
Numerical Algorithms 13 (1996) 1-19 1 

An automatic integration procedure for infinite range 
integrals involving oscillatory kernels 

Takemitsu H a s e g a w a  

Department of Information Science, Faculty of Engineering, Fukui University, Fukui, 910, 
Japan 

E-mail: hasegawa@ agauss.fuis.fukui-u.ac.jp 

Avram Sidi 

Computer Science Department, Technion - Israel Institute of Technology, Haifa 32000, Israel 
E-mail: csssidi @technion.bitnet 

Received 28 April 1995; revised 18 March 1996 
Communicated by G. Mtihlbach 

Let the real functions K(x) and L(x) be such that M(x) = K(x) + iL(x) = ei~g(x), 
where 9(x) is infinitely differentiable for all large x and is non-oscillatory at infinity. We 
develop an efficient automatic quadrature procedure for numerically computing the inte- 
grals f o~ K(wt)f(t) dt and f ~  L(wt)f(t) dt, where the function f(t) is smooth and non- 
oscillatory at infinity. One such example for which we also provide numerical results is 
that for which K(x) = J~(x) and L(x) = Y~(x), where J~(x) and Y~(x) are the Bessel 
functions of order v. The procedure involves the use of an automatic scheme for Fourier 
integrals and the modified W-transformation which is used for computing oscillatory infinite 
integrals. 
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1. Introduction 

Let  the real funct ions K(x )  and L(x)  be such that 

M(x)  = K(x )  + iL (x )  = eiXg(x), (1.1) 

where  the (in general  complex)  function 9(x) is infinitely differentiable for  all large 

x and is non-osci l la tory  at infinity. There  are many  examples  o f  such funct ions that 

arise in scientific applications.  For  instance, 

�9 J.C. Baltzer AG, Science Publishers 
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(i) K(x)  = Ju(x) and L(x) = Yv(x), where Jr(x) and Yv(x) are the Bessel 
functions of order v of the first and second kinds, respectively, 

(ii) K(x)  = f ~  J . ( t )d t  and L(x) = J~Yu( t )d t ,  

(iii) K (x) = f oo (cos t / / t  ) dt and L(x) = fz ~'~ (sin t / t  ) dt that are related to the cosine 
and sine integrals respectively, 

OO t:X) 
(iv) K(x)  = f2 ( c o s t / v q ) d t  and L(x) = f2 ( s i n t / x / t ) d t  that are related to the 

Fresnel integrals, 

are but a few. 
In the present work we present a general framework within which one can de- 

velop an automatic quadrature scheme for the numerical computation of infinite range 
integrals of the form 

K ( w t ) f ( t ) d t  or L(wt) f ( t )d t ,  a ) 0, co > 0, (1.2) 

where f ( t )  is a real function that is infinitely differentiable for all large t and is 
assumed to be non-oscillatory at infinity. The Hankel transforms 

f0 
12~3 

Hv[f; w] = tJv(wt) f ( t )  dt, 

form an important subclass of this family of integrals. 
The problem of evaluation of oscillatory integrals of various sorts has been 

considered in the papers by Longman [25, 26], Gray and Atchison [14], Levin and 
Sidi [23], Sidi [35-38], Piessens and Haegemans [34], Espelid and Overholt [8], 
whose methods can be used to compute also integrals of the form (1.2). Methods 
for computing the Hankel transform specifically have been considered by Linz [24], 
Piessens and Branders [31, 32], Anderson [1], Lund [29], Lyness and Hines [30] 
and Sidi [35]. Recently, an automatic quadrature procedure for integrals of the form 
f0 ~176 ei~~ has been given by Hasegawa and Torii [16], which tries to minimize 
the number of function evaluations for a given required accuracy level. 

In this paper we combine the modified W-transformation (mW) of Sidi [38] with 
the approach taken in Hasegawa and Torii [16] to devise an automatic quadrature 
scheme for the integrals in (1.2) with K(z)  and L(z) as defined in (1.1). We note that 
the mW-transformation has been demonstrated to be a very efficient and user-friendly 
method for coping with a large class of oscillatory infinite range integrals. To the best 
of our knowledge, there is no automatic quadrature scheme that treats the integrals 
mentioned above. There is a "semi-automatic" approach in QUADPACK [33] that can 
be used for Fourier and Hankel transform, but it is not as efficient as the procedure 
of the present work. We shall say more on this in section 7. 
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2. Description of the method 

We shall restrict ourselves to the evaluation of the integral 

L Q(w) = K(wt)f( t )dt .  (2.1) 

By our assumption that f ( t )  is a real function, we have 

L Q(w) = ~ M(wt) f ( t )  dt. (2.2) 

For all the functions K(x)  and L(x) that were mentioned in the first paragraph of 
section 1 it turns out that a polynomial approximation is provided for them in a finite 
interval [0, c], and, in the interval [c, oe), the function 9(x) of (1.1) is approximated by 
a polynomial in 1/x. Normally these approximations are obtained by truncating the 
appropriate Chebyshev polynomial expansions. For example, for the functions J~,(x) 
and Y~,(x), Luke [28, p. 3221 gives the expansions 

Ju(x) = a (u) T2. x , Ixl ~< 8, u = 0,1, 
n----O 

and 

j~ , (x )+iy~, (x)=eiz (_ l )U_ i oo c (v) T , ( 5 ,  ~ 
vf ~ ~ n \ x ] ,  x~>5, u - -O,  1, 

n = O  

where Tk(x) and T/~ (x) are, respectively, the Chebyshev and shifted Chebyshev poly- 
nomials of order k. What matters to us is the fact that these approximations in the 
above mentioned intervals are known. We do not care how they are given. 

We now subdivide the interval in (2.2) in the form 

where 

Q(~) = Q,(~) + Q2(~), 

2.1. 

( 
Q1 (~) = ~ 0 

Qz (~o) = ~ [ , o  
Jm 

Computation of QI (w) 

f,c/w K(wt) f ( t )d t  if a < c/w, 
if a >1 c/w, 

(2.3) 

(2.4a) 

For the computation of QI (w) when a < c/w we use the Clenshaw and Curtis (CC) 
method [4] along with a modified FFT due to Hasegawa et al. [21], since the integrand 
K(wt) f ( t )  is smooth in the interval [a, c/w]. For values of w that are very small the 
interval [a, c/w] may become too large for the integral Ql(w) to be evaluated at 
once. In such a case it may be advisable to break this interval into several smaller 
subintervals, and apply the CC method to each subinterval separately. 

M(wt) f( t)  dr. (2.4b) 
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2.2. Computation of Q2(CO) 

From (1.1) and (2.4b) we have 

/5 Q2(w) = ~ e i~~ g(wt).f(t) dt, 

where d = max(a, c/w). We now have to evaluate this Fourier integral efficiently. 
The method that we use for this purpose is the mW-transformation of [38]. 

We start by letting 

x 0 = -  4-1 , x z = x 0 4 - - - ,  I = 1 , 2 ,  . . . .  
CO CO 

Here xo is simply the first zero of sin COt that is greater than d, and xl is the / th  zero 
following x0. We next compute numerically the finite range integrals F(xl), where s F(xz) = ei~tg(COt) f(t)  dr, I = 0, 1,2, . . . .  (2.5) 

We finally compute a two-dimensional array of approximations W (j) to the integral 
f d  eiwtg(wt).f(t) dt by solving the linear system 

i = 0  xl  

where 

j ~ l ~ j 4 - n 4 -  l, (2.6) 

f 
Xl+l 

r  = eiWtg(wt) f ( t ) d t = F ( X l + l ) - F ( x t )  , / = 0 , 1 , . . . ,  (2.7) 
J x  l 

and the/3~ serve as the additional unknowns. In addition, we define F(x_,) = 0 in 
(2.7). The solution of the linear system in (2.6) can be achieved in a very efficient 
manner by the W-algorithm [37], which is given below: 

�9 setM(S~=F(xs)/r  and N(S~=l/r  s = O , l , . . . ;  

�9 for s = O, 1 , . . .  and p = O, 1 , . . .  compute 

and set w ( S ) =  M(pS)/N (s). 

As has been shown in [38], the sequences {w(J)}~=0 for fixed j have very fa- 
vorable convergence properties. Therefore, we choose to consider only the se- 

quences {W(~ Furthermore, [ W ( ~ I -  W (0) ] may provide an error estimate 

for the approximation W(~l ,  which is probably the best of the approximations W (j), 
j 4- p = n 4- 1. For more details the reader is referred to the original papers [37, 

38]. Once the best W (j) has been computed, Q2(w) is approximated by ~ W  (~ 
The problem that remains is that of computing the ~b(xj) that were defined in 

(2.7) to the level of accuracy prescribed by the user. This is the topic of the next 
section. 
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3. Computation of the finite oscillatory integrals 

As mentioned in the previous section, the mW-transformation requires the sequence of 
the finite integrals r  I = - 1 , 0 ,  1 , . . .  given in (2.7) or, equivalently, the integrals 
F(xt) defined by (2.5). The computation of the r  can be performed accurately 
by an appropriate quadrature rule such as Gaussian formula. If the integrand function 
f(t) is smooth, however, it might be more efficient to devise a quadrature method 
for computing several, say r, integrals ~b(Xs+j ) , . . . ,  r  or the indefinite integral 
f~s eiWtg(wt)f(t) dt where we take x = xs+~ (i = 1 , 2 , . . . ,  r) ,  at a time for an arbitrary 
integer s. 

Indeed, for a positive integer m and a non-negative integer #, define s = m + # r  
and subdivide the integration interval [c/w, Xs+t] for the integral F(xs+t), 0 < l <<, r, 
into # + 1 subintervals Kq (q = - 1,0, 1 , . . . ,  # - 1), and an extra one (Xs, xs+l] as 
follows: 

where we take Kq = (xmq-qT-,xm-t-qr-t-r ] (q = 0 , 1 , . . . )  and in particular K - i  = 
[c/co, x~];  the appropriate values of m and r are determined later. Then, we have 

#--1 [ X s +  l 
F(xs+l) = ~ F(Kq) + ei~~ 

q=--I JXs 

1 <<,l<<,r, s = m + # r ,  # = 0 , 1 , . . . ,  (3.1) 

where F(Kq) is defined by 

F (Kq)  = ftE eiWtg(cot)f(t) d t :  [Zm+qr+~ eiWtg(cot)f(t) dr. 
Kq .J 23m+qr 

The knowledge of the indefinite integrals fz ~, e i~~ g(cot) f(t) dr, where s = m + # r  
and x E K~, (# = 0, 1 , . . . ) ,  could enable the efficient evaluation of each integral in 
the right-hand side of (3.1). 

To this end, here we briefly describe an automatic quadrature method 
given in [16, 18] with some modifications, to approximate the indefinite integral 
f• eiWtg(wt)f(t) dt, for a ~< x ~< fl, where for example we set oe = xs and • = xs+r 
for obtaining the integral on [xs, Xs+T]. Let r  [a, fl] ~ [ -1 ,  1] be a linear function 
defined by 

r  = ( 2 t -  f l -  a ) / ( 9 -  a) ,  r  = - 1 ,  r = 1, (3.2) 

and approximate the non-oscillatory part g(cot) f(t) in the integral f2 ei~tg(cot)f(t) dt 
by a sum PN(t) of the Chebyshev polynomials Tk(t): 

N 

= pN( r  = ~ 'aNTk( r  a <. t <~ fl, (3.3) PN(t) 
k=O 
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where the prime denotes the summation whose first term is halved. Then, defining 
W = (fl - a ) / 2  and T = (13 + a ) /2  we have 

ei~ g (wt ) f ( t )  dt ~ eiwtPN(t) dt = W e x p ( i w T ) I ( w W ,  r  (3.4) 

where I(w, x;p) is defined by 

S I (w ,x ;p )  = eiWtp(t)dt, - 1  <~ x <~ 1. 
1 

(3.5) 

It is efficient to choose r to be a larger positive integer so long as f ( t )  is a 
sufficiently smooth function on the interval [a, fl], whence one can expect that the 
truncated Chebyshev series (3.3) converges rapidly as N increases, since g(t) is a 
smooth function, too. Several numerical experiments suggest that the near optimum 
choice of the integer r depends on the tolerance E2 for the integral Q2(w) (2.4b) to 
minimize the total number of function evaluations required to satisfy Ca. Let M = 
[ -  logl0 s2], then in view of the observation that the mW-transformation converges so 
rapidly for slowly convergent integrals that M +  2 finite integrals r  - 1  ~< i ~< M, 
might be sufficient to achieve the accuracy E2, we determine empirically for (3.1) that 
rn = 2 and r = 3 + 0.7M. It remains an open problem to determine the optimum 
values of m and r depending on the required accuracy e2 and the class of the given 
function f (t). 

Now we proceed to evaluate the indefinite integral in the right of (3.4) or 
I(w, x;p) given by (3.5) with p(t) replaced by pN(t) in (3.3). We will see that one 
can use an auxiliary function H(x)  to write the integral fz_ I ei~ as follows: 

F I ( w , x ; p N )  =- e iWtpN( t )d t -  eiWZH(x) I i--~ ' - 1  < ~ x< ~  1. (3.6) 

Differentiating both sides of (3.6) with respect to x, yields the first order differential 
equation 

1 dH(x)  
- -  + H(x)  = pN(x),  (3.7) 

iw dx 

which is further integrated from - 1  to x to give 

H ( x ) - H ( - 1 )  
iw i ; -b H ( t ) d t  = pN(t )d t .  

1 1 
(3.8) 

To solve (3.8), we expand H(t)  in terms of Chebyshev polynomials: 

OO 

(3.9) H(t)  = ~-~'bk Tk(t). 
k = O  
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Substitute (3.3) and (3.9) into (3.8) and use the relation: 

2 f T k ( t ) d t -  Tk+l(t)  Tk-l(t______~) +const ,  k >/2. 
J k + l  k - 1  

Then, comparing the coefficients of the Chebyshev polynomials, we have 

2k 
bk-l + :--  bk - bk+l = aN_l -- a/v 1 ~< k. (3.10) k4-1~ 

102 

N N).  We have omitted the dependence of the For convenience, we set a k = 0 (k > 
coefficients bk in (3.9) on 02 as well as the coefficients {a N} of pN(t) .  

To make use of the three-term recurrence relations (3.10) to evaluate the coeffi- 
cients bk in (3.9) in a numerically stable manner (see, e.g., Gautschi [10] and Lozier 
[27] for the numerical stability of the recurrence relations), we need another equation, 
(3.11) below, 

N 

~ ' ( - 1 ) k  bk = 0 ,  (3.11) 
k = 0  

which can be derived from (3.9) and the condition for (3.6) that H N ( - - 1 )  = 0. 
Now, we can obtain bk by solving a system of linear equations [19, 27] of 

a coefficient matrix A derived from (3.10) and (3.11), which we describe in the 
following. Let K be a large integer greater than N.  Further, let M = [I021J and for 
0 < M < K let A be a (K  + 1) x (K + 1)-matrix defined by 

l do - 1  0 . . .  
0 1 dl - 1  0 

: " . .  " , .  " . .  

0 . . .  0 1 dM- l  

/~0 /~  l �9 . .  )k M-- I /k M 
0 . . .  0 1 
0 . . .  0 

. . . 

. . . 

A = 

- 1  

AM+I 
dM 

1 

0 

AM+2 
- 1  

dM+l  

0 

. . .  0 

. - �9 0 

�9 �9 �9 0 

. . . . . .  )~K 
0 . . .  0 ' 

--1 . . .  0 
" , .  " . .  .* 

1 d K - 2  -- 1 
0 1 d g - I  t 

(3.12) 

1/2 and Ak = ( - 1 )  k (k = where dk-l  = 2 k / ( i w ) ( k  = 1 ,2 , . . .  , K ) ,  A0 = 
1 , 2 , . . . , K ) .  When M = 0 o r  M /> K, A i s  amat r ix  having Ao , . . . ,AK on the 
first row or on the last one, respectively�9 Further, let a T = (ao, a l , . . . ,  aK) and let 

N N (k = 0 , 1 , . . . , M -  1), aM = 0 and ak+, = a N - a~V+2 (k : ak ---- a k - - a k +  2 
N M , M  + 1 , . . .  , g  - 1), where we take a0N/2 instead of a N and note that a k - 0 

(k > N).  Then the coefficients bk (k = 0, 1 , . . . , K )  can be stably and efficiently 
computed from the solution of the linear system of equations Ab -- a by LU decom- 
position without pivoting, see appendix A for more details of an algorithm for the LU 
decomposition. See also Cash [3] for the LU factorization of matrices derived from 
recurrence relations. 
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4. Chebyshev series expansion and the FFT 

We here describe how to construct the sequence of the polynomials {PN} of (3.3) 
using a modified FFT [21], which can be efficiently used in the CC method [4] and 
its extension for evaluating the integrals Q2(w) (2.4b) to the required accuracy. It 
suffices to consider only the indefinite integral I(w, x; f )  (3.5) on the interval [ -1 ,  1] 
and its approximation IN -- I(w, x;pN), since an arbitrary finite interval can be easily 
transformed into [ -1 ,  1] by a linear function such as r (3.2). 

Incidentally, an automatic quadrature of non-adaptive type is generally con- 
structed from the sequence of the approximations {IN} converging to the integral, 
having an adequate method of error estimation, until a stopping criterion is satisfied. 
It is a usual and simple way to double the degree N of pN(t) (3.3) for generating 
the sequence {IN}. In order to make an automatic quadrature efficient, however, it is 
advantageous to have more chances of checking the stopping criterion than doubling 
N. Hasegawa et al. [21] showed that the degree N of pN(t) can be allowed to take 
the form 3 x 2 n and 5 • 2 n as well as 2 n. 

Here and henceforth we assume that N is a power of 2, 2 n (n = 2 , 3 , . . . ) ,  
unless otherwise stated. Now, we outline the iterative procedure [21] for computing 
the sequence of the truncated Chebyshev series, {PN,P5N/4,P3N/2}, N = 2 n, n = 
2, 3 , . . . ,  until a stopping criterion described in section 5 is satisfied. 

Let t N = cos(lrj/N) (0 <~ j <~ N) be the zeros of the polynomial WN+l(t) 
defined by 

wm+l(t)  = TN+I(t) -- TN-l(t) = 2(t  2 -- 1) UN-I(t), (4.1) 

where UN-l(t) denotes the Chebyshev polynomial of the second kind defined by 
U o f  p N ( t )  (3.3) a r e  UN-I (t) = sin(NO)~ sin 0, t = cos 0. Then, the coefficients a k 

determined [4] so that pN(t) interpolates f(t) at the abscissae t N, and consequently 

N is represented in the form: a k 

2 
0  4.2, ,._. " f  cos cos N ,  C =  N ,:0 

The right-hand side of (4.2) is known to be efficiently computed by means of the FFT 
for real data [12]. 

For integer o. = 2 and 4, let {v~/~ (0 <, j < N/o.) be a subset of the zeros 

of TN(t), in particular, be chosen to agree with a set consisting of the N/o. zeros of 
TN/a(t)- cos3rc/(2o.). Then, we represent the polynomials PN+N/a(t) (o. = 2,4) 

interpolating f(t) at the nodes va N/a, 0 <~ j < N/o. (o. = 2, 4), as well as at the zeros 

of WN+! (t) (4.1) in the Newton form: 

Nl~ 
VN+N/a(t) -- pN(t) = --WN+I(t) E BN/a Uk-l(t) 

k = l  

N/a 

= Z TN+k(t)}. 
k=l 

(4.3) 
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The coefficients t ~ k  j are determined to satisfy the condition 

f(vr//~) =pN+Ul~(Vr//~), O <~j < Nlz, a= 2,4, 

and the FFT [21] is used for efficiently evaluating the coefficients Bff/~. We note that 

the set of N/4  abscissae {v;/4} (0 <~ j < N/4) for P5u/4(t) --pN(t) is contained in 

the N/2 abscissae {v; /2}  (0 ~< j < N/2) forP3N/2(t ) --pN(t), which is also included 
in the set of the N zeros of TN(t) (=  W2U+l(t)/{ZWN+l (t)}) for P2U(t) --pN(t). 
This fact allows the iterative algorithm to compute the sequence {P3m, P4m, P5m} (rr~ =- 
2 n, n = 1 , 2 , . . . )  using the FFT, see [21] for details. 

5. Error estimate 

We estimate the truncation errors of the approximations I(w,x;PN+rnN/4) (rn = 
0, 1,2) to the integral I(w, x, f )  (3.5), where PN+mN/4(t) (rn = 0, 1,2) are given 
by (3.3) and (4.3). 

Let Ep denote the ellipse in the complex plane z = z+iy  with foci ( -  1,0), (1,0) 
and semimajor axis a = (p+p- t ) /2  and semiminor axis b = (p_p- l ) /2  for a constant 
p > 1. Assume that f (z )  is single-valued and analytic inside and on E o. Then, the error 
of the interpolating polynomials pN(t) and PN+N/z(t) (or = 2,4), can be expressed 
in terms of the contour integral [7, 17]: 

1 J~e WN+l(t) f ( z )dz  
f ( t )  - pN(t) = ~ o - ~ - ~ -~N+i  (--~) ' (5.1) 

1 I WN+l(t){TN/~(t) -- cos(3~r/(2cr))} f (z )  dz 
f (t)--pN+N/~(t ) = ~ ~p - ( - z - - - t ) - - ~ N+, ( - ~ T-N / -~ - - co~ / (~ )  ) }' 

respectively. Now for t E [ -1 ,  1] 

cr = 2, 4, 

(5.2) 

where Uk(z) is the Chebyshev function of the second kind defined by 

_11 Tk(t) dt rr 2rr 
U k ( z ) =  ( z - t ) g ' l - t  2 -  z2v/~-L~-lu k -  ( u - u - l )  uk '  

(5.4) 

u = z + ~ -  1 and lul > 1 for z r [-1,1] (see [11, 20]). Using (5.3) in (5.1) 
and (5.2) enables us to expand in terms of Chebyshev polynomials, the errors for the 
interpolating polynomials pN(t) and PN+N/~(t) as follows: 

(3O 

f (t) - pN(t) = WN+l(t) ~ ' gN (f)  Tk(t), 
k=0 

(5.5) 

(2O 

1 _ 2  kIzl TkIt) ,  (5.3) 
z - t 7r 

k=O 
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f (t) - PN+NI,~ (t) 

37 
= w N + l ( t )  T N / . ( t )  -- cos 2--~ 

k=O 

a = 2, 4, 

(5.6) 

where the coefficients V N ( f )  and V ff+N/* (f) are given by 

1 ~p Uk(z) f (z)dz  
vN( f )  = 7r2---il WN+l(z) ' k ) 0, (5.7) 

vkN+N/~rr~ 1 ~p ~]k(z) f (z)dz  
w ,  = 7r2---~1 WN+I(z){TN/~(Z) -- cos(37r/(2a)))' k >~ 0, cr = 2,4, 

(5.8) 
respectively. 

Using (5.5) in (3.5) yields the error for the approximate integral I(w, x;pN) 

0,O 

I(w,x; f)  - I(w,x;pN) = I(w,x; f -- PN) = E '  VN(f)  f~N(x)' 
k = 0  

(5.9) 

where f2~(x) is defined by 

S aN(x)  = e i~~ WN+l(t) Tk(t)dt, (5.10) 
1 

and further, aN(x)  can be bounded by lag(x) l  ~< 4, independently of N, k, w and 
x for Izl ,< 1. Similarly, we have the error for the approximation I(w,x;PN+N/~) 
depending on the interpolating polynomial PN+N/~(t) (4.3): 

I ( w ,  x; f)  - I(w, X ; p N + N / a  ) = 1(o2, X; f - P N + N / a )  (5.1 1) 

1 ~ - "~ t f t - .~N+N/o ' /  , . - . N - N / a /  , 2a~V(x) COS37rtV, N+N/atf~ 
= -2 ~ ~ %  Ix) +-tzk I x ) -  2aS k t J" 

k----O " 

Suppose that f(z) is a meromorphic function which has M simple poles at the 
points zm (m = 1 ,2 , . . . ,  M) outside ep with residue Resf(zm). Then, performing 
the contour integral of (5.7) yields 

1 iE Ok(z) f (z)dz  
vN( f )  = 7r2--- ~ ~UN+l(Z) 

= _2 ~ Resf(zm) Uk(zm) 
W N + I  ( Z m )  

m =  1 

, k / > O ,  (5.12) 

where E is an ellipse having foci at 4-1 such that the poles Zm ( m  = 1,2, . . .  ,M) are 
in E and no other singularity of f(z) exists. Now, noting that Tk(z) = (u k + u-k)~2 
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for complex z = ( u + u - l ) / 2  ~ [ -1 ,  1] where lul > 1, we have from (4.1) WN+l(Z ) = 
v / ~  - 1 (u N - u -N) ,  which is combined with (5.4) to yield 

Uk(z) 71" 1 
WN+I (z) z 2 - 1 u k (u N - u - N )  " 

(5.13) 

The most dominant term in the right of (5.12) is obtained for the poles zj for which 

z3§ = min 
I <~m~M 

If we assume that there is only one such zj, we have v N ( f )  ~ v N ( f ) u y  k for 
F . . . . _  

sufficiently large N,  where uj = zj + 4 z  2 - 1. This fact and (5.9) permit us to 

estimate the error: 

O(3 OO 

Iz( , f - PN)I 4  'lv (f)l 41voN(f)I ~'  
k=0 k=0 

r + l  
= 4]VoN(f) ] 2 (-r--- 1), 

r - k  

(5.14) 

N of  Now, we wish to estimate I v g ( f ) l  in terms of the available coefficients a k 
pN(t).  Elliott [7] gives 

2 ~ TN-k ( z )  f ( Z ) d z ,  O<~k<~N. 

Performing the contour integral and comparing the result with (5.12) gives the relations 
[VoNI l a N i r / ( r 2 _ l ) a n d l a N i  N "~ rl%+~ I, unless the poles zm are close to the ranges 
[-1,  1] on the real axis. From these relations and (5.14), we have the estimate RN of 
the truncation error I I ( w , x; f - P N ) I 

RN = 4( laNI /2)r  (5.15) 
( r  - 1)2 

The constant r may be estimated from the asymptotic behavior of {a N} [21]. 
~Nla  Next, we wish to estimate the error (5.1 l) in terms of the computed ~k , which 

is expressed in the contour integral [17]: 

~/~_-1 ~ TN/~_k(z)f(z)dz 
7ri p WN+l(z){TN/,r(z)--cos(37r/(2a))} '  

1 <~k<~N/a, a=2,4,  

(5.16) 
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where the right-hand side of (5.16) is multiplied by 1/2 when k = N/a. Performing 
the contour integrals in (5.8) and (5.16) and comparing the both results yield estimates 

IVoN+N/  I 41BNr J:I 
r 2 - -  1 ' 

IvN+N" I : 

N/a ,-,N/,~ , 
and iB k i ~ r z~k+ i . Using these relations and (5.8) in (5.11) yields estimates 
RN+N/,~ of the truncation errors for the approximates l(w, x;pN+N/,~) (a : 2, 4) as 
follows: 

N/o- 8(1 + I cos(37r/(2cr))l) IBN/ I T 
RN+N/~ = ( r  - -  1 )2  (5.17) 

The relations (5.15) and (5.17) indicate that the errors are estimated independently 
of the value of w. Thus, the errors for the quadrature rules I(0, 1;pN+mm/4) (m = 
0, 1,2), to the non-oscillatory integral I(0, l; f )  = f_l I f(t)dt can also be estimated 
by (5.15) and (5.17), respectively. In the next section we will make use of the 
error estimations (5.15) and (5.17) to derive the stopping criterion in the automatic 
quadrature for Q(~o). 

6. Stopping criterion 

The efficiency of an automatic quadrature scheme depends on an adequate stopping 
criterion based on an error estimate as well as on the use of appropriate quadrature 
rules. 

We remember from (2.3) that the integral Q(w) is divided into the two integrals 
Q l  (W) on [a, c/w] and Q 2 ( W )  o n  [c/w, oo). We want to approximate both integrals 
to assigned tolerances el and e2, respectively, so as to attain the overall accuracy 
e = el +e2 for Q(w) by using the CC method and its extension described in sections 2, 
3 and 5, with as small a number of function evaluations as possible. Now, we have 
to determine the adequate values of el and e2 for the integrals Ql(w) and Qz(w), 
respectively. The result of numerical experiments suggests to choose el = e /20  and 
e2 = 19e/20, see [9] and [22, p. 173] for a detailed discussion on a more general 
topic, the software interface problem. 

Further, we have seen that the infinite integral Q2(w) (2.4b) can be efficiently ap- 
proximated by using the approximations to the finite integrals F(xi) (i = -1, O, 1,...) 
(2.5) or F(xs+l) in (3.1) along with the mW-transformation. The next question is 
how to assign the tolerance to each F(Kq) (q = - 1 , 0 ,  1 , . . . )  in (3.1) on the in- 
terval Kq. It may in general be difficult to know at the outset how many integrals 
F(Kq) (q = - 1 , 0 ,  1 , . . . )  are required in the mW-transformation to attain the assigned 
accuracy e2 for Qz(w). Numerical experiments, however, suggest that since the mW- 
transformation can transform a large class of convergent infinite oscillatory integrals 
into very quickly convergent ones, two or (at most) three intervals Kq (q = - 1,0 or 1) 
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(note that we have determined the Kq depending on e2) are sufficient to obtain the 
tolerance e2. 

From the observation above we empirically determine the tolerance to each in- 
tegral F(Kq) on the Kq (q = - 1 , 0 ,  1 , . . . )  as follows. Assume that f(x) in QE(W) 
is a smooth function of slow convergence at infinity, and that only three intervals 
Kq (q = - 1 , 0 ,  l) are enough. Then we assign the tolerance e2/3 to each integral 
F(Kq) (q = -1 ,O ,  1). 

If we have no knowledge of how many finite integrals F(Kq) are required in 
the mW-transformation, an alternative and most conservative method of assigning the 
tolerances may be to assign e2/2 q+2 to F(Kq) (q = - 1 , 0 ,  1 , . . . ,  oo), to obtain the 
required accuracy e2 = ~-'~q=_l(e2/2q+2) for the infinite integral Q2(w) (2.4b). In 
this case, the automatic quadrature could be more reliable but certainly less efficient, 
and to make matters worse we might fail to obtain the convergent result because of a 
more stringent tolerance for bigger q of Kq. 

We conclude this section by summarizing our stopping criteria. For the integral 
Q, (w), define ~o(t) = f(t)K(wt) and qb(x) = r - a)x/2 + (c/w + a) /2) ,  where 
- 1  ~< x ~< 1. Further, approximate q~(x) by the truncated Chebyshev series pN(x) 
(3.3) (or PN+N/a(x) (4.3)). If the error estimate RN (5.15) (or RN+N/~ (5.17)) is less 
than or equal to 2sl/(c/w - a), then we accept the approximation using the pN(x) 
(or PN+N/cr(X)). 

For the integrals F(Kq) (q = - 1 ,  O, 1), define ~p(t) = f(t)9(wt) and further, by 
using the (p(t), define ~Pq(X) = ~( (XmTqr+r-Xm+qr)X/2 + (XmTqr+r +Xm+qr)/2) for 
q = 0, l, and Oq(X) = qo((xm-c/w)x/2 + (xm +c/w)/2) for q = - 1 .  Then, approxi- 
mate the Oq (X) by the polynomial PN (x) (or PN+N/a (X)) on the interval [ -1 ,  1]. If the 
error estimate RN (or RN+N/~) is less than or equal to 2(e2/3)/(Xm+qr+r - Xm+qr) 
for q = 0, 1, and 2(e2/3)/(Xm - c/w) for q = - 1 ,  then we accept the corresponding 
approximation. 

7. Numerical examples 

Here we compute the following integrals [13, pp. 682, 686 and 712] of Jo(wx) and 
Jl (wx), having a parameter a for a variety of w-values to illustrate the performance 
of the present automatic quadrature, 

f0 ~176 X e -aT J0(wx) (X 2 -~- a2)1/2 dx = - - ' w  a = l, 1/8, (A) 

f0 X e -aT Jo(wX)(x 2 + a 2 ) 3 / 2 d x -  a , a = l ,  1/8, (B) 

~ J o ( w x ) e - ~ d x  - (a2 +w2)1/2 , a =  1, 4, (C) 

fo Jo(wz)z e dx  - (a  2 + w2)3 n ,  a = 1, 4, (D) 
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f 0  ~ x 2 Jl(coX)(x2 _+_ a2)3/2 dx = e -am, a = 1, 1/8,  (E) 

fO ~ X 2 CO e-am 
Jl  (cox) (x 2 + a2)5/z dx  - 3a ' a = 1, 1/8,  (F) 

j~ oo J l  ( c o x )  e - a x  d x  = ( a 2  -k- od2) 1/2 - a 
c o ( a  2 _}_ co2)1/2 ' a = 1, 4 ,  (G) 

/0 co Jl (wx)x e -az dx -- (a 2 q-  CO2)3/2'  a = 1, 4. (H) 

In tables 1 and 2 we show the numbers of  function evaluations, required to achieve 
the requested accuracies, ea ---- 1 0  - 6  and 10 -12, and the actual errors, for the inte- 
grals (A)-(D)  of  Jo(cox) and the integrals (E)-(H) of  J l  (cox). The numbers of  the 

Table I 
t~3 

Performances  o f  the present  method for the integrals f l  Jo(wx)f(x)  dx, where: (A) f ( x )  = z / ( x  2 + 
a2) I/2, (B) f ( x )  = x / ( x  2 + a2) 3/2, (C) f ( x )  = e x p ( - - a x )  and (D) f ( x )  = xexp( -ax) .  The numbers  

N o f  function evaluations required to satisfy the requested tolerances e,~ = 10 -6  and 10 -12 are listed 

in the fifth and eighth columns.  The  numbers  M o f  half  periods in the interval [c/w, oo) used in the 

mW-transformat ion  due to Sidi are given in the seventh 

f ( z ) a w Integral 

(A) 

(B) 

(C) 

(D) 

1/8 

1/8 

and last columns.  

1 3.678794411714423 • 10 - I  

5 1.347589399817093 • 10 -3  

9 1.371220045407551 • 10 -5  

1 8.824969025845955 x 10 - I  

5 1.070522857037980 • 10 - I  
9 3.607249637314997 x 10 -2  

1 3.678794411714423 x 10 - t  

5 6.737946999085467 • 10 -3  

9 1.234098040866796 • 10 -4  

1 7.059975220676764 

5 4.282091428151922 

9 2.597219738866798 

1 0.7071067811865476 

5 0.1961161351381840 

9 0.1104315260748465 

1 0.2425356250363330 

5 0.1561737618886061 

9 0.1015346165133619 

1 3.535533905932738 • 10 - I  
1 5 7.542928274545540 • 10 -3  

9 1.346725927742031 • 10 -3  

1 5.706720589090188 • 10 -2  

4 5 1.523646457449815 x 10 -2  

9 4.186994495396367 • I0  -3  

ea = 10 -6  ea = 10 -12 

N error 

37 7 • 10 -8  

39 2 • 10 -g  

33 I • 10 -g  

83 1 • 10 -9  

51 1 • 10 -8  

35 2 x 10 -8  

49 5 • 10 -9  

37 6 • 10 -8  

35 7 • 10 -9  

121 8 • I0 - m  

57 6 • 10 - m  
53 6 x 10 -8  

37 2 • 10 -7  

33 2 x 10 -8  

31 2 • 10 -9  

35 6 • 10 - m  
35 8 • 10 -8  

33 1 • 10 -8  

39 8 • 10 -1~ 

33 4 • 10 -9  

33 I • 10 -9  

39 3 • 10 -11 

33 8 • 10 -9  

33 7 x t 0  -9  

M N error 
7 87 I • 10 -13 

7 71 5 • 10 - j5  

7 59 2 x 10 -1~' 

7 171 4 • 10 -14 

6 83 5 • 10 -14 

6 83 7 • 10 -14 
6 91 3 • 10 -14 

6 71 7 x 10 -14 

7 71 6 • 10 -14 

6 215 3 • 10 -14 

6 119 1 • 10 -13 

6 103 2 • 10 -13 

4 67 9 • 10 - t6  

5 51 1 x 10 -14 

6 45 3 x 10 -16 

4 59 3 • 10 - j6  
4 7I 8 • 10 -17 

5 59 7 • 10 - t7  

4 75 6 • 10 -~7 
6 51 4 • 10 -15 

6 45 I x 10 -14 

4 59 2 • 10 -17 

4 67 2 • 10 -16 

5 59 4 • 10 -16 

M 

II 

12 

13 

11 

lO 

10 

10 

11 

12 

10 

10 

11 

7 

9 

10 

4 

7 

8 
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Table 2 
Performances of the present method for the integrals f~ J l (wz) f ( z )  dz, where: (E) f ( z )  -~ z2/(z  2 + 
a2) 3/2, (F) f ( z )  = zz / ( z  2 + a2) s/2, (G) f ( z )  = exp( -az )  and (H) f ( z )  = zexp( -az) .  The nulls in 
the column of the error indicate that the approximations achieve the accuracy of the roundoff error level 
of the double precision. 

f ( z )  a w Integral 
1 3.678794411714423 • I0 -~ 

1 5 6.737946999085467 • 10 -3 
(E) 9 1.234098040866796 • 10 -4 

1 0.8824969025845955 
1/8 5 0.5352614285189903 

9 0.3246524673583497 
1 1.226264803904808 • 10 - t  

1 5 1.122991166514245 x 10 -2 
(F) 9 3.702294122600387 x 10 -4 

1 2.353325073558921 
1/8 5 7.136819046919870 

9 7.791659216600394 
1 2.928932188134525 • I0 -~ 

1 5 1.607767729723632 x 10 -I  
(G) 9 9.884094154723928 x 10 -? 

1 2.985749985466811 x 10 .2 
4 5 7.506099048911515 x 10 -z 

9 6.598461488295027 x 10 .2 
1 3.535533905932737 x 10 - t  

1 5 3.771464137272770 x 10 .2 
(H) 9 1.212053334967828 x 10 .2 

1 1.426680147272547 x 10 .2 
4 5 1.904558071812269 x 10 .2 

9 9.420737614641827 x 10 .3 

e,~ = 10 -6 sa = 10  -12  

N error M 
55 3 x 10 -~ 6 
39 2 x 10 -~ 7 
37 5 x 10 -8 7 

89 2 • 10 -8 6 
57 3 x 10 -8 6 
47 3 x 10 -8 6 
53 8 • 10 -9 5 
37 7 • 10 - 9  6 
39 6 x 10 -9 7 

103 5 • 10 -9 5 
95 8 • I0 -9 6 
63 3 x 10 -8 6 
33 2 x 10 -8 4 
33 1 x 10 -8 5 
35 6 x 10 -It 6 

39 3 x 10 -~2 4 
35 1 x 10 -8 4 
33 2 x 10 -9 5 
39 4 • 10 -9 5 
37 2 x 10 -m 6 
37 2 x 10 -8 5 

43 2 x 10 -12 4 
37 2 • 10 -9 5 
37 9 x 10 -m 5 

N error M 
95 2 •  10 -j~ 11 
71 I • 10 -t4 12 
67 2 x 10 -14 13 

215 I x 10 -15 11 
99 1 • 10 -~3 11 
87 4 x 10 -14 11 

119 5 X 10 -14  9 
79 4 x  10 -~4 11 
71 3 • 10 -14 12 

183 4 x 10 -14 9 
135 4 x 10 -ts  I 1 
103 1 x 10 -14 11 

71 0 7 
51 2 x 10 - t5  9 

45 6 x 10 -15 9 

51 5 x 10 -14 4 
67 8 • 10 -17 7 
59 1 • 10 -17 8 

75 0 8 
51 4 • 10 -15 9 
45 3 • 10 -14 9 

59 6 x 10 -17 4 
71 4 • 10 -18 8 
59 5 • 10 -16 8 

in tegra l s  ~b(zt) (2.7) on  the ha l f  per iods  of  the osc i l l a t ion  in the in te rva l  [5/co, oo),  

used  in the m W - t r a n s f o r m a t i o n ,  are a lso l is ted in the c o l u m n s  headed  " M " .  Tab les  1 

and  2 e x p e r i m e n t a l l y  ver i fy  the no te  g iven  in sec t ion  3, i.e., the r o W - t r a n s f o r m a t i o n  

c o n v e r g e s  so rap id ly  that  [ -  lOgl0 E2] + 2 in tegrals  ~b(zi) are suff ic ient  to ob ta in  the 

r equ i red  accu racy  ~ ( =  20 e2 /19 ) .  

It is hard  to f ind out  au toma t i c  quadra tu res  ex is t ing  for e v a l u a t i n g  the Besse l  

f u n c t i o n  in tegra l  (2.1),  where  we  set K ( w t )  = J~,(wt) (u  = 0, 1), to c o m p a r e  the 

resul ts  c o m p u t e d  by u s i n g  the p resen t  scheme.  However ,  an e x a m p l e  p r o g r a m  in  

Q U A D P A C K  [33, p. 1 18] m a n a g e s  to c o m p u t e  the in tegra l  

f0  ~ J0(x)(X - e - z )  dx  = 1 
x log(1 + v/2)  

by u s i n g  the rou t ines  D Q A G S ,  D Q E X T  (e -a lgor i thm)  a nd  Z E R O J N  ( / -pos i t ive  zero  o f  

Besse l  f u n c t i o n  Jn (x ) ) .  T h e  n u m b e r s  of  f unc t i on  eva l ua t i ons  r equ i red  in  Q U A D P A C K  

and  the p re sen t  m e t h o d  to ob ta in  the accuracy  10 -12 are 399 and  71, respect ive ly .  
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The computation is performed in double precision arithmetic�9 

A p p e n d i x  A 

For a (K  + 1) x (K + 1)-matrix A defined by (3.12) we show here how to perform 
the LU decomposition to solve Ax = b for a given vector b T = (b0, . . . ,  bK) with 
increasing K until satisfactory approximation is obtained [15, 19]. 

Let B be the same (K + 1) x (K + 1 )-matrix as A, but having elements )~k (k = 
M + 2 , . . . ,  K )  replaced with zeros. Further, let e be a unit vector, 

e T =  (eO, . . . ,eK)  w h e r e e k = O  ( k = O , . . . , K ,  k 7  s  a n d e M =  1, (A.1) 

and let r be a vector defined by 

r T = ( 0 , . . . ,  0, ) ~ M + 2 ,  �9 �9 �9 , ) ~ K ) .  (A.2) 

Suppose that we have LU factorization L U = B, then we have 

A = B + e r  r = LU + e r  r , (A.3) 

where L and U are lower and upper triangular matrices, respectively, given by 

L = 

1 
( 0  

/zo 
0 
0 

1 

�9 �9 �9 

�9 ~ . 

/ZM-l 
0 

1 

IM 
0 

1 
IM+l 1 

�9 . �9 

. . .  0 lK-1 

, (A.4)  

U = 

' 1 do - 1  0 . . .  0 "~ 
�9 . � 9 1 4 9  � 9 1 4 9  

1 d M - 1  --1 0 . . .  0 

UM ~ 0 . . .  0 

U M +  1 - 1  "'. : 

~ 1 4 9 1 4 9  " � 9  0 

UK-l --1 
UK 

(A.5) 

The values of #0 , . . - , /ZM- i ,  1m, . . .  , IK - l ,  UM, . . .  ,UK, and ( in (A.4) and (A.5) 
will be given later in this appendix�9 
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Using these L and U in (A.3), we have for Ax = b 

( I  + L -n e r  T U - l )  U x  = L -1 b. (A.6) 

Now let c, h, v and y be vectors defined by c = L-nb,  h = L - l e ,  v T = r T u  - l  and 
y = Ux, respectively. Then it follows from (A.6) that 

y + hvTy = c, 

which can be solved for y as follows, 

y = c - h{vTc / (1  + vTh) }. (A.7) 

In summary, the linear system of equations Ax = (LU + erT)x = b can be 
solved in the following algorithm: 

Let A, L and U be ( K +  1) x ( K +  1)-matrices defined by (3.12), (A.4) and (A.5), 
respectively. Further, let e and r be vectors defined by (A.1) and (A.2), respectively. 
Then, 

�9 solve Lh = e and UTv = r for h and v, respectively, by the process of forward 
substitution, 

�9 for a given (K + 1)-vector b, solve Lc = b similarly to obtain c, 

�9 evaluate the right hand side of (A.7) for y, 

�9 the solution x of Ax = b follows if we solve Ux = y by back substitution after 
the appropriate value of K has been determined in such a way as described later. 

It remains to show how to compute the non-trivial elements in L and U given by 
(A.4) and (A.5), respectively. Let t T = ( / ~ 0 , . . .  ,FZM-I), and qT = (A0,.. .  ,'~/I--1), 
where /zk and Ak are elements in the (M + 1)th rows of L (A.4) and A (3.12), 
respectively. Let UM be an M x M-upper triangular matrix defined by 

U M =  

1 do  - 1 0 . . .  0 

0 1 dl - 1  ' .  : 

: "'. "'. "'. 0 

"'. 1 dM-3 --1 

: 0 1 dM-2 
0 . . . . . .  0 1 

Then we can see from (3.12) and (A.3) that t T UM = qT, i.e., U S t = q, which 
is easily solved for t by forward substitution. Finally, by using the values of t T = 
(#0 , . . - , /~M-n)  obtained above, the elements ~, lk (k = M , . . . ,  K -  1) and uk (k = 
M , . . . ,  K )  in L and U, are computed as follows: 

�9 ~ = )~M+I -q-/ /~M-I,  't/,M = / ~ M + [ ~ M - 2 - - d M - I l Z M - I ,  
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�9 with the start ing values  IM = 1/UM, UM+l : dM --IM ~ do for  k = M + 1 to 

K - I  
lk = 1 /uk ,  uk+I = dk + lk. 

The  value  o f  K ,  fo r  wh ich  the funct ion  H(t )  given  by  (3.9) is app rox ima ted  by 

K 

H(t)  ..~ ~-~ xk Tk(t),  
k=0 

to the a c c u r a c y  that the c o m p u t e r  can achieve ,  migh t  be de te rmined  by  c h e c k i n g  that  

x K  ( =  yK/UK),  obta ined  before  s tar t ing the back  subst i tut ion to so lve  U x  = y, is 

smal le r  in magn i tude  than the r o u n d o f f  er ror  level o f  the computer .  

We remark  that  the a b o v e  a lgor i thm for  the solut ion o f  A x  = b can be execu ted  

with 8 K  - 5 M  - 1 mul t ip l ica t ions  (and divisions) .  
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