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Ž .Let FF be the family of continued fractions K a r1 , where a s yg , a sp 1 1 p
Ž . < <1 y g g x , p s 2, 3, . . . , with 0 F g F 1, g fixed, and x F 1, p spy1 p p p p p
2, 3, . . . . In this work, we derive upper bounds on the errors in the convergents of
Ž .K a r1 that are uniform for FF, and optimal in the sense that they are attained byp

some continued fraction in FF. For the special case g s g - 1r2, i s 1, 2, . . . , thisi
bound turns out to be especially simple, and for g s g s 1r2, i s 1, 2, . . . , thei
known best form of the theorem of Worpitzki is obtained as an immediate
corollary. Q 1996 Academic Press, Inc.

1. INTRODUCTION

Ž .Let FF be the family of continued fractions K a r1 , wherep

a1
K a r1 s , 1.1Ž .Ž .p a2

1 q a3
1 q

1 q ???

with

a s yg , a s 1 y g g x , p s 2, 3, . . . ;Ž .1 1 p py1 p p

< <0 F g F 1, g fixed, p s 1, 2, . . . ; x F 1, p s 2, 3, . . . .p p p

1.2Ž .

Denote the special continued fraction in FF for which x s y1, p sp
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Ž .2, 3, . . . , by K b r1 , i.e.,p

b1
K b r1 s , 1.3Ž .Ž .p b2

1 q b3
1 q

1 q ???

with

b s yg , b s y 1 y g g , p s 2, 3 . . . . 1.4Ž .Ž .1 1 p py1 p

For any integer m G 1, let us define

amŽm.f s , n s 1, 2, . . . ,n amq 1
1 q

1 q . . amq ny1. q
1

bmŽm.h s , n s 1, 2, . . . ,n bmq 1
1 q

1 q . . bmq ny1. q
1

f Žm. s lim f Žm. ,n
nª`

hŽm. s lim hŽm. ,n
nª`

pn gk
S s 1 q when 0 F g - 1, p s 1, . . . , n ,Ý Łn p1 y gks1 kps1

S s q` when 0 F g - 1, p s 1, . . . , N y 1,n p

g s 1, and n G N ,N

S s lim S possibly q` . 1.5Ž . Ž .n
nª`

Note that as soon as g s 1 or g s 0 for some N, we have a s 0,Ny1 N N

hence f Ž1. s f Ž1. s f Ž1., hŽ1. s hŽ1. s hŽ1., and S s S s S for n sn Ny1 n Ny1 n Ny1
N, N q 1, . . . .

In Theorem 1.1 below, we state a fundamental result that is proved in
w x7, pp. 45]46, Theorem 11.1 .
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Ž . Ž . ŽTHEOREM 1.1. i The K a r1 in FF con¨erge uniformly in the x ,p p
.p s 2, 3, . . . .

Ž . Ž1. Ž1. � < < 4ii f and f , n s 1, 2, . . . , are all in the disk z: z F 1 y 1rS ,n
and hŽ1. s 1rS y 1.

Ž . Ž1. Ž1.iii f and f , n s 1, 2, . . . , are also in the diskn
� < Ž . < Ž . Ž .4z: z q 1r 2 y g F 1 y g r 2 y g .1 1 1

< Ž1. Ž1. <The purpose of the present work is to give an upper bound on f y fn
Ž . Ž .that is i independent of the x , hence is uniform for FF, and ii is optimalp

Ž .in the sense that it is attained by a member of FF, namely, by K b r1 .p
Theorem 1.2 below is the main result of the present work.

Ž .THEOREM 1.2. i For any two integers l and n, l ) n G 1, we ha¨e

1 1
Ž1. Ž1. Ž1. Ž1.< < < <f y f F h y h s y . 1.6Ž .l n l n S Sn l

Ž .ii For any integer n G 1 we ha¨e

1 1
Ž1. Ž1. Ž1. Ž1.< < < <f y f F h y h s y . 1.7Ž .n n S Sn

Ž . Ž .Both bounds in 1.6 and 1.7 are independent of the x and are optimalp
for FF.

The following corollaries are simple consequences of Theorem 1.2, and
their proofs are omitted.

COROLLARY 1. In the case S s q`, we ha¨e

1
Ž1. Ž1. Ž1. Ž1.< < < <f y f F h y h s , n s 1, 2, . . . . 1.8Ž .n n Sn

Ž .COROLLARY 2. i In the case g s g, i s 1, 2, . . . , with 0 - g - 1r2, wei
ha¨e

1 y a
Ž1. Ž1. Ž1. Ž1. nq1< < < <f y f F h y h s a , n s 1, 2, . . . , 1.9Ž .n n nq1ž /1 y a



SHAPIRA, SIDI, AND ISRAELI770

where
g

a s g 0, 1 . 1.10Ž . Ž .
1 y g

Ž .ii In the case g s g s 1r2, i s 1, 2, . . . , we ha¨ei

1
Ž1. Ž1. Ž1. Ž1.< < < <f y f F h y h s , n s 1, 2, . . . . 1.11Ž .n n n q 1

Ž .First, FF in part i of Corollary 2 is the family of continued fractions
Ž . < < Ž .K a r1 for which a F 1 y g g - 1r4, p s 2, 3, . . . . The convergencep p

w xproblem for this family is also considered in 6, p. 118 , where a bound of
< Ž1. Ž1. < nthe form f y f F Ca , n s 1, 2, . . . , is given, C ) 0 being a constantn

Ž .independent of n. Clearly, this bound is not optimal. From 1.9 , we can
< Ž1. Ž1. < w Ž .x nalso obtain the bound f y f F ar 1 q a a , n s 1, 2, . . . , and ourn

Ž . w xconstant ar 1 q a is smaller than C of 6 .
Ž .Next, FF in part ii of Corollary 2 is the family of continued fractions for

< < Ž .which a F 1r4, p s 2, 3, . . . . The result in 1.11 then is the optimalp
form of the theorem of Worpitzki. For different proofs of this classical

w xtheorem, see 2, 3, 6, 7 . This optimal form of Worpitzki’s theorem is not
w x Ž .new, however, and is given in 2, p. 513, Problem 2 . Note that 1.11

follows from Corollary 1 by noting that S s n q 1 when g s 1r2,n i
Ž . Ži s 1, 2, . . . . It also follows from 1.9 by letting a ª 1 there. The bound

w xof 6 mentioned in the previous paragraph does not produce any informa-
.tion on rate of convergence or convergence as we let a ª 1 there.

Ž .The simplicity of the result in part i of Corollary 2 is due to the fact
Ž .that S in 1.5 is a partial sum of a geometric series, hence is knownn

analytically. This observation enables us to obtain simple bounds also for
cases more complicated than that treated in Corollary 2. For example,

Ž .when g s g g 0, 1 , k s 1, 2, . . . , i s 1, 2, . . . , q, for some positiveiqk q i
Ž .integer q, i.e., when K b r1 is a periodic continued fraction, S turns outp

to be the sum of q geometric series, and S can again be expressed in an
q Ž .simple manner. If we let d s Ł g r 1 y g in this case, the followingks1 k k

can be shown to hold:

< Ž1. Ž1. < n r qwhen d - 1, f y f s O d as n ª `,Ž .n

< Ž1. Ž1. < yn r qwhen d ) 1, f y f s O d as n ª `, andŽ .n

< Ž1. Ž1. < y1when d s 1, f y f s O n as n ª `.Ž .n

Examples in which S involves series other than geometric can also
Ž .easily be constructed. For instance, when g s 1r i q 1 , i s 1, 2, . . . ,i

n Ž . < Ž1. Ž1. <we have S s Ý 1rp!, S s e, hence 1.7 gives f y f sn ps0 n
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Ž Ž . . Ž .O 1r n q 1 ! as n ª `. When g s ir 2 i q 1 , i s 1, 2, . . . , we havei
n Ž . Ž .S s Ý 1r p q 1 s H , the n q 1 st harmonic number, S sq`,n ps0 nq1
Ž . < Ž1. Ž1. < Ž .hence 1.7 gives f y f F 1rH s O 1rlog n as n ª `.n nq1

Finally, the authors have been informed by the referee that the tech-
w xniques of the present work bear some relation to those used in 1, 4, 5 .

2. PROOF OF MAIN RESULT

LEMMA 2.1. The con¨ergents hŽ1. are gï en byn

1
Ž1.h s y 1. 2.1Ž .n Sn

Ž .Proof. The proof of 2.1 can be achieved by induction on n by noting
that

yg1Ž1.h s , 2.2Ž .nq1 ˜1 q 1 y g hŽ .1 n

where

yg2
h̃ s . 2.3Ž .n a3

1 q a4
1 q

1 q . . anq1. q
1

We leave the details to the reader.

Ž .By letting n ª ` in 2.1 , we obtain

1
Ž1.h s y 1 2.4Ž .

S

that is part of Theorem 1.1.

LEMMA 2.2. Assume 0 F g - 1, i s 1, 2, . . . . Then for all m G 1 andi
n G 1,

< Žm. < Žm. wf F yh g 0, 1 . 2.5. Ž .n n

Žm. Ž x Ž .Proof. First, h g y1, 0 follows from 2.1 and from 1 F S - `.n n
Ž .Obviously, 2.5 holds for n s 1 and all m G 1. Suppose it holds for some
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n G 1 and all m. Then

< <a a ybm m mŽm. Žm.< <f s F F s yh . 2.6Ž .nq1 nq1Žmq1. Žmq1. Žmq1.< < < <1 q f 1 y f 1 q hn n n

Ž . < <The second inequality in 2.6 follows from the fact that a F yb andm m
Žmq1. Žmq1.< < w .from the induction hypothesis f F yh g 0, 1 .n n

LEMMA 2.3. For any integers l and n, l ) n G 1, and m G 1, there holds

n Žmqk .flyknŽm. Žm. Žm.f y f s y1 f , 2.7Ž . Ž .Łl n l Žmqk .1 q fks1 nyk

where we define f Žm. s 0 for m G 1.0

Proof. We have

a am mŽm. Žm.f y f s yl n Žmq1. Žmq1.1 q f 1 q fly1 ny1

f Žm.
l Žmq1. Žmq1.s y f y f . 2.8Ž .Ž .ly1 ny1Žmq1.1 q fny1

Ž . Ž .Repeating 2.8 n y 1 times, we obtain 2.7 .

Ž .We can now prove part i of Theorem 1.2. Under the assumption
0 F g - 1, i s 1, 2, . . . , from Lemmas 2.2 and 2.3 we havei

n Žmqk .< <hlykŽm. Žm. Žm. Žm. Žm.< < < < < <f y f F h s h y h . 2.9Ž .Łl n l l nŽmqk .1 q hks1 nyk

Ž . Ž .The first part of 1.6 now follows by letting m s 1 in 2.9 . The second
part follows by invoking Lemma 2.1.

Ž . Ž .Part ii of Theorem 1.2 is obtained by letting l ª ` in part i .
To complete the proof of Theorem 1.2, let us now consider g - 1,i

i s 1, . . . , N y 1, and g s 1. For this case, f Ž1. s f Ž1. and hŽ1. s hŽ1. sN N N

y1, and Lemmas 2.1, 2.2, and 2.3 apply to all f Žm. and hŽm. that aren n
determined by a , a , . . . , a . We leave the details to the reader.1 2 N

Before closing, we also mention that the proof technique of the present
paper also provides an independent proof of convergence for the sequence
� Ž1.4̀ Ž1. Ž1.f . This is seen as follows: By the fact that h s lim h exists,n ns1 nª` n

� Ž1.4̀ Ž .h is a Cauchy sequence. From this and from 1.6 , we therefore haven ns1

� Ž1.4̀ Ž1.that f is a Cauchy sequence as well. Consequently, f sn ns1

lim f Ž1. exists.nª` n
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