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Let [Sn]�
n=0 be such that Sn tS+��

j=1 aj*n
j as n � �, with 1>|*1 |>

|*2 |> } } } , such that limj � � *j=0. A well-known result by Wynn states that when
the Shanks transformation or its equivalent =-algorithm is applied to [Sn]�

n=0 ,
then = (n)

2k &Stak+1[>k
i=1 (*k+1&*i)�(1&*i)]2 *n

k+1 as n � �. In the present
work we extend this result (i) by allowing some of the *j to have the same modulus
and (ii) by replacing the constants aj by some polynomials Pj (n) in n. Sequences
[Sn]�

n=0 with these characteristics arise frequently, e.g., in fixed point iterative
solution of linear systems and in trapezoidal rule approximation of finite range
integrals with logarithmic endpoint singularities and their multidimensional
analogues. The results of this work are obtained by exploiting the connection
between the Shanks transformation and Pade� approximants and by using some
recent results of the author on Pade� approximants for meromorphic functions.
� 1996 Academic Press, Inc.

1. Introduction

Let [Sn]�
n=0 be a sequence of complex numbers whose limit or antilimit

we denote by S. An effective means for computing approximations to S, in
certain cases of importance, whether it is the limit or antilimit, is the well
known transformation of Shanks [Sh]. This transformation generates an
array of approximations denoted ek(Sn) that are defined by
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ek(Sn)= wwwwwwwwwwwwwwwww , (1.1)
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where 2Si=Si+1&Si , i=0, 1, . . . . Normally, the ek(Sn) are computed with
the help of the =-algorithm of Wynn [W1] that is defined through the
recursions

= (n)
&1=0, = (n)

0 =Sn , n=0, 1, ...,
(1.2)

= (n)
k+1== (n+1)

k&1 +
1

= (n+1)
k &= (n)

k

, n, k=0, 1, ...,

and there holds

ek(Sn)== (n)
2k , n, k=0, 1, 2, . . . . (1.3)

Commonly, the = (n)
k are arranged in a two-dimensional table in the form

= (0)
&1=0

(1.4)

= (0)
0 =S0

= (1)
&1=0 = (0)

1

= (1)
0 =S1 = (0)

2

= (2)
&1=0 = (1)

1 = (0)
3

= (2)
0 =S2 = (1)

2
. . .

= (3)
&1=0 = (2)

1 = (1)
3

b = (3)
0 =S3 = (2)

2
. . .

b b = (3)
1 = (2)

3

b b b = (3)
2

. . .

b b b b = (3)
3

b b b b b
. . .

The first theoretical results concerning the convergence of the columns of
the =-table in (1.4) were given by Wynn [W2]. An improved version of one
of these famous results is given below as Theorem 1.1.
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Theorem 1.1. Let *1 , *2 , ..., be distinct nonzero complex numbers that
satisfy

|*1 |>|*2 |>|*3 |> } } } ; *j {1, j=1, 2, . . . ; lim
j � �

*j=0. (1.5)

Let the sequence [Sn]�
n=0 be such that

Sn tS+ :
�

j=1

aj*n
j as n � �, (1.6)

for some complex numbers aj {0, j=1, 2, . . .. Then

=(n)
2k &Stak+1 \ `

k

i=1

*k+1&*i

1&*i +
2

*n
k+1 as n � �. (1.7)

In connection with the sequence [Sn]�
n=0 in Theorem 1.1, we note that

if |*1 |<1, limn � � Sn exists and we have S=limn � � Sn . Otherwise,
limn � � Sn does not exist, and S is said to be the antilimit of [Sn]�

n=0. The
same applies to all the sequences [Sn]�

n=0 that we will be considering
throughout this paper.

Theorem 1.1 differs from the corresponding result in [W2] with respect
to the assumptions made on the *j . In [W2] it is assumed that the *j are
either all positive or all negative and that |*1 |<1. A close look at the proof
of [W2] reveals that it remains valid under the more general conditions
given in (1.5).

Note that Theorem 1.1 does not cover the more general case in which
some of the *j , either for 1�j�k or for j�k+1, may have the same
modulus, a situation that arises frequently when these *j can be present in
the form of complex conjugate pairs. The relevant results for this case are
given in Theorems 2.1 and 2.2 in the next section. Of these, Theorem 2.1
provides a complete expansion for = (n)

2k and Theorem 2.2 is obtained by
analyzing the dominant terms of this expansion. Theorem 2.2 shows that a
result very similar to (1.7) of Theorem 1.1 holds for = (n)

2k also in this case
provided |*k |>|*k+1 |; namely, there holds = (n)

2k &S=O( |*k+1 |n) as n � �.
(Actually, Theorem 2.2 gives an optimally refined version of this result.)
When |*k |=|*k+1 |, however, it follows from Theorem 2.1 that the best we
can say in general is that, under certain conditions, there may exist a
subsequence [= (ni)

2k ]�
i=1 for which = (ni)

2k &S=O( |*k+1 |ni) as i � �. Hence our
theory covers all of the even numbered columns of the =-table.

Following the generalization of Section 2, in Section 3 we give a further
generalization and completion of Wynn's result. In particular, the results of
Section 3 cover those sequences [Sn]�

n=0 that satisfy (1.6), where now
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(i) some of the *j may have equal moduli, and

(ii) the constants aj are replaced by some polynomials Pj (n) in n.

This situation seems to be the ultimate generalization of (1.6) that occurs
naturally. It arises, e.g., as a result of iterative solution of linear systems in
the presence of defective (nondiagonalizable) iteration matrices, see [SiBr].
It also arises in numerical integration of functions that have logarithmic
singularities (at the endpoints in one-dimensional integration, at corners or
boundaries in multidimensional integration) through trapezoidal rule
approximations. For results on one-dimensional singular integrals, see
[Na1, Na2, LyNi], and for those on multidimensional singular integrals
see [Ly, MLy, LyM, Si].

In Section 3 we present a complete convergence theory for the columns
of the =-algorithm as the latter is applied to the sequences mentioned in the
previous paragraph. This theory too covers all of the even numbered
columns of the =-table. The main results of Section 3 are Theorem 3.1 and
Theorem 3.2 that generalize Theorem 2.2, and a corollary to Theorems 3.1
and 3.2.

The proofs of the results of Sections 2 and 3 are provided in Section 4.
The results of the recent paper [Si2] concerning the row convergence of
the Pade� table for meromorphic functions turn out to be crucial in the
proofs. In Section 5 we will review some problems in which sequences
[Sn]�

n=0 covered in Section 3 occur.

2. Main Results: First Generalization

In this section we assume that the sequence [Sn]�
n=0 is such that

Sn=S+ :
&

j=1

aj *n
j +Un , n=0, 1, ..., (2.1)

where aj {0 for all j and *j are, in general, complex distinct nonzero
scalars that satisfy

|*1 |�|*2 |� } } } �|*& |>R&1; *j {1, j=1, ..., &; some R>0, (2.2)

and

Un=O(!n) as n � �, (2.3)

with arbitrary ! in the open interval (R&1, |*& | ).
Theorem 2.1 below gives a complete expansion of = (n)

2k &S under the
conditions above. A nice feature of this result is that it is expressed in a
simple manner in terms of Vandermonde determinants only.
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Theorem 2.1. Let [Sn]�
n=0 be precisely as in the first paragraph of this

section. Then

=(n)
2k &S=

N (n)
k

D (n)
k

, (2.4)

with

N (n)
k = :

1� j1< j2< } } } < j k+1�& \ `
k+1

s=1

ajs+ [V(*j1 , ..., *jk , *jk+1
)]2 \ `

k+1

s=1

*js+
n

+Gn, k ,

(2.5)

and

D(n)
k = :

1�j1<j2< } } } <jk�& \`
k

s=1

ajs+ [V(*j1 , ..., *jk , 1)]2 \`
k

s=1

*js+
n

+En, k , (2.6)

where V(!1 , ..., !s) is the Vandermonde determinant defined by

V(!1 , ..., !s)= }
1
!1

b

!s&1
1

1
!2

b

!s&1
2

} } }
} } }

} } }

1
!s

b

!s&1
s
}= `

1�i< j �s

(!j&!i), (2.7)

and

Gn, k=O \} `
k

j=1

*j }
n

!n+ , En, k=O \} `
k&1

j=1

*j }
n

!n+ as n � �. (2.8)

If Un=0 for all n�N, then Gn, k=0 and En, k=0 for all n�N as well.

Note that D (n)
k is simply the denominator of the quotient on the right-

hand side of (1.1).
Starting now with Theorem 2.1, we obtain the following generalization of

Theorem 1.1.

Theorem 2.2. Let [Sn]�
n=0 be as in the first paragraph of this section:

(i) Let k=&. Then

= (n)
2k &S=O(!n) as n � �. (2.9)

If Un=0 for n�N, we have =(n)
2k =S for n�N.
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(ii) Assume that |*t |>|*t+1 | for some t<&, and let k=t. Let r be
that integer for which

|*1 |� } } } �|*t |>|*t+1 |= } } } =|*t+r |>|*t+r+1 |� } } } , (2.10)

where |*t+r+1 | is meant to stand for ! when t+r=&. Then, whether
|*t+1 |<1 or not,

= (n)
2k &S= :

t+r

j=t+1

aj \ `
t

i=1

*j&*i

1&*i+
2

*n
j +o(*n

t+1) as n � �,

=O( |*k+1 | n) as n � �. (2.11)

Note. Theorem 2.2 covers the cases in which k=t with |*t |>|*t+1 |. It
does not, however, cover the remaining values of k, i.e., those k's for which
t+1�k�t+r&1, with t and r as in (2.10) and r>1. The best that we
can say for these values of k is that, under certain conditions, there may
exist a subsequence of [= (n)

2k ]�
n=0 that satisfies = (n)

2k &S=O( |*k+1 |n) as
n � �. It can be shown that such a subsequence exists when k=t+1.

In all our results above we have assumed that Sn satisfies (2.1), the right-
hand side of which is not a genuine asymptotic expansion. We now state
a theorem that says that these results hold also when we replace the right-
hand side of (2.1) by a genuine asymptotic expansion, under an additional
mild assumption on the *j .

Theorem 2.3. Let the sequence [Sn]�
n=0 be such that

Sn tS+ :
�

j=1

aj*n
j as n � �, (2.12)

where aj {0 for all j, and *j are in general complex distinct nonzero scalars
that satisfy

|*1 |�|*2 |�|*3 |� } } } ; *j {1, j=1, 2, ... ; lim
j � �

*j=0. (2.13)

This implies that there is an infinite number of integer pairs (t, r) for which
(2.10) holds. Then, with &=�, part (ii) of Theorem 2.2 applies to the =-table
of [Sn]�

n=0 without any changes. Similarly, the contents of the note following
Theorem 2.2 remain true.

Proof. By (2.12) and (2.13), the sequence [Sn]�
n=0 automatically

satisfies the conditions of Theorems 2.1 and 2.2 with arbitrary &. The rest
is now obvious. K
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3. Main Results: Further Generalization and Completion

In Theorems 3.1 and 3.2 and their corollary below we assume that the
sequence [Sn]�

n=0 is such that

Sn=S+ :
&

j=1

Pj (n) *n
j +Un , n=0, 1, ..., (3.1)

where, for each j, Pj (n) is a polynomial in n of degree exactly pj for some
pj , which we choose to express in the form

Pj (n)= :
pj

i=0

aji \n
i+, ajpj {0, (3.2)

the *j are, in general, complex distinct nonzero scalars that satisfy

|*1 |�|*2 |� } } } �|*& |>R&1; *j {1, j=1, 2, ..., &; some R>0, (3.3)

and

Un=O(!n) as n � �, (3.4)

with arbitrary ! in the open interval (R&1, |*& | ). For convenience, we shall
also denote

|j=pj+1, j=1, ..., &. (3.5)

Theorem 3.1. Let [Sn]�
n=0 be as in the first paragraph of this section:

(i) Let

k= :
&

j=1

|j . (3.6)

Then

=(n)
2k &S=O(!n) as n � �. (3.7)

If Un=0 for n�N, we have = (n)
2k =S for n�N.

(ii) Assume that |*t |>|*t+1 | for some t<&, and let

k= :
t

j=1

|j . (3.8)

Let r be that integer for which

|*1 |� } } } �|*t |>|*t+1 |= } } } =|*t+r |>|*t+r+1 |, (3.9)
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where |*t+r+1 | is meant to stand for ! when t+r=&. Assume that
*t+1 , ..., *t+r are ordered such that pt+1�pt+2� } } } �pt+r , and let + be
that integer, 1�+�r, for which

p� #pt+1= } } } =pt++>pt+++1� } } } �pt+r . (3.10)

Then, whether |*t+1 |<1 or not, = (n)
2k satisfies

= (n)
2k &S=

n p�

p� !
:

t++

j=t+1

ajpj _`
t

i=1
\*j&*i

1&*i+
2|i

& *n
j +o(n p� |*t+1 | n) as n � �,

=O(n p� |*t+1 | n) as n � �. (3.11)

We would like to note here that the qualitative result, = (n)
2k &S=

O(n p� |*t+1 |n) as n � �, in part (ii) of Theorem 3.1 was first mentioned in
[SiBr, p. 42, Note] and it was obtained as a by-product in the analysis of
the topological epsilon algorithm for vector sequences.

Theorem 3.1 gives the solution to the convergence problem associated
with [= (n)

2k ]�
n=0 for which k is either �&

j=1 |j or �t
j=1 |j for some t<& such

that |*t |>|*t+1 |. We now turn to the remaining values of k that are less
than �&

j=1 |j .

Theorem 3.2. Let the integers t and r be as in part (ii) of Theorem 3.1,
and pick k such that

:
t

j=1

|j<k< :
t+r

j=1

|j , (3.12)

and let

{=k& :
t

j=1

|j . (3.13)

This time, however, we also allow t=0 and define �0
j=1 |j=0. Denote by

IP({) the nonlinear integer programming problem:

maximize g(_); g(_)= :
t+r

j=t+1

(|j _j&_2
j )

(3.14)

subject to :
t+r

j=t+1

_j={, 0�_j�|j , t+1�j�t+r,

and denote by G({) the (optimal ) value of g(_) at the solution to IP({).
Provided IP({) has a unique solution for _j , j=t+1, ..., t+r, = (n)

2k satisfies

=(n)
2k &S=O(nG({+1)&G({) |*t+1 | n) as n � �, (3.15)
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whether |*t+1 |<1 or not. (Here IP({+1) is not required to have a unique
solution.)

Note. When k and { are as in (3.12) and (3.13) of Theorem 3.2, but
IP({) does not have a unique solution for _j , j=t+1, ..., t+r, the best that
we can say is that, under certain conditions, there may exist a subsequence
of [= (n)

2k ]�
n=0 that satisfies (3.15), again whether |*t+1 |<1 or not. It can be

shown that such a subsequence exists when k is such that {=1. Note that
the values of k that we are dealing with here are all of the remaining values
not covered by Theorem 3.1 and Theorem 3.2. We thus have a complete
convergence theory for all of the even numbered columns of the =-table for
which k��&

j=1 |j .

In connection with IP({), we would like to mention that algorithms for
its solution have been given in [P, KamSi] and recently in [LiSa]. The
algorithms of [KamSi, LiSa] also enable one to decide whether or not the
solution is unique in a simple manner. Some properties of the solutions to
IP({) have been given in [Si2], and we mention them here for convenience
and further reference.

Let _j , t+1�j�t+r, be a solution of IP({):

1. _$j=|j&_j , t+1�j�t+r, is a solution of IP({$) with {$=
�t+r

j=t+1 |j&{.

2. If |j $=|j" for some j $, j", t+1�j $, j"�t+r, and if _j $=$1 ,
_j"=$2 in a solution to IP({), $1 {$2 , then there is another solution to
IP({) with _j $=$2 , _j"=$1 . Consequently, a solution to IP({) cannot be
unique unless _j $=_j" . One implication of this is that for
|t+1= } } } =|t+r=|� >1, IP({) has a unique solution only for {=qr,
q=1, ..., |� &1, and in this solution _j=q, t+1�j�t+r. For
|t+1= } } } =|t+r=1 no unique solution to IP({) exists with 1�{�r&1.
Another implication is that for |t+1= } } } =|t++>|t+++1� } } } �|t+r ,
+<r, no unique solution to IP({) exists for {=1, ..., +&1, and a unique
solution exists for {=+, this solution being _t+1= } } } =_t++=1, _j=0,
t+++1� j�t+r.

3. A unique solution to IP({) exists when |j , t+1�j�t+r, are all
even or all odd, and {=qr+ 1

2 �t+r
j=t+1 (|j&|t+r), 0�q�|t+r . This

solution is given by _j=q+ 1
2 (|j&|t+r), t+1�j�t+r.

4. Obviously, when r=1 a unique solution to IP({) exists for all
possible { and is given as _t+1={. When r=2 and |1+|2 is odd, a
unique solution to IP({) exists for all possible {, as shown in [KamSi].

From what we know about the case in which r=1 we can now state the
following immediate corollary to Theorems 3.1 and 3.2, which will be of
use in Section 5.
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Corollary. Let |*1 |>|*2 |> } } } >|*& |. Also define �0
j=1 cj=0 and

>0
j=1 cj=1:

(i) If k=�&
j=1 |j , then

=(n)
2k &S=O(!n) as n � �. (3.16)

If Un=0 for n�N, we have = (n)
2k =S for n�N.

(ii) If k=�t
j=1 |j for any t=0, 1, ..., &&1, then

=(n)
2k &Stat+1, pt+1 _`

t

i=1
\*t+1&*i

1&*i +
2|i

& n pt+1

pt+1!
*n

t+1 as n � �. (3.17)

(iii) If �t
j=1 |j<k<�t+1

j=1 |j for any t=0, 1, ..., &&1, then

=(n)
2k &StCn pt+1&2{*n

t+1 as n � �, (3.18)

where {=k&�t
j=1 |j hence 0<{<|t+1 and

C=(&1){ {!
( pt+1&{)!

at+1, pt+1 \ *t+1

1&*t+1+
2{

_`
t

i=1
\*t+1&*i

1&*i +
2|i

& . (3.19)

That is, the sequence [=(n)
2k ]�

n=0 is better than [= (n)
2k&2]�

n=0. Thus, if |*1 |<1,
then all the sequences [= (n)

2k ]�
n=0 , k=0, 1, ..., &, converge, each one converging

more quickly than the ones preceding it.

In all our results above we have assumed that Sn satisfies (3.1), the right-
hand side of which is not a genuine asymptotic expansion. Theorem 3.3
below, that is analogous to Theorem 2.3, summarizes the results for the
case in which the right-hand side of (3.1) is replaced by a genuine
asymptotic expansion. The proof of Theorem 3.3 is identical to that of
Theorem 2.3.

Theorem 3.3. Let the sequence [Sn]�
n=0 be such that

Sn tS+ :
�

j=1

Pj (n) *n
j as n � �, (3.20)

where the polynomials Pj (n) are precisely as in (3.2) and the *j are, in
general, complex distinct nonzero scalars that satisfy

|*1 |�|*2 |�|*3 |� } } } ; *j {1, j=1, 2, . . .; lim
j � �

*j=0. (3.21)

This implies that there is an infinite number of integer pairs (t, r) for which
(3.9) holds. Then, with &=�, part (ii) of Theorem 3.1, all of Theorem 3.2,
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and their corollary apply to the =-table of [Sn]�
n=0 without any changes.

Similarly, the contents of the note following Theorem 3.2 remain true.

Obviously, Theorem 3.3 covers all of the even numbered columns of the
=-table. In particular, it says that when r=1 for all t=1, 2, . . . and |*1 |<1,
the even numbered columns of the =-table converge, each converging more
quickly than the ones preceding it.

4. Proofs of Main Results

We begin by recalling the connection between the Shanks transformation
and Pade� approximants. Specifically, let us consider the formal power
series f (z) :=��

i=0 cizi, whose partial sums we denote by fn(z), i.e.,
fn(z)=�n

i=0 ci zi, n=0, 1, . . . . If we apply the Shanks transformation to the
sequence of the partial sums [ fn(z)]�

n=0, then, as is shown in [Sh],

ek( fn(z))=fn+k, k(z), (4.1)

where fp, q(z) stands for the ( p�q) Pade� approximant associated with the
series f (z). (For Pade� approximants see, e.g., [Ba].) Thus, if f (z) :=
��

i=0 cizi, with c0=S0 and ci=Si&Si&1 , i=1, 2, ..., then Sn=fn(1),
n=0, 1, ..., and hence

ek(Sn)=fn+k, k(1), (4.2)

It turns out that when R>1 the proofs of the main results of Sections 2
and 3 can be based directly on the results of [Si2] pertaining to
convergence of rows of the Pade� table for the function represented by
��

i=0 cizi essentially by substituting z=1 in the latter. This function turns
out to be analytic at z=0 and meromorphic for |z|<R. This case is treated
in the following two subsections. We turn to the case R�1 briefly in the
third subsection.

4.1. Proofs of Theorems 2.1 and 2.2 When R>1

Invoking (2.1), we have

cn=Sn&Sn&1= :
&

j=1

Aj *n
j +Vn , n=1, 2, ..., (4.3)

where

Aj=(1&*&1
j ) aj , j=1, ..., &, (4.4)
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and

V0=S0& :
&

j=1

Aj , Vi=Ui&Ui&1 , i=1, 2, . . . . (4.5)

By (2.3), Vn=O(!n) as n � �. Consequently, the power series
g(z) :=��

i=0 Vizi converges for |!z|<1. Since !&1 is in ( |*& |&1, R) but is
arbitrary otherwise, the series g(z) represents a function, also denoted g(z),
that is analytic in the open disk K=[z : |z|<R]. With this, we conclude
that the series f (z) :=��

i=0 cizi is the Maclaurin expansion of a function
also denoted f (z), that is given by

f (z)= :
&

j=1

Aj

1&*jz
+g(z). (4.6)

Obviously, f (z) is analytic at z=0 and meromorphic in K with simple
poles at *&1

1 , ..., *&1
& .

Now z=1 # K by R>1, and *j {1, j=1, ..., &, by (2.2). Therefore, z=1
is a point of analyticity of f (z) in K. In addition, f (1)=S, whether
limn � � Sn exists or not, as can also be verified by setting z=1 in (4.6).
Consequently, ek(Sn)&S=fn+k, k(1)&f (1).

When Un=0, n=0, 1, ..., we have g(z)#V0 so that f (z) is a rational
function with simple poles. By dividing Eq. (5.10$) on page 278 of [Si2] by
Eq. (4.12$) on page 271 of [Si2], and replacing the `'s, there by *'s we
obtain the error f (z)&fn+k&1, k(z) in the (n+k&1, k) Pade� approximant
of f (z). Theorem 2.1 now follows by noting the relation between aj and Aj

given in (4.4), and by setting z=1 and replacing n by n+1, with Gn, k=0
and En, k=0 in (2.5) and (2.6).

When Un , n=0, 1, ..., are as in (2.3), then, as follows from the proofs of
Theorems 4.2 and 5.2 in [Si2], Gn, k and En, k do have to be present in (2.5)
and (2.6), and they satisfy (2.8). This completes the proof of Theorem 2.1.

The results given in Theorem 2.2 are obtained from Theorem 2.1 by
extracting the most dominant parts of N (n)

k and D (n)
k in (2.5) and (2.6) for

n � �. For both part (i) and part (ii) of Theorem 2.2, D (n)
k has only one

most dominant term, namely, that with the indices j1=1, j2=2, ..., jk=k,
when k=&, we have N (n)

k =Gn, k . When k, t, and r are as in part (ii), N (n)
k

has r most dominant terms, namely, those with the indices j1=1,
j2=2, ..., jk=k=t, jk+1=t+i, i=1, 2, ..., r.

The contents of the note following Theorem 2.2 can be seen to be true
by observing that the most dominant part of D (n)

k for n � � is |>k
j=1 *j |

n

multiplied by a trigonometric sum, which, under certain conditions, is not
identically zero, this being the case, e.g., when k=t+1. Also N (n)

k =
O( |>k+1

j=1 *j |
n) as n � �.

32 AVRAM SIDI



File: 640J 295913 . By:CV . Date:24:07:96 . Time:09:53 LOP8M. V8.0. Page 01:01
Codes: 2472 Signs: 1357 . Length: 45 pic 0 pts, 190 mm

4.2. Proofs of Theorems 3.1 and 3.2 and Their Corollary When R>1.

Invoking (3.1)�(3.3), we have

cn=Sn&Sn&1= :
&

j=1
_ :

pj

l=0

A� jl \n
l+& *n

j +Vn , n=1, 2, ..., (4.7)

with some constants A� jl , l=0, 1, ..., pj , j=1, ..., &,

A� jpj=(1&*&1
j ) ajpj {0, j=1, ..., &, (4.8)

Vn , for n�1, being as in (4.5). Again it can be proved that f (z) :=
��

i=0 cizi is the Maclaurin series of a function, denoted also by f (z), that
is now given as

f (z)= :
&

j=1

:
pj

i=0

Aji

(1&*jz) i+1+g(z), Ajpj {0, 1� j �&, (4.9)

where the Aji are uniquely determined by the A� jl through

A� jl= :
pj

i=l

Aji \ i
i&l+ , l=0, 1, ..., pj , j=1, ..., &, (4.10)

and g(z) is analytic in the open disk K=[z : |z|<R]. In fact, g(z)=
��

i=0 Vi zi, |z|<R, as before, with an appropriate V0 . Thus f (z) is analytic
at z=0 and meromorphic in K with poles *&1

1 , ..., *&1
& , whose respective

multiplicities are |1 , ..., |& . All this follows from Lemma 4.1 of [Si2].
Another useful expression for f (z) can be obtained directly in terms of

(3.1)�(3.4) and is given as

f (z)=S+U0+(1&z) :
&

j=1

Rj (z)+ :
�

n=1

(Un&Un&1) zn, z # K, (4.11)

where, for each j, j=1, 2, ..., &, Rj (z) is a rational function with a single
pole of multiplicity |j at *&1

j , whose Maclaurin series is

Rj (z)= :
�

n=0

Pj (n)(*j z)n. (4.12)

Again, z=1 is a point of analyticity of f (z) in K, and f (1)=S, whether
limn � � Sn exists of not, as can be seen by setting z=1 in (4.11).
Consequently, ek(Sn)&S=fn+k, k(1)&f (1).
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Next, by Theorem 3.3 of [Si2] we have the following results for the
function f (z) described above and its Pade� approximants fp, q(z):

1. If k=�&
j=1 |j , then

f (z)&fm, k(z)=O( |!z| m) as m � �. (4.13)

uniformly in any compact subset of K"[*&1
1 , ..., *&1

& ].

2. If k=�t
j=1 |j , and t, r, and + are as in (3.9) and (3.10), then, with

m=n+k&1,

f (z)&fm, k(z)=
n p�

p� !
:

t++

j=t+1

,j (z)(*jz)n+2k+o(n p� |*t+1z| n) as n � �,

(4.14)

uniformly in any compact subset of K"[*&1
1 , ..., *&1

& ], where

,j (z)=
Ajpj

1&*jz _
Q(*&1

j )
Q(z) &

2

, Q(z)= `
t

j=1

(1&*jz)|j. (4.15)

Part (i) of Theorem 3.1 follows by setting z=1 in (4.13). Part (ii) of
Theorem 3.1 follows by setting z=1 in (4.14) and (4.15) and replacing n by
n+1 and by observing that Ajpj=(1&*&1

j ) ajpj , j=1, ..., &, that follows
from (4.8) and (4.10).

The proof of Theorem 3.2 can be achieved by invoking Theorem 6.1 of
[Si2]. For a better understanding of the contents of the note following
Theorem 3.2, see [Si2, p. 284, Note 6.3].

We now come to the proof of the corollary to Theorems 3.1 and 3.2.
First, we realize that parts (i) and (ii) there follow directly from parts (i)
and (ii), respectively, of Theorem 3.1. As far as part (iii) of the corollary is
concerned, we note that Theorem 3.2, with r=1 and, hence, with G(m)=
|t+1m&m2, m={, {+1, already produces the qualitative result = (n)

2k &S=
O(n pt+1&2{*n

t+1) as n � �. The proof of the asymptotic equivalence in
(3.18) with (3.19) is much more complicated, however, and can be achieved
by going into the fine details of the proof of Theorem 6.1 of [Si2]. First,
an expression like (2.4) exists, D (n)

k being the denominator of the quotient
on the right-hand side of (1.1). Since IP({) and IP({+1) both have unique
solutions, N (n)

k has a unique nonzero most dominant term that is
asymptotically C1n G({+1)[(>t

j=1 *|j
j ) *{+1

t+1 ]n while D (n)
k has a unique non-

zero most dominant term that is asymptotically C2nG({)[(>t
j=1 *|j

j ) *{
t+1]n.

Both C1 and C2 can be obtained with the help of Appendix A in [Si2]
after long and tedious manipulations. The result in (3.18) and (3.19)
follows by taking the quotient of these two terms.
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4.3. Brief Description of Proofs with R�1

As is clear from the above, the assumption that R>1 enables us to con-
struct a function f (z) with Maclaurin series ��

i=0 cizi, c0=S0 , ci=
Si&Si&1 , i=1, 2, ..., that is meromorphic in the open disk K=[z : |z|<R]
and analytic at the point z=1 # K. As a result, we have f (1)=S, and,
hence, ek(Sn)&S=fn+k, k(1)&f (1). When R�1, however, we are not able
to reach such a conclusion, and we have to analyze ek(Sn)&S for n � �
almost from first principles.

First, Theorem 2.1 can be proved directly by substituting (2.1) in (1.1)
and then by employing Lemma 2.1 of [Si2] both in the numerator and in
the denominator and by making use of (A.11)�(A.13) of [Si2]. (Lemma 2.1
in [Si2] originally appeared as Lemma A.1 in [SiFSm].) For the details of
this technique see also [SiFSm]. Theorem 2.2 follows from Theorem 2.1, as
was mentioned before.

As for Theorems 3.1 and 3.2, we proceed as follows: With cn=Sn&Sn&1

and Vn=Un&Un&1, n=1, 2, ..., (4.7) and (4.8) are valid with

A� jl=ajl&*&1
j :

pj

i=l

(&1) i&l aji , l=0, 1, ..., pj . (4.16)

Next, defining

B� jl=A� jl$j+ :
pj

q=l+1

A� jq($j+1) $ q&1
j , 0�l�pj&1,

(4.17)
B� jpj=A� jpj $j ; $j=*j �(1&*j),

it can be shown after tedious manipulations that

B� jl= &ajl for all j and l. (4.18)

Consequently, (3.1) can be expressed also as

S&Sn= :
&

j=1
_ :

pj

l=0

B� jl \n
l+& *n

j &Un , n=0, 1, 2, . . . . (4.19)

Comparing (4.17) and (4.19) with Eq. (5.4)�(5.6) in Lemma 5.1 of [Si2],
we see that the former and the latter are similar in form, with f (z)&Sn(z),
z, `j , and B� jl (z) in the latter replaced by S&Sn , 1, *j , and B� jl , respectively.
Consequently, the numerator and denominator determinants in (1.1) of the
present work have expansions identical to those given in Theorems 5.2 and
4.2, respectively, of [Si2]. Theorems 3.1 and 3.2 of the present work now
follow from these just as Theorems 3.1, 3.3, and 6.1 of [Si2] do.
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5. Examples

5.1. Iterative Solution of Linear Systems

Denote by s the unique solution of the nonsingular linear system x=
Ax+b, and consider the fixed-point iterative solution of this system as in

xj+1=Axj+b, j=0, 1, . . .; x0 given. (5.1)

The matrix A may be defective, in general. It is shown in [SiBr, Section 2]
that the vector xn has an expansion of the form

xn=s+ :
M

j=1
_ :

pj

i=0

yji \n
i+& *n

j , all large n. (5.2)

Here *1 , ..., *M are some or all of the distinct nonzero eigenvalues of A,
and, since the matrix (I&A) is nonsingular, none of the *j can be unity.
For each j, the vectors yji , i=0, 1, ..., pj , are in the invariant subspaces of
A corresponding to the eigenvalue *j . In particular, yjpj is an eigenvector
corresponding to *j ; i.e., Ayjpj=*jyjpj . The invariant subspaces are given as

Yi=span[ yj, pj&r , r=0, 1, ..., i], i=0, 1, ..., pj ,

and they obviously satisfy Y0 /Y1 / } } } /Ypj .
The =-algorithm can now be applied to each component of the vectors xn

separately, recalling the column convergence theorems of Section 3. Indeed,
this was one of the first approaches used in accelerating the convergence of
fixed point iterative methods for linear and nonlinear systems of equations.

5.2. Euler�Maclaurin Expansions for Integrands with Logarithmic End Point
Singularities

Consider the integral

Ip=|
1

0
(log x) p x:g(x) dx, p=0, 1, ..., :>&1, g(x) # C �[0, 1],

(5.3)

and the trapezoidal rule approximation to it,

Tp(h)=h :
m&1

i=1

Gp(ih)+
h
2

Gp(1),
(5.4)

Gp(x)#(log x) p x:g(x), h=1�m, m=1, 2, . . . .

Theorem 5.1 below gives the Euler�Maclaurin expansion for the error,
Tp(h)&Ip as h � 0.
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Theorem 5.1. The approximation Tp(h) satisfies

Tp(h)&Ip t :
�

j=1

a ( p)
j h2j+ :

�

j=0
_ :

p

i=0

b ( p)
ji (log h) i& h:+j+1 as h � 0,

(5.5)

for some constants a ( p)
j and b ( p)

ji that are independent of h. Actually,

a ( p)
j =

B2j

(2j)!
G (2j&1)

p (1), j=1, 2, ...,

(5.6)

b ( p)
ji =\p

i +_
d p&i

d: p&i `(&:&j)& g( j)(0)
j !

, 0�i�p, j=0, 1, ...,

where Bi are the Bernoulli numbers and `(z) is the Riemann zeta function.

Proof. The result in (5.5) and (5.6) when p=0 is a special case of that
given in [Na1]. The result for p=1 is similarly a special case of that given
in [Na2], and it is obtained by differentiating both sides of (5.5) (with
p=0 there) once with respect to :. Applying this technique of differentiation
with respect to : p times on both sides of (5.5) (with p=0 there), we obtain
the required result. K

Note that the results of [Na1, Na2] were rederived in [LyNi] by using
generalized function techniques.

Letting now h=hn=2&n in (5.5), and denoting Sn=Tp(hn), n=0, 1, . . . ,
and S=Ip , after some manipulation (5.5) becomes

Sn tS+ :
�

j=1

a~ j \n
j + :

�

j=0
\ :

p

i=0

b� jini+ +n
j as n � �, (5.7)

where \j=4&j, +j=2&:&j&1, a~ j=a ( p)
j , b� ji=b ( p)

ji (&log 2) i.
It is important to note that for all values of :>&1, whether integral or

not, and for all integers p�0, Sn in (5.7) is precisely of the form treated in
the corollary to Theorems 3.1 and 3.2, with 1>|*1 |>|*2 |> } } } . Also
pj�p for all j. Consequently, by Theorem 3.3, the corollary applies with
&=� there, and all of the even numbered columns of the =-stable
converge, the rates of convergence being as described in parts (ii) and (iii)
of the corollary. Thus, each of these columns converges more quickly than
the ones preceding it.

Needless to say, the algorithm is suitable when one does not have
complete knowledge of the singularities of the integrand. When one knows
the precise nature of the singularities, however, the generalized Richardson
extrapolation process turns out to be more economical.
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As an example, let us consider the case in which :=0. We also assume
that g( j)(0){0, j=0, 1, . . . . It is known that (see [O, p. 63])

`(0)=&
1
2

{0, `(&2m)=0, `(1&2m)=&
B2m

2m
{0, m=1, 2, . . ..

(5.8)

Also, the reflection formula for the zeta function (see again [O, p. 63]) on
differentiation yields

`$(&2m)=(&1)m 2&2m&1?&2m1(2m+1) `(2m+1){0, m=1, 2, . . ..

(5.9)

Therefore, b� 0p {0, b� jp {0, j=1, 3, 5, ..., and b� jp=0, b� j, p&1 {0 for
j=2, 4, 6, . . . . This implies that

*j=2&j, j=1, 2, . . .;
(5.10)

p1=p, p2j=p, p2j+1=p&1, j=1, 2, . . . .

Hence from the corollary we have

if 0�k�p, = (n)
2k &S=O(n p&2k2&n) as n � �,

if p+1�k�2p+1, = (n)
2k &S=O(n3p&2k+22&2n) as n � �,

if 2p+2�k�3p+1, = (n)
2k &S=O(n5p&2k+32&3n) as n � �,

and so on. (5.11)

In connection with this problem it is interesting to observe that if :, p,
and g(0) are known, then the j=0 term in the second summation on the
right-hand side of (5.5) can be subtracted from Tp(h) to obtain the ``corrected''
trapezoidal rule

T� p(h)=Tp(h)& :
p

i=0

b ( p)
0i (log h) i h:+1, (5.12)

where b ( p)
0i , given in (5.6), involve only g(0). Consequently, if we now

replace Tp(h) by T� p(h) and let Sn=T� p(hn), then (5.7) holds, except that the
second summation on its right-hand side starts with the j=1 term.
Obviously, this is also more favorable as far as applying the =-algorithm is
concerned. This kind of a correction for the trapezoidal rule has been
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proposed in [SiI] in case the singularity of the integrand is in the interior
of the interval of integration.

In (5.3) we have assumed that g(x) # C�[0, 1]. In case g(x) has a finite
number of continuous derivatives on [0, 1], the expansions in (5.5) and
(5.7) are finite and there is also a remainder term of some well-known
order for h � 0. For instance, if g(x) # C2q[0, 1], then in the first summa-
tions of (5.5) and (5.7), 1�j�q, while in the second summations,
0�j�2q&1, and the remainder is O(h2q) as h � 0. The truth of this is
already known for p=0 and p=1 (see [Na1, Na2]) and can be shown in
a similar way for arbitrary p. Thus [Sn]�

n=0 in (5.7) is precisely of the form
treated in the corollary to Theorems 3.1 and 3.2 with a finite value of & that
depends on p and q. We leave the details to the interested reader.

Before closing, we mention that the use of the =-algorithm for accelerating
the convergence of sequences of trapezoidal rule approximations for finite
range singular integrals such as those in (5.3) with p=0 and p=1 was
originally proposed in [CGR, Kah]. The only convergence result relevant
to these problems that was known at that time was Theorem 1.1, that is
valid only for p=0 in (5.3), and this was mentioned later in [G]. We have
shown that the =-algorithm produces convergence acceleration for all
values of p=0, 1, 2, . . .. At the same time we have provided the precise rates
of acceleration.
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