for STEA. By Theorem 4.1 of [Si6] the zeros

of the polynomial (n,k(A) A-aQn,a(A-1) j=ok (JAn’k)AJ are approximations to
the k largest /j in (2.2), counted according to their multiplicities wj, provided the
conditions stated in this theorem are satisfied. In case the matrix A is normal, the
zeros of the polynomial (,k(/k), obtained from SMPE and STEA with the standard
Euclidean inner product, are even better approximations to the eigenvalues /j of A
as follows from Theorem 4.5 of [Si6].

3.1. Treatment of eigenvalue approximations. Theorem 3.1 below, which is
of constructive nature, summarizes all the relevant results concerning the approxina-
tions to the Aj. The corresponding approximations to eigenvectors and other vectors
in the invariant subspaces are subsequently obtained with the help of the developments
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in 5 of [Si6], and the relevant results for this problem are summarized in Theorem
3.2 below.

We note that in this section we have adopted all of the notation of the previous
sections.

THEOREM 3.1. Let the matrix A and the vector sequence u,, rn 0, 1, 2,..., be
as described in the preceding section. Let the positive integers t and k be such that

(3.1) IAtl > Itq-ll and k E (PJ + 1)= E wj.
j--1 j--1

_(,,k)Determine the coefficients (j ,j 0, 1,...,k, for one of the procedures SMPE,
SMMPE, and STEA, by utilizing un, Un+l,..., as described in (1.4) and (1.5). Then,
under the additional conditions given in (2.8) and (2.9),

(3.2)
k

(n,k)Aj II(A_ Aj)j + O(e(n)) as n - oc,n,k() Cj
j--0 j--1

where

(3.3) (n) n
)t+l

( being some nonnegative integer. In fact, if the )j whose moduli are I,Xt[ are simple,
then , where/3 max{pj" I/yl- ])t+ll}. Consequently, the polynomial n,k())
forn c, has wj zeros )jt(n), 1 < <_ wj, that tend to )j,j- 1,2,...,t. For each j
and we have

(3.4) /jl(n) /j O(Sj(n) 1/wj as n -- (x),

where

(3.5)
,t+l
Aj

Let us denote

(3.6) Jy(n) w-. E )j,(n) or y(n) 1
j/(n)_l

/--1 /--1

Then

(3.7) j(n) -/j O(Sj(n)) as n -- oc.

Also, the pjth derivative of n,k()) has exactly one zero Xj(n) that tends to )j and
satisfies

(3.8) j(n) Aj O(Sj(n)) as n oc.
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Let the matrix A be normal, i.e., AA* A*A. Then pj 0 hence wj 1 for
_(n,k)all j. If the cj are determined through the procedures SMPE and STEA with the

standard Euclidean inner product, and k is such that

and provided q tn for STEA, then (3.2) and (3.4) are substantially improved to
read, respectively,

(3.10)
j--1

ash--.

and, for j 1,...,k,

(3.11) Aj(n) Aj 0 ( /k+l
Aj

as n-- oc

where )j(n) is the unique zero of 0n,k(/) that tends to )j.
We note again that the result in (3.2) and (3.3) was originally given in [SiB, 6,

Thin. 6.1], and those in (3.10) and (3.11) were originally given for SMPE in [Si3].
The rest of Theorem 3.1 is new in that it has appeared only recently in [Si6].

One important aspect of Theorem 3.1 is the construction of optimal approxima-
tions to defective eigenvalues through (3.6) and (3.7). From (3.4) it is clear that when
pj 0 hence wj 1, which occurs automatically if/kj is a nondefective eigenvMue,
the rate of convergence of the approximation corresponding to Aj is optimal. In case
that Aj is a defective eigenvalue and pj > 0, the rate of convergence of each of its wj

corresponding approximations is 1/wj of the optimal rate. For this case (3.6) and (3.7)
show how the poor approximations Ajt(n) can be combined in a simple way to give
an optimal approximation, namely j(n). Similarly, (3.8) shows that j(n), the zero
of the pjth derivative of (n,k(A) that tends to/, has the same optimal convergence
rate as j(n). The results in (3.10) and (3.11) show that the approximations obtained
from SMPE and STEA for a normal matrix converge twice as fast as those obtained
for a nonnormM diagonMizable matrix having the same spectrum.

Another important aspect of Theorem 3.1 is that it shows clearly that the quality
of the approximations to A1, A2,..., is better when k is larger. To see this let us
consider the two different cases in which (k, t) (k’, t’) and (k, t) (k", t") in (3.1)
of Theorem 3.1, where t’ < t". Obviously, IA,I > [A,,I, and also
Consequently, [At,,+x/Aj[ < [At,+I/Aj[ for j 1,2, The validity of our claim now
follows by comparing the outcomes of (3.2)-(3.11) with (k,t) (k’,t’) and (k,t)
(k,,,t,,).

Finally, as has already been mentioned in [SiB], the methods contained in The-
orem 3.1 reduce precisely to the classical power methods when k 1. Specifi-
cMly, solving (1.4) with k 1, we have (n,(/) A- UOl/UOO, from which there
follows p(n) UOl/UOO as the approximation to the largest eigenvalue of A. Now
p(n) (un, Un+l)/(Un, Un) (Un, Aun)/(Un, Un) for SMPE procedure and this is sim-
ply the Rayleigh quotient for Un. Similarly, p(n) (ql,Au)/(q,un) and p(n)
(q, Aun)/(q, Un), respectively, for SMMPE and STEA procedures, and this is how the
standard power method is defined.
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3.2. Treatment of invariant subspace approximations. For the treatment
of the eigenvectors and invariant subspaces we need some preliminary work.

Let us rewrite (2.6) in the form

M Pj
dji(3.12) F(z) EE (z zj)+1 + G(z),

j----1 i--0

where

(3.13) zj -1 and dji (-zj)i+laji for all j,i.

Thus the dji are the coefficients of the principal part of the Laurent expansion of F(z)
about the pole zy, j 1,..., M.

Consider the rational function

F(z) En+.(z)(3.14)
zn-4-,+

which is analytic at z 0 and has the Maclaurin series expansion

(3.15) (z) E tnA-’4-iA-1zi"
i=0

By (3.12) we can write

(3.16) (z) E (Z__Zj)i+l
"3t-dJ(Z)’

i=0

where

(3.17)

and j(z) is analytic at zj, i.e., as above, the j are coefficients of the principal part
of the Laurent expansion of (z) about the pole zj, j 1,..., M. Unlike before, both

/(z) and the dji depend on n, in addition. The vector jpj, being a scalar multiple of
the constant vector djpj, is an eigenvector of A corresponding to the eigenvalue Aj. For

p.i, the vector yi, being a linear combination of the constant vectors djt, <_

_
pj,

is in the invariant subspace Y, and, as is obvious from (3.17), the coefficients of the
djt in this linear combination are polynomials in n, up to the common multiplicative
factor z’--.

Following now the.developments in 5 of [Si6], we obtain the following constructive

result for the ji.
THEOREM 3.2. With the notation and conditions of Theorem 3.1, let us define,

for l _<_j < t,

(3.18) j(n)- 1/y(n) or (y(n)= 1/.(n),
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and, for 0 <_ <_ pj and 1

_(n,k) zk_ Erm(3.19) 3ji,l(n) (Z Cj(n)) Ekr:l Gr tn+,+mZm-1

k )(k_r)zk_r_
and

(3.20) ji(n) E ji,t(n).
/=1

Then, for 0 <_ i <_ pj, ji(n) is an approximation to ji in (3.17) in the sense

(3.21) limsup [j(n) jil 1In <_ [/t-f-l[-
oo

z=l/Ajt(n)

We note that Theorem 3.2 actually contains the basic ingredients of a poten-
tially bona fide numerical method for approximating the eigenvectors and other vec-
tors in invariant subspaces corresponding to largest eigenvalues of A. The resulting
method, which is described below, (i) makes use of only Un, Un+l,..., disregarding
U0, Ul,..., Un--1 entirely, and (ii) enables us to construct optimal approximations to
the vectors aj,O < i < pj, forpj 0 as well aspj > 0. We now turn to these
constructions.

3.2.1. Approximation of the eigenvector aipj.
result of Theorem 3.2 to the case pj. We have

(3.22) pj A+’+ldp,
so that (3.21) can also be written as

(3.23) lim sup IAj-n-’-ljpj (n) djp ll/n <

Let us first specialize the

)t+l
Aj

direction with varying n.
Let us now rewrite (3.17) in the form

dj0
djl

z+t+(3.24) T(n)

3.2.2. Approximation of the vectors aji, 0

_
i

_
pj 1. Although the

vector ajp (up to a multiplicative constant) can be determined from jp (n) in a rather
painless manner, the determination of the remaining ayi from the djt(n) becomes
somewhat involved. The reason for this is that the vectors ji, apart from the scalar
multiplicative factor zn--I are linear combinations of the djt hence of the ajt, i <

<_ pj, with coefficients that vary as functions of n, as can be seen from (3.17) and
(3.13), and as has been mentioned before. This means that the j do not have a fixed

This clearly shows that the vector jpj (n), as n --+ cx, aligns itself with the constant
vector dips, which is proportional to the eigenvector ayp, practically at the rate of
IXt+i/Ajln. It is thus sufficient to compute the vectors [lji,t(n), 1 < < wj, by (3.19),
and then to form ji(n) by (3.20) as our approximation to the (appropriately normal-
ized) eigenvector ayp, and this is valid whether pj 0 or pj > O.
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where T(n) is the upper triangular matrix

(.e) T()=

TOO T01 TOpj
T11 Tlpj

".o
q-pj pj

-n- ,- 1 1 l-Fi all and l.

Obviously, T(n) is invertible since its diagonal elements are unity. Thus,

djo (jo

(3.26)
djl

T(lt)
jl

-1 Z+U+

where T(n) -1 is also upper triangular, its diagonal elements being unity.
Now since all elements of T(n) are polynomials in n, and since its determinant is

unity, the elements of T(n) -1 turn out to be polynomials in n, i.e., the matrix T(n) -1
can grow at most polynomially as n -- c. If we denote the nonzero elements of
T(n) -1 by pit, <_

_
pj, 0 <_ <_ pj, then we can write (3.26) in the form

Pj

(3.27) dji z+’l E Piljl, 0

_ _
pj.

l--i

Let us replace ajt in (3.27) by [(jt jt(n)) + jt(n)], and invoke (3.21). After
some manipulation we obtain

(3.28) lim sup
Pj

dji z-9’-F1 E pitjl(Tt)
t--i

1/n
/t+l

P (jt(n) aligns itself with the fixed vector dji asThis implies that the vector -t=i pit

n -- c practically at the rate of I/kt+ 1//kj n. We leave the details of the proof of (3.28)
to the reader.

We note that (3.28) shows how to construct a good approximation to dji from
the (jt(n) and/kj, provided/kj is known. Since/kj is not known, however, the vector

Pjt=iPitjl(n) cannot be constructed. We, therefore, propose to replace Aj in the
matrix T(n) -1 by the known approximations j(n). Also, in this case, it can be shown
that (3.28) remains valid. Again, we leave the details of the proof to the reader.

Before closing this section, we must mention that the developments of this section
are meant to be theoretical in general. Although they can be used for computational
purposes for small values of k, their use for large k is likely to introduce numerical
instabilities in many cases. These instabilities are mainly a result of our direct use
of the power iterations Un+i Aiun, i 0, 1, They exhibit themselves first of all
through the poor computed approximations to the )j, which ultimately affect the com-
puted eigenvector approximations. This problem can be remedied by observing that
the approximations Fn,(z) that we developed and applied to the matrix eigenvalue
problem are very tightly connected with Krylov subspace methods for some of which
there exist computationally stable implementations. In particular, the SMPE and
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STEA procedures are related to the method of Arnoldi and the method of Lanczos,
respectively, as we show in detail in the next two sections.

4. General projection methods and the methods of Arnoldi and Lanc-
zos for the matrix eigenproblem.

4.1. General projection methods. Let {vl,..., vk} and {wl,..., wk} be two
linearly independent sets of vectors in CN, and define the N k matrices V and W
by

(4.1) w [v Iv21--. Iv] and W [Wl IW2[ IWk].

In addition, let us agree to denote the subspaces span {Vl,..., vk} and span {Wl,...,
wa } by V and W, respectively. For simplicity, let us also take (x, y) to be the standard
Euclidean inner product x*y.

In projection methods one looks for an approximate eigenvalue-eigenvector pair
(A, x) with x E V that satisfies the condition

(4.2) (y, Ax-Ax)=0 for allyEW,

which can also be written in the equivalent form

(4.3) W*(A- )I)V 0 for some C.
Here we have used the fact that x G V implies that x V for some C. Of
course, (4.3) holds if and only if/ is an eigenvalue of the matrix pencil (W*AV, W* V),
i.e., it satisfies the characteristic equation

(4.4) det(W*AV iW*V) O.

In general, (4.4) has k solutions for , which are known as Ritz values in the literature.
Given that /V is a Ritz value, the corresponding eigenvector is a solution of the
homogeneous system in (4.3). The eigenvector approximation corresponding to is
now x V, and is known as a Ritz vector.

The different projection methods are characterized by the subspaces V and W
that they employ. (Note that V and W are also called, respectively, the right and left
subspaces.)

4.2. The method of Arnoldi. In this method V and W are Krylov subspaces
given by

(4.5) V-- Uk-1 span{uo, Auo,...,Ak-luo} and W Wk-1 Uk-1,

for some arbitrary vector u0.
Arnoldi has given a very successful implementation of this method. In this imple-

mentation the vectors Aiuo, i 0, 1,..., are orthogonalized by a very special Gram-
Schmidt process as follows:

Step O. Let Vl uo/lluoll.
Step 1. Forj=l,...,k-l, do

(4.6) Determine the scalar hj+l,j > 0 and the vector Vj+l, such that

hj+l,jVj+l Avj- -J hijvi hij (vi Avj) 1 < < j, andi--1

IlvJ+l 1.



1354 AVRAM SIDI

Thus the N k matrix V Iv1 Iv21 Ivk] is unitary in the sense that V*V is the
k k identity matrix. As a result, W*V V*V I, and the generalized eigenvalue
problem of (4.3) now becomes

(4.7) H
where H is the k k upper Hessenberg matrix

(4.8) H

h h12 hk
h2 h22 h2k

h32 h3k

hk,k-1 hkk

i.e., the Ritz values are the eigenvalues of H.

4.3. The method of Lanczos. In this method V and W are the Krylov sub-
spaces

(4.9)
V Va_ span{u0, Au0,...,Ak-lu0} and

W W-I span{q,A*q,..., (A*)-lq},

for some arbitrary vectors u0 and q.
The algorithm given by Lanczos generates one set of vectors {Vl,..., va } from the

Aiuo, i 0, 1,..., k 1, and another set of vectors {Wl,..., wk} from the (A*)q, i
0, 1,..., k- 1, that satisfy the biorthogonality condition

(4.10) (wi, vj) &j,

as long as the process does not break down. This is achieved by the following algo-
rithm.

Step O. Set vl auo and w Tq such that (wl, v) 1.
Stepl. Forj=l,...,k-l, do

(a) Compute )j+l and @j+l by
(4.11) )d+l Avd-ajvj-fldvd_ and @j+l A*wy-6jwj--6jwj-1, with

ay (w, Avj). (When j 1 take fllV0 5w0 0.)
(b) Choose 6j+ and flj+ such that
j+flj+ (ff;j+, )j+), and set

vd+ j+/Sj+l and Wd+l ff;d+/flj+l.
By (4.10) the matrices V and W satisfy W*V I. As a result, the generalized
eigenvalue problem of (4.3) becomes

(4.12) H ,
where H is the k k tridiagonal matrix

(4.13) H

f12
2

6 f14

k
flk
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and the Ritz values are the eigenvalues of H.

4.4. The case of Hermitian A. The subspaces V in (4.5) and (4.9) are iden-
tical. When A is Hermitian, i.e., A* A, and q u0, the subspaces W in (4.5)
and (4.9) become identical too. Thus the methods of Arnoldi and Lanczos become
equivalent for the case under consideration. Furthermore, it can be shown that the
elements hij of the matrix H in the method of Arnoldi satisfy hi,+l h+l, so that
h,i+l hi+l, > 0 for i 1, 2,..., k- 1, while hij 0 for j >_ + 2. The diagonal
elements h are all real. That is to say, in the absence of roundoff, the matrix H is
real symmetric tridiagonal. If we pick q u0 and choose 5j j V/()y, y) in the
method of Lanczos, then the matrix H in (4.13) turns out to be real symmetric and
is exactly the same as the one produced by the method of Arnoldi.

The properties of the Ritz values and Ritz vectors of the Lanczos method, as
applied to Hermitian matrices, have been analyzed by Kaniel [K], Paige [Pail, and
Saad [Sal]. The paper [Sa2] gives results for non-Hermitian matrices.

5. Equivalence of rational approximation procedures and Krylov sub-
space methods. We now go back to the rational approximation procedures SMPE,
SMMPE, and STEA. In particular, we concentrate on the poles and residues of the
rational functions Fn,(z).

5.1. Poles of F,,k (z) vs. Ritz values. From the determinant representations
of F,,(z) that are given in Theorem 2.2 of [Si6], it follows that the denominator
Qn,(z) of Fn,(z) is a constant multiple of the determinant

(5.1) D(A)

1 A Ak
U00 U01 UOk

Ul0 Ull Ulk

Uk-l,0 Uk-l,1 tk-l,k

where A z-1 and uj are as defined in (1.5). This implies that the zeros of the
polynomial D(A) are the reciprocals of the zeros of Qn,(z), or, equivalently, the
reciprocals of the poles of Fn,(z). In addition, they are the roots of a generalized
eigenvalue problem as we show next.

THEOREM 5.1. Whatever the uj, the zeros of the polynomial D()) in (5.1) are
the eigenvalues of the matrix pencil (X, T), where

t01 t02 UOk UO0

tll t12 Ulk tl0
X- and T-

Uk-l,1 tk-l,2 tk-l,k Uk-l,O

U01 UO,k-1
Ull tl,k-1

Uk-l,1 Uk-l,k-1

i.e., they satisfy the equation

(5.3) det(X AT) 0.

Proof. Multiply the (j- 1)st column of D(A) by and subtract from the jth
column for j k + 1, k,..., 2, in this order. This results in



1356 AVRAM SIDI

(5.4) D(A)
U00

Ul0

tk-l,0

X- AT det(X AT),

thus proving the claim. [:]

In the remainder of this section we take (x, y) x*y.
When uj are as in (1.5), Theorem 5.1 takes on the following interesting form.
THEOREM 5.2. Define the N k matrices V and W by

V [’tin I’ttn-t-1 I’’" Itn+k-1]

and

W V for SMPE,
W [ql[q21 [qk] for SMMPE,
W [qlA*q[... ](A*)k-lq] for STEA.

Then, with uj as defined by (1.5), the zeros of D(A) are the eigenvalues of the matrix

pencil (W*AV, W’V), i.e., they satisfy

(5.s) det(W*AV AT*V) O.

Consequently, the reciprocals of the poles of the rational approximations Fn,k(z) ob-
tained from the SMPE or SMMPE or STEA procedures are the Ritz values of the
Krylov subspace methods whose right and left subspaces are column spaces of V and
W, respectively.

Proof. Since Theorem 5.1 applies, all we need to show is that X W*AV and
T W*V there. That T W*Y follows from (1.5), (5.2), (5.5), and (5.6). From (1.5),
(5.2), and (5.6), we similarly have X W*[un+ll"" lug+k]. Now using the fact that

Uj+l Auj,j > O, we also have [Un+ll lUn+] AV. Consequently, X W*AV.
Again, from Uy+l Any, j > O, we realize, in addition, that the right subspace for all
three methods is none other than the Krylov subspace span {un,Au,... ,A-lu}.
This completes the proof.

5.2. Residues of F,k(Z) vs. Ritz vectors. Turning Theorem 5.2 around,
what we have is that the Ritz values obtained by applying the Krylov subspace meth-
ods whose left and right subspaces are column spaces of V and W, respectively, are, in

fact, the reciprocals of the poles of the corresponding rational approximations F,(z)
to the meromorphic function F(z) ouz" An immediate question that arises is,
of course, whether there is any connection between the Ritz vectors and the Fn,(z).
The answer, which is in the affirmative, is provided in Theorem 5.3 below.

THEOREM 5.3. Let be a Ritz value of the Krylov subspace methods whose right
and left subspaces are column spaces of, respectively, V and W in Theorem 5.2. De-
note the corresponding Ritz vector by 5. Let -1 in the corresponding rational
approximation Fn,k(z), cf. (1.2). Provided is simple, c is a constant multiple of the

residue of Fn,k(z) at the pole 1/.
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Proof. Let us first determine the residue of Fn,(z) at the pole 1/. With

’ o Cr;k Fn+ -1(5.8) aes Fn,(Z)lz=e Qn,() Q,()

since Q’n,k (;) 0 that follows from the assumption that is simple, which implies

that is a simple pole. By Fn+s(z) Fn-1 (z) + V"n+s u,z and Er=0 cr 0
Tn---n

we can rewrite (5.8) in the form

n+k-1 k-1

Q’n, () o= ?mtn+m,

where

k

(5.10) m= E c-’-1’ m-0,1,...,k-1.
r=m+l

Let us now denote /- (0, ?1,..., k-1)T. Then (5.9) implies that Res Fn,a(Z)lz= is

a scalar multiple of V. Recall that the Ritz vector corresponding to is V, where
E Ca and satisfies W*(A- I)V 0, which, on account of Theorem 5.2, is the

same as (X- T) 0. Thus in order to show that Res Fn,a(z)]z=e is a constant
multiple of the Ritz vector corresponding to the Ritz value , it is sufficient to show
that

(5.11) (X T) 0.

From (5.2), the (i + 1)st component of the k-dimensional vector T (X T),
0, 1,...,k- 1, is

a-1

(5.12) T E (u,,+l Ui,)m,
m--0

which, by (5.10), becomes

k-1 k

(5.13) Ti E (ti,m+l tirn) E
m:O r:m+l

Crr--m--1

Expanding and rearranging this summation, we obtain

(5.14) --uo c + E UmC,.

r=l rn=l

kRecalling that ’r=0c 0, we can rewrite (5.14) as

a
(5.15) i E ui,c,.

m----0
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Finally, from the assumption that c 1 and from the fact that co, Cl,..., Ck--1 satisfy
the. linear equations in (1.4), we conclude that

(5.16) T=0, i=0,1,...,k-1.

This completes the proof.

5.3. Summary of Fn,k(z) vs. Krylov subspace methods. We now combine
the results of Theorems 5.2 and 5.3 to state the following equivalence theorem, which
forms the main result of this section, and one of the main results of this work.

THEOREM 5.4. Let Fn,k(z) be the rational approximation obtained by applying the
SMPE or SMMPE or STEA procedure to the vector-valued power series -=o u’zm,
where Um A’uo, m 0, 1,..., are power iterations. Denote the reciprocals of the
poles of Fn,a(z) by 1,... ,. Setting -1 in..the numerator of Fn,k(z), denote
the corresponding residues of Fn,(z) by x,... ,x. Next, denote by ik’,... , and
x{,. x, respectively, the Ritz values and corresponding Ritz vectors produced by the
Krylov subspace methods whose right subspace is span{un,Au,... ,Ak-lun} and left
subspaces are the column spaces of the matrices W in (5.6). Then

II(5.17) Aj Aj, j 1,...,k,

and

(5.18) ’ providedxj (x xj, )j is simple.

More can be said about the SMPE and STEA procedures versus the methods of
Arnoldi and Lanczos, and this is done in Corollary 5.5 below.

II IICOROLLARY 5.5. With Fn,k(Z),)j,xj,j 1,... ,k, as in Theorem 5.4, let j ,xj
j 1,..., k, be the Ritz values and Ritz vectors produced by applying the k-step Arnoldi
or Lanczos methods to the matrix A, starting with the vector un Auo. (That is
to say, replace the initial vector uo in Step 0 of (4.6) or (4.11) by the nth power
iteration u,.) In addition, let q be the same vector for the STEA procedure and the
Lanczos method. Then the SMPE and STEA procedures are equivalent to the methods
of Arnoldi and Lanczos, respectively, precisely in the sense of (5.17) and (5.18).

Now that we have shown the equivalence of the methods of Arnoldi and Lanczos
with the generalized power methods based on the SMPE and STEA approximation
procedures, we realize that those results we proved in 3 for the latter and which
pertain to the nondefective as well as defective eigenvalues of A are, in fact, new
results for the former. That is to say, if we apply the methods of Arnoldi or Lanczos
of order k to the matrix A starting with the nth power iteration u Anuo for
large n, then the Ritz values are approximations to the k largest distinct eigenvalues
of A counted according to the multiplicities that appear in (2.2). Similarly, the Ritz
vectors can be used for constructing the approximations to the corresponding invariant
subspaces. These points will be considered in greater detail in the next section.

Judging from Theorems 3.1 and 3.2, we conclude that applying Krylov subspace
methods beginning with Un Auo, n > 0, rather than with u0, may be advantageous,
especially when the eigenvalues that are largest in modulus and the corresponding
eigenvectors and invariant subspaces are needed. Specifically, a given level of accuracy
may be achieved for smaller values of k as n is increased. We recall that k is also the
number of vectors Vl,V2,..., in (4.1) that need to be saved. Thus we see that the
strategy in which Krylov subspace methods are applied to Un with n sufficiently large
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may result in substantial savings in storage. In addition, smaller k means savings
in the computational overhead caused by the arithmetic operations that lead to the
matrices V and W, and, subsequently, to the Ritz vectors. (For a detailed discussion
of this point we refer the reader to 7 Example 7.2.) All this was observed to be the
case in various examples done by the author.

5.4. Optimality properties of the Arnoldi method. In 1 we mentioned
that the coefficients of c of the denominator polynomial Qn,k(z) of Fn,k(z) for the
SMPE procedure are the solution to the optimization problem given, in (1.6). If we
now pick the vectors Um as the power iterations Um Amuo, m O, 1,..., then (1.6)
reads

CO,C1 Ck--1

kj’-’0

Exploiting the fact that the method of Arnoldi is equivalent to the generalized power
method based on the SMPE approximation procedure, we can state the following
optimality properties for the Arnoldi method as applied to a general matrix A.

THEOREM 5.6. Let Aj xj j 1, 2,..., k, be the Ritz values and appropriately
normalized Ritz vectors, respectively, produced by applying the k-step Arnoldi method
to the matrix A starting with the power iteration Un Anuo. Let 7k denote the set
of monic polynomials of degree exactly k, while r denotes the set of polynomials of
degree at most k. Then for k < ko, cf. (2.4),

min IIf(A)unll =_ n,k,

(5.21) xj (A- ,I ?n,
i=1

’I)x} _(n,k)Ai + A (n,k)(5.22) (A j c un c
\i--0 i--0

UnTi t_ Un-t-k

(5.23)

and

(5.24) ((A AjI)zj, g(A)un) 0

For k k0, we have Ax} Ajxj:

all g E -1.
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Proof. We start by noting that (5.24) is nothing but a restatement of the require-
ment that Ax} x} be orthogonal to the left subspace of the Arnoldi method, which
is also its right subspace Y {g(A)un’g E rk-1}.

k are the zeros of the monic polynomialSince the Ritz values .j,j 1,

i=0 ci we can write

k

II( -
i=1

Thus

k-1 k

(5.26) n,k(d)---- E(i
i-0 i-1

Combining (5.26) with (5.19), we obtain (5.20).
Provided x} is as given by (5.21), the proofs of (5.22) and (5.23) are immediate.
To prove the validity of .(5.21) it is sufficient to show that xj E V and that

(A- .k}I)x} is orthogonal to all the vectors in V. That x V is obvious from (5.21)
itself. The fact that cn’k), 0, 1,..., k- 1, are the solution of the optimization
problem in (5.19) implies that the vector Qn,(A)un is orthogonM to every vector in

V. But Q,k(A)u (A- ,I)x}, as can be seen from (5.26). This completes the
proof.

Note that the proofs of (5.20) and (5.21) for Hermitian matrices can also be found
in [Par2, Chap. 12, pp. 239-240].

A few historical notes on the methods of Arnoldi and Lanczos are now in order.
Following the work of Arnoldi the equivalent form in (5.19) was suggested in

a paper by Erdelyi [E], in the book by Wilkinson [W, pp. 583-584], and in the
papers by Manteuffel [M] and Sidi and Bridger [SiB]. The equivalence of the different
approaches does not seem to have been noticed, however. For instance, [W] discusses
both approaches without any attempt to explore the connection between them. With
the exception of [SiB], these works all consider the case n 0. The case n > 0 and
the limit as n -- cx are considered in [SiB] and [Si3].

In his discussion of the power iterations in [H, Chap. 7], Householder gives de-
terminantM representations of certain polynomials whose zeros are approximations to
the largest eigenvMues of the matrix being considered. One of these representations,
namely, the one given in (16) in [H, p. 186], coincides with the determinant D(A)
in (5.1) of the present work pertaining to the STEA approximation procedure with
n _> 0. It is shown there that the zeros of D(A) tend to the k largest eigenvMues of the
matrix A as n -- oc, but a theorem as detailed as our Theorem 3.1 is not given. It is
also mentioned in the same place that, apart from a constant multiplicative factor, the
polynomials D(A) with n 0 are precisely the so-called Lanczos polynomials given
in (10) of [H, p. 23] that are simply det(M- H) with H as given in (4.13). As we
pointed out in this section, up to a constant multiplicative factor, D(A) with n > 0 is
itself the Lanczos polynomial det(AI- H) when the LanCzos method is being applied
with u0 replaced by un Auo. It is not clear to the author whether this connection
between D(A) with n > 0 and the Lanczos method has been observed before or not.

6. Stable numerical implementations. In this section we concentrate on the
implementation of the generalized power methods based on the SMPE and the STEA
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approximation procedures as these are related to the methods of Arnoldi and Lanczos,
respectively, and as good implementations for the latter are known. For example, the
implementations in (4.6) and (4.11) are usually quite stable.

6.1. General computational considerations. The theoretical results of 3
all involve the limiting procedure n - c. When I11 is larger (smaller) than 1, we

may have difficulties in implementing the procedures above due to possible overflow
(underflow) in the computation of the vectors u, for large m. This situation can be
remedied easily as will be shown below.

We first observe that the denominator polynomial Qn,k(z) of the vector-valued ra-
tional approximation Fn,k(z) remains unchanged when the vectors Un, Un+l, Un+2,

are all multiplied by the same scalar, say c, and so do its zeros. Consequently, the
vectors dji(n) defined in Theorem 3.2 remain the same up to the multiplicative factor
a. That is to say, as far as the matrix eigenvalue problem is concerned, multiplica-
tion of the vectors un, Un+l,..., by the scalar ( leaves the eigenvalue approximations
unchanged and multiplies the eigenvector approximations by

For the purpose of numerical implementation we propose to pick
and we achieve this by the following simple algorithm that is also used in the classical
power method.

Step 0. Pick u0 arbitrarily such that Ilu011 1.

(6.1)
Step 1. For m 1, 2,...,n, do

Wm= Aum-1

6.2. Treatment of defective eigenvalues. When the eigenvalue /j is defec-
tive and has 02j > 1 in (2.2), then, under the conditions of Theorem 3.1, there are
precisely 02j Ritz values ,jl(n), 1 <_ <_ wj, that tend to Aj, each with the rate of
convergence O([nPlAtT1//jln]l/wj) as n - c. That is to say, the Ritz values for a
defective eigenvalue are not as effective as the ones for nondefective eigenvalues. How-
ever, j(n) and j(n) that are defined in Theorem 3.1 do enjoy the property that they
tend to/kj with the optimal rate of convergence O(nPlAt+i/jl) as n -- c, as in the
case of a nondefective eigenvalue.

As for the invariant subspaces Y/, 0, 1,..., pj, pj wj 1, the most basic result
to use is Theorem 3.2. According to this theorem and the sub.sequent developments,
the building blocks for the invariant subspaces are the vectors dji,t(n) that are defined

by (3.19). Now the vector j,(n) is a constant multiple of Res F,,(Z)lz=zj(,), where
zjt(n) 1/,kit(n), which, when -1, is a constant multiple of the Ritz vector
corresponding to /jl(n) by Theorem 5.4. That is, once the Ritz vectors have been
computed, they can be used to construct the vectors ji,l(n) which, in turn, are used
in constructing the approximate invariant subspaces Y with optimal accuracy.

Let us now show how the vector ji,l(n) is expressed in terms of the corresponding
Ritz vector. For simplicity of notation we shall write zjt(n) 1//jl(,). The Ritz

vector corresponding to )jl(n) is Eik_=_l ivi, where Vl Un and (Un, Un) 1
by (6.1). We recall that for the method of Arnoldi the vectors Vl,V2,...,v are

actually the ones that would be obtained by orthogonalizing the power iterations
Un, Ann,... ,Ak-lun by the Gram-Schmidt process. For the method of Lanczos the
vectors v, v2,..., v are obtained by biorthogonalizing u, Au,,....., Ak-lun against
the vectors q,A*q,..., (A*)t-lq. In both cases we have

(6.2) AV VH + R,
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where H is the upper Hessenberg matrix of (4.8) for the Arnoldi method or the
tridiagonal matrix of (4.13) for the Lanczos method, and thus it is upper Hessenberg
in both cases. The matrix R has all of its first k- 1 columns equal to zero, and its
kth column is hk+l,kVk+l.

From the way the vectors vl, v2,..., vk are constructed it is easy to see that

V [unlAurl.’.

where B is the upper triangular matrix

(6.4) B

/12
/22

whose entries Dj are required Substituting (6.3) in (6.2), we have

(6.5) [AunlA2unl IAcu,]B [un[Aunl ]Ac-lu,]BH + R.

By equating the jth columns of both sides of (6.5) for j < k, we obtain

J J
(6.6) E(Aun)j E(Aun)(BH)i+,j

i-I i--0

as the matrices B and BH are upper triangular and upper Hessenberg, respectively.
From. the linear independence of the vectors Au,, i 0, 1,..., k 1, (6.6) reduces to

(6.7) /j (BH)+I,j, O <_ i <_ j 0j_=0allj_>l.

Now/11 1 since Vl Un. These equations can be solved in the order i 0, 1,...,
j,j 1, 2,..., k- 1, which amounts to computing the 1st, 2nd,... ,kth columns of
the matrix B, in this order. This can be accomplished as hj+l,j 0 for all j. Thus
by letting 0 in (6.7) we obtain V’Y+l rhrj 0, which we solve for/l,j+l Next,Z-r--1

,j+lletting i 1, we obtain Dlj z_r=t D2rhj, which we solve for D2,j+. By letting
i 2,3,...,j, we obtain i+l,j+l,i- 2,3,...,j, in this order.

kSuppose that the Ritz vector 2 has been computed in the form =iv and
that the have been saved. Then, recalling also that Un+ Au,, i 0, 1,..., k 1,

k-1

(6.8)
i--0

and the coefficient of Un is given by

(6.9)
k

j=l

Similarly, from (3.19), the coefficient of u, in ji,t(n) (setting u -1 there) is given
by

(6.10) a ( y (n)) Ekr= c(’’)2k- -( J (n)) c0(,)2k
k )(k n,k()Er:0 cn’k r)k-r-1 Q’
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Now if we denote the Ritz values by ,,..., ,
we can show that

’= 1/A,and set zi i= 1 k then

(6.11) a -( j(n))

so that

(6.12) j,t(n) a 2
( J(n))

0"0 Hr=l (1 z/) Ej=I

which is the desired result.
With this we can now go on to compute the approximations to the eigenvector

ajp and the vectors aj, 0 <_ < pj 1, precisely as described in 3.2.1 and 3.2.2,
respectively. For example, the vector (jp (n) }-1 (jp,t(n) is the approximation to
the eigenvector ajpy the error in which is, roughly speaking,

7. Numerical examples. In this section we demonstrate by numerical exam-
ples the validity of some of the theory and claims of the previous sections. The
computations for this section were done in double precision arithmetic on an IBM-370
machine.

Example 7.1. Consider the 11 11 real symmetric matrix

(7.1) A 0.06 x

-5 2 1 1
2 6 3 1 1
1 3 6 3 1 1
1 1 3 6 3 1 1

1 1 3 6 3 1 1
1 1 3 6 3 1

1 1 3 6 3
1 1 3 6

1 1 3
1 1

1

1
1 1
3 1 1
6 3 1
3 6 2
1 2 5

This matrix has 10 distinct positive eigenvalues, the smallest and largest being 0.0313
and 0.896 ..., respectively. We applied the SMPE and SMMPE procedures to

approximate its eigenvalues. With u0 (1, 1,..., 1)T, only 6 of the 10 eigenvalues
appear in the spectral decomposition of u, for all rn. To five-digit accuracy these
eigenvalues are ,1 0.89651, A2 0.52971, ,3 0.26440,/4 0.24775, A5 0.19029,
and A6 0.031337.

In Tables 7.1.1 and 7.1.2 we give the errors ej(n) j j(n) in the approxi-
mations Aj(n),j 1,2,3, that were obtained by, respectively, the SMMPE and the
SMPE procedures with k 3. Here j(n) stands for Ajl(n), and we know that coy 1
for all j. Recall that for the SMPE procedure these Aj(n) are simply the Ritz val-
ues obtained by the Arnoldi method of order k 3 as this method is being ap-
plied to un. They are Mso the Ritz values obtained by the Lanczos method of order
k 3 as this method is being applied to Un with q Un in (4.9). (The j(n)

k An,k),k 0 withwere actually obtained by solving the polynomial equation i=o ci
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Table 7.1.1.
Errors in Aj(n) obtained from

SMMPE procedure with k 3 on the ma-
trix A in Example 7.1. The vector uo is

(1, 1,..., 1)T. Here ej(n) Aj Aj(n),
1,2,3.

i()
2.01D-02
5.02D-03
1.30D-03
3.38D-04
8.57D-05

5
6
7
8
9
10
11
12
13
14
15

2.15D-05
5.37D-06
1.35D-06
3.44D-07
8.84D-08
2.31D-08
6.10D-09
1.63D-09
4.42D-10
1.21D-10
3.32D-11

() ()
1.15D-01
4.31D-02
1.82D-02
7.87D-03
3.39D-03
1.45D-03
6.21D-04
2.68D-04
1.17D-04
5.13D-05
2.29D-05
1.03D-05
4.72D-06
2.18D-06
1.01D-06
4.74D-07

6.54D-02
3.78D-02
3.03D-02
2.61D-02
2.28D-02
2.00D-02
1.77D-02
1..58D-02
1.42D-02
1.29D-02
1.18D-02
1.09D-02
1.02D-02
9.54D-03
8.99D-03
8.52D-03

Table 7.1.2.
Errors in Aj(n) obtained from

SMPE procedure with k 3 on the ma-

trix A in Example 7.1. The vector uo is

(1, 1,..., 1)T. Here ej(n) Aj Aj(n),
j 1,2,3.

n

0
1
2
3
4
5
6
7
8
9
10

i() () ()
7.01D-05
1.11D-06
5.43D-08
2.91D-09
1.65D-10
9.93D-12
6.41D-13
4.42D-14
3.62D-15
1.11D-15
6.25D-16

6.92D-03
3.64D-04
5.23D-05
8.15D-06
1.34D-06
2.36D-07
4.41D-08
8.73D-09
1.80D-09
3.81D-10
8.21D-11

2.26D-02
9.64D-03
6.84D-03
5.18D-03
4.11D-03
3.40D-03
2.88D-03
2.50D-03
2.18D-03
1.92D-03
1.70D-03

An,k)the ci-(n’k) determined from (1.6) and % 1.) Note that the errors are all posi-
tive, and, for the SMPE procedure, this is consistent with the asymptotic result of
[Si3, Thin. 2.1]. In addition, we have ej(n) O(IA4/Ajln) as n -, c for SMMPE
procedure (el. (3.4)) and ej(n) O(IA4/Ajl2) as n --, oe for SMPE procedure (el.
(3.11)). These can be verified numerically by computing rj(n) ej(n + 1)/ej(n), for
which, lim,_o rj(n) 4/j for SMMPE procedure and limn-o rj(n) (4/j)
for SMPE procedure. Indeed, r(n) do approach their respective limits with increas-

ing n.
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The vectors ql,...,qk in the SMMPE procedure were taken to be the first k
standard basis vectors for this example.

We should note, of course, that as n is increased, roundoff errors cause the vectors
Un, Un+l,..., to have contributions from all eigenvalues of A. With the precision we
are using, at n 15 the roundoff errors are still not sufficiently effective to cause this
to happen in appreciable amounts.

Finally, if the above is repeated with k 4, a significant improvement in the
convergence rates of the .j(n) is observed, as predicted by the theory of 3. This
point has been explained in the third paragraph following the statement of Theo-
rem 3.1.

Example 7.2. Consider the rn2 rn2 block tridiagonal matrix

-I

where I is the m rn identity matrix, B is the rn rn real nonsymmetric tridiagonal
matrix given by

4 a
b 4 a

(7.3) B- "-. ".. ".. a--l+2(m+l, b--1-
2(m 1)"+

b 4
b

This matrix, with "y 1, appears in [Sal, Example 4.2.2], where it is treated
with the help of the Arnoldi method when rn 15. It arises from central differ-
ence discretization of the elliptic operator -(O2/Ox2 + O2/Oy2) + (O/Ox) on the unit
square with Dirichlet boundary conditions, the number of points of discretization
interior to the unit square being rn in each direction.

It can be shown that A is diagonalizable and that its eigenvalues are given by

(7.4) Ap,q(7) 4- 2cos
q

2 1 "Y
rn+l 2(rn+l)

cos p,q=l 2 rn.
rn+l’

To be able to compare our numerical results with those of [Sal], we also applied
the Arnoldi method to the matrix A with 1 and m 15. In this case all eigenvalues
of A are real and positive. In Table 7.2.1 we give the errors in the Ritz values/k and

that are approximations to the first two largest eigenvalues of A, namely, Am,m (1)
and A,-I,, (1), for k 1, 2,..., obtained by applying the Arnoldi method of order k
to a randomly generated vector u0, as is commonly done. We also give the/2-norms

is the Ritz vector corresponding to /jof the residuals Ax} -/jxj,j 1, 2, where xj
and (x}, xj) 1. These norms are computed precisely in the way described in [Sal,
Eq. (3.14)]. In Tables 7.2.2 and 7.2.3 we do the same, except that we now apply the
Arnoldi method to Un Anuo, with n 100 and n 200, respectively, u0 being
again a randomly generated vector.

Comparison of the results in Tables 7.2.1-7.2.3 shows first of all that the largest
Ritz values converge much faster in k for n 100 and n 200 than for n 0. Also the
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TABLE 7.2.1.
Errors in the two largest Ritz values and 12-

norms of the residuals of corresponding Ritz vectors
obtained from the Arnoldi method on the matrix A
of Example 7.2 with " 1 and m 15. The method
is applied to the randomly generated vector uo. Here

e(’k)3 IXJ Xj’ and -.wj
() Ilnx} Ayxy’ ’11, (}, xy’)

being pairs of Ritz values and Ritz vectors obtained

from the Arnoldi method of order k, and IIx 1.

k ek)

1 6.70D+00
2 2.54D+00
3 1.19D+00
4 6.56D-01
5 3.88D-01
6 2.44D-01
7 1.62D-01
8 1.16D-01
9 8.34D-02
10 5.85D-02
11 4.10D-02
12 2.74D-02
13 1.86D-02
14 1.31D-02
15 9.18D-03
16 6.71D-03
17 4.37D-03
18 2.42D-03
19 1.22D-03
20 5.72D-04
21 2.28D-04
22 1.00D-04
23 5.02D-05
24 2.86D-05
25 1.85D-05
26 1.16D-05
27 7.95D-06
28 6.46D-06
29 5.60D-06
30 4.80D-06

1.89D+00
1.72D+00
1.16D+00
7.62D-01
5.77D-01
4.41D-01
3o30D-01
2.61D-01
2.28D-01
2.08D-01
1.77D-01
1.57D-01
1.23D-01
9.71D-02
8.89D-02
7.18D-02
7.78D-02
6.91D-02
5.30D-02
3.88D-02
2.92D-02
1.87D-02
1.27D-02
7.78D-03
5.48D-03
4.83D-03
3.12D-03
1.58D-03
9.05D-04
5.57D-04

7.44D+00
4.55D+00
3.03D+00
2.02D+00
1.40D+00
1.03D+00
7.82D-01
5.78D-01
4.13D-01
3.04D-01
2.24D-01
1.74D-01
1.40D-01
1.12D-01
8.98D-02
6.34D-02
3.77D-02
2.08D-02
1.11D-02
5.32D-03
2.74D-03
1.42D-03
7.01D-04
3.02D-04
1.53D-06
1.63D-04
2.15D-04
2.19D-04
2.06D-04

7.78D-01
1.44D+00
1.24D+00
1.06D+00
8.75D-01
6.94D-01
6.08D-01
5.63D-01
5.06D-01
4.16D-01
3.60D-01
2.83D-01
2.31D-01
2.26D-01
1.97D-01
2.32D-01
2.12D-01
1.65D-01
1.24D-01
9.84D-02
6.73D-02
4.94D-02
3.25D-02
2.48D-02
2.43D-02
1.73D-02
9.42D-03
5.73D-03
3.75D-03

cost, both storagewise and computational, of obtaining a high level accuracy is larger
when n 0 than when n > 0 and is sufficiently large. For instance, the accuracy
attained for A with n 0 and k 30 can be attained with n 100 and k 5. In
the former we must store 30 vectors, whereas in the latter we need to store 5 vectors.
Roughly speaking, the computational effort in the former case is the equivalent of
about 232 matrix-vector products, whereas in the latter this number is 144.

We determine computational cost in the following way. First of all, if we are
interested only in the eigenvalues, then the computational cost is the sum of (i) the
n matrix-vector products to get to Un along with the n normalizations for u0, Ul,...,

Un-i, cf. (6.1), and (ii) the cost of forming the matrix Va-1, cf. (4.6). The cost of
(i) is n matrix-vector products, n scalar products, and n scalar-vector multiplications.

ik(k+ 1)k( -- 1) scalar products,The cost of (ii) is k- 1 matrix-vector products,
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TABLE 7.2.2.
Errors in the two largest Ritz values and 12-

norms of the residuals of corresponding Ritz vectors
obtained from the Arnoldi method on the matrix A
of Example 7.2 with 1 and m 15. The method
is applied to the vector un Anuo with n 100,

uo is a randomly generated vector. Here ewhere

IAj )1 and-wj(k) iiAx Axll, (), x) being
pairs of Ritz values and Ritz vectors obtained from
the Arnoldi method of order k, and Ilxj II-- 1.

k ek)

1 1.46D-02
2 1.58D-03
3 8.74D-06
4 2.14D-06
5 2.79D-06
6 2.33D-06
7 4.30D-07
8 1.29D-06
9 8.28D-06
10 1.60D-06
11 9.04D-09
12 2.09D-07
13 2.56D-09
14 1.16D-07
15 1.88D-08
16 2.14D-08
17 1.10D-08
18 3.90D-09
19 3.93D-09
20 8.85D- 10

4.98D-02
1.97D-02
5.19D-03
6.15D-04
9.87D-05
3.64D-05
1.62D-05
3.19D-06
1.02D-06
7.35D-08
1.64D-07
5.17D-08
5.06D-08
5.36D-08
4.49D-08
1.28D-08
2.01D-08
5.96D-09
6.15D-09
2.74D-09

1.65D-02
1.56D-05
1.33D-04
1.61D-04
1.17D-04
2.45D-05
1.86D-05
6.39D-05
2.19D-05
7.99D-06
1.02D-05
7.76D-06
1.04D-05
5.33D-06
9.42D-06
9.72D-08
7.69D-06
1.42D-05
1.09D-05

(k)
W2

7.12D-02
2.59D-02
4.26D-03
8.65D-04
4.66D-04
3.12D-04
7.40D-05
2.78D-05
2.06D-06
5.23D-06
1.85D-06
2.48D-06
3.96D-06
1.22D-05
5.25D-06
3.00D-05
2.06D-05
6.70D-05
2.05D-04

scalar-vector multiplications, and 1/2k(k 1) vector additions. If we agree to consider
a scalar product as consisting of a scalar-vector multiplication and a vector addition,
the total number of operations will be n + k 1 matrix-vector products, 2n + k2 + k
scalar-vector multiplications, and n + k2 vector additions. Finally, let us make the
simplification that addition and multiplication have the same cost. All this, of course,
is not most accurate, but gives a reasonable account of the cost. In our example, one
matrix-vector product is very nearly equivalent to five scalar-vector multiplications
and four vector additions.

The approximation that corresponds to n 100 and k 20 in Table 7.2.2 has
about the same accuracy as that given in [Sal]. But the way the approximation of
[Sal] is obtained is much more complicated and also more expensive computationally.

Now with ’ --- 1, the matrix A is close to being symmetric, and one may attribute
the good results shown in Tables 7.2.2 and 7.2.3 to this fact. We, therefore, applied the
Arnoldi method with larger values of that cause A to become highly nonsymmetric.
Our results and conclusions were invariably the same. Actually, when the Arnoldi
method was applied with large values of /, e.g., " 10, the quality of the Ritz values
with n 0 deteriorated, whereas the quality of those with n 100 remained almost
the same.

1A with 0Finally, we have also applied the Arnoldi method to M I- "
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TABLE 7.2.3.
Errors in the two largest Ritz values and

norms of the residuals of corresponding Ritz vectors
obtained from the Arnoldi method on the matrix A
of Example 7.2 with /- 1 and m 15. The method
is applied to the vector Un Anuo with n 200,

uo is a randomly generated vector. Here e)here

pairs of Ritz values and Ritz vectors obtained from
the mrnoldi method of order k, and IIx II-- 1.

k .ek)
1 5.61D-02
2 8.43D-05
3 3.57D-06
4 6.00D-07
5 2.10D-07
6 1.56D-07
7 5.25D-07
8 5.23D-07
9 1.03D-08
10 1.03D-08
11 2.86D-09
12 3.58D- 10
13 2.56D-10
14 1.96D-10
15 4.51D-11
16 1.94D-11
17 1.99D-11
18 1.01D-11
19 5.32D-12
20 4.67D- 12

(k)
W

5.76D-02
4.08D-02
1.61D-03
1.15D-04
2.48D-05
1.01D-06
2.53D-07
1.56D-08
8.23D-08
4.88D-09
8.36D-09
1.08D-09
3.96D-10
6.09D-10
1.94D-10
5.69D-11
6.86D-11
5.74D-11
2.48D-11
2.84D- 11

7.03D-05
7.28D-05
2.49D-05
5.51D-05
5.53D-05
4.72D-05
6.31D-05
5.09D-05
6.12D-05
2.13D-05
2.96D-05
3.47D-06
5.71D-06
1.98D-06
7.79D-07
1.65D-06
6.09D-07
8.41D-07
2.44D-07

8.33D-03
5.34D-04
6.79D-05
2.24D-05
1.14D-06
7.12D-07
5.12D-08
6.30D-06
6.02D-07
2.02D-05
1.28D-05
1.31D-05
2.25D-05
1.01D-05
3.21D-06
4.12D-06
4.05D-06
1.87D-06
2.44D-06

This matrix is real symmetric and its spectrum is in (-1, 1) and is symmetric with
respect to the origin. Again the results obtained from the Arnoldi (now equivalent
to symmetric Lanczos) method with n > 0 and large were superior to those obtained
with n 0.
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