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Abstract 

The /9-transformation due to the author is an effective extrapolation method for computing infinite oscillatory integrals 
of various kinds. In this work two new variants of this transformation are designed for computing integrals of the form 
f,,~ ,q(t)cC(t)dt, where g(x) is a nonoscillatory function and %(x) may be an arbitrary linear combination of the Bessel 
functions of the first and second kinds J,.(x) and Y,.(x), of arbitrary real order v. When applied to such integrals, the 

/)-transformation and its new variants are observed to produce very accurate results. It is also seen that their performance 
is very similar to that of the modified W-transformation due to the author, as extended in a recent work by Lucas and 
Stone with c(g,.(x) = J,(x). The present paper is concluded by stating the relevant convergence and stability results and by 
appending a numerical example. 

Keywords: Numerical integration; Infinite oscillatory integrals; Generalized Richardson extrapolation; Bessel functions: 
Hankel transforms 
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I. Introduction 

The computation of  infinite oscillatory integrals of  the form 

~O 'x2 
I =  g(t)K(t)dt, a>~O, (1.1) 

where g(x) is a smooth monotonic function for x ~ oo and K(x) has an infinite number of  os- 
cillations for x ~ vc, is an important practical problem that has been considered in a number of  
publications. Examples of  commonly occurring functions K(x) are the trigonometric functions cosx 
and sinx and the Bessel functions J,.(x) and Y,.(x) of  the first and second kinds, respectively, of  

• E-mail: asidi~cs.technion.ac.il. 

0377-0427/97/S17.00 (6) 1997 Elsevier Science B.V. All rights reserved 
PII S 0 3 7 7 - 0 4 2 7 ( 9 6 ) 0 0 1  36-7  



126 A. Sidi / Journal of Computational and Applied Mathematics 78 (1997) 125-130 

real order v. One very efficient way of tackling this problem is through the generalized Richardson- 
extrapolation process (GREP), see [9], that may take on different forms: ( I )  If not much is known 
about K(x), then the D-transformation of Levin and Sidi [6] may be applied successfully. (2) If 
the asymptotic behavior as x ~ oc. or the zero structure of K(x) is known, however, then two 
modifications of the D-transformation, namely, the /)-transformation of  Sidi [10] and the modified 
W-transformation (m W-transformation) of  Sidi [14] are much more efficient. 

Extensive numerical tests have shown that both the/)-transformation and the modified W-transfor- 
mation are the most effective procedures for the cases K(x)---cosx and K(x)= sinx; see [10, 
Section 3, Example 1;5]. (In [5] the W-transformation of Sidi [11] was used, but both the /4I- and 
the m W-transformations produce practically the same numerical results.) 

The use of the /)-, W-, and mW-transformations for computing (1.1) with K(x)=Z.(x)  and 
K(x) = Y,.(x) was considered in [10, Section 3, Example 2; 11, 14]. It was observed numerically in 
these papers that all three transformations produce excellent results when v is moderate. 

Finally, the mW-transformation has been used very effectively also in the inversion of the 
Kontorovich-Lebedev transform numerically; see [2]. 

More recently, Lucas and Stone [7] have gone back to the problem of numerically computing 
(1.1) with K(x)= J,.(x) only, where v may take on arbitrarily large values. They have compared 
three different extrapolation approaches that involve the Euler transformation, the e-algorithm, and 
the mW-transformation and that employ the exact zeros or extrema of J,.(x), and concluded that 
the approach involving the m W-transformation is the most effective. Unfortunately, these authors 
have overlooked the/)-transformation in their numerical study, even though this transformation was 
the first GREP to utilize the exact zeros of K(x), and produce results practically as good as those 
obtained in [7] from the m W-transformation approach. In the present work we wish to close this 
gap in the comparative study of the methods. We also bring to the attention of the reader the 
relevant convergence and stability theories that exist for the D- and mW-transformations and that 
were completely left out of  [7]. 

In the next section we review the development of  the/)-transformation and also derive two new 
variants of  it. We also suggest an additional approach involving the mW-transformation that is as 
efficient as the others. Finally, we discuss the convergence and stability properties of  both the D- 
transformation and the m W-transformation in all of  their forms. 

In Section 3 we show the effectiveness of all methods with a numerical example. 

2. The /)-transformation 

The following definition of the/)-transformation and two additional variations of  it for the integral 
( 1. I ), with K(x) =J,.(x) or K(x) = Y,.(x) or any linear combination of the two, that we now turn to is 
actually taken from Sections 2 and 3 in [10]. (It is important to emphasize that the/)-transformation 
is a general method that is applicable to a large class of oscillatory infinite integrals that includes 
the ones treated in this work and in [7].) 

- ( j )  
Definition 2.1. The approximations D, to I in (1.1) with K(x)= ~.(x), where cg,.(x) stands for 
either ,L.(x) or Y~.(x) or any linear combination of them and where g(x) is monotonic at infinity, is 
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defined through the solution of  the linear system of  equations 

n 
.r.(D 

= ~-~flixt , j < ~ l < ~ j + n +  1, (2.1) F(x l )  19, + ~9(xt) - -i 
i=0 

where 

F ( x )  = g ( t ) K ( t ) d t ,  (2.2) 

and /~, are the remaining unknowns. Here the x/ and the function ~b(x) can be chosen in three 
different ways: 

1. The x/ are consecutive zeros of  K ( x ) =  ~;(x) in (a, vc) and ~b(x)= g(x )K ' (x ) ,  thus q 4 x t ) =  
.q(xl)~,.~ ,(xl). 

2. The x/ are consecutive zeros of  K ' ( x ) =  ~¢',.(x) in (a, ec), and 0 ( x ) =  g(x )K(x ) ,  thus O(x t )=  
g ( x l ) ~ ' , . ( x l ) .  

3. The x/ are consecutive zeros of ~,.+l(x) in (a,~c), and ~O(x)=g(x)K(x) ,  thus qJ(Xt)=g(xl)~,.(Xl). 
- ( j }  

The solution of  (2.2) for D, can be obtained recursively with the help of the W-algorithm of  
Sidi [12] as follows: Set 

s = 0, 1 . . . . .  (2.3) M!i'l=F(x.,)/O(x., .) and Nc~I= l/~(x,),  

compute, for s = 0, 1 . . . . .  p = 0, 1 . . . . .  

mCpO = t aAts) (s4 i),, _ -1 , ' "p-I  - M~_ I )/(x, - xLIp-I ), 

Np~,> = ~ e ¢ "  _ N<-"+~>W~x -~  _ x;-?o+ ), ~ , ~ * p - I  p - - I  11 I, s I 

-(s) (s} (s) Op = M; /N; . 

and 

(2.4) 

The finite integrals F(xs)  can best be determined from F(x , )  = ~ = 0  ul, where the integrals ut = 
f f  f ( t ) d t  with x_~ = a can easily be computed using a numerical quadrature formula, such as a 

~ Q - I  " 

low-order Gaussian rule. 
We next present a summary of  the theoretical developments that lead to Definition 2.1. 

Definition 2.2. We shall say that a function .~(x), defined for x > a>~0, belongs to the set A c') if it 
is infinitely differentiable for all x > a and has a Poincar6-type asymptotic expansion of  the form 

2x~ 

Z ~-- ~,x-' as x ---+ ~ ,  (2.5) :c(x) x: 
i=0 

and all its derivatives have Poincar&type asymptotic expansions for x---, ~ that are obtained by 
differentiating the right-hand side of  (2.5) term by term. 

Theorem 2.3. Let f ( x ) = g ( x ) K ( x ) ,  where K(x )=CC(x)  and g(x )=h(x)exp[(o(x )]  such that qb E A t") 
Jbr some nonnegative integer m and l imx_~ ~b(x) = - ~  when m > 0 and h E A t;.) f o r  some 7. Then 
we have 

F ( x )  = I + x°°f(x) f lo(X)  + xO'f ' (x)[3,(x) ,  (2.6) 
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where po and p) are nonpositive integers given by 

{ - 2 m + 2  /f  m > O, - m  + I ! I 'm>O, and pl = (2.7) 
po = -1  ~[m = O, 0 i f  m = O, 

and flo(X) and [h(x) are Junctions in A (°). Here I is J ~  f ( t ) d t  when this' integral converges. In 
case o f  divergence, I is the Abel sum lim,:_o__ .J~~ e - ' : ' f ( t ) d t  o f  the divergent integral .['~ f ( t ) d t .  
(This occurs when m = 0 and ~'>~ 1/2.) 

For a discussion of  Abel-summable oscillatory infinite integrals; see [13]. 
The first form of  the /)-transformation in Definition 2.1 is obtained from (2.6) as follows: First, 

let x = xt, where K(xl) = %(x/)  = 0, thus eliminating the term xP°f(x)flo(X). Next, use the fact that 
.f '(xl) = .q(xl)~i(xl)= --g(xl)~,~l(Xl) that in turn follows from 

},) 

~.(x)  = -%(x )  - %) i (x ) ;  (2.8) 
x 

see [1, p. 361, Formula 9.1.27]. Following that truncate the asymptotic expansion of  ill(x) at the 

power x -n, replace I by D,/) and fl, by fl,, i = 0, ! . . . . .  n, and replace Pl by its known upper bound 
0. Finally, collocate at the points x/, l -- j , j  + 1 . . . . .  j + n + I. 

For the second form of  the /)-transformation we begin by expressing (2.6) in the form 

F(x ) = I + x'"' f (x )flo(X ) + x"' g(x )K'(x )/l, (x), (2.9) 

where /~0(x)= [to(X)+xt"-"°[g'(x)/g(x)]fll(x) and is in A (°). Next, we let x = x l ,  where K' ( x t )=  O, 
thus eliminating the term xP'g(x)K'(x)fll(x). Now we continue as before. 

For the third form of  the /)-transformation we begin by expressing (2.6) in the form 

F(x)  = ! + x '" ' f (x)[~o(X)-  x~'q(x)g%~(x)/l~(x), (2.10) 

where /~0(x) = [to(x) + x'" '":[g'(x)/g(x)][]l(x) + vx"'-f"-'[tl(x) and is in A t°). Next, we let x = xt, 
where 'gi+~(xt)= 0, thus eliminating the term xO'g(x)%+~(x)[Jl(x). Now we continue as before. 

Note that while the first form o f  the /)-transformation is already in [10], the second and third 
forms are new and have been obtained by employing the philosophy of  the/)- transformation that is 
also in [10]. 

Here we recall that the roW-transformation for ( l . l )  with K ( x ) =  J,.(x) or K ( x ) =  y.(x) is also 
defined through a linear system of  the form (2.1), where now x~ are the zeros o f  cosx  (or sinx),  
and thus x/ = (q + l)Tr, l = 0, 1 , . . . ,  for some integer (or half integer) q depending on a, and 
O(xl) = F(xl+l) - F(xt), l = 0, 1 . . . . .  and x_l = a. The idea of  picking the x/ to be equidistant 
with a distance of  rc between two consecutive x~'s was originally published in the framework o f  the 
/5-transformation in [10] and later in the framework o f  the W-transformation in [11]. This idea was 
later also used in [8] in the framework o f  the Euler-transforrnation. When v is large, better results 
are obtained from the roW-transformation if the xl are chosen to be the zeros of  K(x) or K'(x), as 
was suggested in [7]. We now suggest that the roW-transformation is as effective with the x~ chosen 
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as the consecut ive  zeros  o f  cg,,+~(x) as well. Wi th  all three choices  o f  the xt the mW-transformat ion  

b e c o m e s  comple te ly  ana logous  to t h e / ) - t r a n s f o r m a t i o n .  

We  end this sect ion by stating the fo l lowing conve rgence  and stability theorems for the 13- 

t ransformat ion  and its two variants and the roW-transformation with the x/ be ing the zeros  o f  ~ , (x )  
t or ~,.(x),  or  c~ ~l(x). 

-(j) 
T h e o r e m  2.4. Let the function f ( x )  be as in Theorem 2.3, and let D, be the approximations to I 

"~c. - ( J )  
obtained from the ~3-transformation. Then, whether .f~ f ( t ) d t  converges or not, l i m . ~  D. = I. 
In fact, we have the following powerful result. 

- ( j )  
D.  - I  = O ( n  - l ' )  a s n ~ o c f o r  an), # > 0 .  (2 .11)  

In addition, the computation of  the/)(.J) is completely stable in the sense that errors in the F(xl) 
are not maynified with increasinq j or n. 

The results above hold also for the approximations produced by the roW-transformation with 
the xl beiny those utilized by the b-tran,sformation. 

For both t h e / ) -  and the m W-transformations,  with all three choices  o f  the xt, the p r o o f  o f  Theorem 

2.4 can be achieved by the techniques  in [10, Section 6;14, Section 3.2]. We  leave the details to 

the reader. For  other  more  refined results for specific examples;  see [15]. 

Table 1 
.r.(O ) Wn(O ) Relative errors in /3, and for the integral in (3.1) with y = I and a = 4 obtained using the zeros of J,.(x). Here 

/~(0) , are produced by the /)-transformation while W, t°) are produced by the roW-transformation 

v - 0  v =  10 v =  100 

. ' (b~ ') - 1 ) /11  I(w~ °~ - I ) / l l  [ ( /5~  °)  - I)/11 I ( W .  ~°~ - 1)/11 i ( ~  > - I ) /11 i (w.  '°~ - - / ) / 1 ;  

0 8.56D-03 8.40D-03 1.91D-02 5.62D-03 4.50D-02 6.68D-03 
1 5.11D-04 1.61D-03 2.22D-03 3.54D-04 9.34D-03 1.03D-03 
2 8.34 D-06 1.61D-04 1.74D-04 1.41D-05 1.92D-03 1.48D-04 
3 I. 14D-05 5.71D-06 1.20D-05 8.52D-07 3.84D-04 1.93D-05 
4 7.53D-07 4.60D-07 5.99D-07 1.40D-07 7.43D-05 2.07D-06 
5 3.28D-08 6.74D-08 2.47D-08 1.06D-08 1.39D-05 1.27D-07 
6 5.67D-09 3.09D-09 6.75D-10 3.34D-10 2.51D-06 1.66D-08 
7 1.54D-10 5.36D-11 1.42D-11 2.76D-12 4.39D-07 8.69D-09 
8 1.35D-11 1.57D-11 1.09D-13 1.23D-I 2 7.42D-08 2.28D-09 
9 1.27D-12 8.59D-13 3.00D-16 6.78D-14 1.22D-08 4.81D-10 

10 2.57D-14 3.21D-16 1.05D-15 1.35D-15 1.93D-09 8.91D-11 
I 1 2.51D-15 2.41D-15 8.99D-16 1.05D-15 2.98D-10 1.50D-I 1 
12 7.48D-16 8.02D-I 6 1.05D-15 8.99D-16 4.47D-11 2.34D-12 
13 6.95D-16 4.28D-16 8.99D-16 8.99D-16 6.50D-12 3.36D-13 
14 5.88D-16 1.60D-16 1.05D-15 1.05D-15 9.19D-13 4.41D-14 
15 1.071)-16 5.35D-17 1.20D-15 1.20D-15 1.26D-13 5.30D-15 
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3. A numerical example 

We have compared the/)-  and mW-transformations applied to all three choices of  the xt, and found 
,=.(0) 

that they perform very similarly. When comparing the two transformations we should recall that/3, , 
the approximation from the/)-transformation, is obtained using the n +2  integrals F(xt), 0 <~ l ~<n+l ,  
while W,I, °), the corresponding approximation from the m W-transformation, is obtained using the n + 3  
integrals F(xl), 0 ~< l ~< n + 2. 

We have applied the two methods to the integral; see [1, p. 681, Formula 6.552], 

fo l =  J,(xY)(x2+c2),.2-l~..2(~cy)Xv2(~cy), y > 0 ,  .~c>0 ,  . ~ v > - l ,  (3.1) 

with y - -  1 and c - -4 ,  and for v--0 ,  10, 100. The computations have been carried out on an IBM-370 
machine in double precision arithmetic. The results obtained by using the zeros of  Jr(x) are given 
in Table 1. 
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