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TOWARDS AUTOMATIC MULTIGRID ALGORITHMS FOR SPD,
NONSYMMETRIC AND INDEFINITE PROBLEMS*

YAIR SHAPIRAt, MOSHE ISRAELIt, AND AVRAM SIDIt

Abstract. A new multigrid algorithm is constructed for the solution of linear systems of equations which arise
from the discretization of elliptic PDEs. It is defined in terms of the difference scheme on the fine grid only, and no
rediscretization of the PDE is required. Numerical experiments show that this algorithm gives high convergence rates
for several classes ofproblems: symmetric, nonsymmetdc and problems with discontinuous coefficients, nonuniform
grids, and l;tonrectangular domains. When supplemented with an acceleration method, good convergence is achieved
also for pure convection problems and indefinite Helmholtz equations.
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1. Introduction. The multigrid method is a powerful tool for the solution of linear sys-
tems which arise from the discretization of elliptic PDEs [4], [5]. In a multigrid iteration the
equation is first relaxed on a fine grid in order to smooth the error; then the residual equations
are transferred to a coarser grid, to be solved subsequently and to supply correction terms.
Recursion is used to solve the coarser grid problem in a similar way. In order to implement this
procedure the PDE has to be discretized on all grids and restriction and prolongation operators
must be defined in order to transfer information between fine and coarse grids. The basic
multigrid method works well for the Poisson equation in the square, but difficulties arise with
nonsymmetric and indefinite problems and problems with variable coefficients, complicated
domains, or nonuniform grids. In these cases, an effective discretization of the PDE on coarse
grids becomes more complicated than that provided by a naive approach. Some suggestions
on handling discontinuous coefficients are given in 1], while the nonsymmetric case is ana-
lyzed in [9] and 10]. A projection method for the solution of slightly indefinite problems is
developed in [7]. Another projection method for such problems is presented and analyzed in
[3]. These approaches, however, involve specialized and problem-dependent treatment, and
the need for a uniform approach is not yet fulfilled.

Present multigrid procedures are not able to serve as "blackbox" solvers. Special attention
has to be given to the neighborhood of the boundary and to the presence of discontinuities.
In [6], [20], and [21] the algebraic multigfid (AMG) method is developed. This method is
algebraic in the sense that it depends on the discrete system ofequations and not on the original
PDE or the difference scheme for it. It automatically chooses the coarse level variables and
constructs the coarse level equations and the restriction and prolongation operators; hence
it applies to general linear systems of equations. However, the set-up time required is large
(equivalent to about 10 V-cycles).

Multigrid versions whose definition depends on the difference scheme on the original
grid only also exist; these methods, which are called automatic methods in the sequel, reduce
the original grid to further coarse grids and automatically construct the coarse-grid coeffi-
cient matrix and the restriction and prolongation operators. The black-box multigrid method
of 11] applies to problems with discontinuous coefficients and nonrectangular domains and
also to nonsymmetfic problems 12]. Another robust automatic method is presented in [34].
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None of these methods, however, handles highly indefinite equations; they use coarse-grid
operators which are derived from a Galerkin approach, resulting in highly indefinite coarse-
grid equations.

All the automatic multilevel methods mentioned above suffer from the disadvantage that
for d-dimensional PDE discretizations the coarse-grid operators involve stencils with 3d co-

efficients even when the original difference equation has a (2d + 1)-coefficient stencil. This
significantly enlarges the amount of arithmetic operations and storage required to generate
and store coarse-grid operators (in comparison to algorithms which use (2d + 1)-coefficient
stencils at all levels). Moreover, it enlarges the cost of a multigrid V-cycle (implemented,
e.g., with a Gauss-Seidel smoother) by roughly 25% and 40% for 2-d and 3-d problems,
respectively. When W-cycles or more expensive smoothers are used the overhead may be
even larger; in particular, the red-black Gauss-Seidel relaxation is not applicable any more
and 2d-color relaxation (whose parallel and vector implementations are more complicated)
must be used instead. Furthermore, since the coarse coefficien[ matrices lack property A,
most of the analysis of [33] for the successive over-relaxation (SOR) method does not apply
(the SOR smoother in multigrid methods is considered in [32]). These difficulties are par-
tially relaxed in the algorithm of [31], where (2d+l 1)-coefficient coarse-grid stencils are
used; this version, however, is not satisfactory for nonsymmetric problems and problems with
discontinuous coefficients.

The aim of this work is to present an automatic multigrid method which does not suffer
from the above difficulties; that is, it uses (2d + 1)-coefficient stencils only and can be used to
solve indefinite problems and several other important classes of problems, e.g., nonsymmetric
problems and problems with discontinuous coefficients and nonrectangular domains. More-
over, coarse-grid, restriction, and prolongation operators are obtained from the linear system
of equations by a simple and inexpensive recursive process; actually, the cost of this recursion
is approximately one work unit, that is, it is equivalent to one fine-grid Gauss-Seidel sweep
(compared to five work units for the method of [31]). This fact is especially important for
implicit time marching in evolution problems with differential operator or boundary varying in
time, where coarse-grid operators are to be reconstructed at every time level. In addition, the
fact that operators on different levels are of the same stencil allows easy programming, with
data structures and smoothing procedures for coarse-grid equations similar to those used for
the finest-grid equation. Like the methods of 11] and [34], the algorithm is robust with respect
to the number of fine-grid points, boundary condition type, and shape of the domain. Unlike
these methods, however, it is not applicable to schemes which use 3d-coefficient stencils on
the finest grid. We call this algorithm AutoMUG (automatic multigrid).

Our numerical experiments show that, for some difficult problems, the basic AutoMUG
iteration may be efficiently accelerated by a Lanczos-type method. It is likely that the existing
automatic multigrid methods can also profit from such techniques; indeed, it is shown in [22]
that even for highly indefinite, nearly singular Helmholtz equations the two-level implemen-
tation of both modified black-box multigrid and AutoMUG can be efficiently accelerated.

AutoMUG is described in 2. In3 numerical examples are presented. In4 the algorithm
and the numerical results are discussed.

2. The AutoMUG (automatic multigrid) method. In this section we define the Auto-
MUG method for the solution of finite difference equations which have (2d + 1)-coefficient
stencils (for d 1, 2) and examine the properties of its coarse-grid coefficient matrices.

2.1. Abstract definition of AutoMUG. We begin with an abstract definition of Auto-
MUG for the solution of the linear system of equations
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The notation of this definition will be useful in the sequel. In the following, "<---" means
replacement, $1 and $2 are some smoothing procedures, and e, Vl, v2, and o are nonnegative
integers denoting, respectively, the cycle index, the number of presmoothings, the number of
postsmoothings, and the minimal order of A for which AutoMUG is called recursively. The
operators R, P, and Q will be defined later.

AutoMUG(xin, A, b, Xout)
iforder(A) < o

Xout <--- A- b

otherwise:

(1)
Xin <--- S1xin (repeat 1) times)
e+--0

AutoMUG(e, Q, R(Axin b), eout) I repeat e timese <-- eout /
Xout <-- Xin Pe

Xout <--- S2xout (repeat v2 times).

For simplicity, we assume in this paper that the method is implemented with a V-cycle (e 1)
and a maximal number of levels (o 2). An iterative application of AutoMUG is given by

x0=0, k=0

while Axk b 112 >_ threshold, Axo b 2

(2) AutoMUG(xg, A, b, X+l)
k<---k+l
endwhile

Below we define the operators R, P, and Q of (1) for the case in which A is a tridiagonal
matrix. Although this is of little significance in itself, it is crucial in the development of the
algorithm for other more complicated cases that arise in practical applications and are treated
next in this paper.

2.2. The tridiagonal case. In this subsection we define the operators R, P, and Q used
in (1) for linear systems which arise, for example, from finite-difference discretization of the
ODE

(3) (au’)’ + cu’ + 3u f
where a, c, fl, u, and f are functions defined on f2 c R and suitable boundary conditions are
imposed on 02 (this illustrative example will be used in the sequel).

For any matrix B, B (bi,j)l<_i<_K, I<j<_L, define

rowsum(B) diag (bi.j)
j=l I<i<K

For a diagonal matrix B, B diag(bi)l<i<K, let

even(B) ----diag(b2i)l<_i<_LK/2j and odd(B) --diag(b2i-1)l<i<[K/2].

Let I denote an identity matrix of a suitable order. Let N be a positive integer, n [log2 NJ,
h 1/(N + 1) be the mesh size, and A be a tridiagonal matrix of order N resulting, for
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example, from a difference scheme approximating (3). For any positive integer K, let M(K)
be the permutation matrix which reorders the variables of a K-dimensional vector such that
odd-numbered variables appear in the first block and even-numbered variables appear in the
second block. Define

(4) A0=AandMi=M(N/2i), O < < n,

where, here and in the sequel, N/2 means an integer division, that is, [.N/2 I. In the following
we give some motivation for the definition ofthe operators R, P, and Q used in (1). Suppose A
has no vanishing diagonal element and let D diag(A). Then, for some bidiagonal matrices
B and C, we have

A=DM( I -B ) ( I -B ) R_I
-C I Mo M(MoDMff -C I Mo Qp-l,

where

( i (, 0 tR (MoDM) C I Mo, Q= 0 I CB

P=M 0 I

Suppose these operators are used in (1). Since Q is tridiagonal, one may repeat the above
procedure with A replaced by Q to generate suitable operators for the recursive call in (1).
With u u. 0 in (1) this yields a direct solver which is equivalent to the cyclic reduction
method [21.

Suppose odd-numbered variables are red-colored. If u 0, u 1, and the smoothing
procedure S of (1) corresponds to the red leg of a red-black Gauss-Seidel relaxation, then an
equivalent algorithm is obtained when the definition of R, Q, and P is modified to read

(;=even(D)Codd(D)-1, R=( I )Mo, Q=even(D)(I-CB), P=M ( B
I ).

Moreover, Q RAP still holds; hence this is an appropriate choice for the operators in (1).
This procedure is equivalent to that used in [26] for tridiagonal systems.

Note that Q is the Schur complement of A relative to the even-numbered variables. These
variables may be viewed as abstract coarse-grid points. Then Q is a coarse-grid operator, R
is a fine-to-coarse-grid restriction, and P is a coarse-to-fine-grid prolongation.

We come now to a precise definition of the operators R, P, and Q used in (1). For
0 < < n, define the matrices Di, Bi, Ci, eA,i+l, Ci, Ra,i+l, Ai+I, and Sa,i+l, in this order,
by

(5)

Di diag(Ai),

ai DiMiT( I -Bi )-Ci I Mi,

PA,i_t_l--MiT(nii),
i even(Di)Ciodd(Di)-1,

RA,i+I--( i I )Mi,

Ai+l I CiBi,

Sa,i+l rowsum(2I Ai+I),

Ai+l even(Di)Ai+l.
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Note that all the Ai are tridiagonal, hence Bi and C are well defined (vanishing of a diagonal
element of Di, for some i, is discussed at the end of 2.3). The operator Sa,i+ is not used in the
present case, but will be helpful in 2.4, where it serves as an approximation to Ra,i+ PA,i+I.
Indeed, when Do is a multiple of the identity,

SA,1 RA,1 PA,1 rowsum(I + CoBo) (I + CoBo)

(6)
( -Co rowsum(CoB0) ) B/0 -X-Xa xx + C-x

which is negligible when operating on functions u for which (au’)’ and cu’ are not too large.
This condition is fulfilled for the solution of the ODE (3), according to the assumptions made
in [1].

Remark. The above definition of Sa,i+l may be replaced by Sa,i+l rowsum(Hi), with

H Ra,i+lPA,i+l, H ea,i+ or H ( Ci I ).
This yields no essential change in either the theory or the numerical results presented in this
paper. The third version is slightly better for indefinite problems, and is used in [23], [24],
and [25].

The AutoMUG procedure, namely

AutoMUG(xin, A, b, Xout),

defined in (1), is called n + 1 times per iteration. In the (n + 1)st time the AutoMUG procedure
is a direct solver. For 1 < < n, the ith call to the AutoMUG procedure is accomplished with
the operators

Q Ai, P PA,i, R Ra,i.

2.3. Properties ofthe coarse-grid operators. In this subsectionweshow that the coarse-
grid operators Ai defined in (5) preserve some desirable properties of A. To this end, we prove
the following lemmas.

For any matrix T let T (i) and T[j] denote its ith row and jth column, respectively,
denote the matrix defined by ITIi,y IT/,yl, and T > 0 (T is nonnegative) hold if all the
elements of T are positive or zero. For any two matrices T and S of the same size let T > S
hold if T S > 0. Let (., .) denote the 12 inner product and e be the vector whose components
are all equal to 1.

LEMMA 2.1. Assume T and S are two matricesfor which the number ofrows ofS is equal
to the number ofcolumns of T. Then

rowsum(ISI) <_ I = rowsum(ITSI) _< rowsum(ITI).

Furthermore,/frowsum(I SI) < I andfor some io rowsum(I SI)io,io < 1 and Ttil :/: 0 then

3 jo s.t. rowsum(ITSI)jo,jo < rowsum(ITI)j0,0.

Proof. Suppose T > 0 and S > 0. Then

rowsum(T S)i,i (T(i), S < (T(i),e) rowsum(T)i,i.

For the second part of the lemma, by assumption there exists a j0 such that Tj0,i > 0.
Consequently,

rowsum(T S)jo,jo (T<j, Stjl) < (Tj, e) rowsum(T)jo,jo.
J
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For the general case, the lemma follows from

rowsum(ITSI) _< rowsum(ITIISI).

This completes the proof of the lemma.
LEMMA 2.2. Let I, be the identity matrix oforder m. For some positive integers k and

let W be a matrix oftheform

where either T and S are bidiagonal matrices satisfying Ti,j 0 Sj,i 0 and Ik 11 <_ 1
or T and S are nonnegative matrices. Then ifW is irreducible, so is It T S.

Proof. For any square matrix U of order m let G[U] be the directed graph defined by

G[U] =- {1,2 m}, {(i, j) Uj,i 0}

where the first set denotes the nodes and the second one the edges of the graph. Irreducibility
of U is equivalent to strong connectivity of G[U], which is equivalent to strong connectivity
of G[I U] (see [30]). From the assumptions of the lemma, there follows, at least for # j,

((Ik+l- W)2)j,i 0 . {::1 m, (Ik+l- W)j,m O, (Ik+l- W)m,i 0}.

Consequently,

1, 2 k + l}, {(i, j) j and m s.t. (I+l W),m 7 0, (Ik+l W)m, O}

C G[(IIc+l- W)21.

Let and i2 be some integers satisfying k + 1 < il, i2 < k + 1. Since G[Ik+l W] is strongly
connected, there exists a path in G[lk+l W] leading from il to i2. From the structure of

Ik+l W this path must include an even number of edges. Hence is connected to i2 also in
G[(Ik+l W)2]. The lemma follows from

((Ik+l- W)2= 0

This completes the proof of the lemma.

0)
LEMMA 2.3. Assume T is an M-matrix and diag(T) I. Then (2I T)T is an

M-matrix.

Proof. From the assumptions of the lemma, we have I T > 0, and, by Theorem
3.10 of [30], p(l T) < 1, where p denotes the spectral radius. Hence (I T)2 > 0 and
p((I- T)2) < 1. Since

(21- T)T I- (I- T)2

the lemma follows from Theorem 3.8 of [30]. This completes the proof of the lemma.
THEOREM 2.4. Assume A is tridiagonal and one of the following: (a) an M-matrix, (b)

a nonsingular weakly diagonally dominant matrix, or (c) an irreducibly diagonally dominant
matrix. Then so are all the matrices Ai+l defined in (4) and (5); moreover, the matrices

Di defined in (5) are symmetric positive definite (SPD) and, in case (a), so are the matrices

SA,i+l.
Proof. The proof is by induction on in (5). For case (a), the SPD property of Di follows

from Ai being an M-matrix, and the M-matrix property of Ai+x follows from Lemma 2.3 and
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(21- D-IAi)DIAi MiT Ci I -C I Mi

_M?( I-BiCi 0 )0 I Ci Bi Mi.

For case (b), the SPD property of Di follows from the nonsingularity and weak diagonal
dominance of Ai, the nonsingularity of Ai+l follows from

--C I

, o)(, o t(’ )-Ci I 0 I CiBi 0 I Mi,

and the weak diagonal dominance of Ai+l follows from Lemma 2.1. For case (c), the SPD
property ofDi follows from irreducible diagonal dominance of Ai, and the irreducible diagonal
dominance of Ai+l follows from Lemmas 2.1 and 2.2. The last part of the theorem follows
from Ai being an M-matrix. This completes the proof of the theorem.

When its assumption holds, Theorem 2.4 ensures that the matrices Bi and Ci of (5) are
well defined and that no division by zero occurs. Otherwise, a diagonal element of Di (for
some i) may vanish; this may be handled by a reasonable definition of the corresponding line
of Ci and colunm of Bi, and, similarly, of the off-diagonal elements in the corresponding line
of RA,i+l and colunm of PA,i+l (e.g., the templates [0, 1, 0] for restriction and [0, 1, 0] for
prolongation).

2.4. The two-dimensional case. In this subsection we define the operators R, P, and Q
used in (1) for linear systems which arise, for example, from finite difference discretization
of the PDE

(aUx)x + (buy)y + CUx + duy + flu f,

where a, b, c, d,/3, u, and f are functions defined on f2 c R2 and suitable boundary conditions
are imposed on 0.

Let U(K, L) be a permutation matrix such that for any vector v defined on a K L grid and
ordered lexicographically rowby row, U(K, L) v is the same vector v ordered lexicographically
column by column. Let

U:,l =-- U(N/2: N/2l), 0 < k, < n

where, here and in the sequel, N/2J means an integer division, that is, [N/2J J. Suppose A is
of the form

(7) A blockdiag(X(J))l<_j<_N + uT,o blockdiag(Y(J))i<_j<_NUo,o

where X(j) and Y(J) are tridiagonal matrices of order N. For example, if

(1-2 /5 2)X(j=Y(j=tridiag h--, h--+-, 1 <j <N

for some/ C, then A represents a central discretization of the Helmholtz equation

Uxx -{- Uyy "47 U f

in the unit square with Dirichlet boundary conditions.
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In the following we give some motivation to the definition of the operators R, P, and Q
used in (1). For simplicity, we treat semi-coarsening in the x-direction only; the y-direction
coarsening is implemented analogously.

By replacing A in (4) with X(j and applying (5) to it one may define

Rx blockdiag(Rxw,1)l<_j<_N, Px blockdiag(Px(J,l)l<_j<_N.

The natural definition Q RxAPx is undesirable because it spoils the tridiagonal structure
of the second term in the right-hand side of (7). In order to avoid this, only the first term in
the fight-hand side of (7) is multiplied by Rx and Px from the left and fight sides, respec-
tively; the second term is multiplied instead by rowsum(Rx Px). According to (6), the relative
error inserted into RxAPx by this approximation is negligible, at least for functions in the
neighborhood of the solution.

In order to perform a y-direction coarsening, the second term in the fight-hand side of
(7) is treated similarly (using restriction and prolongation operators Ry and Py), while not
spoiling the structure of the first tenn. (1) is then implemented with the resulting coarse-grid
operator Q and the restriction and prolongation operators R gyRx and P Px Py.

We come now to a precise definition of the operators R, P, and Q of (1) for the 2-d case.
Define

For 1 n, define the matrices Ri, el, and Ai, in this order, by

For 1 < j < N/2i-l, do (5) with A and replaced by X(2i-lj) and 1, respectively,

For 1 < j < N/2i-l, do (5) with A and replaced by Y(2’-1j) and 1, respectively,

Ri =-- UT blockdiag(Ry2, i)l<j<N/2iUi_l.i blockdiag(Rx2-, i)izjzN/2’-’i,i

Pi =- blockdiag(Px-,i <-J<_/2,- Uir_ ,i blockdiag(Py2,,i j <_N/2’ Ui,i

blockdiag(X2J))zj<_N/2

(8) +-- Ur blockdiag(Sy(2iJ,i))l<_j<_N/2Ui blockdiag(X2J))i<_j<_N/2i,i"

blockdiag(yi(E/J))l<_j<_N/2 --
<--- Ui,i blockdiag(Sx( i))l<_j<_N/2iuT blockdiag(/’i’(E/J))l<_j<N/2ii,i

Ai blockdiag(X2’J))l<_j<_N/2, q- UT blockdiag(Yi(2 J))I<_j<_N/2i" Uii,i" ,"

As in the tridiagonal case, the th call to the AutoMUG procedure in (1), 1 _< _< n, is
accomplished with the operators

Q <-- Ai, P <--- Pi, R <--- Ri.

The following theorem ensures that the coarse-grid operators Ai enjoy a desirable property.
THEOREM 2.5. Assume A is defined as in (7) with X(j) and Y(J) being tridiagonal

irreducibly diagonally dominant M-matrices of order N. Then all the matrices Ai defined
in (8) are irreducibly diagonally dominant M-matrices.



AUTOMATIC MULTIGRID FOR SPD OR INDEFINITE PDES 447

Proof. Following the route of the proof of Theorem 2.4, by induction on in (8) all
the tridiagonal matrices Xi and Yi are irreducibly diagonally dominant M-matrices and the
diagonal matrices Si are SPD. Hence the Ai are weakly diagonally dominant, with a strict
diagonal dominance for at least one row. Irreducibility of Ai follows from

G[Ai] 1, 2 N/2i} x 1, 2 N/2i},

rv(2il)x{((k, 1), (m, 1)) kAi 3m,k 0} I..J {((1, k), (I, m)) (yi(2’l))m,k 0}.

Hence the Ai are irreducibly diagonally dominant matrices. Since the Ai have positive diagonal
elements and nonpositive off-diagonal elements, it follows from [30] that they are also M-
matrices. This completes the proof of the theorem.

The definition (7) ofthe coefficient matrix A assumes that the grid is logically rectangular.
Problems involving complicated domains may be treated by embedding the original grid into
a logically rectangular grid [28] and appending trivial equations for the redundant variables.
This approach was used in the numerical experiments in 3. Note that these dummy variables,
as well as their corresponding equations, do not have to be stored, since they do not influence
the values of the original variables.

3. Numerical experiments. Our aim in this section is to show the applicability of Auto-
MUG to several classes of problems, including indefinite Helmholtz equations. We compare
the performance of AutoMUG to that of a standard multigrid version which has the same
complexity, that is, uses (2d + 1)-coefficient coarse-grid stencils only (see 1). This version,
denoted by MG, is implemented as follows: coarse-grid operators are generated from the PDE
by the same scheme as that used on the finest grid. Full weighting and bilinear interpolation are
used for restriction and prolongation, respectively. For both AutoMUG and MG the maximal
number of levels (e.g., six levels for 63 x 63 grids) is used, which means setting o 2 in (1);
the only exceptions are examples 13 and 14, where four levels are used.

When implementing MG one must use 2n+l 1 grid points on the finest grid and 2q 1,
1 < q < n, for coarser grids in order to preserve uniformity. Here the even points, which are
taken as coarse-grid points, are always internal points of the original grid. For 2n-point grids,
on the other hand, the last fine-grid point appears as a last grid point in all grids. Hence, coarse
grids are biased towards the boundary. For AutoMUG, on the other hand, grids of both 2n

points or 2n+l 1 points may be used, and actually achieve the same convergence rates; this
is because in the 2 points case AutoMUG automatically chooses in the coarse-grid schemes
the most accurate extrapolation of boundary points. An odd number of points N 63 is used
here for an easier comparison between AutoMUG and MG.

On all grids the smoother was either the one provided by the ILU(1,1) decomposition of
18] and [29] (namely, ILU with no fill-in) or the red-black Gauss-Seidel (RB) relaxation.
ILU was considered as a smoother in multigrid in 16] and 17]. One presmoothing and one
postsmoothing is performed in each level of a V-cycle (e Vl v2 1 in (1)). The initial
guess is random in (0, 1). Double-precision arithmetic is used.

AutoMUG and MG are iterated according to (2) with 10-12 < threshold < 10-14, to
avoid the effect of round-off errors. It was checked that the l norm of the error is reduced
during this process by more than 10 orders of magnitude. Convergence factors are computed
from the last four iterations, namely

( Ilaxlast-bll2 ) 1/3

convergence factor.
IIAxast-3 bl12

where last is the index of the last iteration. When the basic iteration (2) by itself diverges
(denoted by ".") or unsatisfactorily converges, it is also implemented with an acceleration
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TABLE
Convergencefactorsfor MG andAutoMUG (in parentheses: averaged convergencefactors when the TFQMR

acceleration is used).

example
0.067

2a 0.474 (0.148)
2b 0.005
3 0.127
4 0.181
5a 0.235
5b 0.208
6 0.196
7 , (0.525)
8 0.573 (0.159)
9 (0.57)
10a 0.057
10b 0.26
11 ,
12 0.53 (0.246)
13 ,
14 ,

MG MG AutoMUG AutoMUG
ILU RB ILU RB

0.102
0.96 (0.667)
0.99 (0.83)
0.58 (0.330)

0.287
0.49 (0.164)
0.44 (0.159)
0.574 (0.269)

0.886 (0.46)

0.458 (0.427)

0.79 (0.414)
(0.60)
(0.714)

0.068
0.474 (0.148)

0.005
0.127
0.088
0.114
0.112
0.154
0.162
0.220
0.196
0.063
0.120

0.691 (0.243)
0.994 (0.183)

(0.70)
(0.543)

0.096
0.96 (0.667)
0.99 (0.83)
0.58 (0.330)

0.198
0.199
0.198

0.424(0.171)
0.427 (0.192)
0.526 (0.215)
0.526 (0.205)

0.148

0.865 (0.454)
, (0.392)

0.95 (0.314)
0.85 (0.367)

method applied to it. We have used the Transpose-free quasi-minimal residual (TFQMR)
method (Algorithm 5.2 in 15]) which avoids the computation ofthe transpose ofthe coefficient
matrix and preconditioner (the latter is only implicitly given in (1), so its transpose is not
available). As a matter of fact, the TFQMR method may be considered a modification of the
conjugate gradients squared (CGS) method of [27] and [28], which is a generalization of the
conjugate gradients (CG) method to nonsymmetric and indefinite problems. We have found
that the performance of CGS is similar to that of TFQMR; however, we have preferred the
latter because of its smooth convergence curve.

All the above acceleration techniques require an amount of storage and arithmetical oper-
ations comparable to that of CG, namely an additional 1 1.5 work units per iteration. For the
accelerated iteration the convergence factor defined above often oscillates; hence the averaged
convergence factor defined by

averaged convergence factor ( axlast b 2 )axo b 112
is considered instead, and displayed in parentheses in Table 1. When the accelerated iteration
stagnates, the sign "." alone is presented.

The problems solved are of the form

Lu(x, y) f(x, y), (x, y) S2 C R2,

with the exact solution u xy (except of examples 7, 9, 10b, and 12, for which the exact
solution is u 0). Since the initial guess is random and the problem is linear, the rates of
convergence are independent of the specific choice of the solution. A second-order central
finite difference scheme is used. For most examples the region f2 is the unit square, Dirichlet
boundary conditions are imposed, and uniform grids are used. Exceptions to the above are
noted at particular examples.

It is seen from the numerical results that for some examples AutoMUGby itselfdiverges or
unsatisfactorily converges, while when supplemented with an acceleration scheme it converges
quickly; this is apparently because the iteration matrix has some isolated eigenvalues of large
magnitude, while most of its spectrum is clustered around zero.
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List of examples.
1. The Poisson equation L -A.
2. The anisotropic equation

--Uxx O’Uyy 0

with (a) cr 10-2 and (b) a 10-4. This example is more difficult than the Poisson
equation, since error components which are smooth in the x-direction and oscillate
in the y-direction are not easily smoothed by a point Gauss-Seidel smoother; this
difficulty may be handled by employing an appropriate line relaxation [4].

The ILU smoother used here is lexicographically ordered; hence oscillations in the
x-direction are smoothed much better than those of the y-direction. According to
the above remark, it is likely that an anti-lexicographical ordering is more suitable to
this example.

Case (a) is the most difficult one considered in [31]. The convergence factors derived
there are similar to those obtained here.

3. The Poisson equation with a Chebyshev-type grid; it is discretized via central differ-
ences on the two-dimensional grid

1 cos
N + i

Plv(j, k)
2

1 cos
N + 1

2
l<j,k<N.

The matrix operator for this scheme may be used as a preconditioner for a Chebyshev-
collocation discretization of the Poisson equation. (see 19]). Coarse-grid operators
forMGare obtainedfromthe discretization ofthePDEonthe grids Plv/2ij, 1 < < 5.
As in the previous example, the RB smoother is inferior to ILU; the reason for this
is that the equation is locally anisotropic in most of the mesh cells.

4. The Poisson equation in a square with a slit. The actual shape is a 63 x 63 grid minus
a narrow strip of width 2 points and length 32 points emerging from the center in the
x-direction. This problem is considered more difficult than the Poisson equation in
a square (see [5]).

5. The Poisson and definite Helmholtz equations in a domain approximating the North
Atlantic, from about 10 to 53 north. A definite Helmholtz problem of the form

-Uxx Uyy + u f
stems from explicit time-stepping in the quasi-geostrophic version of the shallow-
water equations. The domain is embedded in a Cartesian grid of 45 x 93 points. The
bounding points are assumed to lie on that grid. The cases under consideration are
(a) 3 0 and (b) 3 20.

6. The Poisson equation with boundary conditions of the third kind

0u
+ 1.5u 0,

0n

where denotes the outer normal vector. This example is presented mainly for the
sake of comparison with the next one.

For this example MG was implemented with restriction and prolongation operators
modified near the boundaries such that their rowsums equal 1 everywhere; otherwise,
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much slower convergence occurs. For all other examples, however, MG with this
modification was inferior to MG with the standard bilinear interpolation and full-
weighting restriction.

7. The diffusion equation

-(a(x, y)Ux)x (a(x, y)Uy)y 0

with the discontinuous coefficient

a(x, y) [ ?’1 max(Ix 0.51,otherwise,lY0.51) < 3h,

where h is the mesh size and g 104 and the boundary conditions of the previous
example. It is known [1] that standard multigrid approaches cannot simulate the
problem appropriately on coarse grids.

This problem is similar to Problem 3 in [34] and to the most difficult case of Problem
in [1]. The fine-grid (for MG, also the coarse-grid) discretization is done as in 1].

8. The Poisson equation on the L-shaped region

((0, ) x (0, 0.5)) ((0, 0.5) x (0.5, )).

Dirichlet and Neumann boundary conditions are imposed on

1-" _= ({0.5} x [0.5, ll)U ([0.5, 11 x {0.51)

and 0 fl \ F, respectively. This example is presented mainly for the sake ofcomparison
with the next one.

9. A diffusion equation in the spirit ofKershaw’s problem (Problem 7 in [34]) is solved in
the same L-shaped region as above. The equation is that of example 7 with y 106.
Boundary conditions of the same type as those of example 8 are imposed.

By comparing the results of examples 7 and 9 to those of examples 6 and 8 (respec-
tively) it may be concluded that the discontinuity inserted in examples 7 and 9 does
not affect the efficiency of AutoMUG.

10. The convection-diffusion equation with fan-like streamlines

--U’xx Uyy + O( XUx -1- yUy) f
whose characteristics are rays starting at the origin so that they all intersect a bound-
ary. This kind of equation is hard to solve with the multigrid approach, since error
terms which are smooth in the convection direction and oscillate in the perpendicular
direction are only half-corrected by the coarse-grid term [9].

Two cases were examined: (a) 150, for which diagonal dominance holds and
(b) r/= 300, for which it is violated for most of the equations in the linear system.

Unlike all other examples in this section, MG was implemented with coarse-grid op-
erators derived from an upwind, rather than central, scheme; otherwise, considerably
slower convergence (or even divergence) was reported.

11. The circulating flow equation

sin(r(y 0.5)) cos(zr(x 0.5))Ux sin(zr(x 0.5)) cos(zr(y 0.5))/,/y f.

The region is a square with a 1 x 1 point hole at the middle of it. For this region,
an upwind scheme is inadequate [8]; following 10], we have thus inserted isotropic
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artificial viscosity, the amount of which is locally chosen to be the minimal amount
required for weak diagonal dominance. The results for AutoMUG are far better than
those of the V-cycle in 10]. The coarse-grid operators generated by AutoMUG may
thus be used in conjunction with the defect correction approach of 10] to accelerate
convergence.

For the MG approach divergence was reported no matter whether coarse-grid oper-
ators are derived from the central or upwind scheme.

Convection diffusion equations similar to those considered here are solved efficiently
in [34]. The method of [34], however, uses the incomplete line LU (ILLU) smoother;
this is a robust smoother, which also achieves high rates of convergence when used as
a preconditioner in preconditioned CG (with no multigrid strategy) [28]. Since we are
interested in investigating the efficiency of multigrid methods on their own, we avoid
implementing AutoMUG with smoothers which are also efficient preconditioners.

The last three examples are of special difficulty, involving oscillating coefficients or
indefiniteness.

12. The diffusion equation

-(a(x y)Ux)x (a(x y)Uy)y 0

with the oscillating coefficient

a(t)= 1.05 +. sin (Eh)
(see [13]). The discretization is symmetric, as in [30].

13. The indefinite Helmholtz equation

-Uxx Uyy iu f
with fl 200. Note that for h 1/64 the (k, l) eigenvalue of the Poisson equation,
with (k, l) 6 {(2, 4), (4, 2)}, is equal to

4(kh 1)h2
sin2 -- + sinE 196.8537;

hence, with the above choice for/, the coefficient matrix has nearly singular eigen-
values (see [7]). Furthermore, eight distinct eigenvalues of the Helmholtz equation
are negative; hence the problem is indefinite, and the iteration matrix for either Auto-
MUG or MG often has eigenvalues of magnitude larger than 1 (see [22]-[24]). The
use of an acceleration scheme is thus crucial to ensure convergence.

For the current and the following example only four levels are used, and the fourth-
level equation is approximately solved by 100 Kacmarz sweeps. The reason for this
is that the coefficient matrix for the fifth-level problem is. nonpositive for either Au-
toMUG or MG, hence cannot serve as a suitable approximation to the PDE (see [23]
and [24] for a detailed explanation).

14. The indefinite Helmholtz equation (Example 6.3 in 14])

--Uxx Uyy IU f
with/ 200, complex boundary conditions of the third kind

0u
m_t_ lOiu g, (x, y) [O, 1] x {O},
On



452 YAIR SHAPIRA, MOSHE ISRAELI, AND AVRAM SIDI

and Dirichlet boundary conditions on the rest of 0 ft. The mixed boundary conditions
are discretized via a first-order scheme as in 14]. Like the previous problem, this
problem is indefinite, hence the use of acceleration is crucial.

Unlike most of the examples in this section, for the indefinite examples RB is a better
smoother than ILU. We believe this is due to the instability of ILU for coarse-grid
equations; this may be handled by adding some positive weights to main diagonal
elements in the ILU decomposition which become too small.

4. Discussion. AutoMUG is a multilevel method for the solution of finite difference
schemes of (2d + 1)-coefficient stencils which arise, for example, from d-dimensional second-
order PDEs. It is automatic in the sense that its definition depends on the scheme on the
original grid only, and no rediscretization of the PDE is required. Derivation of coarse-grid,
restriction, and prolongation operators for AutoMUG is inexpensive and straightforward. In
addition, property A of the coefficient matrix is preserved at all levels; this simplifies the
programming and enables the use of the RB and SOR smoothers.

The numerical examples show that, when implemented with a suitable smoother, Auto-
MUG gives high rates of convergence for several classes of problems: symmetric, nonsym-
metric and problems with discontinuous coefficients, nonuniform grids, and nonrectangular
domains. When supplemented with an acceleration scheme, high rates of convergence also
are achieved for pure convection problems and indefinite Helmholtz equations.

For some problems AutoMUG is inferior to nonautomatic multigrid algorithms designed
especially for the specific problem. In particular, it is inferior to the method of [7] for slightly
indefinite problems and to that of [10] for problems with circulating flow. In these cases,
it is recommended that the coarse-grid operators of AutoMUG be used in conjunction with
the specific approach, that is, the projection of [7] or the overresidual weighting and defect
correction of [10]. Alternatively, accelerating AutoMUG by a Lanczos-type method also
yields high rates of convergence. For highly indefinite problems, the use of such acceleration
is crucial, since the basic iteration often diverges. Hence for problems which involve several
sources of difficulty, e.g., indefiniteness, convection, jumps, singularities, etc., AutoMUG
supplemented with an acceleration scheme seems to provide an effective solver.

Acknowledgment. We wish to thank Dr. Irad Yavneh for valuable comments and for
suggesting examples 4 and 5.
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