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Abstract .

In an earlier paper by the author a detailed convergence and stability analysis of a
generalization of the Richardson extrapolation process was given under certain con-
ditions. In the present work these conditions are modified and relaxed considerably,
and results are obtained on convergence and stability under the new conditions. As
the previous ones, these new results are asymptotic in nature, and contain the former .
The conditions of the present paper are naturally satisfied, e .g ., by the trapezoidal rule
approximations of finite range integrals of functions having algebraic and logarithmic
end point singularities .

AMS subject classification : 40A05,65B05,65B15 .
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1 Introduction and review of earlier results .

Let A(y) be a scalar function of a discrete or continuous variable y, defined for
0 < y < b < oc . Let there exist constants A and ak, k = 1, 2, . . ., and functions
Ok (y), k = 1,2,---, which form an asymptotic sequence in the sense that

0k+1 (Y) = o(Ok(y)) as y -s 0+,

and assume that A(y) has the asymptotic expansion

00
(1 .2)

	

A(y) - A +
k=1

The functions A(y) and Ok (y), k = 1, 2, . . ., are assumed to be known for 0 <
y < b, but A and ak, k = 1, 2, . . ., are unknown . The problem is to obtain (or
approximate) A, which in many cases is limy.o+ A(y) when the latter exists .
(When limy-o+ A(y) does not exist, A is said to be the antilimit of A(y) as
y - 0+.) An effective means for achieving this goal is the generalized Richardson
extrapolation that we define in the next paragraph .

*Received January 1995 .

kOk(y) as y -s 0+ .
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Pick a decreasing sequence {yj}1_ 0 , such that yj H (0, b], l = 0,1, . . ., and
lime-0 yj = 0 . Then, for each pair (j, p) of nonnegative integers, the solution
for AP of the system of linear equations

(1 .3)

	

A(yi) = Ai +

	

kOk(yl), i < l < j +p,
k=1

is taken as an approximation to A. (Note that a1 i . . ., aP are the additional
unknowns in (1 .3), so that the total number of unknowns there is the same as
the number of equations, namely, p + 1 .)
The approximations AP to A can be arranged in a two-dimensional table in

the form

p=0 p=1 p=2 p=3 p=4
A00
A 1

	

Ao0

	

1

(1.4) Ao

	

Ai

	

A 0

	

Ao = A(yj ), j = 0,1, . . . .
Ao

	

A

	

A2

	

A3
A0

	

A1

	

A2

	

A3

	

A01

	

2

	

4

t us set for simplicity of notation

(1 .5)

	

a(l)

9k(l)
I(l)
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A(yt), 1 = 0, 1, . . .,

Ok(yl),
=

	

1, 1=0,1, . . . .

Then the following results are true :

THEOREM 1 .1 . For any sequence b(l), 1 = 0, 1, . . ., let fP (b) be defined by

91(.7)

	

92(.7)

	

9P (j)

	

b(j)
91(j+1) 92(j+1)

	

92,(j + 1) b(j + 1 )
(1 .6)

	

fp(b) _

91(.7+P) 92(j + p) 9,(j + p) b(j + p)

Then AP can be expressed as the quotient of two determinants in the form

(1 .7)

	

Ai = fP(a)

P

	

fP(I)

THEOREM 1.2 . Define the polynomial HP (A) by

91(j)

	

. . . 9P(j)

- 91(.7 + 1) . . . 9P(j + 1 )
(1 .8)

	

HP( )

91 (? + p) . . . gp (j + P)

1
A

AP



Then AP can also be expressed in the form

(1.9) AP =

where -yP i are uniquely defined by

(1 .10)
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i=0

from which we also have, by letting A = 1,

_ HP (A)

HP ( 1 )

P

Lr -YP,i = 1 .
i=O

The general setting of this generalization of the Richardson extrapolation pro-
cess that is given in (1 .1)-(1 .3) can be found in Hart et al . [3] . Levin [5] seems to
be the first to give the determinant representation in Theorem 1 .1 . This result
can be obtained from (1 .3) by applying Cramer's rule . While the results in (1 .9)
and (1.11) are simple consequences of (1 .7), that of (1 .10) is somewhat compli-
cated to obtain, and it was given first in Sidi [10] . For the case in which Ok(yt)
have no particular structure, Schneider [7] gave the first recursive algorithm for
the AP, which has been denoted the E-algorithm . By using different techniques
the E-algorithm was later rederived by Havie [4] and by Brezinski [1] . Recently,
Ford and Sidi [2] derived another recursive algorithm for the AP, which is sub-
stantially more economical than the E-algorithm . (This new algorithm actually
forms an essential part of the W(')-algorithm of Ford and Sidi (1987) that is
used in implementing the generalized Richardson extrapolation process of Sidi
[8], which further generalizes the one we discuss in the present work .)
The important problems concerning the extrapolation procedure above are

those of convergence and stability. For the limiting process in which j -* oo and
p is held fixed, the following results are known :

THEOREM 1 .3. Assume that

(1 .12)

	

lim Ok(y1+1) = lim gk(l + 1)
_ bk 0 1, k = 1, 2, . . .,

c-°° (k(ya)

	

l-.oo gk(l)

and that

(1 .13)

(i) The -yP i satisfy

bj 0 bk for j 0 k-

A' -ft A-bi
1-bi -i=1
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(ii) Let p be the smallest positive integer for which %+,' i4 0 in the asymp-
totic expansion of A(y) given in (1 .2) . Then, whether limy ,o+ A(y) exists or
not, Ap satisfies

P

(1 .15)

	

A' - A - a

	

11 (b+yµ -
bi
)( as

	

oo.P

	

P+µ

	

1 - bi

	

9P+µ 7)

	

7 _
i-I

(i 'i) Set ak = ap k in (1 .3) . Then, with µ as above,

by+u	- 1aP k - ak ^ aP+µ
bk -1

as j -> oc .

P (b + b)]P µ -ti
b k - b i

i,k

gP+uU)
9k U)

The results in (1.14), (1 .15), and (1.16) are those given as, respectively, The-
orem 2 .4, Theorem 2.2, and Theorem 2.3 in Sidi [10] . Actually, we have gener-
alized Theorems 2.2 and 2.3 in Sidi [10] by accounting for the possibility that
ap+l may become zero in (1 .2) . (For additional results of a different nature, see
Sidi [9, Section 4] .)

REMARKS :

1. The condition in (1 .12) implies limsup,ti_ . Igk(n)I 1 /h = bk, which, in turn,
implies that gk (n) behaves, roughly speaking, like bk as n -- oo . The
conditions in (1.1) and (1.12) together imply that Ibk+II : Ibk) for all k,
and this shows that the condition in (1 .13) is, in fact, an independent one .

2 . If Ibp+µl < 1 in (1 .15), then AP -* A as j ~ co, whether limb-,, Ak, k =
0,1, . . .,p-1, exist or not. The error Ap-A tends to zero, roughly speaking,

like b''p+u for j - oo .

3 . If p = 1, i .e ., ap+l :A 0, then the sequences {AP}~o and {A'P+1} o satisfy

AP	 +1 - A(1 .17)

	

lim	 = 0,
j - - AP - A

whether they converge or not . In case they both converge, (1 .17) is said
to imply that {AP+1}3,?0= 0 converges more quickly than {Ap}~_o . If µ > 1,

i .e ., aP+l = 0, however, the p sequences {Ap+i}3`0=o, i = 0, 1, . . ., (G - 1, all
have the same behavior ; they all converge or diverge at exactly the same
rate, namely, like gp+N, (j) for j -j oo. In summary, each column of the
extrapolation table in (1 .4) is at least as good as the one preceding it ; it
may be better or may behave in exactly the same way .

4 . A weaker version of (1 .15) has been proved also in Wimp [10, pp. 189-
190) . There it is assumed, in particular, that (1 .1) holds uniformly in k
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and lc1kI < A k , k = 1, 2, . . ., for some A, in which case a(n) = A(y,) has the
convergent expansion a(n) = A + Ek1 ctikgk(n) and that this expansion
converges absolutely, and uniformly in n . The weak result in (1 .17) that is
already contained in Theorem 1 .3 has been proved in Brezinski [1] under
the additional assumption that lim y, p+ A(y) = A . A careful reading of the
relevant proof in Brezinski [1] also reveals that, as in Wimp [11], at least a
convergent expansion a(n) = A +

Ek
1 cEkgk (n) is assumed. Note that in

most problems of interest the asymptotic expansion in (1 .2) is divergent .
Furthermore, cep+l zA 0 both in Wimp [11] and Brezinski [1] .

The purpose of the present work is to provide further results on the convergence
and stability of the AP for j -f oo under conditions much weaker than those
given in (1 .1) and (1 .13) . The new conditions are described in detail in Section
2, in which the new results are stated as Theorems 2 .1 - 2.3 for stability and
convergence . The proofs of Theorems 2 .1 and 2 .2 are provided in Sections 3 and
4. An important result concerning HP (A) is given as Theorem 3 .1 in Section 3,
and this result forms the basis of those in Theorems 2 .1 - 2.3. Since the proof of
Theorem 2.3 is almost identical to those of Theorems 2 .1 and 2.2, it is omitted .

2 Generalized and extended theory .

2.1 Modified assumptions .

In this section we present new convergence and stability results for AP as
j --+ cc under much weaker conditions than those that were used in Section
1 . In particular, we will modify and relax the conditions in (1 .1) and (1 .13)
considerably.
Let lk(y), k = 1, 2, . . ., be functions defined for y E (0, b], where y is a discrete

or continuous variable, and assume that

(2 .1)

	

Ik+I(Y) = 0(Vk(y)) as y -> 0+, k =1, 2, . . . .

What is implied by (2.1) is that the sequence {0k(y)}i1, unlike {gk(y)}k I
in

Section 1, is not necessarily an asymptotic sequence in the strict sense of the
concept .
Pick a decreasing sequence {y}~ ° 0 such that yz E (0, b], l = 0,1, . . ., and

lima-0(yt+l/yi) = w, for some w E (0,1) . Obviously, yl -i 0 as l --> oc at least
exponentially in 1 . Assume that

(2 .2)

		

lim V'k (yn+I) = ck : 1, k = 1, 2, . . .,
n-°° Ok(ym.)

and that the ck are distinct, i .e .,

(2 .3)

	

ci 0 Ck if j 0 k .

Note that (2.2) implies that for any e > 0 there exist two positive constants L 1

and L2 such that L I (Ickl - E)n < 10 (yn )I < L 2 (jckj + E)n for all large n. As a
result of this we can show that

(2.4)

	

ICII > Ic2 1 > I C3 1
> . . .
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and that

(2.5) Ck j > ICk+1 I implies 'z/)k+1(Y) = o(I'k (y)) as y - 0+ .

We must emphasize that the converse of (2 .5) is not necessarily true, and it need
not be assumed to hold in our work .
Despite (2 .3) and (2.4) we do not restrict the Icy I to be distinct . All we demand

is that there be at most a finite number of the c j having the same modulus. The
implication of this demand is that IckI > Ick+1I holds for infinitely many values
of k .
An immediate example of functions Ok (y) satisfying all of the conditions in

(2.1)-(2 .3) is ~bk(y) = y °k , Re a1 > Re a2 > . . . . For these Ok(y) we have Ck =
W°k and ICkI = WReak, k = 1, 2, . . . . Also Ikk(Y)I = 10,(y)I when Re Qk = Re as .
With the ~O k(y) and {yt}l0 as described above, we now assume that the

function A(y) has the asymptotic expansion

(2 .6)

	

A(y) - A +

	

aki (log y)
i

'bk (y) as y---+0+ .
k=1 i=O

As before, A is lim y-o+ A(y) when this limit exists . Otherwise, A is the antilimit
of A(y) . The qk are some known nonnegative integers . The constants aki are
unknown .

Functions A(y) that satisfy (2 .6) arise very naturally as Euler-Maclaurin ex-
pansions in the trapezoidal rule approximations of integrals of the form

J

1

where a > -1, q is a positive integer, and g(x) is infinitely differentiable over
[0, 11 . See Navot [6] for q = 1. For a brief survey see also Sidi [9] .
For the sake of completeness, we mention that what is meant by (2.6) is that

for any positive integer N

N-1
(2 .7)

	

A(y) = A + E
k=1 i=0

as y - 0+,

x°(log x) yg(x)dx,

aki(logy) 2 ~bk(Y) + O((logy) q~bN(Y))

where q is the maximum of qk, k = N, N + 1, . . ., for which the corresponding ck
have the same modulus .

Finally, the condition that limn-,, (yi+i/yt) = w, for some w E (0,1) implies
that
(2 .8)

	

Yn+i
= W + e,„ En = o(1) as n --+ oc .

yn

We supplement (2.8) by the extra condition that

(2.9)

	

(log y am )"en = o(1) as n -* oc, all v > 0 .



This is satisfied, e .g ., when en = O(yn) as n - oo, for some T > 0 . Obviously,

(2.9) holds trivially when e n = 0 for all n, i .e ., when yn = Long, , n = 0,1, . . . .
We mentioned in the beginning of this section that we would modify and

relax the conditions in (1 .1) and (1.13) . We now describe how this comes about
in the present setting . First, let us rename the functions ~Ok (y) (log y) S , s =

0 1 1, . . ., qk, k = 1 1 2, . . ., by i (y), i = 1,2, . . ., for short, and order them such

that 0i+1(y) = O(gi(y)) as y --~ 0+ . If, for some i and k, 0i+1(y) = z/>k + l(y), and

limy-o+ I0k+1(y)/'k(y)I = C for some C > 0, so that ~ckl = Jck+1l in addition,

everything being consistent with (2 .1), then we have limy-o+ (0i+1(y)/&i(y)1 =
C and not 0i+1(y) = o(gi(y)) as y -> 0+. (The latter holds by (2.5) if Jckl >

ck+11 above, which occurs for infinitely many values of k.) This shows that (1 .1)
is not necessarily satisfied by all members of the sequence {0i(y)Next, for
all s = 0,1, . . ., we have

independently of s, and this shows that (1 .13) is not satisfied when at least one
of the integers qk is nonzero .

2.2 Statement of Main Results

We now state Theorems 2 .1 and 2.2, which are two of the main results of this
work .

THEOREM 2 .1 . Let the integer p be given by

(2 .10)
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and let 01(y), . . .,gp(y) in (1 .3) stand for the p functions lbk(y)(logy)z, i

0,1, . . ., qk, k = l, . . ., t . Then the 7p i in (1 .9) satisfy

(2.11)

	

lim
-00

(2.12)

i=0

lim
n-00

as a result of which we also have

Jk (yn+1)(logyn+l)
S

k(yn)(109Yn)S

	

- ck

t
p

	

(q +l)=

	

k, vk=qk+l, k=1,2, . . .,
k=1 k=1

lim
j-+co

i=0
A2-

t

	

A-cz

1

	

v,

(1 - ci) '2_

Note that the major implication of the result in Theorem 2 .1 is that the
extrapolation procedure involving the AP with p as in (2 .10) is stable for all j

as EPo IMP i is bounded in j . Note also that Theorem 2 .1 does not depend on
A(y) and its asymptotic expansion is (2.6), but only on the properties of the
sequences {z/ k (yn ) ( log yn )' }°O_ o , i = 0, l, . . ., qk, k = 1, 2, . . ., namely, on (2.2),
(2 .3), (2 .8), and (2 .9) .
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THEOREM 2.2 . Let p be as in Theorem 2 .1, and write (2.7) in the form

t

	

qk
(2.13)

	

A(y) = A +

	

E aki (log y) i ~Ok (y) + Rt (y) .
k=1 i=O

Then

(2.14)

	

AP - A = O(Rt (yj)) as j -> oo .

A much more refined and quantitative version of (2 .14) can be given as follows :
Let 7t be the integer for which

(2.15) let+ll = . . . = lit+µl > let+µ+11,

and assume without loss of generality that not all of the coefficients akgk, k =
t + 1, . . ., t + u, are zero . (In case all of the cxk gk , k = t + 1, . . ., t + u, are
zero, the 9'k (y) and qk with k > t, i,e., those 4'k (y) and qk that are present
in the asymptotic expansion of R t (y) for y ----> 0+, can be renamed so that this
assumption is realized. Then

t-Fµ

	

t
(2.16) AP - A = ~ akgk H (Ck-ci)

v

~k (yj) (log yj ) qk + Tlj,k
k=t+1

	

i=1 1 - ci

?7j,k = o(Ok(yj)(1og yj)gk) as j - oc, k = t + I,-, t + t .
where
(2 .17)

(2.18)

COROLLARY 1 . If it = 1, i .e ., (ct+1l > let+2l, and if at+l,qt+1 $ 0, then
precisely

t

	

vi
et+1 - ei

	

nI'
Ap - A - Qt+l,qt+i

	

1 - Ci

	

wt+1(yj ) ( log yj ) gt+i
i-1

as j -4 oo .

COROLLARY 2 . If

(2 .19)

	

let+1I > let+2l > let+31

and cxk gk :AO, k = t + 1, t + 2, and we set

s
(2 .20)

	

Ps =

	

(qk + 1) =

	

, s = 1, 2, . . .,
k=1

S

k=1

then
Ad	 t.+ 1lim pt+1	 = 0 .

j

	

APt - A
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Comparing these results with the earlier ones reviewed in the previous section,
we see that the latter are actually contained in the former .
Now Theorems 2 .1 and 2.2 do not cover all values of p, but only those values

given in (2 .10) . Similar results hold for all the remaining values of p . These
results are given as Theorem 2.3 below.

THEOREM 2 .3 . Let the integer p be given as

(2 .22)

	

-

	

vk + s, 1 < s < vt+l - 1, for vt+i > 1 ,
k=

and let 01(y), . . .,op(y) in (1.3) stand for the p functions bk(y)(logy)', i =
0, 1, . . ., qk, k = 1, . . ., t, and k = t+1, i = 0, 1, . . ., s - 1. Here t = 0 is also
possible. Then the following are analogous to Theorems 2 .1 and 2 .2 .

(i) The yp i satisfy

P
(2 .23)

	

lim
7 -' 0° i=O

(2.24)

	

A(y) = A +

Then

(2.25)

i=O

Hence (2.12) is satisfied as well.

(ii) Write (2.7) in the form

+

3 Proof of Theorem 2 .1 .

We start with the determinantal representation given in (1 .10) . Obviously, it
is enough to treat only Hp (A) for j - oo. First, Hj, (A) is as given in (1.8) with

(3.1)

	

9i(.?) = V'i(yy)(logyl)
i-1 ,

	

v, = qi + 1,

91 1 +i(.7) = 02(ya)(logyj) Z 1 , 1 < i < v2 = q2 + 1,

911+,,2+i(i) = zb3(yj)(logyj )z-1 1 < i < v3 - q3 + 1, and so on .

Next, we perform only column transformatio on the determin t Hpj (A) .
We can actually perform. these transformations on the first vl columns, then
on the next v2 columns, then on the next v3 columns, etc ., independently. To
demonstrate the technique we shall treat the first vl columns .

,4

_ i=O

z=

~ ' (i" :)_i=1

i(log y)Z ~bk(y)

at+I,i (log y)2 Vt+I (y) + Rt,s (y) .

AP - A = O(Rt,s(y,)) as ---~ oo .

s
	 - ct+1

1 - ct+I
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Dividing each of these v1 columns by g, (j) = 0 1 (yj), we obtain

HP(A)

[01(yj) ] "1

1

	

(log yj)

	

. . . (logyj)g1

	

9v1+1(j)

	

9P U)

	

1
V)i 1 Oi,1(log yj+1)

	

i 1(log yj+1) 41 9'1+1( .7 + 1)

	

9P(? + 1) A

X1,2 01,z(logyj+z)

	

iz(logyj+z) 41 9"1+1(7+ 2)

	

9P(7+2) A z

01'P

where
P(log yj+P) . . . 0'1,p (logyj+P) 91 9"1+1( .7 + p) 9P (j + p) AP

,

(3.3)

	

~i s -
~'1(yj+s)

	

s = 0,1, . . . .
1(yj)

Now from (2.8) we have yj+s = yj Fl' 0 (w + Ej+i), s = 1, 2, . . ., from which we
obtain
(3.4)

	

log yj+s = log yj + s log w + O(Ej) as -* oo,

with
(3 .5)

Consequently,

(3.6)

	

(logy]+s) =(logyj+slogw) 2 +O((logyj)Z-1 ej) as j - 00,

which, upon invoking the supplementary condition in (2 .9), becomes

i
_

	

2

(log y,+s)i
=

	

k
(log yj) k (slogw)z_k +Ej,s,i,

k=o

with Ej s i = o(1) as j -> oo . Substituting (3.7) in (3 .2), and performing
elementary column transformations on the 2nd, 3rd, . . ., v 1 th columns in this
order, we eliminate all of the terms involving log yj, and obtain

ej = max(IEjI, 1ej+1 I, . . ., IEj+P-1 I) = o(1) as j --4 oo .

with ej s i = o(1) as j -f oo . From (3 .3) and (2 .2) we have for s = 1, 2, . . ., p

(3.9)

		

l,s -

	

(y
+ss))	

1(yj+s-2)
. . .	(

(yj) )
= cl + 0(1) as j -> oo .

1

(3 .8)
HP (A)

[7P1(yjA "1

1 0 0 9'1+i (9) 1

`V1,1 'f/7 1,1[log w+r ,l,l] 0i,1[(log w) 41 +Ej,1,91] 9'1+1(.7+ 1 ) A

'P1 z 01,z [2 log w + Ej',2,1] 1,z[(21ogw)
gl

+Ej,z,9i] 9"1+1(7+2) A 2

`b1 ,P ~b 1,P[p log w + E7,P,1] ~b"P [(p log w)s1 + Ej,P,91 ] 9"1+1(9 + p) . . . AP



Thus, if we let j --> oc in the first vI columns of the determinant on the right
hand side of (3.8), these become

(3 .10)

(p log w) C', (plogw)2

	

(plogw) gl
In addition, we can divide the 1st, 2nd, . . ., vlth columns by 1, (log w), . . ., (log w)ql,
respectively, as a result of which, (3 .10) becomes
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1 0

	

0

	

0
CI c1 (log w)

	

c1 (log w) 2

	

cI (log w)q1
c1 c1(2logw) c1(2logw)2 • •

	

c1(21ogw)g1

1 0
ci

	

ci1 1
c? c22 1

We must note, however, that we should not let j --> oo in (3.8) without per-
forming analogous transformations on the next v2 i v3 , . . ., vt columns of Hp (.\) .
The reason for this is that, as j --~ oo, columns of Hp (A) either tend to zero or
are unbounded or are bounded but have no limit, and in any case the result is
useless and/or meaningless .
Let us, therefore, assume that we have performed all the necessary column

transformations on all columns of HH(A) . If we now let j -4 oc, we obtain

(3.12)

	

lim 7t
	 HP, ( A)	

= (log w) 2 ~==1g =v det[H I I H2 1 . . .IHt IA] ,
j ~ H~i=I1,0i(YAVi

where

(3.13)

	

Hi =

and

0

	

0
ci1 2

	

• •

	

cilgi
c?2 2

	

c?2qj

cl' cPp 1 c'p2

(3 .14)

	

A = (1, A, . . ., AP )T .

We show in the appendix to this work that

(3 .15) det[HI IH2 1 . . . jHt IA]

t

	

q~

	

t
gtvt/2

	

~~''~~

	

~S! Ci

	

11 (Cs - Ck)vkv9

	

11 (A - Ci)
i=1 s=0

	

1<k<s<t

	

i=1

Combining (3.12) and (3 .15), we have the following key result :

,

	

i = 1, 2, . . .,

1 0 0 0
c1 c 1 1 c,12 cl 1q,

(3 .11) c 12 c2 2 c122 . . C2 2q'

c c p cp2 . . . Ip
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THEOREM 3.1 . The determinant Hp (A) satisfies

t
(3.16)

	

lim ~ t HP(A)	
v

- Kfl(A-ci)v
x-'00 i 1i=1 ['Pi (yj )]

	

i=1

where K is a constant that depends only on w, c 1 , . . ., ct , v1, . . ., vt , given by

t

	

q~
(3.17)

	

K =

	

11 s! (ci logw)q"vj/2

	

TT

i=1 s=0

	

1<k<s<t
Cs - Ck UkV s

The proof of Theorem 2 .1 now follows from Theorem 3.1 if we also note that
the ci are distinct and different than 1 and w $ 1 so that the right hand side of
(3.16) is finite and nonzero as long as A V {cl, c2 i . . ., c t } .

4 Proof of Theorem 2 .2 .

As in Sidi [10], letting

(4 .1)

we have

(4.2)

r(l) = A(yl) - A, l = 0, 1, . . .,

Aj -A= f
r

PP

	

fP (1)
Now from (4 .1), (2.13), and (3.1), we have

(4 .3)

	

r(l) =

	

6igi(l) + Rt(yi), 1=0 1 1 1 . . .,
i=1

where 6i are the appropriate 0k,. Substituting (4 .3) in the determinant repre-
sentation of fp (r), c .f. (1 .6), we have

P

fp (r) =

	

6 ifp (gi) + fp (Pt),
i=1

where gi and p t stand for the sequences {gi (n) }- 0 and {pt(n) = Rt (y n )}Oo

respectively. For i = 1, 2, . . ., p, we have fp (gi) = 0 as its determinant repre-
sentation has two identical columns, namely, the ith and (p + 1)st columns .
Consequently, (4.4) becomes

fp (r) = fp (Pt) .(4.5)

Substituting (4 .5) in (4.2), we have, in a manner analogous to (1 .7) and (1.9),
the result

P

	

P

(4.6)

	

AP -A=

	

yP,iPt(9 + i)

	

~P,iRt (yj+i) ,
i=o

	

i=o
from which we have



(4.7)

	

- Al <

But

(4 .13)
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(4.15)

	

lim
7-O° .a 0

where

(4.9)

	

hk(n)

(4.10)

	

Ok(n)

From Theorem 2.1 we have that the sum ~P 0 l-ypi I is bounded for all large j .
Also, (2 .7) and (2 .1) imply that Rt (yj+i) = O(Rt(yj )) as j - oo, i = 1, 2, . . .,

even when some of the coefficients ak3 with k > t vanish. Combining these facts
in (4.7), we finally obtain (2.14) .

To prove the quantitative result in (2.15)-(2.17) we proceed from (4.6) and
the expansion

+P
(4 .8)

	

Pt (n) = Rt(y,) =

	

q hk(n) + Ok(n)],
k=t+1

That (4 .8)-(4.10) is true can be shown by employing (2.7) and (2.5) . (Also, more
explicit expressions for the Ok (n) can be obtained directly from (2 .7), although
(4.10) is sufficient for our purposes .) Substituting (4 .8) in (4.6), and changing
the order of summation, we obtain

t+/i

(4.11) AP - A =

	

czkgk

	

P,ihk(j + i)

	

P iOk(j + i) ,
k=t+1

which we rewrite in the form
t+µ

(4.12) AP - A =

	

cek gk
k=t+1

	

i=0

=0

yp,iI Rt(yj+i)

yJ I (max
I Rt (yj+i)

I /

.0<i<p

I k(yam)(logyn) gk

o(hk(n)) as n -> oo .

j hk(j+i)

' Z hk(j)

hk (j +i) _ k (yj+i)

(

log yj+i

/

gk

(~ )

	

~k (yj )

	

logyh k

i=0i=0

i=0

t

	

v;
i ~ Ck - Ci

7P,ick - H 1-Cii=1

ok(i +)
hk(j)

' Z

	

hk(j)

= c~ + 0(1), as j

	

oo,

i=0,1, . . .,p,

which can be shown by using (3.7) and (3.9) . Similarly,

(4.14)

	

Ok (i +i) - o hk (j+ i) = o(1) as ---> oo,
hk(j)

	

hk(j)

by (4.13) . Consequently,

j hk(j+i)
P,Z hk(j)
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where we have employed (2 .11) (from Theorem 2 .1) and (4 .13) . Similarly,

(4.16)

	

Jim
i=0

AVRAM SIDI

ek(j + i)
- a .

hk(j)

Combining (4 .15) and (4.16) in (4.12), the result in (2.15)-(2.17) now follows .
Corollary 1 follows from (2 .16) in a straightforward manner . Corollary 2 fol-

lows directly from Corollary 1 .
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Appendix. Proof of (3.15) .

The proof of (3.15) can be achieved by performing column transformations on
each of the matrices Hi, i = 1, 2, . . ., t, independently, as follows : First notice
that for m > 0

?s0 = 0,

where T k are constants independent of Ira . That (A . 1) holds follows from the fact
that the binomial coefficients (:,n,), k = 0,1, . . ., s, form a basis for polynomials
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in m of degree < s. Substitute now (A .1) in the matrix H2 given in (3 .13) .
Next, leaving the 1st and 2nd columns of HZ unchanged, perform the following
transformations on the 3rd, 4th, . . .,(vi = qi + 1)st columns :
for n = 3, 4, . . ., vi do

for l = 2, . . ., n - 1 do
multiply the lth column by v _I,I-1~Ta-l,i-I
and subtract from the nth column, overwriting the latter .

end do
end do

Let us denote this transformed Hi by Hi . We have

(A .3)

(A.2)

	

Hi -

Hi -

Taking the common factor s!cZ out of the (s + 1)st column of Hi, s = 1, 2, . . ., qi ,
we obtain the matrix

t

(A.6)

	

det H =

	

j - Ci)vivj
1<i<j<t

From (A.4) and (A.6) the result in (3 .15) now follows .

As a result of all the above
t

	

qi

(A.4)

	

det[H1 IH2 1 . . . ~Ht jA] _

	

n s!c

	

detH,
i-I s-I

where
H = [H I I H2 I . . . Ht A] .

But H is the generalized Vandermonde matrix whose determinant is g

- qz

n by

0 0 0
1

1!c i 0 01

1
(:)2c !2

0

(~
)

1!c~' (2) 2!cP p
4i • Z

qi
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